1
|
Kumar A, Agarwal R, Kumar K, Chayal NK, Ali M, Srivastava A, Kumar M, Niraj PK, Aryal S, Kumar D, Bishwapriya A, Singh S, Pandey T, Verma KS, Kumar S, Singh M, Ghosh AK. High arsenic contamination in the breast milk of mothers inhabiting the Gangetic plains of Bihar: a major health risk to infants. Environ Health 2024; 23:77. [PMID: 39304890 PMCID: PMC11415992 DOI: 10.1186/s12940-024-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Groundwater arsenic poisoning has posed serious health hazards in the exposed population. The objective of the study is to evaluate the arsenic ingestion from breastmilk among pediatric population in Bihar. In the present study, the total women selected were n = 513. Out of which n = 378 women after consent provided their breastmilk for the study, n = 58 subjects were non-lactating but had some type of disease in them and n = 77 subjects denied for the breastmilk sample. Hence, they were selected for the women health study. In addition, urine samples from n = 184 infants' urine were collected for human arsenic exposure study. The study reveals that the arsenic content in the exposed women (in 55%) was significantly high in the breast milk against the WHO permissible limit 0.64 µg/L followed by their urine and blood samples as biological marker. Moreover, the child's urine also had arsenic content greater than the permissible limit (< 50 µg/L) in 67% of the studied children from the arsenic exposed regions. Concerningly, the rate at which arsenic is eliminated from an infant's body via urine in real time was only 50%. This arsenic exposure to young infants has caused potential risks and future health implications. Moreover, the arsenic content was also very high in the analyzed staple food samples such as rice, wheat and potato which is the major cause for arsenic contamination in breastmilk. The study advocates for prompt action to address the issue and implement stringent legislative measures in order to mitigate and eradicate this pressing problem that has implications for future generations.
Collapse
Affiliation(s)
- Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India.
| | | | - Kanhaiya Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | | | - Mohammad Ali
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Abhinav Srivastava
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Mukesh Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Pintoo Kumar Niraj
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Siddhant Aryal
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Dhruv Kumar
- UPES University, Dehradun, Uttarakhand, India
| | | | | | | | | | | | - Manisha Singh
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Ashok Kumar Ghosh
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| |
Collapse
|
2
|
López-Huertas E, Rubí-Villegas J, Sánchez-Moreno L, Nieto R. Olive Pomace Extract Contains Low Molecular Weight Peptides and Possesses ACE Inhibitory Activity. Int J Mol Sci 2024; 25:3962. [PMID: 38612773 PMCID: PMC11011677 DOI: 10.3390/ijms25073962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of the present study was to determine the ACE inhibitory activity of aqueous extracts of olive pomace and to understand whether they represent a good source of bioactive LMW peptides for nutritional and pharmacological applications. We produced a water extract from olive pomace (var. Picual) and obtained its low molecular weight (LMW) fraction (<3 kDa). The calculated yield of extraction was 100.2 ± 7.9 mg of LMW peptides per 100 g of olive pomace. The olive pomace LMW fraction possessed strong ACE inhibitory activity (IC50 = 3.57 ± 0.22 µg prot/mL). The LMW fraction (<3 kDa) was analysed by nanoscale liquid chromatography-Orbitrap coupled with tandem mass spectrometry and de novo sequencing. Thirty new peptides, containing between 7-17 amino acids and molecular masses ranging 778-1354 Da, were identified by the Peaks database algorithm using the available Olea europaea (cv. Farga) genome database. Ten new peptides were also identified by Peaks de novo sequencing. The protein sources of twelve peptides detected in the database by Peaks DB were identified by BLAST search. The ACE inhibitory activity of the identified peptides was predicted by BIOPEP software. We conclude that olive pomace possesses ACE inhibitory activity and contains low molecular weight peptides with (predicted) biological activity. Olive pomace may represent a good source of peptides for nutritional and pharmaceutical applications. In our study, it has been shown that olive pomace possesses ACE inhibitory activity and contains low molecular weight peptides with (predicted) biological activity. Olive pomace may represent a good source of peptides for nutritional and pharmaceutical applications. More research is needed in order to identify the in vivo effects of olive pomace bioactive peptides.
Collapse
Affiliation(s)
- Eduardo López-Huertas
- Group of Antioxidants and Free Radicals in Biotechnology, Food and Agriculture, Estación Experimental Zaidín (EEZ), Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Jose Rubí-Villegas
- Group of Antioxidants and Free Radicals in Biotechnology, Food and Agriculture, Estación Experimental Zaidín (EEZ), Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Lourdes Sánchez-Moreno
- Instrumental Technical Services of the Estación Experimental Zaidín (EEZ), Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Rosa Nieto
- Department of Nutrition and Sustainable Animal Production, Estación Experimental Zaidín (EEZ), Spanish National Research Council (CSIC), San Miguel 101, 18100 Armilla, Granada, Spain
| |
Collapse
|
3
|
Porto WF, Ferreira KCV, Ribeiro SM, Franco OL. Sense the moment: A highly sensitive antimicrobial activity predictor based on hydrophobic moment. Biochim Biophys Acta Gen Subj 2022; 1866:130070. [PMID: 34953809 DOI: 10.1016/j.bbagen.2021.130070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/27/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Computer-aided identification and design tools are indispensable for developing antimicrobial agents for controlling antibiotic-resistant bacteria. Antimicrobial peptides (AMPs) have aroused intense interest, since they have a broad spectrum of activity, and therefore, several systems for predicting antimicrobial peptides have been developed, using scalar physicochemical properties; however, regardless of the machine learning algorithm, these systems often fail in discriminating AMPs from their shuffled versions, leading to the need for new training methods to overcome this bias. Aiming to solve this bias, here we present "Sense the Moment", a prediction system capable of discriminating AMPs and shuffled versions. METHODS The system was trained using 776 entries: 388 from known AMPs and another 388 based on shuffled versions of known AMPs. Each entry contained the geometric average of three hydrophobic moments measured with different scales. RESULTS The model showed good accuracy (>80%) and excellent sensitivity (>90%) for AMP prediction, exceeding deep-learning-based methods. CONCLUSION Our results demonstrate the system's applicability, aiding in identifying and discarding non-AMPs, since the number of false negatives is lower than false positives. GENERAL SIGNIFICANCE The application of this model in virtual screening protocols for identifying and/or creating antimicrobial agents could aid in the identification of potential drugs to control pathogenic microorganisms and in solving the antibiotic resistance crisis. AVAILABILITY The system was implemented as a web application, available at .
Collapse
Affiliation(s)
| | - Karla C V Ferreira
- Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Suzana M Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Octavio L Franco
- Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| |
Collapse
|
4
|
Characterisation of Endogenous Peptides Present in Virgin Olive Oil. Int J Mol Sci 2022; 23:ijms23031712. [PMID: 35163634 PMCID: PMC8836281 DOI: 10.3390/ijms23031712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
The low molecular weight peptide composition of virgin olive oil (VOO) is mostly unknown. We aimed to investigate the composition of the endogenous peptides present in VOO, the protein sources from which those peptides originate and their biological activities. A water-soluble extract containing peptides was obtained from VOO. The peptides were separated by size-exclusion using fast protein liquid chromatography, and the low molecular weight fraction (1600–700 kDa) was analysed by nanoscale liquid chromatography Orbitrap coupled with tandem mass spectrometry and de novo sequencing. Nineteen new peptides were identified by Peaks database algorithm, using the available Olea europaea (cv. Farga) genome database. Eight new peptides were also identified by Peaks de novo sequencing. The protein sources of the peptides detected in the database by Peaks DB were identified by BLAST-P search. Seed storage proteins were among the most frequent sources of VOO peptides. BIOPEP software was used to predict the biological activities of peptides and to simulate (in silico) the proteolytic activity of digestive enzymes on the detected peptide sequences. A selection of synthetic peptides was obtained for investigation of their bioactivities. Peptides VCGEAFGKA, NALLCSNS, CPANGFY, CCYSVY and DCHYFL possessed strong ACE-inhibitory and antioxidant activities in vitro. Antioxidant peptides could play a role in VOO quality.
Collapse
|
5
|
Rendón-Rosales MÁ, Torres-Llanez MJ, Mazorra-Manzano MA, González-Córdova AF, Hernández-Mendoza A, Vallejo-Cordoba B. In vitro and in silico evaluation of multifunctional properties of bioactive synthetic peptides identified in milk fermented with Lactococcus lactis NRRL B-50571 and NRRL B-50572. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Siziba LP, Mank M, Stahl B, Kurz D, Gonsalves J, Blijenberg B, Rothenbacher D, Genuneit J. Associations of Human Milk Oligosaccharides With Otitis Media and Lower and Upper Respiratory Tract Infections up to 2 Years: The Ulm SPATZ Health Study. Front Nutr 2021; 8:761129. [PMID: 34760912 PMCID: PMC8572796 DOI: 10.3389/fnut.2021.761129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Human milk oligosaccharides (HMOs) support and concurrently shape the neonatal immune system through various mechanisms. Thereby, they may contribute to lower incidence of infections in infants. However, there is limited evidence on the role of individual HMOs in the risk of otitis media (OM), as well as lower and upper respiratory tract infections (LRTI and URTI, respectively) in children up to 2 years. Objective: To investigate whether individual HMO concentrations measured at 6 weeks of lactation were associated with risk of OM, LRTI or URTI up to 2 years in breastfed infants. Associations with OM, LRTI and URTI were determined for the most prominent human milk oligosaccharides including 13 neutral, partly isomeric structures (trioses up to hexaoses), two acidic trioses, and lactose. Design: HMO measurements and physician reported data on infections were available from human milk samples collected at 6 weeks postpartum (n = 667). Associations of HMOs with infections were assessed in crude and adjusted models using modified Poisson regression. Results: Absolute concentrations (median [min, max], in g/L) of 2′-fucosyllactose (2′-FL) tended (p = 0.04) to be lower, while lacto-N-tetraose (LNT) was higher in the milk for infants with OM in the 1st year of life (p = 0.0046). In the milk of secretor mothers, LNT was significantly higher in the milk for infants with OM (RR [95% CI]: 0.98 [0.15, 2.60]) compared to infants without OM (RR [95% CI]: 0.76 [0.14, 2.90]) at 1 year (p = 0.0019). No statistically significant milk group differences and associations were observed for OM, LRTI, and URTI (p > 0.0031). Conclusion: Our findings suggest that neither prominent neutral individual HMOs (ranging from 2′-FL to LNDFHs) nor acidic human milk sialyllactoses or lactose are significantly associated with a reduced or increased risk of infections in infants up to 2 years of age. Further research is needed to determine whether specific HMOs could potentially reduce the incidence or alleviate the course of distinct infections in early life.
Collapse
Affiliation(s)
- Linda P Siziba
- Department of Pediatrics, Pediatric Epidemiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marko Mank
- Danone Nutricia Research, Utrecht, Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, Utrecht, Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Deborah Kurz
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | | | | | - Jon Genuneit
- Department of Pediatrics, Pediatric Epidemiology, Medical Faculty, Leipzig University, Leipzig, Germany.,Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Niu H, Zhou X, Zhang X, Liu T, Wu Y, Lyu L, Liang C, Chen S, Gong P, Zhang J, Han X, Jiang S, Zhang L. Breast milk contains probiotics with anti-infantile diarrhoea effects that may protect infants as they change to solid foods. Environ Microbiol 2021; 23:1750-1764. [PMID: 33684236 DOI: 10.1111/1462-2920.15390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Infants often experience complementary food-induced diarrhoea (CFID), which occurs when infants switch from breast milk to solid foods. The relative abundances of Prevotella and Rothia were higher in stools of infants with CFID, while the relative abundances of Enterococcus and Escherichia were higher in healthy infants. The abundance of Lactobacillus spp. normally found in breast milk fed to infants with CFID was significantly reduced, and Enterococcus spp. were less abundant when diarrhoea occurred. Furthermore, Lactobacillus and Enterococcus were present as shared bacteria in both mother and infant, and they were considered potential anti-CFID probiotics as their relative abundances in breast milk were negatively correlated to infant CFID. Kyoto encyclopedia of genes and genomes (KEGG) functional analysis showed that the function of amino acid metabolism differed between infants with CFID and healthy infants. Therefore, CFID might be related to the decomposition of proteins in food supplements. The screening revealed seven hydrolytic casein and five hydrolytic casein and rice protein isolates from 320 suspected Lactobacillus and Enterococcus isolates. The animal experiments demonstrated that a mixture of five isolates effectively hydrolysed the casein and rice protein and prevented diarrhoea in young rats. Thus, the occurrence of CFID was found to be closely related to the intestinal and breast milk microbiota, and bacteria that could assist in the digestion of cereal proteins were involved in CFID.
Collapse
Affiliation(s)
- Haiyue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | | | | | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yifan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Linzheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shiwei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jiliang Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Co. Ltd., Beijing, 100015, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
8
|
Chowdhury T, Mandal SM, Dutta S, Ghosh AK. Identification of a novel proline-rich antimicrobial protein from the hemolymph of Antheraea mylitta. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21771. [PMID: 33644898 DOI: 10.1002/arch.21771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Antimicrobial proteins (AMPs) are small, cationic proteins that exhibit activity against bacteria, viruses, parasites, fungi as well as boost host-specific innate immune responses. Insects produce these AMPs in the fat body and hemocytes, and release them into the hemolymph upon microbial infection. Hemolymph was collected from the bacterially immunized fifth instar larvae of tasar silkworm, Antheraea mylitta, and an AMP was purified by organic solvent extraction followed by size exclusion and reverse-phase high-pressure liquid chromatography. The purity of AMP was confirmed by thin-layer chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The molecular mass was determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry as 14 kDa, and hence designated as AmAMP14. Peptide mass fingerprinting of trypsin-digested AmAMP14 followed by de novo sequencing of one peptide fragment by tandem mass spectrometry analysis revealed the amino acid sequences as CTSPKQCLPPCK. No homology was found in the database search and indicates it as a novel AMP. The minimum inhibitory concentration of the purified AmAMP14 was determined against Escherichia coli, Staphylococcus aureus, and Candida albicans as 30, 60, and 30 µg/ml, respectively. Electron microscopic examination of the AmAMP14-treated cells revealed membrane damage and release of cytoplasmic contents. All these results suggest the production of a novel 14 kDa AMP in the hemolymph of A. mylitta to provide defense against microbial infection.
Collapse
Affiliation(s)
- Trinath Chowdhury
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Santi M Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Soumita Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
9
|
Foisy Sauvé M, Spahis S, Delvin E, Levy E. Glycomacropeptide: A Bioactive Milk Derivative to Alleviate Metabolic Syndrome Outcomes. Antioxid Redox Signal 2021; 34:201-222. [PMID: 32338040 DOI: 10.1089/ars.2019.7994] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Metabolic syndrome (MetS) represents a cluster of cardiometabolic disorders, which accelerate the risk of developing diabetes, nonalcoholic fatty liver disease, and cardiovascular disorders such as atherosclerosis. Oxidative stress (OxS) and inflammation contribute to insulin resistance (IR) that greatly promotes the clinical manifestations of MetS components. Given the growing prevalence of this multifactorial condition, its alerting comorbidities, and the absence of specific drugs for treatment, there is an urgent need of prospecting for alternative nutraceutics as effective therapeutic agents for MetS. Recent Advances: There is a renewed interest in bioactive peptides derived from human and bovine milk proteins given their high potential in magnifying health benefits. Special attention has been paid to glycomacropeptide (GMP), a bioactive and soluble derivative from casein and milk whey, because of the wide range of its health-promoting functions perceived in the MetS and related complications. Critical Issues: In the present review, the challenging issue relative to clinical utility of GMP in improving MetS outcomes will be critically reported. Its importance in alleviating obesity, OxS, inflammation, IR, dyslipidemia, and hypertension will be underlined. The mechanisms of action will be analyzed, and the various gaps of knowledge in this area will be specified. Future Directions: Valuable data from cellular, preclinical, and clinical investigations have emphasized the preventive and therapeutic actions of GMP toward the MetS. However, additional efforts are needed to support its proofs of principle and causative relationship to translate its concept into the clinic. Antioxid. Redox Signal. 34, 201-222.
Collapse
Affiliation(s)
- Mathilde Foisy Sauvé
- Research Centre, CHU Sainte-Justine, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Schohraya Spahis
- Research Centre, CHU Sainte-Justine, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Edgard Delvin
- Research Centre, CHU Sainte-Justine, Montreal, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada
| |
Collapse
|
10
|
Assessment of the Bioactive Potential of Cheese Whey Protein Hydrolysates Using Immobilized Alcalase. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02552-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Chowdhury T, Mandal SM, Kumari R, Ghosh AK. Purification and characterization of a novel antimicrobial peptide (QAK) from the hemolymph of Antheraea mylitta. Biochem Biophys Res Commun 2020; 527:411-417. [DOI: 10.1016/j.bbrc.2020.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
|
13
|
Huang S, Gong Y, Li Y, Ruan S, Roknul Azam SM, Duan Y, Ye X, Ma H. Preparation of ACE-inhibitory peptides from milk protein in continuous enzyme membrane reactor with gradient dilution feeding substrate. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Identification of antibacterial peptides generated from enzymatic hydrolysis of cottonseed proteins. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109199] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Alcaide-Hidalgo JM, Margalef M, Bravo FI, Muguerza B, López-Huertas E. Virgin olive oil (unfiltered) extract contains peptides and possesses ACE inhibitory and antihypertensive activity. Clin Nutr 2020; 39:1242-1249. [DOI: 10.1016/j.clnu.2019.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/22/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023]
|
16
|
Meloni BP, Chen Y, Harrison KA, Nashed JY, Blacker DJ, South SM, Anderton RS, Mastaglia FL, Winterborn A, Knuckey NW, Cook DJ. Poly-Arginine Peptide-18 (R18) Reduces Brain Injury and Improves Functional Outcomes in a Nonhuman Primate Stroke Model. Neurotherapeutics 2020; 17:627-634. [PMID: 31833045 PMCID: PMC7283416 DOI: 10.1007/s13311-019-00809-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Poly-arginine peptide-18 (R18) is neuroprotective in different rodent middle cerebral artery occlusion (MCAO) stroke models. In this study, we examined whether R18 treatment could reduce ischemic brain injury and improve functional outcome in a nonhuman primate (NHP) stroke model. A stroke was induced in male cynomolgus macaques by MCAO distal to the orbitofrontal branch of the MCA through a right pterional craniotomy, using a 5-mm titanium aneurysm clip for 90 min. R18 (1000 nmol/kg) or saline vehicle was administered intravenously 60 min after the onset of MCAO. Magnetic resonance imaging (MRI; perfusion-weighted imaging, diffusion-weighted imaging, or T2-weighted imaging) of the brain was performed 15 min, 24 h, and 28 days post-MCAO, and neurological outcome was assessed using the NHP stroke scale (NHPSS). Experimental endpoint was 28 days post-MCAO, treatments were randomized, and all procedures were performed blinded to treatment status. R18 treatment reduced infarct lesion volume by up to 65.2% and 69.7% at 24 h and 28 days poststroke, respectively. Based on NHPSS scores, R18-treated animals displayed reduced functional deficits. This study confirms the effectiveness of R18 in reducing the severity of ischemic brain injury and improving functional outcomes after stroke in a NHP model, and provides further support for its clinical development as a stroke neuroprotective therapeutic.
Collapse
Affiliation(s)
- Bruno P Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Yining Chen
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Kathleen A Harrison
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - David J Blacker
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Neurology, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Samantha M South
- Office of Research Enterprise, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
- School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Andrew Winterborn
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Neville W Knuckey
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, Queen's University Kingston Health Sciences Centre, Kingston, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, Dalhousie University Halifax, Nova Scotia, Canada.
| |
Collapse
|
17
|
Taniguchi M, Aida R, Saito K, Oya R, Ochiai A, Saitoh E, Tanaka T. Identification of cationic peptides derived from low protein rice by-products and evaluation of their multifunctional activities. J Biosci Bioeng 2020; 129:307-314. [DOI: 10.1016/j.jbiosc.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
|
18
|
Meloni BP, Mastaglia FL, Knuckey NW. Cationic Arginine-Rich Peptides (CARPs): A Novel Class of Neuroprotective Agents With a Multimodal Mechanism of Action. Front Neurol 2020; 11:108. [PMID: 32158425 PMCID: PMC7052017 DOI: 10.3389/fneur.2020.00108] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
There are virtually no clinically available neuroprotective drugs for the treatment of acute and chronic neurological disorders, hence there is an urgent need for the development of new neuroprotective molecules. Cationic arginine-rich peptides (CARPs) are an expanding and relatively novel class of compounds, which possess intrinsic neuroprotective properties. Intriguingly, CARPs possess a combination of biological properties unprecedented for a neuroprotective agent including the ability to traverse cell membranes and enter the CNS, antagonize calcium influx, target mitochondria, stabilize proteins, inhibit proteolytic enzymes, induce pro-survival signaling, scavenge toxic molecules, and reduce oxidative stress as well as, having a range of anti-inflammatory, analgesic, anti-microbial, and anti-cancer actions. CARPs have also been used as carrier molecules for the delivery of other putative neuroprotective agents across the blood-brain barrier and blood-spinal cord barrier. However, there is increasing evidence that the neuroprotective efficacy of many, if not all these other agents delivered using a cationic arginine-rich cell-penetrating peptide (CCPPs) carrier (e.g., TAT) may actually be mediated largely by the properties of the carrier molecule, with overall efficacy further enhanced according to the amino acid composition of the cargo peptide, in particular its arginine content. Therefore, in reviewing the neuroprotective mechanisms of action of CARPs we also consider studies using CCPPs fused to a putative neuroprotective peptide. We review the history of CARPs in neuroprotection and discuss in detail the intrinsic biological properties that may contribute to their cytoprotective effects and their usefulness as a broad-acting class of neuroprotective drugs.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Neville W Knuckey
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
19
|
Alcaide-Hidalgo JM, Romero M, Duarte J, López-Huertas E. Antihypertensive Effects of Virgin Olive Oil (Unfiltered) Low Molecular Weight Peptides with ACE Inhibitory Activity in Spontaneously Hypertensive Rats. Nutrients 2020; 12:nu12010271. [PMID: 31968696 PMCID: PMC7019360 DOI: 10.3390/nu12010271] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
The low molecular weight peptide composition of virgin olive oil (VOO) is mostly unknown. We hypothesised that unfiltered VOO could possess low molecular weight peptides with antihypertensive activity. We produced unfiltered VOO and obtained a water-soluble peptide extract from it. The peptides were separated by size-exclusion using fast protein liquid chromatography, and the low molecular weight fraction was analysed by nanoscale liquid chromatography-Orbitrap coupled with tandem mass spectrometry and de novo sequencing. We selected 23 peptide sequences containing between 6 and 9 amino acids and molecular masses ranging 698–1017 Da. Those peptides were chemically synthesised and their angiotensin-converting enzyme (ACE) inhibitory activity was studied in vitro. Seven peptides showed a strong activity, with half maximal inhibitory concentration (IC50) <10 µm. The antihypertensive effects of the four most active synthesised ACE inhibitor peptides were studied in spontaneously hypertensive rats (SHR). Acute oral administration of synthetic peptides RDGGYCC and CCGNAVPQ showed antihypertensive activity in SHR. We conclude that unfiltered VOO naturally contains low molecular weight peptides with specific ACE inhibitory activity and antihypertensive effects in SHR.
Collapse
Affiliation(s)
- Juan María Alcaide-Hidalgo
- Group of Antioxidants and Free Radicals in Biotechnology, Food and Agriculture, Estación Experimental Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain;
| | - Miguel Romero
- Pharmacology Department, Faculty of Pharmacy, University of Granada, CIBER-Enfermedades Cardiovasculares (CiberCV), 18071 Granada, Spain; (M.R.); (J.D.)
| | - Juan Duarte
- Pharmacology Department, Faculty of Pharmacy, University of Granada, CIBER-Enfermedades Cardiovasculares (CiberCV), 18071 Granada, Spain; (M.R.); (J.D.)
| | - Eduardo López-Huertas
- Group of Antioxidants and Free Radicals in Biotechnology, Food and Agriculture, Estación Experimental Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain;
- Correspondence: ; Tel.: +34-958-181600 (ext. 181); Fax: +34-958-181609
| |
Collapse
|
20
|
Taniguchi M, Aida R, Saito K, Kikura T, Ochiai A, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic peptides from enzymatic hydrolysates of soybean proteins. J Biosci Bioeng 2020; 129:59-66. [PMID: 31324383 DOI: 10.1016/j.jbiosc.2019.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
In this study, we used the commercial soybean protein hydrolysate Hinute-DC6 as a novel starting material from which to purify and identify multifunctional cationic peptides. After fractionation, Hinute-DC6 was separated into 20 fractions with varying isoelectric points (pI) by ampholyte-free isoelectric focusing (autofocusing). Subsequently, we purified and identified the cationic peptides from fractions 19 and 20, which had pI values greater than 12, using reversed-phase high-performance liquid chromatography and matrix-assisted laser/desorption ionization-time-of-flight mass spectrometry. Of the 83 cationic peptides identified, 14 had high pI values and net charges greater than +2, and were chemically synthesized and assayed for various bioactivities, including hemolytic, antimicrobial, lipopolysaccharide (LPS)-neutralizing, and angiogenic activities. None of the 14 cationic peptides tested exhibited hemolytic activity toward mammalian red blood cells at concentrations up to 1000 μM. Five of the cationic peptides exhibited antimicrobial activities against at least one of four human-pathogenic microorganisms tested. In addition, in chromogenic LPS-neutralizing assays using Limulus amebocyte lysates, the 50% effective concentrations of these 14 peptides were between 0.069 and 5.2 μM. Tube-formation assays in human umbilical vein endothelial cells showed that each of the 14 cationic peptides exhibited significant angiogenic activities at 10 μM, with values similar to those of the positive control LL-37. Our results demonstrate that the 14 identified cationic peptides have multiple functions with negligible hemolytic activity. These data indicate that the cationic peptides isolated from Hinute-DC6 and fractions containing these cationic peptides have the potential to be used as multifunctional ingredients for healthcare applications.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Ryousuke Aida
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Toyotaka Kikura
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
21
|
Conzelmann C, Zou M, Groß R, Harms M, Röcker A, Riedel CU, Münch J, Müller JA. Storage-Dependent Generation of Potent Anti-ZIKV Activity in Human Breast Milk. Viruses 2019; 11:v11070591. [PMID: 31261806 PMCID: PMC6669682 DOI: 10.3390/v11070591] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) causes congenital neurologic birth defects, notably microcephaly, and has been associated with other serious complications in adults. The virus has been detected in human breast milk and possible transmissions via breastfeeding have been reported. Breast milk is rich in nutrients and bio-active substances that might directly affect viral infectivity. Thus, here, we analyzed the effect of human breast milk on ZIKV infection. We observed that fresh human breast milk had no effect on ZIKV, but found that upon storage, milk effectively suppressed infection. The antiviral activity is present in the fat-containing cream fraction of milk and results in the destruction of the structural integrity of viral particles, thereby abrogating infectivity. The release of the factor is time dependent but varies with donors and incubation temperatures. The viral titer of milk that was spiked with ZIKV decreased considerably upon storage at 37 °C for 8 h, was lost entirely after 2 days of 4 °C storage, but was not affected at -20 °C. This suggests that cold storage of milk inactivates ZIKV and that the antiviral factor in milk may also be generated upon breastfeeding and limit this transmission route of ZIKV.
Collapse
Affiliation(s)
- Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Min Zou
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Annika Röcker
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany.
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
22
|
Manna S, Ghosh AK, Mandal SM. Curd-Peptide Based Novel Hydrogel Inhibits Biofilm Formation, Quorum Sensing, Swimming Mortility of Multi-Antibiotic Resistant Clinical Isolates and Accelerates Wound Healing Activity. Front Microbiol 2019; 10:951. [PMID: 31139155 PMCID: PMC6527846 DOI: 10.3389/fmicb.2019.00951] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023] Open
Abstract
The search for a bioactive natural antibacterial agent with wound healing properties is a common practice for the development of new-generation molecules. Antimicrobial peptides are a good alternative to antibiotics and easy-to-form hydrogels under self-assembled conditions without pH adjustment. With this in mind, the peptide pool was extracted from a formulated curd composed of a blend of probiotic bacteria such as Streptococcus thermophilus, Lactobacillus casei, and Bifidobacterium bifidum at an optimized ratio of 7:1:2. The water content of curd was collected by the drainage column, centrifuged, filtered through a 0.45-μM filter, and used for hydrogel preparation. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) analysis confirmed the presence of peptide pool in the extracted water. The prepared hydrogel was freeze dried, and its effect on biofilm formation, swarming mortality, antimicrobials, wound healing, and biocompatibility was subsequently verified. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images revealed the fibrous network of peptides after self-assembly with non-polar n-hexane solvent and a porous structure after drying, respectively. The observed biocompatibility, antimicrobial activity, and strong wound healing activity of the developed curd-based hydrogel have opened a new platform for antibacterial ointment formulation.
Collapse
Affiliation(s)
- Sounik Manna
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ananta K Ghosh
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santi M Mandal
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
23
|
Meloni BP, South SM, Gill DA, Marriott AL, Déziel RA, Jacques A, Blacker DJ, Knuckey NW. Poly-Arginine Peptides R18 and R18D Improve Functional Outcomes After Endothelin-1-Induced Stroke in the Sprague Dawley Rat. J Neuropathol Exp Neurol 2019; 78:426-435. [DOI: 10.1093/jnen/nlz014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bruno P Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Western Australia, Australia (BPM, DJB, NWK)
| | - Samantha M South
- Office of Research Enterprise, The University of Western Australia, Western Australia, Australia
| | | | | | | | - Angela Jacques
- Sir Charles Gairdner Group, Department of Research, Nedlands, Western Australia, Australia
- School of Heath Sciences, Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia
| | - David J Blacker
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Western Australia, Australia (BPM, DJB, NWK)
- Department of Neurology, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Neville W Knuckey
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Western Australia, Australia (BPM, DJB, NWK)
| |
Collapse
|
24
|
Pires ÁS, Rigueiras PO, Dohms SM, Porto WF, Franco OL. Structure-guided identification of antimicrobial peptides in the spathe transcriptome of the non-model plant, arum lily (Zantedeschia aethiopica
). Chem Biol Drug Des 2019; 93:1265-1275. [DOI: 10.1111/cbdd.13498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/29/2018] [Accepted: 01/31/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Állan S. Pires
- Centro de Análises Proteômicas e Bioquímicas; Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Brazil
| | - Pietra O. Rigueiras
- Centro de Análises Proteômicas e Bioquímicas; Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Brazil
| | - Stephan M. Dohms
- Centro de Análises Proteômicas e Bioquímicas; Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Brazil
| | - William F. Porto
- Porto Reports; Brasília Brazil
- S-Inova Biotech; Programa de Pós-Graduação em Biotecnologia; Universidade Católica Dom Bosco; Campo Grande Brazil
| | - Octavio L. Franco
- Centro de Análises Proteômicas e Bioquímicas; Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Brazil
- S-Inova Biotech; Programa de Pós-Graduação em Biotecnologia; Universidade Católica Dom Bosco; Campo Grande Brazil
| |
Collapse
|
25
|
Pajewska-Szmyt M, Sinkiewicz-Darol E, Gadzała-Kopciuch R. The impact of environmental pollution on the quality of mother's milk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7405-7427. [PMID: 30687894 PMCID: PMC6447517 DOI: 10.1007/s11356-019-04141-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/02/2019] [Indexed: 05/18/2023]
Abstract
Breastfeeding is a gold standard of neonate nutrition because human milk contains a lot of essential compounds crucial for proper development of a child. However, milk is also a biofluid which can contain environmental pollution, which can have effects on immune system and consequently on the various body organs. Polychlorinated biphenyls are organic pollutants which have been detected in human milk. They have lipophilic properties, so they can penetrate to fatty milk and ultimately to neonate digestive track. Another problem of interest is the presence in milk of heavy metals-arsenic, lead, cadmium, and mercury-as these compounds can lead to disorders in production of cytokines, which are important immunomodulators. The toxicants cause stimulation or suppression of this compounds. This can lead to health problems in children as allergy, disorders in the endocrine system, end even neurodevelopment delay and disorder. Consequently, correlations between pollutants and bioactive components in milk should be investigated. This article provides an overview of environmental pollutants found in human milk as well as of the consequences of cytokine disorder correlated with presence of heavy metals. Graphical abstract.
Collapse
Affiliation(s)
- Martyna Pajewska-Szmyt
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St, 87-100, Toruń, Poland
- Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, 4 Wileńska St, PL-87100, Toruń, Poland
| | - Elena Sinkiewicz-Darol
- Ludwik Rydygier Provincial Polyclinic Hospital in Toruń, Human Milk Bank, Św. Józefa 53-59, 87-100, Toruń, Poland
- Human Milk Bank Foundation, 128J Podkowy St, 04-937, Warsaw, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St, 87-100, Toruń, Poland.
- Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, 4 Wileńska St, PL-87100, Toruń, Poland.
| |
Collapse
|
26
|
Taniguchi M, Noda Y, Aida R, Saito K, Ochiai A, Saitoh E, Tanaka T. Cationic peptides from enzymatic hydrolysates of soybean proteins exhibit LPS-neutralizing and angiogenic activities. J Biosci Bioeng 2019; 127:176-182. [PMID: 30075939 DOI: 10.1016/j.jbiosc.2018.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
In this study, we prepared fractions containing multifunctional cationic peptides by separating the commercial soybean protein hydrolysate Hinute-AM into 20 fractions. These fractions contained peptides with various isoelectric points (pI), as indicated by ampholyte-free isoelectric focusing (autofocusing). Thus, we purified and identified the cationic peptides from fractions 19 and 20, which had pH values greater than 10, using reversed-phase high-performance liquid chromatography and matrix-assisted laser/desorption ionization-time-of-flight mass spectroscopy. Among 19 identified cationic peptides, NKNAKPPSPR, PGKKNAIV, KSGPGMSPR, NVSKPPRVV, RKVGAGGRKPLG, and LPCVIGGVPKRV had high pI values and were included as chemically synthesized peptides in assays of various functions, including lipopolysaccharide (LPS)-neutralizing and angiogenic activities. Chromogenic LPS-neutralizing assays using Limulus amebocyte lysates showed that 50% effective concentrations of these six peptides were between 1.63 and 2.65 μM, and were higher than that (0.12 μM) of polymyxin B. Moreover, in tube-formation assays in human umbilical vein endothelial cells, all of the six cationic peptides except LPCVIGGVPKRV exhibited angiogenic activities similar to those of the positive control LL-37. In addition, the six identified cationic peptides had no hemolytic activity at concentrations up to 500 μM in mammalian red blood cells. Our results demonstrate that five of the identified cationic peptides, excluding LPCVIGGVPKRV, have multiple functions and little or no hemolytic activity. These data indicate that fractions containing cationic peptides from Hinute-AM have the potential to be used as dietary supplements and functional ingredients in food products.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Yusuke Noda
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Ryousuke Aida
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
27
|
Perinatal Hypoxic-Ischemic Encephalopathy and Neuroprotective Peptide Therapies: A Case for Cationic Arginine-Rich Peptides (CARPs). Brain Sci 2018; 8:brainsci8080147. [PMID: 30087289 PMCID: PMC6119922 DOI: 10.3390/brainsci8080147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of mortality and morbidity in neonates, with survivors suffering significant neurological sequelae including cerebral palsy, epilepsy, intellectual disability and autism spectrum disorders. While hypothermia is used clinically to reduce neurological injury following HIE, it is only used for term infants (>36 weeks gestation) in tertiary hospitals and improves outcomes in only 30% of patients. For these reasons, a more effective and easily administrable pharmacological therapeutic agent, that can be used in combination with hypothermia or alone when hypothermia cannot be applied, is urgently needed to treat pre-term (≤36 weeks gestation) and term infants suffering HIE. Several recent studies have demonstrated that cationic arginine-rich peptides (CARPs), which include many cell-penetrating peptides [CPPs; e.g., transactivator of transcription (TAT) and poly-arginine-9 (R9; 9-mer of arginine)], possess intrinsic neuroprotective properties. For example, we have demonstrated that poly-arginine-18 (R18; 18-mer of arginine) and its D-enantiomer (R18D) are neuroprotective in vitro following neuronal excitotoxicity, and in vivo following perinatal hypoxia-ischemia (HI). In this paper, we review studies that have used CARPs and other peptides, including putative neuroprotective peptides fused to TAT, in animal models of perinatal HIE. We critically evaluate the evidence that supports our hypothesis that CARP neuroprotection is mediated by peptide arginine content and positive charge and that CARPs represent a novel potential therapeutic for HIE.
Collapse
|
28
|
Cui X, Li Y, Yang L, You L, Wang X, Shi C, Ji C, Guo X. Peptidome analysis of human milk from women delivering macrosomic fetuses reveals multiple means of protection for infants. Oncotarget 2018; 7:63514-63525. [PMID: 27566575 PMCID: PMC5325381 DOI: 10.18632/oncotarget.11532] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/13/2016] [Indexed: 01/11/2023] Open
Abstract
Breastfeeding is associated with a lower incidence of obesity, diabetes, and cardiovascular disease later in life. While macrosomic infants have a higher risk of developing obesity and other metabolic disorders. Breast milk may contain special nutrients to meet the different growth needs of different infants. Whether mothers make breast milk different to meet the requirement of macrosomic infants is still unknown. Here, we conducted a comparison between mothers delivering macrosomic and non-macrosomic infants in colostrum endogenous peptides. More than 400 peptides, originating from at least 34 protein precursors, were identified by Liquid Chromatography/Mass Spectrometry (LC/MS). Out of these, 29 peptides found to be significant differently expressed (|fold change| ≥ 3, P < 0.01). Blastp analysis revealed 41 peptides may have established biological activities, which exhibit immunomodulating, antibacterial action, antioxidation, opioid agonist and antihypertensive activity. Furthermore, we found that peptide located at β-Casein 24-38 AA has antimicrobial effect against E. coli, Y. enterocolitica and S. aureus. While, κ-Casein 89-109 AA-derived peptide plays as a regulator of preadipocyte proliferation. The profile of endogenous peptides from macrosomic term infants is different from non-macrosomic terms. This different peptide expression potentially has specific physiological function to benefit macrosomic infants. Finally, we believe that our research is a meaningfull finding which may add to the understanding of milk peptide physiological action.
Collapse
Affiliation(s)
- Xianwei Cui
- From Nanjing Maternal and Child Health Medical Institute, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital
| | - Yun Li
- From Nanjing Maternal and Child Health Medical Institute, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital
| | - Lei Yang
- From Nanjing Maternal and Child Health Medical Institute, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital
| | - Lianghui You
- From Nanjing Maternal and Child Health Medical Institute, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital
| | - Xing Wang
- From Nanjing Maternal and Child Health Medical Institute, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital
| | - Chunmei Shi
- From Nanjing Maternal and Child Health Medical Institute, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital
| | - Chenbo Ji
- From Nanjing Maternal and Child Health Medical Institute, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital
| | - Xirong Guo
- From Nanjing Maternal and Child Health Medical Institute, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital
| |
Collapse
|
29
|
Milani D, Bakeberg MC, Cross JL, Clark VW, Anderton RS, Blacker DJ, Knuckey NW, Meloni BP. Comparison of neuroprotective efficacy of poly-arginine R18 and R18D (D-enantiomer) peptides following permanent middle cerebral artery occlusion in the Wistar rat and in vitro toxicity studies. PLoS One 2018. [PMID: 29513757 PMCID: PMC5841795 DOI: 10.1371/journal.pone.0193884] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously demonstrated that arginine-rich and poly-arginine peptides possess potent neuroprotective properties, with poly-arginine peptide R18 identified as being highly effective at reducing infarct volume following middle cerebral artery occlusion (MCAO) in the Sprague Dawley rat. Since peptides synthesised using D-isoform amino acids have greater stability than L-isoform peptides due to increased resistance to proteolytic degradation, they represent potentially more effective peptide therapeutics. Therefore we compared the neuroprotective efficacy of R18 and its D-enantiomer R18D following permanent MCAO in the Wistar rat. Furthermore, as increased peptide stability may also increase peptide toxicity, we examined the effects of R18 and R18D on cultured cortical neurons, astrocytes, brain endothelial cells (bEND.3), and embryonic kidney cells (HEK293) following a 10-minute or 24-hour peptide exposure duration. The in vivo studies demonstrated that R18D resulted in a greater reduction in mean infarct volume compared to R18 (33%, p = 0.004 vs 12%, p = 0.27) after intravenous administration at 300 nmol/kg 30 minutes after MCAO. Both R18D and R18 reduced cerebral hemisphere swelling to a comparable degree (27%, p = 0.03 and 30%, p = 0.02), and improved neurological assessment scores (1.5, p = 0.02 and 2, p = 0.058 vs 3 for vehicle). No abnormal histological findings specific to peptide treatments were observed in hematoxylin and eosin stained sections of kidney, liver, spleen, lung and heart. In vitro studies demonstrated that R18 and R18D were most toxic to neurons, followed by astrocytes, HEK293 and bEND.3 cells, but only at high concentrations and/or following 24-hour exposure. These findings further highlight the neuroprotective properties of poly-arginine peptides, and indicate that R18D at the dose examined is more potent than R18 in Wistar rats, and justify continued investigation of the R18 peptide as a novel neuroprotective agent for stroke.
Collapse
Affiliation(s)
- Diego Milani
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Heath Sciences and Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Megan C. Bakeberg
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- School of Heath Sciences and Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Jane L. Cross
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
| | - Vince W. Clark
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
| | - Ryan S. Anderton
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- School of Heath Sciences and Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
| | - David J. Blacker
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
- Department of Neurology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Neville W. Knuckey
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
| | - Bruno P. Meloni
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
- * E-mail:
| |
Collapse
|
30
|
Poly-arginine R18 and R18D (D-enantiomer) peptides reduce infarct volume and improves behavioural outcomes following perinatal hypoxic-ischaemic encephalopathy in the P7 rat. Mol Brain 2018; 11:8. [PMID: 29426351 PMCID: PMC5810179 DOI: 10.1186/s13041-018-0352-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
We examined the neuroprotective efficacy of the poly-arginine peptide R18 and its D-enantiomer R18D in a perinatal hypoxic-ischaemic (HI) model in P7 Sprague-Dawley rats. R18 and R18D peptides were administered intraperitoneally at doses of 30, 100, 300 or 1000 nmol/kg immediately after HI (8% O2/92%N2 for 2.5 h). The previously characterised neuroprotective JNKI-1-TATD peptide at a dose of 1000 nmol/kg was used as a control. Infarct volume and behavioural outcomes were measured 48 h after HI. For the R18 and R18D doses examined, total infarct volume was reduced by 25.93% to 43.80% (P = 0.038 to < 0.001). By comparison, the JNKI-1-TATD reduced lesion volume by 25.27% (P = 0.073). Moreover, R18 and R18D treatment resulted in significant improvements in behavioural outcomes, while with JNKI-1-TATD there was a trend towards improvement. As an insight into the likely mechanism underlying the effects of R18, R18D and JNKI-1-TATD, the peptides were added to cortical neuronal cultures exposed to glutamic acid excitotoxicity, resulting in up to 89, 100 and 71% neuroprotection, respectively, and a dose dependent inhibition of neuronal calcium influx. The study further confirms the neuroprotective properties of poly-arginine peptides, and suggests a potential therapeutic role for R18 and R18D in the treatment of HIE.
Collapse
|
31
|
Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front Vet Sci 2018; 4:237. [PMID: 29359135 PMCID: PMC5766636 DOI: 10.3389/fvets.2017.00237] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host-microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Brij Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Rohini Devidas Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Jatinder Paul Singh Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| |
Collapse
|
32
|
Łoboda D, Kozłowski H, Rowińska-Żyrek M. Antimicrobial peptide–metal ion interactions – a potential way of activity enhancement. NEW J CHEM 2018. [DOI: 10.1039/c7nj04709f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We discuss the potential correlation between the antimicrobial peptide–metal binding mode, structure, thermodynamics and mode of action.
Collapse
Affiliation(s)
- D. Łoboda
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - H. Kozłowski
- Public Higher Medical Professional School in Opole
- 45-060 Opole
- Poland
| | | |
Collapse
|
33
|
Taniguchi M, Kawabe J, Toyoda R, Namae T, Ochiai A, Saitoh E, Tanaka T. Cationic peptides from peptic hydrolysates of rice endosperm protein exhibit antimicrobial, LPS-neutralizing, and angiogenic activities. Peptides 2017; 97:70-78. [PMID: 28987278 DOI: 10.1016/j.peptides.2017.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
In this study, we hydrolyzed rice endosperm protein (REP) with pepsin and generated 20 fractions containing multifunctional cationic peptides with varying isoelectric point (pI) values using ampholyte-free isoelectric focusing (autofocusing). Subsequently, we determined antimicrobial activities of each fraction against the pathogens Prophyromonas gingivalis, Propionibacterium acnes, Streptocossus mutans, and Candida albicans. Fractions 18, 19, and 20 had pI values greater than 12 and exhibited antimicrobial activity against P. gingivalis, P. acnes, and C. albicans, but not against S. mutans. In further experiments, we purified and identified cationic peptides from fractions 18, 19, and 20 using reversed-phase high-performance liquid chromatography and matrix-assisted laser/desorption ionization-time-of-flight mass spectroscopy. We also chemically synthesized five identified peptides (RSVSKSR, RRVIEPR, ERFQPMFRRPG, RVRQNIDNPNRADTYNPRAG, and VVRRVIEPRGLL) with pI values greater than 10.5 and evaluated antimicrobial, lipopolysaccharide (LPS)-neutralizing, and angiogenic activities. Among these synthetic peptides, only VVRRVIEPRGLL exhibited antimicrobial activity against P. gingivalis, with an IC50 value of 87μM. However, all five cationic peptides exhibited LPS-neutralizing and angiogenic activities with little or no hemolytic activity against mammalian red blood cells at functional concentrations. These present data show dual or multiple functions of the five identified cationic peptides with little or no hemolytic activity. Therefore, fractions containing cationic peptides from REP hydrolysates have the potential to be used as dietary supplements and functional ingredients in food products.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Junya Kawabe
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Ryu Toyoda
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Toshiki Namae
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
34
|
Ibrahim MA, Bester MJ, Neitz AWH, Gaspar ARM. Structural properties of bioactive peptides with α-glucosidase inhibitory activity. Chem Biol Drug Des 2017; 91:370-379. [PMID: 28884942 DOI: 10.1111/cbdd.13105] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/01/2023]
Abstract
Bioactive peptides are emerging as promising class of drugs that could serve as α-glucosidase inhibitors for the treatment of type 2 diabetes. This article identifies structural and physicochemical requirements for the design of therapeutically relevant α-glucosidase inhibitory peptides. So far, a total of 43 fully sequenced α-glucosidase inhibitory peptides have been reported and 13 of them had IC50 values several folds lower than acarbose. Analysis of the peptides indicates that the most potent peptides are tri- to hexapeptides with amino acids containing a hydroxyl or basic side chain at the N-terminal. The presence of proline within the chain and alanine or methionine at the C-terminal appears to be relevant for high activity. Hydrophobicity and isoelectric points are less important variables for α-glucosidase inhibition whilst a net charge of 0 or +1 was predicted for the highly active peptides. In silico simulated gastrointestinal digestion revealed that the high and moderately active peptides, including the most potent peptide (STYV), were gastrointestinally unstable, except SQSPA. Molecular docking of SQSPA, STYV, and STY (digestion fragment of STYV) with α-glucosidase suggested that their hydrogen bonding interactions and binding energies were comparable with acarbose. The identified criteria will facilitate the design of new peptide-derived α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Mohammed Auwal Ibrahim
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Albert W H Neitz
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
35
|
Characterization of a Gloverin-Like Antimicrobial Peptide Isolated from Muga Silkworm, Antheraea assamensis. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9618-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Taniguchi M, Saito K, Nomoto T, Namae T, Ochiai A, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic and amphipathic peptides from soybean proteins. Biopolymers 2017; 108. [PMID: 28459130 DOI: 10.1002/bip.23023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/08/2022]
Abstract
In this study, we identified and chemically synthesized three cationic and amphipathic peptides (Glycinin-17, BCAS-16, and BCBS-11) from soybean proteins. These peptides had high isoelectric points, high positive net charges, and included multiple hydrophobic amino acids. Subsequently, we identified multiple functions of these peptides, including antimicrobial, lipopolysaccharide-neutralizing, and angiogenic activities, and examined their cytotoxic activities against mammalian red blood cells. Glycinin-17, BCAS-16, and BCBS-11 exhibited antimicrobial activity against Porphyromonas gingivalis and Candida albicans whereas Glycinin-17 did not possess antimicrobial effects on Propionibacterium acnes and Streptococcus mutans. Membrane-depolarization assays and flow cytometric analyses showed that the antimicrobial properties of Glycinin-17, BCAS-16, and BCBS-11 against P. gingivalis, P. acnes, and S. mutans were dependent on membrane-disrupting potential. In contrast, major antimicrobial activities of these peptides against C. albicans were dependent on interactions with targets other than cell membranes. Furthermore, chromogenic Limulus amebocyte lysate assays showed that 50% effective concentrations (EC50 , 0.12-0.31 μM) of these three peptides neutralize LPS with similar potency (EC50 : 0.11 μM) to that of polymyxin B. Moreover, tube-formation assays in human umbilical vein endothelial cells showed similar angiogenic activities of the three peptides as that following treatment with LL-37. Although BCAS-16 exhibited hemolytic activity, the rate of hemolysis for Glycinin-17 and BCBS-11 in the presence of 500-μM Glycinin-17 and BCBS-11 was less than 2%. These results demonstrate that cationic and amphipathic peptides from soybean proteins, particularly Glycinin-17 and BCBS-11, have potential as multifunctional ingredients for healthcare applications.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, 950-2181, Japan
| | - Kengo Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Takafumi Nomoto
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Toshiki Namae
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata, 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| |
Collapse
|
37
|
Taniguchi M, Kameda M, Namae T, Ochiai A, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
38
|
Cacho NT, Lawrence RM. Innate Immunity and Breast Milk. Front Immunol 2017; 8:584. [PMID: 28611768 PMCID: PMC5447027 DOI: 10.3389/fimmu.2017.00584] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant's optimal growth and development. The growing infant's immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant's innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk's effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant's intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant's gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant.
Collapse
Affiliation(s)
- Nicole Theresa Cacho
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Robert M Lawrence
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Porto WF, Pires ÁS, Franco OL. Antimicrobial activity predictors benchmarking analysis using shuffled and designed synthetic peptides. J Theor Biol 2017; 426:96-103. [PMID: 28536036 DOI: 10.1016/j.jtbi.2017.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022]
Abstract
The antimicrobial activity prediction tools aim to help the novel antimicrobial peptides (AMP) sequences discovery, utilizing machine learning methods. Such approaches have gained increasing importance in the generation of novel synthetic peptides by means of rational design techniques. This study focused on predictive ability of such approaches to determine the antimicrobial sequence activities, which were previously characterized at the protein level by in vitro studies. Using four web servers and one standalone software, we evaluated 78 sequences generated by the so-called linguistic model, being 40 designed and 38 shuffled sequences, with ∼60 and ∼25% of identity to AMPs, respectively. The ab initio molecular modelling of such sequences indicated that the structure does not affect the predictions, as both sets present similar structures. Overall, the systems failed on predicting shuffled versions of designed peptides, as they are identical in AMPs composition, which implies in accuracies below 30%. The prediction accuracy is negatively affected by the low specificity of all systems here evaluated, as they, on the other hand, reached 100% of sensitivity. Our results suggest that complementary approaches with high specificity, not necessarily high accuracy, should be developed to be used together with the current systems, overcoming their limitations.
Collapse
Affiliation(s)
- William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil; Porto Reports, Brasília, Distrito Federal, Brazil
| | - Állan S Pires
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
40
|
Taniguchi M, Ochiai A. Characterization and production of multifunctional cationic peptides derived from rice proteins. Biosci Biotechnol Biochem 2017; 81:634-650. [DOI: 10.1080/09168451.2016.1277944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Food proteins have been identified as a source of bioactive peptides. These peptides are inactive within the sequence of the parent protein and must be released during gastrointestinal digestion, fermentation, or food processing. Of bioactive peptides, multifunctional cationic peptides are more useful than other peptides that have specific activity in promotion of health and/or the treatment of diseases. We have identified and characterized cationic peptides from rice enzymes and proteins that possess multiple functions, including antimicrobial, endotoxin-neutralizing, arginine gingipain-inhibitory, and/or angiogenic activities. In particular, we have elucidated the contribution of cationic amino acids (arginine and lysine) in the peptides to their bioactivities. Further, we have discussed the critical parameters, particularly proteinase preparations and fractionation or purification, in the enzymatic hydrolysis process for producing bioactive peptides from food proteins. Using an ampholyte-free isoelectric focusing (autofocusing) technique as a tool for fractionation, we successfully prepared fractions containing cationic peptides with multiple functions.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
41
|
Inhibition of Snake Venom Metalloproteinase by β-Lactoglobulin Peptide from Buffalo (Bubalus bubalis) Colostrum. Appl Biochem Biotechnol 2017; 182:1415-1432. [PMID: 28155167 DOI: 10.1007/s12010-017-2407-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Bioactive peptide research has experienced considerable therapeutic interest owing to varied physiological functions, efficacy in excretion, and tolerability of peptides. Colostrum is a rich natural source of bioactive peptides with many properties elucidated such as anti-thrombotic, anti-hypertensive, opioid, immunomodulatory, etc. In this study, a variant peptide derived from β-lactoglobulin from buffalo colostrum was evaluated for the anti-ophidian property by targeting snake venom metalloproteinases. These are responsible for rapid local tissue damages that develop after snakebite such as edema, hemorrhage, myonecrosis, and extracellular matrix degradation. The peptide identified by LC-MS/MS effectively neutralized hemorrhagic activity of the Echis carinatus venom in a dose-dependent manner. Histological examinations revealed that the peptide mitigated basement membrane degradation and accumulation of inflammatory leucocytes at the venom-injected site. Inhibition of proteolytic activity was evidenced in both casein and gelatin zymograms. Also, inhibition of fibrinolytic and fibrinogenolytic activities was seen. The UV-visible spectral study implicated Zn2+ chelation, which was further confirmed by molecular docking and dynamic studies by assessing molecular interactions, thus implicating the probable mechanism for inhibition of venom-induced proteolytic and hemorrhagic activities. The present investigation establishes newer vista for the BLG-col peptide with anti-ophidian efficacy as a promising candidate for therapeutic interventions.
Collapse
|
42
|
Sun Y, Zhou Y, Liu X, Zhang F, Yan L, Chen L, Wang X, Ruan H, Ji C, Cui X, Wang J. Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk. Biochem Biophys Res Commun 2017; 484:132-137. [PMID: 28093229 DOI: 10.1016/j.bbrc.2017.01.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and disk diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation.
Collapse
Affiliation(s)
- Yazhou Sun
- Department of Pediatrics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yahui Zhou
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiao Liu
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Fan Zhang
- Department of Endocrinology, Nanjing Medical University Affiliated Children's Hospital, Nanjing, China
| | - Linping Yan
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xing Wang
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hongjie Ruan
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| | - Jiaqin Wang
- Department of Pediatrics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
43
|
Aguilar-Toalá J, Santiago-López L, Peres C, Peres C, Garcia H, Vallejo-Cordoba B, González-Córdova A, Hernández-Mendoza A. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J Dairy Sci 2017; 100:65-75. [DOI: 10.3168/jds.2016-11846] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
|
44
|
Migliolo L, Felício MR, Cardoso MH, Silva ON, Xavier MAE, Nolasco DO, de Oliveira AS, Roca-Subira I, Vila Estape J, Teixeira LD, Freitas SM, Otero-Gonzalez AJ, Gonçalves S, Santos NC, Franco OL. Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa -MAP2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1488-98. [DOI: 10.1016/j.bbamem.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
|
45
|
Nongonierma AB, FitzGerald RJ. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.021] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
46
|
|
47
|
Antibacterial activity of bovine milk lactoferrin and its hydrolysates prepared with pepsin, chymosin and microbial rennet against foodborne pathogen Listeria monocytogenes. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|