1
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
2
|
Jin L, Han S, Lv X, Li X, Zhang Z, Kuang H, Chen Z, Lv CA, Peng W, Yang Z, Yang M, Mi L, Liu T, Ma S, Qiu X, Wang Q, Pan X, Shan P, Feng Y, Li J, Wang F, Xie L, Zhao X, Fu JF, Lin JD, Meng ZX. The muscle-enriched myokine Musclin impairs beige fat thermogenesis and systemic energy homeostasis via Tfr1/PKA signaling in male mice. Nat Commun 2023; 14:4257. [PMID: 37468484 PMCID: PMC10356794 DOI: 10.1038/s41467-023-39710-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Skeletal muscle and thermogenic adipose tissue are both critical for the maintenance of body temperature in mammals. However, whether these two tissues are interconnected to modulate thermogenesis and metabolic homeostasis in response to thermal stress remains inconclusive. Here, we report that human and mouse obesity is associated with elevated Musclin levels in both muscle and circulation. Intriguingly, muscle expression of Musclin is markedly increased or decreased when the male mice are housed in thermoneutral or chronic cool conditions, respectively. Beige fat is then identified as the primary site of Musclin action. Muscle-transgenic or AAV-mediated overexpression of Musclin attenuates beige fat thermogenesis, thereby exacerbating diet-induced obesity and metabolic disorders in male mice. Conversely, Musclin inactivation by muscle-specific ablation or neutralizing antibody treatment promotes beige fat thermogenesis and improves metabolic homeostasis in male mice. Mechanistically, Musclin binds to transferrin receptor 1 (Tfr1) and antagonizes Tfr1-mediated cAMP/PKA-dependent thermogenic induction in beige adipocytes. This work defines the temperature-sensitive myokine Musclin as a negative regulator of adipose thermogenesis that exacerbates the deterioration of metabolic health in obese male mice and thus provides a framework for the therapeutic targeting of this endocrine pathway.
Collapse
Affiliation(s)
- Lu Jin
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Han
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Xue Lv
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Xiaofei Li
- Department of Sport Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Ziyin Zhang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Henry Kuang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Cheng-An Lv
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Peng
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuoying Yang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Miqi Yang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Lin Mi
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Shengshan Ma
- Department of Sport Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, China
| | - Qintao Wang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Xiaowen Pan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Shan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Li
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuyun Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Fen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China.
| |
Collapse
|
3
|
Shinde AB, Nunn ER, Wilson GA, Chvasta MT, Pinette JA, Myers JW, Peck SH, Spinelli JB, Zaganjor E. Inhibition of nucleotide biosynthesis disrupts lipid accumulation and adipogenesis. J Biol Chem 2023; 299:104635. [PMID: 36963490 PMCID: PMC10149209 DOI: 10.1016/j.jbc.2023.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Energy balance and nutrient availability are key determinants of cellular decisions to remain quiescent, proliferate or differentiate into a mature cell. After assessing its environmental state, the cell must rewire its metabolism to support distinct cellular outcomes. Mechanistically, how metabolites regulate cell fate decisions is poorly understood. We used adipogenesis as our model system to ascertain the role of metabolism in differentiation. We isolated adipose tissue stromal vascular fraction (SVF) cells and profiled metabolites before and after adipogenic differentiation to identify metabolic signatures associated with these distinct cellular states. We found that differentiation alters nucleotide accumulation. Furthermore, inhibition of nucleotide biosynthesis prevented lipid storage within adipocytes and downregulated the expression of lipogenic factors. In contrast to proliferating cells, in which mTORC1 is activated by purine accumulation, mTORC1 signaling was unaffected by purine levels in differentiating adipocytes. Rather, our data indicated that purines regulate transcriptional activators of adipogenesis, PPARγ and C/EBPα to promote differentiation. Although de novo nucleotide biosynthesis has mainly been studied in proliferation, our study points to its requirement in adipocyte differentiation.
Collapse
Affiliation(s)
- Abhijit B Shinde
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth R Nunn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Genesis A Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mathew T Chvasta
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jacob W Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sun H Peck
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Nashville Veterans Affairs Medical Center, Department of Veterans Affairs, Nashville, TN, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Abstract
The global mortality, morbidity, and healthcare costs associated with cardiometabolic disease, including obesity, diabetes, hypertension, and dyslipidemia, are substantial and represent an expanding unmet medical need. Herein, we have identified a physiological role for C-type natriuretic peptide (CNP) in regulating key processes, including thermogenesis and adipogenesis, which combine to coordinate metabolic function and prevent the development of cardiometabolic disorders. This protective mechanism, which is in part mediated via an autocrine action of CNP on adipocytes, is underpinned by activation of cognate natriuretic peptide receptors (NPR)-B and NPR-C. This mechanism advances the fundamental understanding of energy homeostasis and glucose handling and offers the promise of improving the treatment of cardiometabolic disease. Thermogenesis and adipogenesis are tightly regulated mechanisms that maintain lipid homeostasis and energy balance; dysfunction of these critical processes underpins obesity and contributes to cardiometabolic disease. C-type natriuretic peptide (CNP) fulfills a multimodal protective role in the cardiovascular system governing local blood flow, angiogenesis, cardiac function, and immune cell reactivity. Herein, we investigated a parallel, preservative function for CNP in coordinating metabolic homeostasis. Global inducible CNP knockout mice exhibited reduced body weight, higher temperature, lower adiposity, and greater energy expenditure in vivo. This thermogenic phenotype was associated with increased expression of uncoupling protein-1 and preferential lipid utilization by mitochondria, a switch corroborated by a corresponding diminution of insulin secretion and glucose clearance. Complementary studies in isolated murine and human adipocytes revealed that CNP exerts these metabolic regulatory actions by inhibiting sympathetic thermogenic programming via Gi-coupled natriuretic peptide receptor (NPR)-C and reducing peroxisome proliferator-activated receptor-γ coactivator-1α expression, while concomitantly driving adipogenesis via NPR-B/protein kinase-G. Finally, we identified an association between CNP/NPR-C expression and obesity in patient samples. These findings establish a pivotal physiological role for CNP as a metabolic switch to balance energy homeostasis. Pharmacological targeting of these receptors may offer therapeutic utility in the metabolic syndrome and related cardiovascular disorders.
Collapse
|
5
|
Rukavina Mikusic NL, Kouyoumdzian NM, Puyó AM, Fernández BE, Choi MR. Role of natriuretic peptides in the cardiovascular-adipose communication: a tale of two organs. Pflugers Arch 2022; 474:5-19. [PMID: 34173888 DOI: 10.1007/s00424-021-02596-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in the energy metabolism of several substrates in humans and animals, thus interrelating the heart, as an endocrine organ, with various insulin-sensitive tissues and organs such as adipose tissue, muscle skeletal, and liver. Adipose tissue dysfunction is associated with altered regulation of the natriuretic peptide system, also indicated as a natriuretic disability. Evidence points to a contribution of this natriuretic disability to the development of obesity, type 2 diabetes mellitus, and cardiometabolic complications; although the causal relationship is not fully understood at present. However, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on the current literature on the metabolic functions of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Natriuretic peptide system alterations could be proposed as one of the linking mechanisms between adipose tissue dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Natalia Lucía Rukavina Mikusic
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Nicolás Martín Kouyoumdzian
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María Puyó
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
6
|
Sogawa-Fujiwara C, Fujiwara Y, Hanagata A, Yang Q, Mihara T, Kaji N, Kunieda T, Hori M. Npr2 mutant mice show vasodilation and undeveloped adipocytes in mesentery. BMC Res Notes 2021; 14:438. [PMID: 34838130 PMCID: PMC8626926 DOI: 10.1186/s13104-021-05853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
Objective The biological importance for the signaling of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) has been recognized. However, the details remain unclear and are debatable. The Npr2 is a gene of NPR-B, and we previously reported a unique phenotype of a spontaneous mutant mouse lacking Npr2 (Npr2slw/slw), such as severe ileus-like disorder with bloodless blood vessels. In this study, we analyzed the bloodless mesenteric vascular morphology of Npr2slw/slw by histological observation to clarify the effects of the CNP/NPR-B signal deficiency. Results Blood vessels in the mesentery were clearly dilated in the preweaning Npr2slw/slw mice. Additionally, in the Npr2slw/slw mice, the lacteals were partially dilation or randomly direction mucosal epithelial cells in villi, and mesenteric adipocytes were undeveloped. These findings provide important information for understanding the role of CNP/NPR-B signals on intestine with mesentery.
Collapse
Affiliation(s)
- Chizuru Sogawa-Fujiwara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yasuhiro Fujiwara
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsuki Hanagata
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Qunhui Yang
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taiki Mihara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriyuki Kaji
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Tetsuo Kunieda
- Faculty of Veterinary Medcine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan
| | - Masatoshi Hori
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
7
|
Ai X, Hou X, Guo T. C-type natriuretic peptide promotes adipogenic differentiation of goat adipose-derived stem cells via cGMP/PKG/ p38 MAPK signal pathway. In Vitro Cell Dev Biol Anim 2021; 57:865-877. [PMID: 34786662 DOI: 10.1007/s11626-021-00621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 10/19/2022]
Abstract
C-type natriuretic peptide (CNP) is a member of natriuretic peptide family, which plays unique roles in cardiovascular system. Once CNP binds to natriuretic peptide receptor B (NPR-B), NPR-B induces the production of cGMP, thereby activating PKG and downstream targets. The expression of NPR-B in adipose tissue led to a hypothesis that CNP could have roles involving in regulation of adipogenesis. However, there are few studies on the relationship between CNP and adipogenesis in goat. In the present study, goat adipose-derived stem cells (ADSCs) were isolated and employed to investigate the effect of CNP on adipogenesis in goat. The results showed that CNP significantly promoted adipogenic differentiation of goat ADSCs and also up-regulated the expression of brown adipose genes including uncoupling protein 1 (UCP-1) and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α). Furthermore, treatment with CNP increased the cGMP production and the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), MAPK activated protein kinase 2 (MK2), and activating transcription factor 2 (ATF2) during adipogenic differentiation. Conversely, PKG inhibitor Rp-8-CPT-cGMP or p38 MAPK specific inhibitor SB203580 abolished stimulative effect of CNP on adipogenic differentiation. Collectively, it is proved that CNP promoted adipogenic differentiation of goat ADSCs depending on the cGMP/PKG/p38 MAPK signal pathway.
Collapse
Affiliation(s)
- Xia Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Ximiao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Tingting Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| |
Collapse
|
8
|
Cabiati M, Randazzo E, Salvadori C, Peroni D, Federico G, Del Ry S. Circulating microRNAs associated with C-type natriuretic peptide in childhood obesity. Peptides 2020; 133:170387. [PMID: 32828851 DOI: 10.1016/j.peptides.2020.170387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Circulating microRNAs (miRNAs) are potential biomarkers of metabolic disease implicated in the pathogenesis of obesity and at present, no data are available on a possible contribution of C-type natriuretic peptides (CNP)-linked miRNAs to childhood obesity. Our aims were to 1) perform an in silico-analysis to identify miRNAs targeting CNP gene; 2) recognize CNP-linked miRNAs associated with obesity; 3) characterize their circulating profiling in normal-weight (N) and obese adolescents (O). A clinical examination was performed in 25 N and 52 O adolescents. CNP plasma levels were detected by immunometric assay while miRNA expression was carried out on peripheral blood using Real-Time PCR. Plasma CNP resulted significantly lower in O than in N (5.58 ± 0.62 vs.14.78 ± 1.35 pg/mL, p < 0.0001). In silico-analysis disclosed several specific circulating CNP-linked miRNAs among which miR-33a-3p, miR-223-5p and miR-142-5p also associated with obesity. MiR-199-5p and miR-4454, known to be associated with obesity but not with CNP, were also studied. miR-223-5p and miR-33a-3p resulted significantly (p = 0.05) higher in O (0.97 ± 0.1; 0.85 ± 0.1, respectively) than in N (0.66 ± 0.11; 0.51 ± 0.08, respectively). Plasma CNP correlated inversely with miR-33a-3p (p = 0.036), miR-223-5p (p = 0.004), miR-199-5p (p = 0.003) and miR-4454 (p < 0.0001). Significantly positive correlations were observed between miR-33a-3p and miR-223-5p (p = 0.002) and between miR-199-5p and miR-4454 (p = 0.0001). Applying a multiple linear regression model, miR-142-5p, miR-199a-5p, miR-223-5p, miR33a-3p, diastolic blood pressure (DBP) and age were independent determinants of CNP. Our results underline the concept that expanding our knowledge on the behaviour of circulating miRNA profile may have a promising role for early identification of obese children at increased risk of cardiometabolic alterations.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Emioli Randazzo
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Costanza Salvadori
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Diego Peroni
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|
9
|
Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH. Murine in vitro cellular models to better understand adipogenesis and its potential applications. Differentiation 2020; 115:62-84. [PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, PJ 47500, Selangor, Malaysia.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Del Ry S, Cabiati M, Bianchi V, Randazzo E, Peroni D, Clerico A, Federico G. C-type natriuretic peptide plasma levels and whole blood mRNA expression show different trends in adolescents with different degree of endothelial dysfunction. Peptides 2020; 124:170218. [PMID: 31794787 DOI: 10.1016/j.peptides.2019.170218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
C-type natriuretic peptide (CNP) is an endogenous adipogenesis regulator whose plasma levels in childhood are known, while no data are available on its expression. Our aim was to evaluate both CNP plasma levels and CNP system expression in whole blood obtained from normal-weight (N, n = 24) and obese (O, n = 16) adolescents (age:13.5 ± 0.4 years). Endothelial function was assessed measuring reactive hyperemia index (RHI). CNP plasma levels, evaluated with specific RIA, resulted significantly lower in O than in N (6.1 ± 0.8 vs.15.2 ± 1.3 pg/mL; p < 0.0001), while CNP/NPR-B/NPR-C mRNA, measured by Real-Time PCR, resulted similar in N (4.1 ± 1.7; 5.0 ± 1.6; 2.2 ± 0.9) and in O (4.3 ± 1.6; 3.5 ± 1.1; 2.3 ± 0.8). RHI was significantly lower in O than in N (1.4 ± 0.08 vs.2.1 ± 0.04, p < 0.0001). Dividing all subjects according to the RHI median value, irrespective of the presence or absence of obesity (Group 1 > 1.9, n = 23, Group 2 < 1.9, n = 17), CNP plasma concentrations resulted significantly (p = 0.014) higher in Group 1 (14.6 ± 1.6) than in Group 2 (7.5 ± 1.0), showing a significant correlation with RHI (p = 0.0026), while CNP mRNA expression was, surprisingly, higher in Group 2 (7.0 ± 2.3) than in Group 1 (1.8 ± 0.4; p = 0.02). NPR-B mRNA resulted similar in both Groups (4.3 ± 1.6; 4.7 ± 1.3) and NPR-C significantly higher in Group 2 (p = 0.02). Our data suggest different trends between CNP plasma levels and expression, assessed for the first time in whole blood, that could reflect changes occurring both at CNP transcriptional level in activated leukocytes due to inflammation, and at circulating levels, due to CNP paracrine/autocrine activities. This could represent an interesting area for new therapies able to modulate endothelial dysfunction.
Collapse
Affiliation(s)
- Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy; Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Vanessa Bianchi
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Emioli Randazzo
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Diego Peroni
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Aldo Clerico
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
11
|
Role of epicardial adipose tissue NPR-C in acute coronary syndrome. Atherosclerosis 2019; 286:79-87. [DOI: 10.1016/j.atherosclerosis.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
|
12
|
Bae CR, Hino J, Hosoda H, Arai Y, Son C, Makino H, Tokudome T, Tomita T, Kimura T, Nojiri T, Hosoda K, Miyazato M, Kangawa K. Overexpression of C-type Natriuretic Peptide in Endothelial Cells Protects against Insulin Resistance and Inflammation during Diet-induced Obesity. Sci Rep 2017; 7:9807. [PMID: 28852070 PMCID: PMC5574992 DOI: 10.1038/s41598-017-10240-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/02/2017] [Indexed: 02/08/2023] Open
Abstract
The endogenous peptide C-type natriuretic peptide (CNP) binds its receptor, guanylyl cyclase B (GCB), and is expressed by endothelial cells in diverse tissues. Because the endothelial cells of visceral adipose tissue have recently been reported to play a role in lipid metabolism and inflammation, we investigated the effects of CNP on features of obesity by using transgenic (Tg) mice in which CNP was placed under the control of the Tie2 promoter and was thus overexpressed in endothelial cells (E-CNP). Here we show that increased brown adipose tissue thermogenesis in E-CNP Tg mice increased energy expenditure, decreased mesenteric white adipose tissue (MesWAT) fat weight and adipocyte hypertrophy, and prevented the development of fatty liver. Furthermore, CNP overexpression improved glucose tolerance, decreased insulin resistance, and inhibited macrophage infiltration in MesWAT, thus suppressing pro-inflammation during high-fat diet–induced obesity. Our findings indicate an important role for the CNP produced by the endothelial cells in the regulation of MesWAT hypertrophy, insulin resistance, and inflammation during high-fat diet–induced obesity.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yuji Arai
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Cheol Son
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hisashi Makino
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takeshi Tokudome
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tsutomu Tomita
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Toru Kimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kiminori Hosoda
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| |
Collapse
|
13
|
Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria. Proc Natl Acad Sci U S A 2017; 114:E771-E780. [PMID: 28096344 DOI: 10.1073/pnas.1610968114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The abundance of epicardial adipose tissue (EAT) is associated with atrial fibrillation (AF), the most frequent cardiac arrhythmia. However, both the origin and the factors involved in EAT expansion are unknown. Here, we found that adult human atrial epicardial cells were highly adipogenic through an epithelial-mesenchymal transition both in vitro and in vivo. In a genetic lineage tracing the WT1CreERT2+/-RosatdT+/- mouse model subjected to a high-fat diet, adipocytes of atrial EAT derived from a subset of epicardial progenitors. Atrial myocardium secretome induces the adipogenic differentiation of adult mesenchymal epicardium-derived cells by modulating the balance between mesenchymal Wingless-type Mouse Mammary Tumor Virus integration site family, member 10B (Wnt10b)/β-catenin and adipogenic ERK/MAPK signaling pathways. The adipogenic property of the atrial secretome was enhanced in AF patients. The atrial natriuretic peptide secreted by atrial myocytes is a major adipogenic factor operating at a low concentration by binding to its natriuretic peptide receptor A (NPRA) receptor and, in turn, by activating a cGMP-dependent pathway. Hence, our data indicate cross-talk between EAT expansion and mechanical function of the atrial myocardium.
Collapse
|
14
|
Rossi J. Central natriuretic peptide receptor (NPR)-B and peripheral lipid accumulation. Peptides 2016; 84:68-9. [PMID: 27554311 DOI: 10.1016/j.peptides.2016.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Jari Rossi
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Del Ry S, Cabiati M, Bianchi V, Caponi L, Maltinti M, Caselli C, Kozakova M, Palombo C, Morizzo C, Marchetti S, Randazzo E, Clerico A, Federico G. C-type natriuretic peptide is closely associated to obesity in Caucasian adolescents. Clin Chim Acta 2016; 460:172-7. [PMID: 27376982 DOI: 10.1016/j.cca.2016.06.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 02/08/2023]
Abstract
CNP is a natural regulator of adipogenesis playing a role in the development of obesity in childhood. Aim of the study was to evaluate CNP plasma levels in normal-weight (N), overweight (OW) and obese adolescents (O). Eighty two subjects (age:12.8±2.4, years) without cardiac dysfunction were enrolled and CNP plasma levels were measured by RIA. NT-proBNP, MR-proANP, AGEs, reactive hyperemia index (RHI) and standard clinical chemistry parameters were also measured. O and OW adolescents had higher values of BMI and fat mass than N. CNP levels were significantly lower in OW:4.79[3.29-21.15] and O:3.81[1.55-13.4] than in N:13.21[7.6-37.8]; p<0.0001N vs O, p=0.0003N vs OW). LogCNP values correlated significantly and inversely with BMI z-score, FM%, TF% and circulating levels of CRP, insulin, total cholesterol, LDL, and triglycerides, in addition to an inverse relationship with skin AGEs and a direct correlation with RHI. LogCNP was also inversely associated with LogNT-proBNP and LogMR-proANP values. Using ROC analysis the risk of obesity resulted significantly (p≪0.0001) associated with CNP values (AUC=0.9724). These results suggest that CNP may play a more important role than BNP and ANP related peptides, as risk marker of obesity, in addition to its involvement in adipogenesis and endothelial dysfunction.
Collapse
Affiliation(s)
- Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Vanessa Bianchi
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Laura Caponi
- Translational Research Department, University of Pisa, Italy
| | | | - Chiara Caselli
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Carlo Palombo
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Carmela Morizzo
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Sara Marchetti
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Emioli Randazzo
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
16
|
McNally B, Griffin JL, Roberts LD. Dietary inorganic nitrate: From villain to hero in metabolic disease? Mol Nutr Food Res 2015; 60:67-78. [PMID: 26227946 PMCID: PMC4863140 DOI: 10.1002/mnfr.201500153] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
Abstract
Historically, inorganic nitrate was believed to be an inert by‐product of nitric oxide (NO) metabolism that was readily excreted by the body. Studies utilising doses of nitrate far in excess of dietary and physiological sources reported potentially toxic and carcinogenic effects of the anion. However, nitrate is a significant component of our diets, with the majority of the anion coming from green leafy vegetables, which have been consistently shown to offer protection against obesity, type 2 diabetes and metabolic diseases. The discovery of a metabolic pathway in mammals, in which nitrate is reduced to NO, via nitrite, has warranted a re‐examination of the physiological role of this small molecule. Obesity, type 2 diabetes and the metabolic syndrome are associated with a decrease in NO bioavailability. Recent research suggests that the nitrate‐nitrite‐NO pathway may be harnessed as a therapeutic to supplement circulating NO concentrations, with both anti‐obesity and anti‐diabetic effects, as well as improving vascular function. In this review, we examine the key studies that have led to the re‐evaluation of the physiological function of inorganic nitrate, from toxic and carcinogenic metabolite, to a potentially important and beneficial agent in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Ben McNally
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Julian L Griffin
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Lee D Roberts
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Impact of obesity on the expression profile of natriuretic peptide system in a rat experimental model. PLoS One 2013; 8:e72959. [PMID: 24009719 PMCID: PMC3756951 DOI: 10.1371/journal.pone.0072959] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/18/2013] [Indexed: 12/29/2022] Open
Abstract
Natriuretic peptides (NPs) play an important role in obesity and aim of this study was to evaluate, in cardiac tissue of obese Zucker rats (O, n = 29) their transcriptomic profile compared to controls (CO, n = 24) by Real-Time PCR study; CNP protein expression was evaluated by immunostaining and immunometric tests. Myocardial histology was performed, confirming no alteration of organ structure. While ANP and BNP are cardiac peptides, CNP is mainly an endothelial hormone; thus its expression, as well as that of NPR-B and NPR-C, was also evaluated in kidney and lung of an animal subgroup (n = 20). In heart, lower BNP mRNA levels in O vs CO (p = 0.02) as well as ANP and CNP (p = ns), were detected. NPR-B/NPR-A mRNA was similar in O and CO, while NPR-C was numerically lower (p = ns) in O than in CO. In kidney, CNP/NPR-B/NPR-C mRNA was similar in O and CO, while in lung CNP/NPR-C expression decreased and NPR-B increased (p = ns) in O vs CO. Subdividing into fasting and hyperglycemic rats, the pattern of mRNA expression for each gene analyzed remained unchanged. The trend observed in heart, kidney and lung for CNP protein concentrations and immunohistochemistry reflected the mRNA expression. TNF-α and IL-6 mRNA were measured in each tissue and no significant genotype effect was detected in any tissue. The main NP variations were observed at the cardiac level, suggesting a reduced release by cardiac cells. The understanding of mechanisms involved in the modulation of the NP system in obesity could be a useful starting point for future clinical study devoted to identifying new obesity treatment strategies.
Collapse
|
18
|
Mitschke MM, Hoffmann LS, Gnad T, Scholz D, Kruithoff K, Mayer P, Haas B, Sassmann A, Pfeifer A, Kilic A. Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J 2013; 27:1621-30. [PMID: 23303211 DOI: 10.1096/fj.12-221580] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With more than half a billion individuals affected worldwide, obesity has reached pandemic proportions. Development of "brown-like" or "brite" adipocytes within white adipose tissue (WAT) has potential antiobesity and insulin-sensitizing effects. We investigated the role of cyclic GMP (cGMP) signaling, focusing on cGMP-dependent protein kinase I (PKGI) in WAT. PKGI is expressed in murine WAT, primary adipocytes, and 3T3-L1. Treatment of adipocytes with cGMP resulted in increased adipogenesis, with a 54% increase in expression of peroxisome proliferator-activated receptor-γ. Lentiviral overexpression of PKGI further increased adipogenesis, whereas loss of PKGI significantly reduced adipogenic differentiation. In addition to adipogenic effects, PKGI had an antihypertrophic and anti-inflammatory effect via RhoA phosphorylation and reduction of proinflammatory adipokine expression. Moreover, PKGI induced a 4.3-fold increase in abundance of UCP-1 and the development of a brown-like thermogenic program in primary adipocytes. Notably, treatment of C57BL/6 mice with phosphodiesterase inhibitor sildenafil (12 mg/kg/d) for 7 d caused 4.6-fold increase in uncoupling protein-1 expression and promoted establishment of a brown fat cell-like phenotype ("browning") of WAT in vivo. Taken together, PKGI is a key regulator of cell size, adipokine secretion and browning of white fat depots and thus could be a valuable target in developing novel treatments for obesity.
Collapse
|
19
|
Park JH, Kim RY, Park E. Antidiabetic activity of fruits and vegetables commonly consumed in Korea: Inhibitory potential against α-glucosidase and insulin-like action in vitro. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0155-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Del Ry S, Cantinotti M, Cabiati M, Caselli C, Storti S, Prescimone T, Murzi B, Clerico A, Giannessi D. Plasma C-type natriuretic peptide levels in healthy children. Peptides 2012; 33:83-6. [PMID: 22100730 DOI: 10.1016/j.peptides.2011.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
C-type natriuretic peptide (CNP) is assuming increasing importance in cardiovascular disease, and in adults its plasma levels are related to clinical and functional disease severity. Data are scarce regarding the reference values for CNP in infancy. Aim of this study was to assess the reference intervals for CNP in human healthy newborns and infants. Plasma CNP was measured in 121 healthy children divided into: 41 newborns (age 0-3 days), 24 newborns (4-30 days), 22 infants (1-12 months) and 32 children (1-12 years). A group of 32 healthy adult subjects (age 64 ± 1 years) was also studied. CNP was measured by a specific radioimmunoassay. Between- and within-assay variability resulted ≤ 30 and 20%, respectively and analytical sensitivity 0.77 ± 0.05 pg/tube. Plasma CNP resulted significantly higher in children than in adult subjects (13.6 ± 1.2 pg/ml vs. 7.4 ± 1.0 pg/ml, p=0.030). When the results were analyzed as a function of the age the reference intervals for plasma CNP resulted: 11.6 ± 2.1 pg/ml for newborns (0-3 days), 16.4 ± 3.7 pg/ml for newborns (4-30 days), 15.4 ± 2.7 pg/ml for infants (1-12 months), 13.6 ± 2.3 pg/ml for children (1-12 years) [p=0.01 newborns (4-30 days) vs. adults; p=0.03 infants (1-12 months) vs. adults]. CNP showed the highest concentrations after 12h of life with a peak between 4 and 5 days of life and with a progressive decline afterwards. According to these data at least five different reference intervals for CNP determinations should be used. These observations may be helpful for future clinical application of CNP in human children.
Collapse
Affiliation(s)
- S Del Ry
- CNR Institute of Clinical Physiology and Fondazione G. Monasterio, Laboratory of Cardiovascular Biochemistry, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This article reviews the genetics, biochemistry, and physiology of the natriuretic polypeptide family and their receptors; their roles in cardiac, bone, and lipid metabolism in children; and pharmacological agents that utilize the natriuretic polypeptide system. RECENT FINDINGS Clinically, measurements of circulating levels of the natriuretic polypeptides are useful diagnostic and prognostic markers of cardiovascular disease in children. The natriuretic polypeptides also play an important role in growth and body composition. Therapeutic application of the natriuretic polypeptide system may provide new treatments for cardiac, renal, bone, and metabolic disease in children. SUMMARY The natriuretic polypeptide system has promising clinical utility in the care of pediatric patients with cardiac, renal, bone, and metabolic disease.
Collapse
|