1
|
Caira S, Troise AD, Picariello G, De Pascale S, Pinto G, Pesce M, Marino F, Sarnelli G, Scaloni A, Addeo F. Beyond the gut: Investigating the mechanism of formation of β-casomorphins in human blood. Food Chem 2024; 460:140477. [PMID: 39047470 DOI: 10.1016/j.foodchem.2024.140477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
To evaluate the potential differences in the propensity of β-casein A1 (β-CNA1) and A2 (β-CNA2) from bovine milk to release health-relevant β-casomorphins (BCMs), food-derived peptides were monitored over time in the blood of eight human volunteers who consumed milk containing both protein variants. Liquid chromatography coupled with high resolution tandem mass spectrometry revealed interindividual variability of milk peptidomic profiles in human blood. BCMs were not detected, whereas BCM precursors originating from both β-CNA1 and β-CNA2 were ascertained, with β-CNA2-derived peptides showing a slightly greater susceptibility to proteolysis. Ten synthetic peptides mimicking circulating BCM precursors from β-CNA1 and β-CNA2, which were incubated ex vivo with the blood of two volunteers, showed comparable potential to generate BCMs. The formation of BCMs seemed to depend mainly on the size of the BCM precursors and less on the presence of His67 or Pro67. These findings challenge the belief that BCMs are released exclusively from β-CNA1 and support the nutritional safety of conventional milk, informing health policies regarding milk consumption.
Collapse
Affiliation(s)
- Simonetta Caira
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy.
| | - Antonio Dario Troise
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Sabrina De Pascale
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples "Federico II", 80131 Naples, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy.
| | - Francesco Addeo
- Department of Agriculture, University of Naples "Federico II", 80055 Portici, Italy
| |
Collapse
|
2
|
Sun Y, Ding Y, Liu B, Guo J, Su Y, Yang X, Man C, Zhang Y, Jiang Y. Recent advances in the bovine β-casein gene mutants on functional characteristics and nutritional health of dairy products: Status, challenges, and prospects. Food Chem 2024; 443:138510. [PMID: 38281416 DOI: 10.1016/j.foodchem.2024.138510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
β-casein is the second most abundant form of casein in milk. Changes in amino acid sequence at specific positions in the primary structure of β-casein in milk will produce gene mutations that affect the physicochemical properties of dairy products and the hydrolysis site of digestive enzymes. The screening method of β-casein allele frequency detection in dairy products also has attracted the extensive attention of scientists and farmers. The A1 and A2 β-casein is the two usual mutation types, distinguished by histidine and proline at position 67 in the peptide chain. This paper summarizes the effects of A1 and A2 β-casein on the physicochemical properties of dairy products and evaluates the effects on human health, and the genotyping methods were also concluded. Impressively, this review presents possible future opportunities and challenges for the promising field of A2 β-casein, providing a valuable reference for the development of the functional dairy market.
Collapse
Affiliation(s)
- Yilin Sun
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yixin Ding
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Biqi Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinfeng Guo
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
3
|
Gard F, Flad LM, Weißer T, Ammer H, Deeg CA. Effects of A1 Milk, A2 Milk and the Opioid-like Peptide β-Casomorphin-7 on the Proliferation of Human Peripheral Blood Mononuclear Cells. Biomolecules 2024; 14:690. [PMID: 38927093 PMCID: PMC11201611 DOI: 10.3390/biom14060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Special attention is given to cow's milk and its variants, with ongoing discussions about health-related impacts primarily focusing on the A1 variant in contrast to the A2 variant. The difference between these variants lies in a single amino acid alteration at position 67 of β-casein. This alteration is presumed to make the A1 variant more susceptible to enzymatic breakdown during milk digestion, leading to an increased release of the peptide β-casomorphin-7 (BCM-7). BCM-7 is hypothesized to interact with µ-opioid receptors on immune cells in humans. Although BCM-7 has demonstrated both immunosuppressive and inflammatory effects, its direct impact on the immune system remains unclear. Thus, we examined the influence of A1 and A2 milk on Concanavalin A (ConA)-stimulated human peripheral blood mononuclear cells (PBMCs), as well as the effect of experimentally digested A1 and A2 milk, containing different amounts of free BCM-7 from β-casein cleavage. Additionally, we evaluated the effects of pure BCM-7 on the proliferation of ConA-stimulated PBMCs and purified CD4+ T cells. Milk fundamentally inhibited PBMC proliferation, independent of the β-casein variant. In contrast, experimentally digested milk of both variants and pure BCM-7 showed no influence on the proliferation of PBMCs or isolated CD4+ T cells. Our results indicate that milk exerts an anti-inflammatory effect on PBMCs, regardless of the A1 or A2 β-casein variant, which is nullified after in vitro digestion. Consequently, we deem BCM-7 unsuitable as a biomarker for food-induced inflammation.
Collapse
Affiliation(s)
- Felix Gard
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Lili M. Flad
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Tanja Weißer
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Hermann Ammer
- Chair of Pharmacology, Toxicology and Pharmacy, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-80539 Munich, Germany
| | - Cornelia A. Deeg
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| |
Collapse
|
4
|
Bolat E, Eker F, Yılmaz S, Karav S, Oz E, Brennan C, Proestos C, Zeng M, Oz F. BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms. Molecules 2024; 29:2161. [PMID: 38731652 PMCID: PMC11085506 DOI: 10.3390/molecules29092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, β-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of β-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Selin Yılmaz
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25030, Türkiye; (E.O.); (F.O.)
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 157 84 Athens, Greece;
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25030, Türkiye; (E.O.); (F.O.)
| |
Collapse
|
5
|
Borş A, Borş SI, Floriștean VC. Health-Related Outcomes and Molecular Methods for the Characterization of A1 and A2 Cow's Milk: Review and Update. Vet Sci 2024; 11:172. [PMID: 38668439 PMCID: PMC11053430 DOI: 10.3390/vetsci11040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
A new trend in cow's milk has emerged in the market called type A1 and A2 milk. These products have piqued the interest of both consumers and researchers. Recent studies suggest that A2 milk may have potential health benefits beyond that of A1 milk, which is why researchers are investigating this product further. It is interesting to note that the A1 and A2 milk types have area-specific characteristics compared to breed-specific characteristics. Extensive research has focused on milk derivatives obtained from cow's milk, primarily through in vitro and animal studies. However, few clinical studies have been conducted in humans, and the results have been unsatisfactory. New molecular techniques for identifying A1 and A2 milk may help researchers develop new studies that can clarify certain controversies surrounding A1 milk. It is essential to exercise extreme caution when interpreting the updated literature. It has the potential to spread panic worldwide and have negative economic implications. Therefore, this study aims to investigate the differences between A1 and A2 milk in various research areas and clarify some aspects regarding these two types of milk.
Collapse
Affiliation(s)
- Alina Borş
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iaşi, Romania; (A.B.); (V.-C.F.)
| | - Silviu-Ionuț Borş
- Research and Development Station for Cattle Breeding Dancu, 707252 Iaşi, Romania
| | - Viorel-Cezar Floriștean
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iaşi, Romania; (A.B.); (V.-C.F.)
| |
Collapse
|
6
|
Dantas A, Pierezan MD, Camelo-Silva C, Zanetti V, Pimentel TC, da Cruz AG, Verruck S. A discussion on A1-free milk: Nuances and comments beyond implications to the health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:197-241. [PMID: 38906587 DOI: 10.1016/bs.afnr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
This chapter provides an overarching view of the multifaceted aspects of milk β-casein, focusing on its genetic variants A1 and A2. The work examines the current landscape of A1-free milk versus regular milk, delving into health considerations, protein detection methods, technological impacts on dairy production, non-bovine protein, and potential avenues for future research. Firstly, it discussed ongoing debates surrounding categorizing milk based on A1 and A2 β-casein variants, highlighting challenges in establishing clear regulatory standards and quality control methods. The chapter also addressed the molecular distinction between A1 and A2 variants at position 67 of the amino acid chain. This trait affects protein conformation, casein micelle properties, and enzymatic susceptibility. Variations in β-casein across animal species are acknowledged, casting doubt on non-bovine claims of "A2-like" milk due to terminology and genetic differences. Lastly, this work explores the burgeoning field of biotechnology in milk production.
Collapse
Affiliation(s)
- Adriana Dantas
- Food Quality and Technology, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet, Monells, Girona, Spain
| | - Milena Dutra Pierezan
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Callebe Camelo-Silva
- Department of Food Chemistry and Engineering, Technological Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vanessa Zanetti
- Food Quality and Technology, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet, Monells, Girona, Spain
| | | | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
7
|
Jeong H, Park YS, Yoon SS. A2 milk consumption and its health benefits: an update. Food Sci Biotechnol 2024; 33:491-503. [PMID: 38274187 PMCID: PMC10806982 DOI: 10.1007/s10068-023-01428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 01/27/2024] Open
Abstract
Milk is a widely consumed nutrient-rich food containing protein variants such as casein A2 and A1. A1 differs from A2 in an amino acid at position 67 (Pro67 to His67). The breakdown of β-casein yields β-casomorphins (BCM), among which BCM-7 is extensively studied for its effects on the human body. Animal studies have shown that A1 β-casein milk increases digestive transit time and enhances myeloperoxidase activity. Individuals with lactose intolerance prefer A2 milk to conventional A1 milk, as BCM-7 in A1 milk can lead to inflammation and discomfort in sensitive individuals. A2 milk, which contains A2 β-casein, is believed to be more easily digestible than A1 β-casein. Its popularity has grown owing to reports linking A1 casein to diseases such as type 1 diabetes, heart disease, and autism. A2 milk has gained popularity as an alternative to A1 milk, primarily because of its potential benefits for individuals with certain diseases. This review aims to provide an updated understanding of A2 milk consumption and its health benefits. This review aims to provide an updated understanding of A2 milk consumption and its health benefits.
Collapse
Affiliation(s)
- Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Sung-Sik Yoon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| |
Collapse
|
8
|
Khan R, De S, Dewangan R, Tamboli R, Gupta R. Potential status of A1 and A2 variants of bovine beta-casein gene in milk samples of Indian cattle breeds. Anim Biotechnol 2023; 34:4878-4884. [PMID: 37071545 DOI: 10.1080/10495398.2023.2200502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
This study aimed to determine the polymorphism in 7th exon of beta-casein gene (CSN2) gene in seven domestic (Kosali, Tharparkar, Gangatiri, Sahiwal, Gir, Khariar, Motu) and two exotic cattle breeds (Jersey and Holstein-Friesian). Genomic DNA was extracted from 1000 milk samples, and the C > A polymorphism in CSN2 was determined using the tetra-primer amplification refractory mutation system-polymerase chain reaction method. In all Indigenous cattle breeds, the mean frequency of A1A2 and A2A2 genotypes was 0.19 and 0.80, respectively. The A1A1 genotype was absent in all seven domestic cattle breeds. The frequency of the A2A2 genotype was highest in the Gir breed (0.93). However, the Sahiwal, Tharparkar, and Motu breeds also had a higher frequency of A2A2 genotype compared to other breeds. In contrast, Gangatiri breed of India showed lowest frequency of A2A2 genotype. The mean A1 and A2 allele frequency was 0.09 and 0.91, respectively. In exotic breeds, the mean frequencies of the A1A1, A1A2, and A2A2 genotypes were 0.42, 0.55, and 0.03, respectively. Similarly, the mean A1 and A2 allele frequency was 0.69 and 0.31, respectively. This study suggests the high potential of Gir, Sahiwal, Tharparkar, and Motu cattle for A2 milk production since they carry a favorable A2 genotype.
Collapse
Affiliation(s)
- Rupali Khan
- Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Sachinandan De
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | | | | | - Reeshu Gupta
- Parul Institute of Applied Sciences, Parul University, Vadodara, India
| |
Collapse
|
9
|
Gonzales-Malca JA, Tirado-Kulieva VA, Abanto-López MS, Aldana-Juárez WL, Palacios-Zapata CM. Worldwide research on the health effects of bovine milk containing A1 and A2 β-casein: Unraveling the current scenario and future trends through bibliometrics and text mining. Curr Res Food Sci 2023; 7:100602. [PMID: 37790856 PMCID: PMC10542606 DOI: 10.1016/j.crfs.2023.100602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
The possible adverse effect of consuming bovine milk with A1 β-casein (but not with A2 β-casein) on health aspects due to the release of β-casomorphin-7 (BCM-7) is currently under debate. The aim of this study was to perform a bibliometric analysis of studies extracted from Scopus to explore the relationship between BCM-7, A1 or A2 bovine milk with different aspects of health. Over time, several research groups were formed that are no longer active and although some authors have returned to the field of study, they have focused their efforts mainly on conducting reviews that show the same imprecise conclusions due to the few original articles. Research is concentrated in Europe and Asia, where New Zealand, China and Germany are the countries with the most publications, records and citations on the subject, respectively. On the other hand, no country in Africa or South America has scientific production, which opens the possibility of building collaborations between countries and exploring areas that lack scientific studies. Based on conflicting information from primarily in vitro and animal studies, and limited clinical trials with poor designs, A1 milk presents pro-inflammatory and oxidative activity, but the evidence is insufficient to associate its consumption with negative health effects. However, A2 milk may be better tolerated by the digestive system of some individuals, suggesting its possible modulating role in the intestinal microbiota. Stronger scientific evidence is needed to reach a consensus on whether the presence of β-casein A1 can significantly negatively affect health. The information shown will allow a better understanding of the subject and consumers will be able to make their own decisions regarding A1 or A2 milk.
Collapse
Affiliation(s)
- Jhony Alberto Gonzales-Malca
- Laboratorio de Tecnología de Alimentos y Procesos, Universidad Nacional de Frontera, Peru
- Laboratorio de Biología Molecular, Universidad Nacional de Frontera, Peru
| | | | | | | | | |
Collapse
|
10
|
de Vasconcelos ML, Oliveira LMFS, Hill JP, Vidal AMC. Difficulties in Establishing the Adverse Effects of β-Casomorphin-7 Released from β-Casein Variants-A Review. Foods 2023; 12:3151. [PMID: 37685085 PMCID: PMC10486734 DOI: 10.3390/foods12173151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
β-Casomorphin-7 (BCM-7) is a peptide released through the proteolysis of β-casein (β-CN), which is considered a bioactive peptide displaying evidence of promoting the binding and activation of the μ-opioid receptor located in various body parts, such as the gastrointestinal tract, the immune system and potentially the central nervous system. The possible effects of BCM-7 on health are a theme rising in popularity due to evidence found in several studies on the modulation of gastrointestinal proinflammatory responses that can trigger digestive symptoms, such as abdominal discomfort. With the advancement of studies, the hypothesis that there is a correlation of the possible effects of BCM-7 with the microbiota-gut-brain axis has been established. However, some studies have suggested the possibility that these adverse effects are restricted to a portion of the population, and the topic is controversial due to the small number of in vivo studies, which makes it difficult to obtain more conclusive results. In addition, a threshold of exposure to BCM-7 has not yet been established to clarify the potential of this peptide to trigger physiological responses at gastrointestinal and systemic levels. The proportion of the population that can be considered more susceptible to the effects of BCM-7 are evidenced in the literature review. The challenges of establishing the adverse effects of BCM-7 are discussed, including the importance of quantifying the BCM-7 release in the different β-CN genotypes. In summary, the reviewed literature provides plausible indications of the hypothesis of a relationship between β-CN A1/BCM-7 and adverse health effects; however, there is need for further, especially in vivo studies, to better understand and confirm the physiological effects of this peptide.
Collapse
Affiliation(s)
- Marta Liliane de Vasconcelos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (M.L.d.V.); (L.M.F.S.O.)
| | - Luisa Maria F. S. Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (M.L.d.V.); (L.M.F.S.O.)
| | - Jeremy Paul Hill
- Department Sustainable Nutrition Initiative, Riddet Institute, Palmerston North, New Zealand, and Fonterra Research & Development Centre, Palmerston North 4472, New Zealand;
| | - Ana Maria Centola Vidal
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (M.L.d.V.); (L.M.F.S.O.)
| |
Collapse
|
11
|
Liu Z, Pan S, Wu P, Li M, Liang D. Determination of A1 and A2 β-Casein in Milk Using Characteristic Thermolytic Peptides via Liquid Chromatography-Mass Spectrometry. Molecules 2023; 28:5200. [PMID: 37446860 DOI: 10.3390/molecules28135200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
β-casein, a protein in milk and dairy products, has two main variant forms termed as A1 and A2. A1 β-casein may have adverse effects on humans. The fact that there is only one amino acid variation at the 67th position between A1 and A2 β-casein makes it difficult to distinguish between them. In this study, a novel method using characteristic thermolytic peptides is developed for the determination of A1 and A2 β-casein in milk. Firstly, caseins extracted from milk samples are thermolytic digested at 60 °C without any denaturing reagents required for unfolding proteins, which simplifies the sample pretreatment procedure. The characteristic thermolytic peptides (i.e., fragments 66-76 and 59-76 for A1 and A2 β-casein, respectively) selected to specifically distinguish A1 and A2 β-casein only have eleven or eighteen amino acid moieties. Compared with tryptic characteristic peptides with a length of 49 amino acid moieties, these shorter thermolytic characteristic peptides are more suitable for LC-MS analysis. This novel method, with the advantages of high specificity, high sensitivity, and high efficiency, was successfully applied for the analysis of six milk samples collected from a local supermarket. After further investigation, it is found that this method would contribute to the development of A2 dairy products for a company and the quality inspection of A2 dairy products for a government.
Collapse
Affiliation(s)
- Zeyang Liu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin University, Changchun 130012, China
- Division of Chemical Metrology & Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Susu Pan
- Division of Ecology Environment and Energy Resources, Beijing Institute of Metrology, Beijing 100012, China
| | - Peize Wu
- Division of Chemical Metrology & Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Ming Li
- Division of Chemical Metrology & Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Dapeng Liang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
An approach on detection, quantification, technological properties, and trends market of A2 cow milk. Food Res Int 2023; 167:112690. [PMID: 37087212 DOI: 10.1016/j.foodres.2023.112690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
The genetic variant A2 β-casein integrates the casein protein group in milk and has been often associated with positive health outcomes. Therefore, this review explores the present understanding of A2 β-casein, including detection methods and the market trends for dairy from A2 milk. Also, the interaction of A2 β-casein with αs1-casein and κ-casein genotypes was examined in terms of technological impacts on A2 milk. A limited number of preliminary studies has aimed to investigate the sensorial and technological impacts of β-casein variants in milk matrices, for instance, in yogurt and other derivatives. Nevertheless, considering studies carried out so far, it is concluded that the manufacture of dairy products from A2 milk is perfectly feasible, as the products presented slight differences when compared to those derived from traditional milk. In one of the works, sensitive drops in rennet coagulation time and curd firmness values were observed in cheese traits. However, it is relevant to point out that variant A of κ-casein plays a negative role in the coagulation features of milk. Therefore, alterations in the pattern of cheese-making properties are not uniquely related to β-casein variants. Attempts to produce A2 β-casein in laboratory (non-natural source), through biosynthesis, for example, have not been found so far. This knowledge gap offers a promising area for future studies concerning proteins and bioactive peptide production.
Collapse
|
13
|
Cieślińska A, Fiedorowicz E, Rozmus D, Sienkiewicz-Szłapka E, Jarmołowska B, Kamiński S. Does a Little Difference Make a Big Difference? Bovine β-Casein A1 and A2 Variants and Human Health-An Update. Int J Mol Sci 2022; 23:15637. [PMID: 36555278 PMCID: PMC9779325 DOI: 10.3390/ijms232415637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
For over 20 years, bovine beta-casein has been a subject of increasing scientific interest because its genetic A1 variant during gastrointestinal digestion releases opioid-like peptide β-casomorphin-7 (β-CM-7). Since β-CM-7 is involved in the dysregulation of many physiological processes, there is a growing discussion of whether the consumption of the β-casein A1 variant has an influence on human health. In the last decade, the number of papers dealing with this problem has substantially increased. The newest clinical studies on humans showed a negative effect of variant A1 on serum glutathione level, digestive well-being, cognitive performance score in children, and mood score in women. Scientific reports in this field can affect the policies of dairy cattle breeders and the milk industry, leading to the elimination of allele A1 in dairy cattle populations and promoting milk products based on milk from cows with the A2A2 genotype. More scientific proof, especially in well-designed clinical studies, is necessary to determine whether a little difference in the β-casein amino acid sequence negatively affects the health of milk consumers.
Collapse
Affiliation(s)
- Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Edyta Sienkiewicz-Szłapka
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Stanisław Kamiński
- Department of Animal Genetics, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| |
Collapse
|
14
|
A2 Milk: New Perspectives for Food Technology and Human Health. Foods 2022; 11:foods11162387. [PMID: 36010390 PMCID: PMC9407547 DOI: 10.3390/foods11162387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Although milk consumption is increasing worldwide, in some geographical regions, its consumption has persistently declined in recent decades. This fact, together with the increase in milk production prices, has caused both milk producers and the dairy industry to be immersed in a major crisis. Some possible solutions to this problem are to get people who do not currently consume milk to start drinking it again, or to market milk and dairy products with a higher added value. In this context, a type of milk called A2 has recently received attention from the industry. This type of milk, characterized by a difference in an amino acid at position 67 of the β-casein polypeptide chain, releases much smaller amounts of bioactive opioid peptide β-casomorphin 7 upon digestion, which has been linked to harmful effects on human health. Additionally, A2 milk has been attributed worse technological properties in the production of some dairy products. Thus, doubts exist about the convenience for the dairy industry to bet on this product. The aim of this review is to provide an update on the effects on human health of A2 milk, as well as its different technological properties to produce dairy products.
Collapse
|
15
|
Parashar A, Bhushan V, Mahanandia NC, Kumar S, Mohanty AK. Non-SELEX method for aptamer selection against β-casomorphin-7 peptide. J Dairy Sci 2022; 105:5545-5560. [DOI: 10.3168/jds.2021-21569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022]
|
16
|
Effah F, de Gusmão Taveiros Silva NK, Vijayanathan K, Camarini R, Joly F, Taiwo B, Rabot S, Champeil-Potokar G, Bombail V, Bailey A. SEX-DEPENDENT IMPACT OF MICROBIOTA STATUS ON CEREBRAL μ -OPIOID RECEPTOR DENSITY IN FISCHER RATS. Eur J Neurosci 2022; 55:1917-1933. [PMID: 35393704 PMCID: PMC9324823 DOI: 10.1111/ejn.15666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
μ‐opioid receptors (MOPr) play a critical role in social play, reward and pain, in a sex‐ and age‐dependent manner. There is evidence to suggest that sex and age differences in brain MOPr density may be responsible for this variability; however, little is known about the factors driving these differences in cerebral MOPr density. Emerging evidence highlights gut microbiota's critical influence and its bidirectional interaction with the brain on neurodevelopment. Therefore, we aimed to determine the impact of gut microbiota on MOPr density in male and female brains at different developmental stages. Quantitative [3H]DAMGO autoradiographic binding was carried out in the forebrain of male and female conventional (CON) and germ‐free (GF) rats at postnatal days (PND) 8, 22 and 116–150. Significant ‘microbiota status X sex’, ‘age X brain region’ interactions and microbiota status‐ and age‐dependent effects on MOPr binding were uncovered. Microbiota status influenced MOPr levels in males but not females, with higher MOPr levels observed in GF versus CON rats overall regions and age groups. In contrast, no overall sex differences were observed in GF or CON rats. Interestingly, within‐age planned comparison analysis conducted in frontal cortical and brain regions associated with reward revealed that this microbiota effect was restricted only to PND22 rats. Thus, this pilot study uncovers the critical sex‐dependent role of gut microbiota in regulating cerebral MOPr density, which is restricted to the sensitive developmental period of weaning. This may have implications in understanding the importance of microbiota during early development on opioid signalling and associated behaviours.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| | | | - Katie Vijayanathan
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| | - Rosana Camarini
- Pharmacology Department, Universidade de Sao Paulo, São Paulo, Brazil
| | - Fatima Joly
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Benjamin Taiwo
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Vincent Bombail
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, Cranmer Terrace, SW17 0RE, London, UK
| |
Collapse
|
17
|
Hu B. The Analysis of Art Therapy for Children with Autism by Using the Implemented Artificial Intelligence System. INT J HUM ROBOT 2022. [DOI: 10.1142/s0219843622400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Hockey M, Aslam H, Berk M, Pasco JA, Ruusunen A, Mohebbi M, Macpherson H, Chatterton ML, Marx W, O'Neil A, Rocks T, McGuinness AJ, Young LM, Jacka FN. The Moo'D Study: protocol for a randomised controlled trial of A2 beta-casein only versus conventional dairy products in women with low mood. Trials 2021; 22:899. [PMID: 34895297 PMCID: PMC8665310 DOI: 10.1186/s13063-021-05812-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
Background Beta-casein is a major protein in cow’s milk, of which A1 and A2 are the most frequent variants. Recent evidence implicates A1 beta-casein consumption in mechanisms that are of potential importance to mental health, yet its possible effects on psychological endpoints remains unknown. The primary aim of the study is to evaluate the comparative effects of consumption of dairy products containing A2 beta-casein versus conventional dairy (i.e. containing both A1 and A2 beta-casein) on symptoms of psychological distress in women with low mood. Methods ‘The Moo’D Study’ is a 16-week, superiority, 1:1 parallel group, triple-blinded, randomised controlled trial. Ninety women with low mood (Patient Health Questionnaire score ≥ 5) will be randomised to consume either A2 beta-casein only or conventional dairy products. The primary outcome, symptoms of psychological distress, will be measured by the 21-item Depression, Anxiety and Stress Scale. Secondary outcomes will include symptoms of depression, anxiety and stress, severity of low mood, cognition, gut microbiota composition, gut symptomatology, markers of immune function, gut inflammation, systemic metabolites, endothelial integrity and oxidative stress, body composition, perceived wellbeing, sleep, quality of life, resource use and cost-effectiveness. Discussion This study will advance our understanding of the possible impact of milk proteins on psychological distress in women as well as elucidate mechanisms underpinning any association. Given dairy products form a substantial component of traditional and Western diets, the implications of these findings are likely to be of clinical and public health importance. Trial registration The trial protocol has been prospectively registered with the Australia and New Zealand Clinical Trials Registry, ACTRN12618002023235. Registered on 17 December 2018. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05812-6.
Collapse
Affiliation(s)
- Meghan Hockey
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Hajara Aslam
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Michael Berk
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Julie A Pasco
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Prahran, VIC, Australia.,Department of Medicine-Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - Anu Ruusunen
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Mohammadreza Mohebbi
- Biostatistics Unit, Faculty of Health, Deakin University, Burwood, VIC, 3125, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Faculty of Health, Deakin University, Burwood, VIC, 3125, Australia
| | - Mary Lou Chatterton
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Institute for Health Transformation, Faculty of Health, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Adrienne O'Neil
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Tetyana Rocks
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Amelia J McGuinness
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lauren M Young
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Felice N Jacka
- The Food & Mood Centre, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
| |
Collapse
|
19
|
Tarnowska K, Gruczyńska-Sękowska E, Kowalska D, Majewska E, Kozłowska M, Winkler R. The opioid excess theory in autism spectrum disorders - is it worth investigating further? Crit Rev Food Sci Nutr 2021:1-14. [PMID: 34702104 DOI: 10.1080/10408398.2021.1996329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorders (ASD) are defined as neurodevelopmental disorders, which are highly variable in nature and do not form a uniform picture, either in terms of symptomatology or depth of the disturbance. Diagnosis of ASD is made for children who show signs of impairment in social interaction, communication and cognitive skills. The exact cause of autism spectrum disorders has not been determined to date. Although there is no cure for ASD, a variety interventions have been proposed. The most commonly used restrictive dietary intervention is the gluten-free casein-free diet (GFCF), which is based on the opioid excess theory. This paper summarizes and discusses research on the core elements of the opioid excess theory in ASD: increased levels of opioid peptides in body fluids in ASD patients, increased intestinal permeability, altered peptidase activity and the effectiveness of GFCF diet in alleviating symptoms of ASD. Furthermore, we discuss the difficulties and their causes in conducting research with ASD patients. The assumptions of the opioid excess theory have neither been definitively confirmed nor disproved. Research in this area should continue, taking into account the highest possible quality standards and the specific needs and abilities of patients with ASD and their families.
Collapse
Affiliation(s)
- Katarzyna Tarnowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dorota Kowalska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Majewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mariola Kozłowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Renata Winkler
- Department of Organizational Behaviors, Cracow University of Economics, Cracow, Poland
| |
Collapse
|
20
|
Yamada A, Sugimura M, Kuramoto T. Genetic polymorphism of bovine beta-casein gene in Japanese dairy farm herds. Anim Sci J 2021; 92:e13644. [PMID: 34626147 PMCID: PMC9286554 DOI: 10.1111/asj.13644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate beta‐casein polymorphism among 320 Japanese cows sampled from eight dairy farms. We used a newly‐developed genotyping method that involved collecting DNA from hairs and a Cycleave polymerase chain reaction (PCR) assay to detect the A1, A2, and B variants. Results revealed the presence of five genotypes (A1A1, A2A2, A1A2, A1B, and A2B). We found that the most common genotype was A2A2 (0.42), followed by A1A2 (0.39) and A1A1 (0.11). The A1B and A2B genotypes were less frequent (<0.05). The frequencies of alleles A1, A2, and B were calculated to be 0.32, 0.64, and 0.04, respectively. Our study is the first to show the current status of beta‐casein polymorphisms in Japanese dairy farms. Given the adverse effects of A1 beta‐casein on human health, attempts have been made to develop herds consisting solely of A2A2 cows. Our study provides a reference for improving cow populations in Japanese dairy farms. The Cycleave PCR‐based assay we developed here can be used for rapid and reliable genotyping of bovine beta‐casein.
Collapse
Affiliation(s)
- Asaha Yamada
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Miyu Sugimura
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Takashi Kuramoto
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|
21
|
Bovine β-Casomorphins: Friends or Foes? A comprehensive assessment of evidence from in vitro and ex vivo studies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
A simple method to generate β-casomorphin-7 by in vitro digestion of casein from bovine milk. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Woodford KB. Casomorphins and Gliadorphins Have Diverse Systemic Effects Spanning Gut, Brain and Internal Organs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157911. [PMID: 34360205 PMCID: PMC8345738 DOI: 10.3390/ijerph18157911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Food-derived opioid peptides include digestive products derived from cereal and dairy diets. If these opioid peptides breach the intestinal barrier, typically linked to permeability and constrained biosynthesis of dipeptidyl peptidase-4 (DPP4), they can attach to opioid receptors. The widespread presence of opioid receptors spanning gut, brain, and internal organs is fundamental to the diverse and systemic effects of food-derived opioids, with effects being evidential across many health conditions. However, manifestation delays following low-intensity long-term exposure create major challenges for clinical trials. Accordingly, it has been easiest to demonstrate causal relationships in digestion-based research where some impacts occur rapidly. Within this environment, the role of the microbiome is evidential but challenging to further elucidate, with microbiome effects ranging across gut-condition indicators and modulators, and potentially as systemic causal factors. Elucidation requires a systemic framework that acknowledges that public-health effects of food-derived opioids are complex with varying genetic susceptibility and confounding factors, together with system-wide interactions and feedbacks. The specific role of the microbiome within this puzzle remains a medical frontier. The easiest albeit challenging nutritional strategy to modify risk is reduced intake of foods containing embedded opioids. In future, constituent modification within specific foods to reduce embedded opioids may become feasible.
Collapse
|
24
|
Kay SIS, Delgado S, Mittal J, Eshraghi RS, Mittal R, Eshraghi AA. Beneficial Effects of Milk Having A2 β-Casein Protein: Myth or Reality? J Nutr 2021; 151:1061-1072. [PMID: 33693747 DOI: 10.1093/jn/nxaa454] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 01/03/2023] Open
Abstract
Diet has been shown to play an important role in maintaining normal homeostasis in the human body. Milk and milk products are a major component of the Western diet, but their consumption may predispose sensitive individuals to adverse health outcomes. Current literature about milk products recognizes various bioactive components including lactate, whey protein, and β-casein protein. Specifically, cow milk has 2 major subvariants of its β-casein protein, A1 and A2, due to a single nucleotide difference that changes the codon at position 67. Whereas the A2 polymorphism is unlikely to undergo enzymatic cleavage during digestion, the A1 polymorphism is more likely to undergo enzymatic cleavage resulting in the product peptide β-casomorphin-7, a known μ-opioid receptor agonist. The objective of this article is to review the current understanding of the 2 major β-casein subvariants and their effects on various organ systems that may have an impact on the health of an individual. Synthesis of the current existing literature on this topic is relevant given the increased association of milk consumption with adverse effects in susceptible individuals resulting in a rising interest in consuming milk alternatives. We discuss the influence of the β-casein protein on the gastrointestinal system, endocrine system, nervous system, and cardiovascular system as well as its role in antioxidants and methylation. A1 milk consumption has been associated with enhanced inflammatory markers. It has also been reported to have an opioid-like response that can lead to manifestations of clinical symptoms of neurological disorders such as autism spectrum disorder. On the other hand, A2 milk consumption has been associated with beneficial effects and is easier to digest in sensitive individuals. Further research is warranted to investigate the short- and long-term effects of consumption of A1 β-casein in comparison with milk with A2 β-casein proteins.
Collapse
Affiliation(s)
- Sae-In S Kay
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Stefanie Delgado
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rebecca S Eshraghi
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adrien A Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
25
|
Daniloski D, Cunha NM, McCarthy NA, O'Callaghan TF, McParland S, Vasiljevic T. Health-related outcomes of genetic polymorphism of bovine β-casein variants: A systematic review of randomised controlled trials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Release of beta-casomorphins during in-vitro gastrointestinal digestion of reconstituted milk after heat treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Shahdost-fard F, Roushani M. Cu-In-S/ZnS quantum dots/silver nanoparticles nanocomposites-modified electrode as an electrochemical label-free aptasensor for the detection of β-casomorphin 7 in early distinguish of autism. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Thiruvengadam M, Venkidasamy B, Thirupathi P, Chung IM, Subramanian U. β-Casomorphin: A complete health perspective. Food Chem 2020; 337:127765. [PMID: 32799161 DOI: 10.1016/j.foodchem.2020.127765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
β-Casomorphin-7 (BCM-7) is a heptapeptide dietary molecule derived from the digestion of the β-casein of dairy and dairy products. In this review, we have covered the extensive details about BCM and its derived peptides out of the gastrointestinal and enzymatic digestion of milk and milk products, its structure and properties, and its immunological aspects related to human health among infants and adults of both genders. We have left judgment about BCM's pros and cons to the reader by describing the details in a cyclopedic perspective. In addition, a section on the possible ways to detect BCMs from their sources using proteomics, genome-based techniques, such as PCR and aptamers, and other analytical techniques equip the reader to get an idea about the details of the diagnostics available and possible applications in future. Overall, this review will provide information to the end-users of milk and milk products to enable them to make their own decisions about BCMs.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Baskar Venkidasamy
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Prabhu Thirupathi
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu, India
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu, India.
| |
Collapse
|
29
|
Di Liberto D, D’Anneo A, Carlisi D, Emanuele S, De Blasio A, Calvaruso G, Giuliano M, Lauricella M. Brain Opioid Activity and Oxidative Injury: Different Molecular Scenarios Connecting Celiac Disease and Autistic Spectrum Disorder. Brain Sci 2020; 10:E437. [PMID: 32659996 PMCID: PMC7407635 DOI: 10.3390/brainsci10070437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Celiac Disease (CD) is an immune-mediated disease triggered by the ingestion of wheat gliadin and related prolamins from other cereals, such as barley and rye. Immunity against these cereal-derived proteins is mediated by pro-inflammatory cytokines produced by both innate and adaptive system response in individuals unable to adequately digest them. Peptides generated in this condition are absorbed across the gut barrier, which in these patients is characterized by the deregulation of its permeability. Here, we discuss a possible correlation between CD and Autistic Spectrum Disorder (ASD) pathogenesis. ASD can be induced by an excessive and inappropriate brain opioid activity during the neonatal period. Cereal-derived peptides produced in celiac patients cross the blood-brain barrier and bind to endogenous opioid receptors interfering with neurotransmission and generating deleterious effects on brain maturation, learning and social relations. Moreover, an increase in oxidative stress and a decrease in the antioxidant capacity, as well as an extended mitochondrial impairment in the brain, could represent a possible connection between ASD and CD. Therefore, we critically discuss the proposed relationship between ASD and CD and the possible usefulness of a gluten-free diet in ASD patients.
Collapse
Affiliation(s)
- Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy;
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (A.D.B.); (G.C.); (M.G.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.C.); (S.E.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.C.); (S.E.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (A.D.B.); (G.C.); (M.G.)
| | - Giuseppe Calvaruso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (A.D.B.); (G.C.); (M.G.)
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (A.D.B.); (G.C.); (M.G.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.C.); (S.E.)
| |
Collapse
|
30
|
González-Domenech PJ, Díaz Atienza F, García Pablos C, Fernández Soto ML, Martínez-Ortega JM, Gutiérrez-Rojas L. Influence of a Combined Gluten-Free and Casein-Free Diet on Behavior Disorders in Children and Adolescents Diagnosed with Autism Spectrum Disorder: A 12-Month Follow-Up Clinical Trial. J Autism Dev Disord 2020; 50:935-948. [PMID: 31813108 DOI: 10.1007/s10803-019-04333-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of alternative interventions, such as gluten-free and casein-free (GFCF) diets, is frequent due to limited therapies for Autism Spectrum Disorder (ASD). Our aims were to determine the influence of a GFCF diet on behavior disorders in children and adolescents diagnosed with ASD and the potential association with urinary beta-casomorphin concentrations. Thirty-seven patients were recruited for this crossover trial. Each patient consumed a normal diet (including gluten and casein) for 6 months and a GFCF diet for another 6 months. The order of the intervention (beginning with normal diet or with GFCF diet) was assigned randomly. Patients were evaluated at three time-points (at the beginning of the study, after normal diet and after GFCF diet). Questionnaires regarding behavior and autism and dietary adherence were completed and urinary beta-casomorphin concentrations were determined at each time-point. No significant behavioral changes and no association with urinary beta-casomorphin concentrations were found after GFCF diet. A 6-month GFCF diet do not induce significant changes in behavioral symptoms of autism and urinary beta-casomorphin concentrations. Further studies with a long follow-up period similar to ours and including placebo and blinding elements are needed to identify better those respondents to GFCF diets.
Collapse
Affiliation(s)
- Pablo José González-Domenech
- Child and Adolescent Mental Health Unit, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Psychiatry, University of Granada, Granada, Spain
| | - Francisco Díaz Atienza
- Child and Adolescent Mental Health Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Carlos García Pablos
- Child and Adolescent Mental Health Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | | | | | - Luis Gutiérrez-Rojas
- Department of Psychiatry, University of Granada, Granada, Spain. .,Psychiatry Service, Hospital Clínico San Cecilio, Granada, Spain. .,CTS-549 Research Group, Institute of Neuroscience, Granada, Spain.
| |
Collapse
|
31
|
Opioid system influences gut-brain axis: Dysbiosis and related alterations. Pharmacol Res 2020; 159:104928. [PMID: 32504837 DOI: 10.1016/j.phrs.2020.104928] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/24/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Opioid drugs are widely used to treat chronic pain, but their misuse can lead to tolerance, dependence, and addiction and have created a significant public health problem. In addition, food-derived opioid peptides, known as exorphins, like gluten exorphins have been shown to have harmful effects in certain pathologies like celiac disease, for example. Several studies support the involvement of the opioid system in the development of disorders such as autism spectrum syndrome. Moreover, bidirectional communication between the intestine and brain has been shown to be altered in various neurodegenerative diseases including Alzheimer´s and Parkinson´s. The presence of opioid receptors in both the digestive tract and the central nervous system (CNS) suggests that opioid drugs and exorphins may modulate the gut-brain axis. Morphine, for example, has shown a dysbiotic effect on the bacterial microbiota in addition to inducing an increase in intestinal permeability facilitating bacterial translocation. Furthermore, certain components of bacteria can modify the expression of opioid receptors at the central level increasing sensitivity to pain. Strategies based on use of probiotics have resulted in improvements in symptoms of autism and Parkinson´s disease. In this manuscript, we review the role of the opioid system in disorders and CNS pathologies and the involvement of the gut-brain axis.
Collapse
|
32
|
Wong CB, Odamaki T, Xiao JZ. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol Rev 2020; 44:369-385. [PMID: 32319522 PMCID: PMC7326374 DOI: 10.1093/femsre/fuaa010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Members of Bifidobacterium are among the first microbes to colonise the human gut, and certain species are recognised as the natural resident of human gut microbiota. Their presence in the human gut has been associated with health-promoting benefits and reduced abundance of this genus is linked with several diseases. Bifidobacterial species are assumed to have coevolved with their hosts and include members that are naturally present in the human gut, thus recognised as Human-Residential Bifidobacteria (HRB). The physiological functions of these bacteria and the reasons why they occur in and how they adapt to the human gut are of immense significance. In this review, we provide an overview of the biology of bifidobacteria as members of the human gut microbiota and address factors that contribute to the preponderance of HRB in the human gut. We highlight some of the important genetic attributes and core physiological traits of these bacteria that may explain their adaptive advantages, ecological fitness, and competitiveness in the human gut. This review will help to widen our understanding of one of the most important human commensal bacteria and shed light on the practical consideration for selecting bifidobacterial strains as human probiotics.
Collapse
Affiliation(s)
- Chyn Boon Wong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| |
Collapse
|
33
|
Application of ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (Orbitrap™) for the determination of beta-casein phenotypes in cow milk. Food Chem 2020; 307:125532. [DOI: 10.1016/j.foodchem.2019.125532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 11/18/2022]
|
34
|
Summer A, Di Frangia F, Ajmone Marsan P, De Noni I, Malacarne M. Occurrence, biological properties and potential effects on human health of β-casomorphin 7: Current knowledge and concerns. Crit Rev Food Sci Nutr 2020; 60:3705-3723. [PMID: 32033519 DOI: 10.1080/10408398.2019.1707157] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genetic variant A1 of bovine β-casein (β-Cn) presents a His residue at a position 67 of the mature protein. This feature makes the Ile66-His67 bond more vulnerable to enzymatic cleavage, determining the release of the peptide β-Cn f(60-66), named β-casomorphin 7 (BCM7). BCM7 is an opioid-agonist for μ receptors, and it has been hypothesized to be involved in the development of different non-transmissible diseases in humans. In the last decade, studies have provided additional results on the potential health impact of β-Cn A1 and BCM7. These studies, here reviewed, highlighted a relation between the consumption of β-Cn A1 (and its derivative BCM7) and the increase of inflammatory response as well as discomfort at the gastrointestinal level. Conversely, the role of BCM7 and the effects of ingestion of β-Cn A1 on the onset or worsening of other non-transmissible diseases as caused or favored by still need proof of evidence. Overall, the reviewed literature demonstrates that the "β-Cn A1/BCM7 issue" remains an intriguing but not exhaustively explained topic in human nutrition. On this basis, policies in favor of breeding for β-Cn variants not releasing BCM7 and consumption of "A1-like" milk appear not yet sound for a healthier and safer nutrition.
Collapse
Affiliation(s)
- Andrea Summer
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| | | | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA) and Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Massimo Malacarne
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| |
Collapse
|
35
|
Shahdost-Fard F, Roushani M. Designing of an ultrasensitive BCM-7 aptasensor based on an SPCE modified with AuNR for promising distinguishing of autism disorder. Talanta 2019; 209:120506. [PMID: 31892084 DOI: 10.1016/j.talanta.2019.120506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
Abstract
Abstractly, in this study, an aptasensor is introduced based on a platform consisting of the gold nanorod (AuNR) on a screen printed carbon electrode (SPCE) surface. The aptasensor is applied for detection of the β-casomorphin (BCM-7) as a promising biomarker of autism disorder. The NH2-Apt sequence is directly immobilized onto the AuNR/SPCE surface by formation of a chemisorption bond between the amine-Au groups. By incubation of the BCM-7 onto the aptasensor surface, the aptasensor directed against BCM-7 and cleverly formed a target/Apt complex to produce a measurable electrical current change. The aptasensor shows linearity over the range of 1 fmol L-1 to 25 nmol L-1 with a limit of detection (LOD) of 334 amol L-1. Furthermore, the function of the aptasensor in real samples such as human urine and plasma samples is evaluated. The achieved satisfactory results are mainly due to three main reasons including (1) the large specific surface area of the AuNR which forms a 3D network on the SPCE surface to capture more Apt sequences at the sensing interface, (2) utilizing Apt as the BCM-7 receptor with inherent unique properties to produce a synergetic effect with the AuNR, and finally, (3) effective using screen printing technology with the fantastic capability to less cost of the aptasensor preparation. There is hope that miniaturization of the proposed aptasensor may aid future efforts to detect autism symptoms as early as infancy under clinical conditions in real-world.
Collapse
Affiliation(s)
- Faezeh Shahdost-Fard
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P. O. BOX, 69315-516, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P. O. BOX, 69315-516, Iran.
| |
Collapse
|
36
|
Effects of Conventional Milk Versus Milk Containing Only A2 β-Casein on Digestion in Chinese Children: A Randomized Study. J Pediatr Gastroenterol Nutr 2019; 69:375-382. [PMID: 31305326 PMCID: PMC6727941 DOI: 10.1097/mpg.0000000000002437] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES In this study, we hypothesized that replacing conventional milk, which contains A1 and A2 β-casein proteins, with milk that contains only A2 β-casein in the diet of dairy or milk-intolerant preschoolers (age 5 to 6 years) would result in reduced gastrointestinal symptoms associated with milk intolerance, and that this would correspond with cognitive improvements. METHODS This randomized, double-blind, crossover study aimed to compare the effects of 5 days' consumption of conventional milk versus milk containing only A2 β-casein on gastrointestinal symptoms, as assessed via visual analog scales, average stool frequency and consistency, and serum inflammatory and immune biomarkers in healthy preschoolers with mild-to-moderate milk intolerance. The study also aimed to compare changes in the cognitive behavior of preschoolers, based on Subtle Cognitive Impairment Test scores. RESULTS Subjects who consumed milk containing only A2 β-casein had significantly less severe gastrointestinal symptoms as measured by visual analog scales, reduced stool frequency, and improvements in stool consistency, compared with subjects consuming conventional milk. There were significant increases from baseline in serum interleukin-4, immunoglobulins G, E, and G1, and beta-casomorphin-7 coupled to lower glutathione levels, in subjects consuming conventional milk compared with milk containing only A2 β-casein. Subtle Cognitive Impairment Test analysis showed significant improvements in test accuracy after consumption of milk containing only A2 β-casein. There were no severe adverse events related to consumption of either milk product. CONCLUSIONS Replacing conventional milk with milk containing only A2 β-casein reduced gastrointestinal symptoms associated with milk intolerance in Chinese preschool children, with corresponding improvements in aspects of cognitive performance.
Collapse
|
37
|
Nguyen DD, Solah VA, Johnson SK, Nguyen HA, Nguyen TLD, Tran TLH, Mai TK, Busetti F. Identification and quantification of beta-casomorphin peptides naturally yielded in raw milk by liquid chromatography-tandem mass spectrometry. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Jarmołowska B, Bukało M, Fiedorowicz E, Cieślińska A, Kordulewska NK, Moszyńska M, Świątecki A, Kostyra E. Role of Milk-Derived Opioid Peptides and Proline Dipeptidyl Peptidase-4 in Autism Spectrum Disorders. Nutrients 2019; 11:nu11010087. [PMID: 30621149 PMCID: PMC6356206 DOI: 10.3390/nu11010087] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/11/2018] [Accepted: 12/28/2018] [Indexed: 01/08/2023] Open
Abstract
Opioid peptides released during digestion of dietary proteins such as casein, were suggested to contribute to autism development, leading to the announcement of opioid excess hypothesis of autism. This paper examines role of enzyme proline dipeptidyl peptidase-4 (DPPIV; EC 3.4.14.5) and it is exogenous substrate, β-casomorphin-7 (BCM7) in autism etiology. Our study included measurements of DPPIV and BCM7 concentrations in serum and urine, which were analyzed with ELISA assays and activity of DPPIV was measured by colorimetric test. The effect of opioid peptides from hydrolysed bovine milk on DPPIV gene expression in peripheral blood mononuclear cells (PBMC) in autistic and healthy children was determined using the Real-Time PCR (Polymerase Chain Reaction) method. Our research included 51 healthy children and 86 children diagnosed with autism spectrum disorder (ASD, ICDF84). We determined that the concentration of BCM7 in serum was significantly, 1.6-fold, higher in the ASD group than in controls (p < 0.0001). Concentration of DPPIV was found to also be significantly higher in serum from ASD children compared to the control group (p < 0.01), while we did not notice significant difference in enzymatic activity of serum DPPIV between the two study groups. We confirmed correlation according to the gender between analyzed parameters. The inspiration for this study emanated from clinical experience of the daily diet role in relieving the symptoms of autism. Despite this, we have concluded that milk-derived opioid peptides and DPPIV are potentially factors in determining the pathogenesis of autism; conducted studies are still limited and require further research.
Collapse
Affiliation(s)
- Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland.
| | - Marta Bukało
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland.
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland.
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland.
| | - Natalia Karolina Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland.
| | - Małgorzata Moszyńska
- Center for Diagnosis, Treatment and Therapy of Autism at the Regional Children's Hospital in Olsztyn, Zolnierska 18 A Street, 10-561 Olsztyn, Poland.
| | - Aleksander Świątecki
- Faculty of Biology and Biotechnology, Department of Microbiology and Mycology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland.
| | - Elżbieta Kostyra
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland.
| |
Collapse
|
39
|
HAFID AFAF, AHAMI AHMEDOMARTOUHAMI. The Efficacy of the Gluten-Free Casein-Free Diet for Moroccan Autistic Children. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2018. [DOI: 10.12944/crnfsj.6.3.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aims of this study are to verify the efficiency of gluten-free casein-free diet for children with autism spectrum disorder and to evaluate its impact on their nutritional profiles.30 children with autism spectrum disorder, between 6 and 12 years old, had been identified for the study. An analysis of biological matrixes was performed to detect the level of urinary peptides and essential elements. A gluten-free casein-free diet was administered for children with high urinary peptides level during one year, quarterly followed-up. The scale of autism was assessed by the “Childhood Autism Rating Scale” questionnaire. The findings, before the gluten-free casein-free diet, show that 20 children had high levels of urinary peptides and unnatural essential elements concentrations. At the end of the sixth diet month, the results show a large decrease in essential elements concentrations for the majority of children. After identifying these deficiencies, the diet was modified and fortified in a way that made it a supervised diet. We could, then, decrease the urinary peptides level for 40% of children, improve essential elements concentrations for 30% and decrease the autism severity for 30% of them. Our study has shown that only autistic children that present both very high urinary peptide and gastrointestinal problems respond positively to a gluten-free casein-free diet. This type of died should not therefore be systematic administered to all autistic children. On the other hand, the elimination diets run risk of having deficiencies which makes the supervision of a specialist required.
Collapse
Affiliation(s)
- AFAF HAFID
- Department of Biology, Faculty of Science, Laboratory of Biology and Health, Unit of Clinic and Cognitive Neurosciences and Health, Ibn Tofail University, BP 190, Kenitra, Morocco
| | - AHMED OMAR TOUHAMI AHAMI
- Department of Biology, Faculty of Science, Laboratory of Biology and Health, Unit of Clinic and Cognitive Neurosciences and Health, Ibn Tofail University, BP 190, Kenitra, Morocco
| |
Collapse
|
40
|
Arısoy S, Üstün-Aytekin Ö. Hydrolysis of food-derived opioids by dipeptidyl peptidase IV from Lactococcus lactis spp. lactis. Food Res Int 2018; 111:574-581. [DOI: 10.1016/j.foodres.2018.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
|
41
|
Asledottir T, Le TT, Poulsen NA, Devold TG, Larsen LB, Vegarud GE. Release of β-casomorphin-7 from bovine milk of different β-casein variants after ex vivo gastrointestinal digestion. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2017.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Sakurai T, Yamada A, Hashikura N, Odamaki T, Xiao JZ. Degradation of food-derived opioid peptides by bifidobacteria. Benef Microbes 2018; 9:675-682. [PMID: 29633643 DOI: 10.3920/bm2017.0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Some food-derived opioid peptides have been reported to cause diseases, such as gastrointestinal inflammation, celiac disease, and mental disorders. Bifidobacterium is a major member of the dominant human gut microbiota, particularly in the gut of infants. In this study, we evaluated the potential of Bifidobacterium in the degradation of food-derived opioid peptides. All strains tested showed some level of dipeptidyl peptidase activity, which is thought to be involved in the degradation of food-derived opioid peptides. However, this activity was higher in bifidobacterial strains that are commonly found in the intestines of human infants, such as Bifidobacterium longum subsp. longum, B. longum subsp. infantis, Bifidobacterium breve and Bifidobacterium bifidum, than in those of other species, such as Bifidobacterium animalis and Bifidobacterium pseudolongum. In addition, some B. longum subsp. infantis and B. bifidum strains showed degradative activity in food-derived opioid peptides such as human and bovine milk-derived casomorphin-7 and wheat gluten-derived gliadorphin-7. A further screening of B. bifidum strains revealed some bifidobacterial strains that could degrade all three peptides. Our results revealed the potential of Bifidobacterium species in the degradation of food-derived opioid peptides, particularly for species commonly found in the intestine of infants. Selected strains of B. longum subsp. infantis and B. bifidum with high degradative capabilities can be used as probiotic microorganisms to eliminate food-derived opioid peptides and contribute to host health.
Collapse
Affiliation(s)
- T Sakurai
- 1 Morinaga Milk Industry Co., Ltd., Frontier Research Department, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - A Yamada
- 2 Morinaga Milk Industry Co., Ltd., Functional Food Ingredients Department, Food Ingredients and Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - N Hashikura
- 1 Morinaga Milk Industry Co., Ltd., Frontier Research Department, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - T Odamaki
- 1 Morinaga Milk Industry Co., Ltd., Frontier Research Department, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - J-Z Xiao
- 1 Morinaga Milk Industry Co., Ltd., Frontier Research Department, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| |
Collapse
|
43
|
Nguyen DD, Busetti F, Johnson SK, Solah VA. Degradation of β-casomorphins and identification of degradation products during yoghurt processing using liquid chromatography coupled with high resolution mass spectrometry. Food Res Int 2018; 106:98-104. [DOI: 10.1016/j.foodres.2017.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
44
|
JanssenDuijghuijsen LM, Mensink M, Lenaerts K, Fiedorowicz E, van Dartel DAM, Mes JJ, Luiking YC, Keijer J, Wichers HJ, Witkamp RF, van Norren K. The effect of endurance exercise on intestinal integrity in well-trained healthy men. Physiol Rep 2017; 4:4/20/e12994. [PMID: 27798350 PMCID: PMC5099959 DOI: 10.14814/phy2.12994] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022] Open
Abstract
Exercise is one of the external factors associated with impairment of intestinal integrity, possibly leading to increased permeability and altered absorption. Here, we aimed to examine to what extent endurance exercise in the glycogen‐depleted state can affect intestinal permeability toward small molecules and protein‐derived peptides in relation to markers of intestinal function. Eleven well‐trained male volunteers (27 ± 4 years) ingested 40 g of casein protein and a lactulose/rhamnose (L/R) solution after an overnight fast in resting conditions (control) and after completing a dual – glycogen depletion and endurance – exercise protocol (first protocol execution). The entire procedure was repeated 1 week later (second protocol execution). Intestinal permeability was measured as L/R ratio in 5 h urine and 1 h plasma. Five‐hour urine excretion of betacasomorphin‐7 (BCM7), postprandial plasma amino acid levels, plasma fatty acid binding protein 2 (FABP‐2), serum pre‐haptoglobin 2 (preHP2), plasma glucagon‐like peptide 2 (GLP2), serum calprotectin, and dipeptidylpeptidase‐4 (DPP4) activity were studied as markers for excretion, intestinal functioning and recovery, inflammation, and BCM7 breakdown activity, respectively. BCM7 levels in urine were increased following the dual exercise protocol, in the first as well as the second protocol execution, whereas 1 h‐plasma L/R ratio was increased only following the first exercise protocol execution. FABP2, preHP2, and GLP2 were not changed after exercise, whereas calprotectin increased. Plasma citrulline levels following casein ingestion (iAUC) did not increase after exercise, as opposed to resting conditions. Endurance exercise in the glycogen depleted state resulted in a clear increase of BCM7 accumulation in urine, independent of DPP4 activity and intestinal permeability. Therefore, strenuous exercise could have an effect on the amount of food‐derived bioactive peptides crossing the epithelial barrier. The health consequence of increased passage needs more in depth studies.
Collapse
Affiliation(s)
- Lonneke M JanssenDuijghuijsen
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, The Netherlands .,Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands.,Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Dorien A M van Dartel
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jurriaan J Mes
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Harry J Wichers
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Klaske van Norren
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
45
|
Production of Cow's Milk Free from Beta-Casein A1 and Its Application in the Manufacturing of Specialized Foods for Early Infant Nutrition. Foods 2017; 6:foods6070050. [PMID: 28704923 PMCID: PMC5532557 DOI: 10.3390/foods6070050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022] Open
Abstract
Beta-casein (BC) is frequently expressed as BC A2 and BC A1 in cow’s milk. Gastrointestinal digestion of BC A1 results in the release of the opioid peptide beta-casomorphin 7 (BCM7) which is less likely to occur from BC A2. This work was aimed to produce milk containing BC A2 with no BC A1 (BC A2 milk) using genetically selected CSN2 A2A2 Jersey cows. Additionally, we aimed to develop an infant formula (IF) suitable for healthy full-term infants during the first six months of life based on BC A2 milk. The concentration of BCM7 released from BC A2 IF, from commercially available IFs as well as from human milk and raw cow’s milk was evaluated after simulated gastrointestinal digestion (SGID). BC A2 IF presented the lowest mean relative abundance of BC A1 (IF 1 = 0.136 ± 0.010), compared with three commercially available IFs (IF 2 = 0.597 ± 0.020; IF 3 = 0.441 ± 0.014; IF 4 = 0.503 ± 0.011). Accordingly, SGID of whole casein fraction from BC A2 IF resulted in a significantly lower release of BCM7 (IF 1 = 0.860 ± 0.014 µg/100 mL) compared to commercially available IFs (IF 2 = 2.625 ± 0.042 µg/100 mL; IF 3 = 1.693 ± 0.012 µg/100 mL; IF 4 = 1.962 ± 0.067 µg/100 mL). Nevertheless, BCM7 levels from BC A2 IF were significantly higher than those found in SGID hydrolysates of BC A2 raw milk (0.742 ± 0.008 µg/100 mL). Interestingly, results showed that BCM7 was also present in human milk in significantly lower amounts (0.697 ± 0.007 µg/100 mL) than those observed in IF 1 and BC A2 milk. This work demonstrates that using BC A2 milk in IF formulation significantly reduces BCM7 formation during SGID. Clinical implications of BC A2 IF on early infant health and development need further investigations.
Collapse
|
46
|
Pellissier LP, Gandía J, Laboute T, Becker JAJ, Le Merrer J. μ opioid receptor, social behaviour and autism spectrum disorder: reward matters. Br J Pharmacol 2017; 175:2750-2769. [PMID: 28369738 DOI: 10.1111/bph.13808] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
The endogenous opioid system is well known to relieve pain and underpin the rewarding properties of most drugs of abuse. Among opioid receptors, the μ receptor mediates most of the analgesic and rewarding properties of opioids. Based on striking similarities between social distress, physical pain and opiate withdrawal, μ receptors have been proposed to play a critical role in modulating social behaviour in humans and animals. This review summarizes experimental data demonstrating such role and proposes a novel model, the μ opioid receptor balance model, to account for the contribution of μ receptors to the subtle regulation of social behaviour. Interestingly, μ receptor null mice show behavioural deficits similar to those observed in patients with autism spectrum disorder (ASD), including severe impairment in social interactions. Therefore, after a brief summary of recent evidence for blunted (social) reward processes in subjects with ASD, we review here arguments for altered μ receptor function in this pathology. This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Lucie P Pellissier
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Jorge Gandía
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Thibaut Laboute
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| |
Collapse
|
47
|
JanssenDuijghuijsen LM, van Norren K, Grefte S, Koppelman SJ, Lenaerts K, Keijer J, Witkamp RF, Wichers HJ. Endurance Exercise Increases Intestinal Uptake of the Peanut Allergen Ara h 6 after Peanut Consumption in Humans. Nutrients 2017; 9:nu9010084. [PMID: 28117717 PMCID: PMC5295128 DOI: 10.3390/nu9010084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 11/16/2022] Open
Abstract
Controlled studies on the effect of exercise on intestinal uptake of protein are scarce and underlying mechanisms largely unclear. We studied the uptake of the major allergen Ara h 6 following peanut consumption in an exercise model and compared this with changes in markers of intestinal permeability and integrity. Ten overnight-fasted healthy non-allergic men (n = 4) and women (n = 6) (23 ± 4 years) ingested 100 g of peanuts together with a lactulose/rhamnose (L/R) solution, followed by rest or by 60 min cycling at 70% of their maximal workload. Significantly higher, though variable, levels of Ara h 6 in serum were found during exercise compared to rest (Peak p = 0.03; area under the curve p = 0.006), with individual fold changes ranging from no increase to an increase of over 150-fold in the uptake of Ara h 6. Similarly, uptake of lactulose (2–18 fold change, p = 0.0009) and L/R ratios (0.4–7.9 fold change, p = 0.04) were significantly increased which indicates an increase in intestinal permeability. Intestinal permeability and uptake of Ara h 6 were strongly correlated (r = 0.77, p < 0.0001 for lactulose and Ara h 6). Endurance exercise after consumption may lead to increased paracellular intestinal uptake of food proteins.
Collapse
Affiliation(s)
- Lonneke M JanssenDuijghuijsen
- Wageningen Food and Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
- Nutrition and Pharmacology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
- Human and Animal Physiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Klaske van Norren
- Nutrition and Pharmacology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
- Nutricia Research, P.O. Box 80141, 3508 TC Utrecht, The Netherlands.
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Stef J Koppelman
- Food Allergy Research and Resource Program, Food Science and Technology, University of Nebraska-Lincoln, Rm 279 Food Innovation Center, P.O. Box 886207, Lincoln, NE 68588-6207, USA.
| | - Kaatje Lenaerts
- Maastricht University Medical Centre, Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Renger F Witkamp
- Nutrition and Pharmacology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Harry J Wichers
- Wageningen Food and Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
48
|
The influence of breast milk and infant formulae hydrolysates on bacterial adhesion and Caco-2 cells functioning. Food Res Int 2016; 89:679-688. [PMID: 28460966 DOI: 10.1016/j.foodres.2016.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 01/11/2023]
Abstract
The aim of the study was to determine the concentration of BCM7 in human milk and infant formulae (IF) before and after eznymatic hydrolysis, and to evaluate the effect of obtained hydrolysates on interleukin-8 (IL-8) secretion and on proliferation of enterocytes in the in vitro model (Caco-2 cells). This study evaluates also the effect of hydrolysates on the adhesion of intestinal microbiota isolated from faeces of both healthy (H) and allergic (A) infants. In the study we investigated breast milk delivered by mothers of healthy ('healthy milk'; HM) and allergic ('allergic milk'; AM) infants. Three infant formulae were investigated: from hydrolysed cow casein (IF1), from hydrolysed cow whey (IF2) and from whole cow milk (IF3). Intestinal bacteria: Bifidobacterium, lactic acid bacteria, Enterobacteriaceae, Clostridium and Enterococcus were isolated from faeces of five healthy and five allergic infants. Mixtures of bacterial isolates and bacteria adhering to Caco-2 cells were characterised qualitatively with PCR-DGGE, and quantitavely with FISH. Concentration of BCM7 in breast milk and infant formulae was 1.6 to 8.9 times higher after enzymatic hydrolysis in comparison to undigested samples. The presence of this peptide resulted in alteration of intestinal epithelial proliferation and increase in secretion of IL-8. The quantitative profile of adherred bacteria applied as a mix of all isolates from healthy infants (H-MIX) was unchanged in the presence of HM hydrolysate and was modulated (increased number of beneficial Bifidobacterium and reduced commensal Enterobacteriaceae) in the presence of all IF hydrolysates. The presence of IF hydrolysates affected the profile of adhering isolates obtained from allergic infants (A-MIX) and reduced the adhesion of Enterobacteriaceae; the IF2 and IF3 hydrolysates decreased also the total number of adhering bacteria (TBN). However, a stimulating effect of AM hydrolysate on A-MIX adhesion (increased TBN) was observed.
Collapse
|
49
|
Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 2016; 176:23-35. [PMID: 25034760 PMCID: PMC4294997 DOI: 10.1016/j.schres.2014.06.027] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
Abstract
Autoimmunity, gastrointestinal (GI) disorders and schizophrenia have been associated with one another for a long time. This paper reviews these connections and provides a context by which multiple risk factors for schizophrenia may be related. Epidemiological studies strongly link schizophrenia with autoimmune disorders including enteropathic celiac disease. Exposure to wheat gluten and bovine milk casein also contribute to non-celiac food sensitivities in susceptible individuals. Co-morbid GI inflammation accompanies humoral immunity to food antigens, occurs early during the course of schizophrenia and appears to be independent from antipsychotic-generated motility effects. This inflammation impacts endothelial barrier permeability and can precipitate translocation of gut bacteria into systemic circulation. Infection by the neurotropic gut pathogen, Toxoplasma gondii, will elicit an inflammatory GI environment. Such processes trigger innate immunity, including activation of complement C1q, which also functions at synapses in the brain. The emerging field of microbiome research lies at the center of these interactions with evidence that the abundance and diversity of resident gut microbiota contribute to digestion, inflammation, gut permeability and behavior. Dietary modifications of core bacterial compositions may explain inefficient gluten digestion and how immigrant status in certain situations is a risk factor for schizophrenia. Gut microbiome research in schizophrenia is in its infancy, but data in related fields suggest disease-associated altered phylogenetic compositions. In summary, this review surveys associative and experimental data linking autoimmunity, GI activity and schizophrenia, and proposes that understanding of disrupted biological pathways outside of the brain can lend valuable information regarding pathogeneses of complex, polygenic brain disorders.
Collapse
Affiliation(s)
- Emily G. Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - William W. Eaton
- Department of Mental Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, U.S.A
| |
Collapse
|
50
|
Stefanucci A, Mollica A, Macedonio G, Zengin G, Ahmed AA, Novellino E. Exogenous opioid peptides derived from food proteins and their possible uses as dietary supplements: A critical review. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1225220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Giorgia Macedonio
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdelkareem A. Ahmed
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Naples, Italy
| |
Collapse
|