1
|
Huang Z, Liu Q, Guo Q, Gao J, Zhang L, Li L. Effects and mechanisms of Apelin in treating central nervous system diseases. Neuroscience 2025; 566:177-189. [PMID: 39681256 DOI: 10.1016/j.neuroscience.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Apelin, an endogenous ligand of G protein-coupled receptor APJ, is widely distributed in the central nervous system (CNS). It can be divided into such subtypes as Apelin-13, Apelin-17, and Apelin-36 as they have different amino acid structures. All Apelin is widely studied as an adipokine, showing a significant protective effect through regulating apoptosis, autophagy, oxidative stress, angiogenesis, inflammation, and other pathophysiological processes. As an adipokine, Apelin has been found to play a crucial role in cardiovascular disease development. In this paper, we reviewed the effects and mechanisms of Apelin in treating CNS diseases, such as neurotrauma, stroke, spinal cord injury, primary tumors, neurodegenerative diseases, psychiatric diseases, epilepsy, and pain.
Collapse
Affiliation(s)
- Zimeng Huang
- Medicine School, Qingdao University, 308 Ningxia Road, Shinan District, Qingdao 266071, China
| | - Qing Liu
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250021, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Qixuan Guo
- Department of Human Anatomy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences and Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Luping Zhang
- Department of Human Anatomy, Binzhou Medical University, Yantai, Shandong, 264003, China.
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Shaikh I, Bhatt LK. Targeting Adipokines: A Promising Therapeutic Strategy for Epilepsy. Neurochem Res 2024; 49:2973-2987. [PMID: 39060767 DOI: 10.1007/s11064-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Epilepsy affects 65 million people globally and causes neurobehavioral, cognitive, and psychological defects. Although research on the disease is progressing and a wide range of treatments are available, approximately 30% of people have refractory epilepsy that cannot be managed with conventional medications. This underlines the importance of further understanding the condition and exploring cutting-edge targets for treatment. Adipokines are peptides secreted by adipocyte's white adipose tissue, involved in controlling food intake and metabolism. Their regulatory functions in the central nervous system (CNS) are multifaceted and identified in several physiology and pathologies. Adipokines play a role in oxidative stress and neuroinflammation which are associated with brain degeneration and connected neurological diseases. This review aims to highlight the potential impacts of leptin, adiponectin, apelin, vaspin, visfatin, and chimerin in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Iqraa Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
3
|
Kamińska K, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. Neuroprotective effect of apelin-13 and other apelin forms-a review. Pharmacol Rep 2024; 76:439-451. [PMID: 38568371 DOI: 10.1007/s43440-024-00587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024]
Abstract
Neurodegenerative diseases, which occur when neurons begin to deteriorate, affect millions of people worldwide. These age-related disorders are becoming more common partly because the elderly population has increased in recent years. While no treatments are accessible, every year an increasing number of therapeutic and supportive options become available. Various substances that may have neuroprotective effects are currently being researched. One of them is apelin. This review aims to illustrate the results of research on the neuroprotective effect of apelin amino acid oligopeptide which binds to the apelin receptor and exhibits neuroprotective effects in the central nervous system. The collected data indicate that apelin can protect the central nervous system against injury by several mechanisms. More studies are needed to thoroughly investigate the potential neuroprotective effects of this peptide in neurodegenerative diseases and various other types of brain damage.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Hubert Borzuta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| |
Collapse
|
4
|
Zhang X, Gu Y, Ma Y, Wu J, Chen Y, Tao K, Sun H, Liu Z, Wang X, Tian X. The Apelin/APJ system modulates seizure activity and endocytosis of the NMDA receptor GluN2B subunit. Neurochem Int 2023; 167:105545. [PMID: 37169180 DOI: 10.1016/j.neuint.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
In the central nervous system (CNS), the apelin/APJ system is broadly expressed. According to some studies, activation of this system protects against excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptors and exerts neuroprotective effects. However, the role of this system in epilepsy remains unclear. In the present study, immunofluorescence staining and western blotting were used to assess APJ localization and expression in the brains of mice with recurrent spontaneous seizures induced by kainic acid (KA). Behavior and local field potentials (LFPs) were assessed in mice with KA-induced seizures. Susceptibility to seizures was assessed in a pentylenetetrazole (PTZ)-induced seizure model. Whole-cell patch-clamp recordings were used to evaluate the role of the apelin/APJ system in regulating synaptic transmission in brain slices from mice in which Mg2+-free medium was used to induce seizures. NMDA receptor GluN2B subunit expression and phosphorylation of GluN2B at Ser1480 were measured in the mouse hippocampus. APJ was primarily localized in neurons, and its expression was upregulated in the epileptic brain. APJ activation after KA-induced status epilepticus (SE) reduced epileptic activity, whereas APJ inhibition aggravated epileptic activity. In the PTZ model, APJ activation was reduced, and APJ inhibition increased susceptibility to seizures. The apelin/APJ system affected NMDA receptor-mediated postsynaptic currents in patch-clamp recordings. Moreover, APJ regulated the levels of GluN2B phosphorylated at Ser1480 and the abundance of cell-surface GluN2B in neurons. Furthermore, endocytosis of the NMDA receptor GluN2B subunit was regulated by the apelin/APJ system. Together, our findings indicate that the apelin/APJ system modulates seizure activity and may be a novel therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China; Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 401147, China
| | - Yixue Gu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Junhong Wu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yuanyuan Chen
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Kaiyan Tao
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Houchao Sun
- Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 401147, China
| | - Zhao Liu
- Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 401147, China
| | - Xuefeng Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China.
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
5
|
Zhang Y, Jiang W, Sun W, Guo W, Xia B, Shen X, Fu M, Wan T, Yuan M. Neuroprotective Roles of Apelin-13 in Neurological Diseases. Neurochem Res 2023; 48:1648-1662. [PMID: 36745269 DOI: 10.1007/s11064-023-03869-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Apelin is a natural ligand for the G protein-coupled receptor APJ, and the apelin/APJ system is widely distributed in vivo. Among the apelin family, apelin-13 is the major apelin isoform in the central nervous system and cardiovascular system, and is involved in the regulation of various physiopathological mechanisms such as apoptosis, neuroinflammation, angiogenesis, and oxidative stress. Apelin is currently being extensively studied in the nervous system, and apelin-13 has been shown to be associated with the onset and progression of a variety of neurological disorders, including stroke, neurodegenerative diseases, epilepsy, spinal cord injury (SCI), and psychiatric diseases. This study summarizes the pathophysiological roles of apelin-13 in the development and progression of neurological related diseases.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiwei Jiang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjie Sun
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiming Guo
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Beibei Xia
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Teng Wan
- Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China. .,Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Li A, Zhao Q, Chen L, Li Z. Apelin/APJ system: an emerging therapeutic target for neurological diseases. Mol Biol Rep 2023; 50:1639-1653. [PMID: 36378421 PMCID: PMC9665010 DOI: 10.1007/s11033-022-08075-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is extensively expressed in various systems, especially the nervous system. This article reviews the role of apelin/APJ system in neurological diseases. In detail, apelin/APJ system can relieve acute brain injury including subarachnoid hemorrhage, traumatic brain injury, and ischemic stroke. Also, apelin/APJ system has therapeutic effects on chronic neurodegenerative disease models, involving the regulation of neurotrophic factors, neuroendocrine, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy. In addition, through different routes of administration, apelin/APJ system has a biphasic effect on depression, epilepsy, and pain. However, apelin/APJ system exacerbates the proliferation and invasion of glioblastoma. Thus, apelin/APJ system is expected to be a therapeutic target for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Ao Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qun Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiyue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Ivanov MN, Stoyanov DS, Pavlov SP, Tonchev AB. Distribution, Function, and Expression of the Apelinergic System in the Healthy and Diseased Mammalian Brain. Genes (Basel) 2022; 13:2172. [PMID: 36421846 PMCID: PMC9690544 DOI: 10.3390/genes13112172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 07/27/2023] Open
Abstract
Apelin, a peptide initially isolated from bovine stomach extract, is an endogenous ligand for the Apelin Receptor (APLNR). Subsequently, a second peptide, ELABELA, that can bind to the receptor has been identified. The Apelin receptor and its endogenous ligands are widely distributed in mammalian organs. A growing body of evidence suggests that this system participates in various signaling cascades that can regulate cell proliferation, blood pressure, fluid homeostasis, feeding behavior, and pituitary hormone release. Additional research has been done to elucidate the system's potential role in neurogenesis, the pathophysiology of Glioblastoma multiforme, and the protective effects of apelin peptides on some neurological and psychiatric disorders-ischemic stroke, epilepsy, Parkinson's, and Alzheimer's disease. This review discusses the current knowledge on the apelinergic system's involvement in brain physiology in health and disease.
Collapse
Affiliation(s)
- Martin N. Ivanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| | - Dimo S. Stoyanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Stoyan P. Pavlov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Anton. B. Tonchev
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| |
Collapse
|
8
|
Cuttler K, Hassan M, Carr J, Cloete R, Bardien S. Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders. Open Biol 2021; 11:210091. [PMID: 34610269 PMCID: PMC8492176 DOI: 10.1098/rsob.210091] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synaptopathies are brain disorders characterized by dysfunctional synapses, which are specialized junctions between neurons that are essential for the transmission of information. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein. One class of synaptic proteins that are essential to their biology are cell adhesion proteins that connect the pre- and post-synaptic compartments. Neurexins are one type of synaptic cell adhesion molecule that have, recently, gained more pathological interest. Variants in both neurexins and their common binding partners, neuroligins, have been associated with several neuropsychiatric disorders. In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. Furthermore, examination of published literature has implicated neurexins in both neuropsychiatric and neurodegenerative disorders. There is a clear link between neurexins and neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. However, multiple expression studies have also shown changes in neurexin expression in several neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Therefore, this review highlights the potential importance of neurexins in brain disorders and the importance of doing more targeted studies on these genes and proteins.
Collapse
Affiliation(s)
- Katelyn Cuttler
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maryam Hassan
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| |
Collapse
|
9
|
Luo J, Liu W, Feng F, Chen L. Apelin/APJ system: A novel therapeutic target for locomotor system diseases. Eur J Pharmacol 2021; 906:174286. [PMID: 34174264 DOI: 10.1016/j.ejphar.2021.174286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor APJ. Apelin/APJ system is widely expressed in abundant tissues, especially bone, joint and muscle tissue. This review focus on the effects of apelin/APJ system on locomotor system. An increasing number of evidence suggests that apelin/APJ system plays a crucial role in many physiological and pathological processes of locomotor system. Physiologically, apelin/APJ system promotes bone formation, muscle metabolism and skeletal muscle production. Pathologically, apelin/APJ system exacerbates osteoarthritis pathogenesis, whereas it alleviates osteoporosis. Besides, the level of apelin expression is regulated by different training modes, including continuous aerobic exercise, high-intensity interval training and resistance exercises. More importantly, exercise-induced apelin may be a potent pharmacological agent for the treatment of diseases and the regulation of physiological processes. Considering the pleiotropic effects of apelin on locomotor system, apelin/APJ system may be an important therapeutic target for locomotor system diseases.
Collapse
Affiliation(s)
- Jingshun Luo
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fen Feng
- School of Medicine, Shaoyang University, Shaoyang, 422000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Zhou JX, Shuai NN, Wang B, Jin X, Kuang X, Tian SW. Neuroprotective gain of Apelin/APJ system. Neuropeptides 2021; 87:102131. [PMID: 33640616 DOI: 10.1016/j.npep.2021.102131] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor APJ. In recent years, many studies have shown that the apelin/APJ system has neuroprotective properties, such as anti-inflammatory, anti-oxidative stress, anti-apoptosis, and regulating autophagy, blocking excitatory toxicity. Apelin/APJ system has been proven to play a role in various neurological diseases and may be a promising therapeutic target for nervous system diseases. In this paper, the neuroprotective properties of the apelin/APJ system and its role in neurologic disorders are reviewed. Further understanding of the pathophysiological effect and mechanism of the apelin/APJ system in the nervous system will help develop new therapeutic interventions for various neurological diseases.
Collapse
Affiliation(s)
- Jia-Xiu Zhou
- Department of Anesthesiology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518109, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Nian-Nian Shuai
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Jin
- Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Kuang
- Department of Anesthesiology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518109, PR China.
| | - Shao-Wen Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, PR China.
| |
Collapse
|
11
|
Vafaei-Nezhad S, Niknazar S, Norouzian M, Abdollahifar MA, Aliaghaei A, Abbaszadeh HA. Therapeutics effects of [Pyr1] apelin-13 on rat contusion model of spinal cord injury: An experimental study. J Chem Neuroanat 2021; 113:101924. [PMID: 33567298 DOI: 10.1016/j.jchemneu.2021.101924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) can cause various symptoms, including pain, complete or incomplete loss of autonomic, sensory, motor and functions inferior to the site of the damage. Despite wondrous advances in medicine, treating spinal cord injuries remains a thorny issue yet. Recently, the control of inflammatory processes after damage to the nervous system has been noticed as a promising therapeutic target. The goal of the present experiment was to identify the effects of apelin-13 on the histological outcome, inflammatory factors, and functional recovery in the animal contusion model of SCI were analyzed. 40 Female Wistar rats were randomly but equally assigned in laminectomy, contusion, PBS (1 mL PBS, i.p), control group which received apelin-13 (control + apelin, 100 μg/kg, i.p), and apelin-13 treatment groups. In the treatment group, apelin-13 (100 μg/kg) was injected intraperitoneally 30 min after injury. The weight-dropping contusion model was used for inducing SCI. The Basso, Beattie, and Bresnahan scale (BBB), narrow beam test (NBT), rotarod test, and the open-field test was applied to evaluate locomotor and behavioral activity. Real-time polymerase chain reaction (PCR) and ELISA technique was accomplished eight weeks after inducing SCI to measure the level of fibroblast growth factor FGF-1, FGFR1 and the inflammatory factors including interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and IL-10. Furthermore, histological change was estimated by H&E staining. Our results showed that apelin-13 treatment after SCI led to a significant increase in functional recovery and behavioral tests. Stereological estimation illustrated that apelin-13 could reduce significantly central cavity volume and number of glial cells, and also increase significantly spinal cord volume and number of neural cells. PCR and ELISA evaluation shows a significant increase in IL-10 level and decrease in levels of FGF-1, FGF-R1, and pro-inflammatory cytokines (PIC). This study suggested that apelin-13 has neuroprotective effects by regulating the inflammatory process after SCI.
Collapse
Affiliation(s)
- Saeed Vafaei-Nezhad
- Department of Biology and Anatomical sciencese, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical sciencese, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical sciencese, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical sciencese, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Department of Biology and Anatomical sciencese, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Lv SY, Chen WD, Wang YD. The Apelin/APJ System in Psychosis and Neuropathy. Front Pharmacol 2020; 11:320. [PMID: 32231577 PMCID: PMC7082832 DOI: 10.3389/fphar.2020.00320] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Apelin, an endogenous neuropeptide, has been identified as the cognate ligand for the G-protein-coupled receptor APJ. Apelin, APJ messenger RNA, and protein are widely expressed in the central nervous system and peripheral tissues of humans and animals. The apelin/APJ system has been implicated in diverse physiological and pathological processes. The present article reviews the progress of the latest research investigating the apelin/APJ system in pain, depression, anxiety, memory, epilepsy, neuroprotection, stroke, and brain injury and protection, and highlights its promising potential as a therapeutic target for treatment of psychosis and neuropathy.
Collapse
Affiliation(s)
- Shuang-Yu Lv
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
13
|
Dong H, Dong B, Zhang N, Liu S, Zhao H. microRNA-182 Negatively Influences the Neuroprotective Effect of Apelin Against Neuronal Injury in Epilepsy. Neuropsychiatr Dis Treat 2020; 16:327-338. [PMID: 32099369 PMCID: PMC6996621 DOI: 10.2147/ndt.s238826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To explore the neuroprotective effects and mechanisms of Apelin (APLN), and to study the regulation of APLN expression by microRNA (miRNA) in epilepsy. MATERIALS AND METHODS In vitro and in vivo epileptic models were established with hippocampal neurons and Wistar rats. Apoptosis of neurons was identified by flow cytometry. Western blotting was used to detect the expression of proteins, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to analyze the expression of miRNA and messenger RNA (mRNA). Bioinformatics software was used to predict target genes of miRNA, which were confirmed by dual-luciferase reporter gene system and functional experiments. RESULTS Our study demonstrated protective effects of APLN against neuronal death in epilepsy both in vitro and in vivo. The underlying mechanisms involved are inhibiting the expression of metabotropic glutamate receptor 1 (mGluR1), Bax, and caspase-3; promoting the expression of Bcl-2; and increasing phosphorylated-AKT (p-AKT) levels in neurons. For the first time, we found that miR-182 could negatively regulate both transcriptional and translational levels of APLN, and that the up-regulation of miR-182 inhibited the expression of APLN and Bcl-2, and promoted the expression of Bax and caspase-3. CONCLUSION APLN could protect the neurons from injury in epilepsy by regulating the expression of apoptosis-associated proteins and mGluR1 and increasing p-AKT levels, which were attenuated by miR-182. Hence, miR-182/APLN may be potential targets for epilepsy control and treatment.
Collapse
Affiliation(s)
- Han Dong
- Department of Geriatric Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Bin Dong
- Department of Geriatric Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Na Zhang
- Department of Electrical Diagnosis, Jilin Province FAW General Hospital, Changchun, Jilin Province 130021, People's Republic of China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Huiying Zhao
- Department of Geriatric Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| |
Collapse
|
14
|
Kwak SE, Cho SC, Bae JH, Lee J, Shin HE, Di Zhang D, Lee YI, Song W. Effects of exercise-induced apelin on muscle function and cognitive function in aged mice. Exp Gerontol 2019; 127:110710. [PMID: 31473200 DOI: 10.1016/j.exger.2019.110710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Seong Eun Kwak
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Sung Chun Cho
- Well Aging Research Center, DGIST, Daegu, South Korea
| | - Jun Hyun Bae
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Jihyun Lee
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Hyung Eun Shin
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Di Di Zhang
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, South Korea; Department of New Biology, DGIST, Daegu, South Korea.
| | - Wook Song
- Institute of Sport Science, Seoul National University, Seoul, South Korea; Institue on Aging, Seoul National University, Seoul, South Korea.
| |
Collapse
|
15
|
Haghparast E, Sheibani V, Abbasnejad M, Esmaeili-Mahani S. Apelin-13 attenuates motor impairments and prevents the changes in synaptic plasticity-related molecules in the striatum of Parkinsonism rats. Peptides 2019; 117:170091. [PMID: 31121196 DOI: 10.1016/j.peptides.2019.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022]
Abstract
The striatum plays a critical role in motor control and also learning and memory of motor skills. It has been reported that striatal synaptic components are significantly decreased in dopaminergic-denervated striatum. In this study the effects of apelin-13 were investigated on motor disorders and striatal synaptosomal expression of PSD-95, neurexin1, neuroligin, metabotropic glutamate receptor (mGlu R1) and dopaminergic receptors (DR1 and DR2) in rat parkinsonism experimental model. 6-hydroxydopamine (6-OHDA) was injected into the substantia nigra. Apelin-13 (1, 2 and 3 μg/rat) was administered into the substantia nigra one week after the 6-OHDA injection. Accelerating rotarod, beam-balance, beam-walking and bar tests were performed one month after the apelin injection. Immunohistochemistry staining of dopaminergic neurons was performed. The levels of synaptic proteins were determined by immunoblotting. 6-OHDA-treated animals showed a significant impairment in motor-skill tasks and a dramatically change in the expression levels of mentioned proteins. Apelin-13 (3 μg/rat) significantly attenuates the motor impairments and prevents the changes in striatal synaptic elements in 6-OHDA-treated animals. In addition, it could rescue the dopaminergic neurons of the substantia nigra. The data will potentially extend the possible benefic aspect of apelin in neurodegenerative disorders.
Collapse
Affiliation(s)
- Elham Haghparast
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran.
| |
Collapse
|
16
|
Luo H, Han L, Xu J. Apelin/APJ system: A novel promising target for neurodegenerative diseases. J Cell Physiol 2019; 235:638-657. [DOI: 10.1002/jcp.29001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Huaiqing Luo
- Department of Physiology Changsha Medical University Changsha Hunan China
- Department of Physiology, School of Basic Medical Science Central South University Changsha Hunan China
| | - Li Han
- Department of Physiology Changsha Medical University Changsha Hunan China
| | - Jin Xu
- School of Pharmaceutical Sciences Changsha Medical University Changsha Hunan China
| |
Collapse
|
17
|
Elhady M, Youness ER, Mostafa RSI, Abdel Aziz A, Hussein R. Oxidative stress contribution to attention deficit hyperactivity disorder in children with epilepsy. APPLIED NEUROPSYCHOLOGY-CHILD 2018; 8:347-354. [PMID: 30102074 DOI: 10.1080/21622965.2018.1492409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Children with epilepsy have a high incidence of attention deficit hyperactivity disorder (ADHD). Oxidation stress and disturbed neurotransmitters are suggested mechanisms; however, their role is not fully explored. This study evaluates the association between circulating malondialdehyde as an oxidation stress marker, apelin neuropeptide, and ADHD in children with epilepsy. Fifty children with epilepsy of unknown etiology, of which 25 have ADHD, as well as 35 healthy children were included. Serum levels of malondialdehyde and apelin were estimated. We investigated the association between seizure severity, response to medications, malondialdehyde, apelin levels, and ADHD in children with epilepsy. Serum malondialdehyde and apelin levels were higher in children with epilepsy, especially those with ADHD. Malondialdehyde and apelin levels have significant positive correlation with the Chalfont Seizure Severity Score. Regression analysis showed that elevated malondialdehyde is an independent risk factor for ADHD in children with epilepsy (OR: 1.401, 95%CI: 1.056-1.859, p= 0.02). No significant association was found between malondialdehyde and apelin levels and the type of epilepsy or ADHD. Longer duration of epilepsy, increased seizure severity, and uncontrolled seizures are associated with increased oxidation stress, which further increased susceptibility for ADHD. In spite of elevated apelin in children with ADHD, the elevation did not increase the risk of ADHD in children with epilepsy.
Collapse
Affiliation(s)
- Marwa Elhady
- Pediatric Department, Faculty of Medicine (for girls), Al-Azhar University , Cairo , Egypt
| | - Eman R Youness
- Medical Biochemistry, National Research Center , Cairo , Egypt
| | | | - Ali Abdel Aziz
- Child Health Department, National Research Center , Cairo , Egypt
| | - Rania Hussein
- Psychiatry Department, Faculty of Medicine (for girls), Al-Azhar University , Cairo , Egypt
| |
Collapse
|
18
|
Pouresmaeili-Babaki E, Esmaeili-Mahani S, Abbasnejad M, Ravan H. Protective Effect of Neuropeptide Apelin-13 on 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Dopaminergic Cells: Involvement of Its Antioxidant and Antiapoptotic Properties. Rejuvenation Res 2018; 21:162-167. [DOI: 10.1089/rej.2017.1951] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elham Pouresmaeili-Babaki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
19
|
Azevedo H, Amato Khaled N, Santos P, Bernardi Bertonha F, Moreira-Filho CA. Temporal analysis of hippocampal CA3 gene coexpression networks in a rat model of febrile seizures. Dis Model Mech 2018; 11:dmm.029074. [PMID: 29196444 PMCID: PMC5818071 DOI: 10.1242/dmm.029074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex febrile seizures during infancy constitute an important risk factor for development of epilepsy. However, little is known about the alterations induced by febrile seizures that make the brain susceptible to epileptic activity. In this context, the use of animal models of hyperthermic seizures (HS) could allow the temporal analysis of brain molecular changes that arise after febrile seizures. Here, we investigated temporal changes in hippocampal gene coexpression networks during the development of rats submitted to HS. Total RNA samples were obtained from the ventral hippocampal CA3 region at four time points after HS at postnatal day (P) 11 and later used for gene expression profiling. Temporal endpoints were selected for investigating the acute (P12), latent (P30 and P60) and chronic (P120) stages of the HS model. A weighted gene coexpression network analysis was used to characterize modules of coexpressed genes, as these modules might contain genes with similar functions. The transcriptome analysis pipeline consisted of building gene coexpression networks, identifying network modules and hubs, performing gene-trait correlations and examining changes in module connectivity. Modules were functionally enriched to identify functions associated with HS. Our data showed that HS induce changes in developmental, cell adhesion and immune pathways, such as Wnt, Hippo, Notch, Jak-Stat and Mapk. Interestingly, modules involved in cell adhesion, neuronal differentiation and synaptic transmission were activated as early as 1 day after HS. These results suggest that HS trigger transcriptional alterations that could lead to persistent neurogenesis, tissue remodeling and inflammation in the CA3 hippocampus, making the brain prone to epileptic activity. Summary: We carried out a temporal analysis of hippocampal gene coexpression networks to identify relevant genes in a rat model of hyperthermic seizures. These genes were mostly related to immune response, cell adhesion and neurogenesis.
Collapse
Affiliation(s)
- Hatylas Azevedo
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Nathália Amato Khaled
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Paula Santos
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | | |
Collapse
|
20
|
Xiong Q, He W, Wang H, Zhou J, Zhang Y, He J, Yang C, Zhang B. Effect of the spinal apelin‑APJ system on the pathogenesis of chronic constriction injury‑induced neuropathic pain in rats. Mol Med Rep 2017. [PMID: 28627589 PMCID: PMC5562064 DOI: 10.3892/mmr.2017.6734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apelin is hypothesized to serve a dual function in pain processing. Spinal administration of apelin induces hyperalgesia, while opioid receptors are implicated in the antinociceptive effects of apelin in acute nociceptive models. However, whether the apelin-apelin receptor (APJ) system is involved in neuropathic pain remains to be elucidated. The present study aimed to evaluate the impact and mechanism of the spinal apelin-APJ system in neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve produced sustained spinal apelin and APJ upregulation, which was associated with mechanical allodynia and heat hyperalgesia development in the hind-paw plantar surface. Immunofluorescence demonstrated that apelin and APJ were localized to the superficial dorsal horns. In order to further clarify the function of the apelin-APJ system, a single intrathecal administration of ML221, an APJ antagonist, was used; this transiently reduced CCI-induced pain hypersensitivity. However, apelin-13 (the isoform which binds most strongly to APJ) exhibited no effect on the nociceptive response, suggesting an essential role for the spinal apelin-APJ system in neuropathic pain sensitization. The present study demonstrated that a single application of ML221 alleviated mechanical allodynia and heat hyperalgesia 7 days following CCI, in a dose-dependent manner. Intraspinal delivery of ML221, at the onset of and in fully-established neuropathic pain, persistently attenuated CCI-induced pain hypersensitivity, indicating that the apelin-APJ system was involved in initiating and maintaining pain. It was demonstrated, using immunoblotting, that intrathecal ML221 downregulated phosphorylated extracellular signal-related kinase (ERK) in the rat spinal cord dorsal horn, suggesting that the effect of apelin on neuropathic pain may be mediated via ERK signaling. The results of the present study suggested that the spinal apelin-APJ system may drive neuropathic pain. Inhibition of APJ may provide novel pharmacological interventions for neuropathic pain.
Collapse
Affiliation(s)
- Qingming Xiong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Wanyou He
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Hanbing Wang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Yajun Zhang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Jian He
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Chengxiang Yang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Bin Zhang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
21
|
Li J, Chen L, Wang N, Jiang G, Wu Y, Zhang Y. Effect of synaptic adhesion-like molecule 3 on epileptic seizures: Evidence from animal models. Epilepsy Behav 2017; 69:18-23. [PMID: 28222338 DOI: 10.1016/j.yebeh.2016.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023]
Abstract
Axonal sprouting and synaptic reorganization are the primary pathophysiological characteristics of epilepsy. Recent studies demonstrated that synaptic adhesion-like molecule 3 (SALM3) is highly expressed in the central nervous system and plays important roles in neurite outgrowth, branching, and axon guidance, mechanisms that are also observed in epilepsy. However, the expression of SALM3 in the epileptic brain and the effect of SALM3 in the pathogenesis of epilepsy remain unclear. The aims of this study were to investigate SALM3 expression in rat models of epilepsy and to explore the functional significance of SALM3 in epilepsy. We demonstrated that SALM3 was expressed at significantly higher levels in epileptic rats compared with controls. Inhibition of SALM3 by SALM3 shRNA inhibited status epilepticus in the acute stage of disease and decreased spontaneous recurrent seizures in the Lithium-pilocarpine model of chronic stages of epilepsy. Consistent with these findings, SALM3 shRNA significantly prolonged the latent period in the PTZ kindling model. Our study suggests that the overexpression of SALM3 might be associated with epileptogenesis and that selectively inhibiting SALM3 may have therapeutic potential in treating epilepsy.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, Xinxiang Medical University, Weihui 453100, China.
| | - Ling Chen
- Department of Neurology, Kunming Medical University, Kunming 650032, China
| | - Na Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Guohui Jiang
- Department of Neurology, North Sichuan Medical University, Nanchong 637000, China
| | - Yuqing Wu
- Department of Neurology, Xinxiang Medical University, Weihui 453100, China
| | - Yi Zhang
- Department of Neurology, Xinxiang Medical University, Weihui 453100, China
| |
Collapse
|
22
|
Anticonvulsant and neuroprotective effects of apelin-13 on pentylenetetrazole-induced seizures in male rats. Biomed Pharmacother 2016; 84:258-263. [PMID: 27664950 DOI: 10.1016/j.biopha.2016.09.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
Epilepsy is a common neurological disorder with no effective treatment or cure. Neuropeptide apelin is an endogenous ligand of angiotensin receptor-like 1 (APJ). It has been shown that apelin has protective and anti-neurodegenerative properties. This study was designed to evaluate the effect of apelin-13 on pentylenetetrazole (PTZ)-induced rat model of seizure. Adult male Wistar rats were divided into the experimental groups as follows: control group receiving PTZ; apelin-treated group which received apelin-13 before PTZ; apelin+F13A-treated group which received apelin-13 plus the apelin receptor antagonist (F13A) before PTZ; apelin+naloxone group which received apelin-13+naloxone before PTZ. Behavioral scoring was used to access seizure. The expression level of APJ was measured by western blotting. Neuronal degeneration, apoptosis and astrocyte activation were evaluated by vanadium acid fuchsin (VAF) staining and immunohistochemistry. Our data demonstrated that apelin-13 pretreatment significantly inhibited seizure threshold (p<0.001) and tonic-clonic latency (p<0.001) compared with the control group. In addition, PTZ-induced up-regulation of APJ was attenuated by apelin-13 treatment. Histological and immunohistochemical findings also showed that apelin-13 could protect cortical neurons against PTZ-induced neuroinflammation and apoptosis. In conclusion, apelin-13 has anticonvulsive and neuroprotective properties against PTZ-induced seizure in rats and provided a new pharmacological aspect of the neuropeptide apelin.
Collapse
|
23
|
Li J, Xing H, Jiang G, Su Z, Wu Y, Zhang Y, Guo S. Increased Expression of Rac1 in Epilepsy Patients and Animal Models. Neurochem Res 2015; 41:836-43. [PMID: 26603293 DOI: 10.1007/s11064-015-1759-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022]
Abstract
The mechanisms of epilepsy remain incompletely understood. Rac1 (ras-related C3 botulinum toxin substrate 1) belongs to the Rho family of small GTPases. Rac1 play important roles in cytoskeleton rearrangement and neuronal synaptic plasticity, which had also been implicated in epilepsy. However, little is known regarding the expression of Rac1 in the epileptic brain or whether Rac1-targeted interventions affect the progression of epilepsy. The aim of this study was to investigate the expression profile of Rac1 in brain tissues from patients suffering from temporal lobe epilepsy (TLE) and experimental epileptic rats and determine the possible role of Rac1 in epilepsy. We demonstrated that the expression of Rac1 is significantly increased in TLE patients and in lithium-pilocarpine epilepsy model animals compared to the corresponding controls. Rac1 inhibitor NSC23766 reduced the severity of status epilepticus during the acute stage in a lithium-pilocarpine animal model. Consistent with these results, the latent period of a PTZ kindling animal model also increased. Our results demonstrated that the increased expression of Rac1 may contribute to pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China.
| | - Hongxia Xing
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical University, Nanchong, 637000, Sichuan Province, China
| | - Zhou Su
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Yuqing Wu
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Yi Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Shuangxi Guo
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| |
Collapse
|
24
|
Apelin-13 Prevents the Delayed Neuropathy Induced by Tri-ortho-cresyl Phosphate Through Regulation the Autophagy Flux in Hens. Neurochem Res 2015; 40:2374-82. [PMID: 26453045 DOI: 10.1007/s11064-015-1725-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
Abstract
Organophosphate-induced delayed neuropathy (OPIDN) is pathologically characterized by the swollen axon containing aggregations of microtubules, neurofilaments, smooth endoplasmic reticulum and multivesicular vesicles. At present, the exact mechanism of OPIDN is unclear and the effective therapeutic methods is not available to counter this syndrome. Recent studies had shown that the autophagy was involved in OPIDN. The adipocytokine Apelin is a peptide, Apelin and its receptor are abundantly expressed in the nervous system. Recent researches illuminated that Apelin was neuroprotective factor and Apelin could regulate the autophagy in vivo and vitro model. So we investigated the effect of Apelin-13 on the OPIDN induced by Tri-ortho-cresyl phosphate (TOCP) in hens and explored the role of autophagy in Apelin-13 preventing OPIDN. Adult Roman hens were given a single dose of 750 mg/kg TOCP by gavage for 21 days to induce OPIDN, and neural dysfunction were detected, and the formation of autophagosomes in spinal cord neurons was observed by transmission electron microscopy, and the molecular markers of autophagy microtubule-associated protein light chain-3 (LC3) and the autophagy substrates p62/SQSTM1 were determined by Western blot analysis. The results demonstrated that the obvious neurological dysfunction such as hindlimb paralysis and paralysis of gait was present, the number of autophagosomes in the neurons of spinal cords was significantly increased, the level of LC3-II and p62 expressions and the ratio of LC3-II/LC3-I in spinal cords and sciatic nerve were significantly increased in the OPIDN model group compared with the control group. Compared with the OPIDN model group, the neurological dysfunction of tens was obviously reduced, the clinical signs scores was significantly decreased, the number of autophagosomes in the neurons of hen spinal cords was significantly decreased, the level of LC3-II and p62 expressions and the ratio of LC3-II/LC3-I in spinal cords and sciatic nerve were significantly decreased in Apelin-13 treatment group. Our results suggested that Apelin-13 prevented against the OPIDN induced by TOCP in hens, which the mechanism might be associated with regulation autophagy flux by Apelin-13.
Collapse
|
25
|
Chen D, Lee J, Gu X, Wei L, Yu SP. Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis After Ischemic Stroke in Mice. ASN Neuro 2015; 7:7/5/1759091415605114. [PMID: 26391329 PMCID: PMC4580122 DOI: 10.1177/1759091415605114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Apelin is a peptide originally isolated from bovine stomach tissue extracts and identified as an endogenous ligand of the APJ receptor; recent work showed that apelin ameliorates the ischemic injury in the heart and the brain. Being an analogue to the angiotensin II receptor, the apelin/APJ signaling may mediate angiogenesis process. We explored the noninvasive intranasal brain delivery method and investigated therapeutic effects of apelin-13 in a focal ischemic stroke model of mice. Intranasal administration of apelin-13 (4 mg/kg) was given 30 min after the onset of stroke and repeated once daily. Three days after stroke, mice received apelin-13 had significantly reduced infarct volume and less neuronal death in the penumbra. Western blot analyses showed upregulated levels of apelin, apelin receptor APLNR, and Bcl-2 and decreased caspase-3 activation in the apelin-13-treated brain. The proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1β, and chemokine monocyte chemoattractant protein-1 mRNA increased in the ischemic brain, which were significantly attenuated by apelin-13. Apelin-13 remarkably reduced microglia recruitment and activation in the penumbra according to morphological features of Iba-1-positive cells 3 days after ischemia. Apelin-13 significantly increased the expression of angiogenic factor vascular endothelial growth factor and matrix metalloproteinase-9 14 days after stroke. Angiogenesis illustrated by collagen IV + /5-bromo-2'-deoxyuridin + colabeled cells was significantly increased by the apelin-13 treatment 21 days after stroke. Finally, apelin-13 promoted the local cerebral blood flow restoration and long-term functional recovery. This study demonstrates a noninvasive intranasal delivery of apelin-13 after stroke, suggesting that the reduced inflammatory activities, decreased cell death, and increased angiogenesis contribute to the therapeutic benefits of apelin-13.
Collapse
Affiliation(s)
- Dongdong Chen
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA
| | - Jinhwan Lee
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA
| | - Xiaohuan Gu
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA
| | - Ling Wei
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shan Ping Yu
- Deptartment of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA
| |
Collapse
|
26
|
Dock3 Participate in Epileptogenesis Through rac1 Pathway in Animal Models. Mol Neurobiol 2015; 53:2715-25. [PMID: 26319681 DOI: 10.1007/s12035-015-9406-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Epilepsy is one of the most common and severe neurologic diseases. The mechanisms of epilepsy are still not fully understood. Dock3 (dedicator of cytokinesis 3) is one of the new kinds of guanine-nucleotide exchange factors (GEF) and plays an important role in neuronal synaptic plasticity and cytoskeleton rearrangement; the same mechanisms were also found in epilepsy. However, little is known regarding the expression of Dock3 in the epileptic brain and whether Dock3 interventions affect the epileptic process. In this study, we showed that the expression of Dock3 significantly increased in IE patients and a lithium-pilocarpine epilepsy model compared with the controls. Inhibition of Dock3 by Dock3 shRNA impaired the severity of status epilepticus in the acute stage and decreased the spontaneous recurrent seizures times in the chronic stage of lithium-pilocarpine model and decreased the expression of rac1-GTP. Consistent with decreased expression of Dock3, the latent period in a pentylenetetrazole kindling model also increased. Our results demonstrated that the increased expression of Dock3 in the brain is associated with epileptogenesis and specific inhibition of Dock3 may be a potential target in preventing the development of epilepsy in patients.
Collapse
|
27
|
Yan XG, Cheng BH, Wang X, Ding LC, Liu HQ, Chen J, Bai B. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury. Neural Regen Res 2015; 10:766-71. [PMID: 26109951 PMCID: PMC4468768 DOI: 10.4103/1673-5374.157243] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 01/06/2023] Open
Abstract
Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.
Collapse
Affiliation(s)
- Xiao-Ge Yan
- Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Bao-Hua Cheng
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Xin Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Liang-Cai Ding
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Hai-Qing Liu
- Taishan Medical University, Taian, Shandong Province, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
28
|
Cheng B, Chen J, Bai B, Xin Q. Neuroprotection of apelin and its signaling pathway. Peptides 2012; 37:171-3. [PMID: 22820556 DOI: 10.1016/j.peptides.2012.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/15/2012] [Accepted: 07/15/2012] [Indexed: 12/15/2022]
Abstract
Apelin was initially isolated from bovine stomach and is an endogenous neuropeptide. It is a native ligand of the apelin receptor (APJ). Some research has found that apelin peptides alter blood pressure, feeding behavior, and pituitary hormone release. However, a new neuroprotective effect of apelin peptides was only recently discovered. This review summarizes the evidence of apelin-neuroprotection, which has the potential to cure acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Baohua Cheng
- Department of Neurology, Jining Medical University, Jining City, Shandong Province, PR China.
| | | | | | | |
Collapse
|