1
|
Flori L, Benedetti G, Calderone V, Testai L. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel) 2024; 13:543. [PMID: 38790648 PMCID: PMC11118251 DOI: 10.3390/antiox13050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia-reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| |
Collapse
|
2
|
Huang X, Bai S, Luo Y. Advances in research on biomarkers associated with acute myocardial infarction: A review. Medicine (Baltimore) 2024; 103:e37793. [PMID: 38608048 PMCID: PMC11018244 DOI: 10.1097/md.0000000000037793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Acute myocardial infarction (AMI), the most severe cardiovascular event in clinical settings, imposes a significant burden with its annual increase in morbidity and mortality rates. However, it is noteworthy that mortality due to AMI in developed countries has experienced a decline, largely attributable to the advancements in medical interventions such as percutaneous coronary intervention. This trend highlights the importance of accurate diagnosis and effective treatment to preserve the myocardium at risk and improve patient outcomes. Conventional biomarkers such as myoglobin, creatine kinase isoenzymes, and troponin have been instrumental in the diagnosis of AMI. However, recent years have witnessed the emergence of new biomarkers demonstrating the potential to further enhance the accuracy of AMI diagnosis. This literature review focuses on the recent advancements in biomarker research in the context of AMI diagnosis.
Collapse
Affiliation(s)
| | - Suwen Bai
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Yumei Luo
- Guangdong Medical University, Zhanjiang, China
- Cardiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Jin L, Piao Z. Irisin protects against cardiac injury by inhibiting NLRP3 inflammasome-mediated pyroptosis during remodeling after infarction. Int Immunopharmacol 2024; 130:111714. [PMID: 38412677 DOI: 10.1016/j.intimp.2024.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
This study aimed to explore the cardioprotective mechanism of irisin in the context of cardiac injury. Utilizing a myocardial infarction (MI) mouse model, we investigated the therapeutic potential of recombinant human irisin (rhIrisin) administered for 28 days post-infarction. The efficacy of irisin treatment was evaluated through echocardiographic assessment of cardiac function and serum analysis of myocardial injury markers. Our research provided novel insights into the impacts of irisin on the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation and pyroptosis, assessed both in vivo in MI mice and in vitro in hypoxia/reoxygenation-treated H9C2 cells. Remarkably, irisin treatment significantly reduced levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and troponin I, indicating reduced myocardial injury. Echocardiography highlighted substantial improvements in left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and dimensions (LVIDd and LVIDs) in irisin-treated mice, underscoring enhanced cardiac function. Moreover, irisin was shown to significantly suppress the mRNA and protein expressions of key components involved in NLRP3 inflammasome pathway (NLRP3, ASC, caspase-1 (p20), and interleukin-18 (IL-18)) both in MI-induced mice and hypoxia/reoxygenation-treated cells. This study firstly reveals that the cardioprotective effect of irisin is mediated through the attenuation of NLRP3 inflammasome activation and pyroptosis, positioning irisin as a promising therapeutic agent for cardiac injury.
Collapse
Affiliation(s)
- Li Jin
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang, Wenzhou, Zhejiang, China
| | - Zhehao Piao
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
4
|
Miyoshi S, Kawamoto A, Ninomiya Y, Hamada Y, Shimizu H, Honda Y, Takahashi K. Exploration of reference genes for the development of a diagnostic kit on vascular aging in human saliva. Dent Mater J 2024; 43:172-178. [PMID: 38246628 DOI: 10.4012/dmj.2023-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Identifying reliable biomarkers in saliva can be a promising approach to developing a rapid diagnostic kit for detecting vascular aging. This study investigated the most suitable reference gene for polymerase chain reaction (PCR) in saliva that is not affected by vascular aging variables. Whole saliva samples were collected to assess the expression of reference genes: actin beta (ACTB), 18S ribosomal RNA (18S rRNA), beta-2-microglobulin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The most abundantly expressed gene was 18S rRNA, and the least expressed gene was GAPDH. Four genes were ranked according to their relative stability, as determined by mathematical algorithms, indicating that ACTB and 18S rRNA were stably expressed as reference genes. 18S rRNA was identified as the most promising reference gene for detecting systemic diseases using saliva from patients with vascular aging in these limited experimental conditions.
Collapse
Affiliation(s)
| | - Akiyo Kawamoto
- Department of Geriatric Dentistry, Osaka Dental University
| | - Yuichi Ninomiya
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences
| | | | - Hideo Shimizu
- Department of Internal Medicine, Osaka Dental University
| | | | | |
Collapse
|
5
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
6
|
Grzeszczuk M, Dzięgiel P, Nowińska K. The Role of FNDC5/Irisin in Cardiovascular Disease. Cells 2024; 13:277. [PMID: 38334669 PMCID: PMC10854770 DOI: 10.3390/cells13030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Disorders of cardiomyocyte metabolism play a crucial role in many cardiovascular diseases, such as myocardial infarction, heart failure and ischemia-reperfusion injury. In myocardial infarction, cardiomyocyte metabolism is regulated by mitochondrial changes and biogenesis, which allows energy homeostasis. There are many proteins in cells that regulate and control metabolic processes. One of them is irisin (Ir), which is released from the transmembrane protein FNDC5. Initial studies indicated that Ir is a myokine secreted mainly by skeletal muscles. Further studies showed that Ir was also present in various tissues. However, its highest levels were observed in cardiomyocytes. Ir is responsible for many processes, including the conversion of white adipose tissue (WAT) to brown adipose tissue (BAT) by increasing the expression of thermogenin (UCP1). In addition, Ir affects mitochondrial biogenesis. Therefore, the levels of FNDC5/Ir in the blood and myocardium may be important in cardiovascular disease. This review discusses the current knowledge about the role of FNDC5/Ir in cardiovascular disease.
Collapse
Affiliation(s)
- Maciej Grzeszczuk
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.); (P.D.)
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.); (P.D.)
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Katarzyna Nowińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.); (P.D.)
| |
Collapse
|
7
|
Chaulin AM. Cardiospecific Troponins as Laboratory Biomarkers of Myocardial Cell Injury in Hypertension: A Mini-Review. Curr Med Chem 2024; 31:1235-1250. [PMID: 36825699 DOI: 10.2174/0929867330666230220100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
To date, it is well known that a significant number of diseases of cardiovascular genesis (coronary heart disease, myocardial infarction, cardiomyopathy, Takotsubo syndrome, heart failure, etc.) and extra-cardiac genesis (renal failure, chronic obstructive pulmonary disease, sepsis, diabetes mellitus, etc.) cause injury to contractile cells of the heart muscle (myocardial cells). The most sensitive and specific criteria for proving myocardial cell injury are cardiospecific troponins (CSTns) - CSTnI and CSTnT. According to the current clinical recommendations of the European, American, and Russian Cardiological Communities, CSTnI and CSTnT are the main biomarkers for early diagnosis of myocardial infarction. Hypertension is one of the most dangerous and common risk factors for the development of cardiovascular pathologies and is associated with a high risk of dangerous cardiovascular complications. Therefore, there is an urgent need to search for new biomarkers for the timely assessment of the prognosis of patients with hypertension. This mini-review aims to substantiate the possibilities of using the cardiomarkers (CSTnI and CSTnT) to assess the prognosis of patients suffering from hypertension and to discuss potential mechanisms that cause injury to myocardial cells and increase serum levels of CSTnI and CSTnT. This is a narrative mini-review, which was prepared using the following databases: Pubmed/Medline, PubMed Central, Embase, Scopus, and Web of Science. The following keywords were used in the literature search: "myocardial cells", "injury", "damage", and "hypertension" in combination with the terms "mechanisms of injury" "predictive significance", "cardiac troponins", or "cardiospecific troponins".
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara, 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara, 443099, Russia
| |
Collapse
|
8
|
Szustkiewicz-Karoń A, Schönborn M, Patrycja Pasieka, Płotek A, Maga P, Gregorczyk-Maga I. Biomarkers of Cardiovascular Diseases in Saliva and Gingival Crevicular Fluid: A Review. Angiology 2023; 74:909-947. [PMID: 36268801 DOI: 10.1177/00033197221134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the fact that cardiovascular diseases (CVDs) have become the most serious problem in public health, there is a need for new and efficient methods for screening and early detection. In the recent literature, saliva and gingival crevicular fluid (GCF) have been gaining recognition as sources of many potential biomarkers of various systemic diseases, mainly because of correlation between the level of some compounds in the blood and saliva and association between the composition of saliva and health status. In this review, we summarize published findings of patients with atherosclerosis, arterial hypertension, coronary artery disease (CAD), acute coronary syndrome (ACS), and stroke in the context of clinical utility of saliva and GCF in diagnosing and assessing CVD severity. We hypothesize that substances in saliva including inflammatory markers, enzymes, or hormones might become novel contributors to the diagnosis and screening of CVDs. In particular, C-reactive protein (CRP), tumor necrosis alpha (TNFα), and cortisol seem to be the most promising. However, further investigation is warranted to determine the most effective markers and methods for their analysis.
Collapse
Affiliation(s)
| | - Martyna Schönborn
- Faculty of Medicine, Department of Angiology, Jagiellonian University Medical College, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Kraków, Poland
| | - Patrycja Pasieka
- Faculty of Medicine, Department of Angiology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Płotek
- Faculty of Medicine, Department of Angiology, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Maga
- Faculty of Medicine, Department of Angiology, Jagiellonian University Medical College, Kraków, Poland
| | - Iwona Gregorczyk-Maga
- Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
9
|
Salivary irisin level is higher and related with interleukin-6 in generalized periodontitis. Clin Oral Investig 2023:10.1007/s00784-023-04903-9. [PMID: 36763144 DOI: 10.1007/s00784-023-04903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES Irisin plays an important role in energy homeostasis, inflammation, glucose, and lipid metabolism, and it is shown to have relations with many inflammatory diseases. The aim of the study was to determine saliva and serum irisin and IL-6 levels in patients with stage III/grade B periodontitis compared with individuals with healthy periodontium. MATERIALS AND METHODS Twenty patients with stage III grade B periodontitis (P) and 20 periodontally healthy subjects (control; C) were included in this study. Clinical periodontal measurements were recorded. Saliva and serum levels of irisin and interleukin-6 (IL-6) were analyzed by enzyme-linked immunosorbent assay. RESULTS Salivary irisin and IL-6 levels were significantly higher in the periodontitis group (p < 0.001, p = 0.002, respectively). Furthermore, serum IL-6 levels were found significantly higher in the periodontitis group compared with controls (p = 0.011). There was no significant difference between the periodontitis and control for serum irisin levels (p > 0.05). Significant positive correlations were found between all periodontal parameters and salivary irisin and IL-6 (p < 0.05) and also between BMI and saliva and serum IL-6 (respectively; r = 0.530, r = 0.329, p < 0.05). There was a positive correlation between salivary irisin and IL-6 (r = 0.369, p < 0.05). CONCLUSIONS Monitoring of salivary irisin and IL-6 might be potential biomarker for predicting the susceptibility to periodontitis. CLINICAL RELEVANCE Scientific rationale for the study: Irisin is a novel adipomyokine that has played an important role in energy homeostasis, glucose and lipid metabolism, angiogenesis, immunity, and inflammation. Irisin is involved in the pathogenesis of diseases affecting many body systems. IL-6, another adipomyokine, is a major inflammatory mediator and homeostatic regulator of glucose and lipid metabolism and is associated with periodontitis. No studies investigated the relationship between advanced periodontal disease, irisin, and IL-6 together. PRINCIPAL FINDINGS The salivary irisin and IL-6 levels were significantly higher and positively correlated in patients with periodontitis relative to healthy controls. Furthermore, serum IL-6 levels were significantly increased in patients with periodontitis. PRACTICAL IMPLICATIONS The study shows that irisin and IL-6 can be candidate salivary biomarkers for periodontitis and predict to periodontal status.
Collapse
|
10
|
Missaglia S, Tommasini E, Vago P, Pecci C, Galvani C, Silvestrini A, Mordente A, Tavian D. Salivary and serum irisin in healthy adults before and after exercise. Eur J Transl Myol 2023; 33. [PMID: 36661485 PMCID: PMC10141757 DOI: 10.4081/ejtm.2023.11093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Irisin is an exercise-induced cytokine mainly secreted by myocytes. Circulating level of irisin can increase in response to acute exercise, promoting pleiotropic effects on health. Generally, irisin is evaluated in blood, however, its collection is invasive. Saliva sample would not have any risk associated with blood collection and would represent a less invasive method for irisin detection. Until now, there are only a few studies that have analyzed irisin levels in saliva. In the present research, five healthy male adults performed an incremental exercise until exhaustion on cycle ergometer. Serum and saliva samples were collected before exercise and 15min, 24h and 48h after reaching the exhaustion. Irisin was detected by ELISA assay. Serum and salivary irisin levels increased from baseline to 24h post exercise and reverted to basal levels after 48h of rest. A significant rise of both serum and salivary irisin level at 24h (p≤0.05) compared to baseline levels was found. Furthermore, a significant correlation between irisin percentage change in serum and saliva from baseline to 24h post exercise was detected (r=0.92, p<0.05). Despite the relatively limited sample, this research suggests that collecting saliva samples might represent a valid and less invasive method to detect irisin level changes induced by exercise.
Collapse
Affiliation(s)
- Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, Milan, Italy; Department of Psychology, Università Cattolica del Sacro Cuore, Milan.
| | - Ester Tommasini
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, Milan, Italy; Department of Psychology, Università Cattolica del Sacro Cuore, Milan.
| | - Paola Vago
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, Milan, Italy; Department of Psychology, Università Cattolica del Sacro Cuore, Milan.
| | - Claudio Pecci
- Human Performance Laboratory, MAPEI Sport Research Centre, Olgiate Olona (VA).
| | - Christel Galvani
- Exercise & Sport Science Laboratory, Università Cattolica del Sacro Cuore, Milan.
| | - Andrea Silvestrini
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Rome.
| | - Alvaro Mordente
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Rome.
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, Milan, Italy; Department of Psychology, Università Cattolica del Sacro Cuore, Milan.
| |
Collapse
|
11
|
Missaglia S, Tommasini E, Vago P, Pecci C, Galvani C, Silvestrini A, Mordente A, Tavian D. Salivary and serum irisin in healthy adults before and after exercise. Eur J Transl Myol 2023. [DOI: 10.4081/ejtm.2022.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Irisin is an exercise-induced cytokine mainly secreted by myocytes. Circulating level of irisin can increase in response to acute exercise, promoting pleiotropic effects on health. Generally, irisin is evaluated in blood, however, its collection is invasive. Saliva sample would not have any risk associated with blood collection and would represent a less invasive method for irisin detection. Until now, there are only a few studies that have analyzed irisin levels in saliva. In the present research, five healthy male adults performed an incremental exercise until exhaustion on cycle ergometer. Serum and saliva samples were collected before exercise and 15min, 24h and 48h after reaching the exhaustion. Irisin was detected by ELISA assay. Serum and salivary irisin levels increased from baseline to 24h post exercise and reverted to basal levels after 48h of rest. A significant rise of both serum and salivary irisin level at 24h (p≤0.05) compared to baseline levels was found. Furthermore, a significant correlation between irisin percentage change in serum and saliva from baseline to 24h post exercise was detected (r=0.92, p<0.05). Despite the relatively limited sample, this research suggests that collecting saliva samples might represent a valid and less invasive method to detect irisin level changes induced by exercise.
Collapse
|
12
|
Domenico T, Rita A, Giacomo S, Diego A, Thelma P, Mariana G, Giampaolo N, Francesco N, Maria G, Francesco F, Bruno B, Marco M, Diana C. Salivary biomarkers for diagnosis of acute myocardial infarction: A systematic review. Int J Cardiol 2023; 371:54-64. [PMID: 36167219 DOI: 10.1016/j.ijcard.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI) accounts for about 7 million deaths per year worldwide. The early identification of signs and symptoms and the detection of specific serological markers of this disease are mandatory to reach a prompt diagnosis and begin potentially life-saving treatment. Point-of-care technologies applied to salivary diagnostics can provide rapid, simple, low-cost, and accurate measurements of specific markers and can also be used in emergency settings. The present systematic review was developed to answer the following question: "Are salivary biomarkers useful in identifying patients with acute myocardial infarction?" METHODS Following the "Preferred Reporting Item for Systematic Reviews and Meta-analysis" (PRISMA) guidelines, we selected 17 papers. The critical appraisal and quality assessment were performed following the National Institute of Health and the classification of the Oxford Center for Evidence-Based Medicine. RESULTS Twenty-six salivary biomarkers were explored in association with AMI. Troponins, C-reactive protein, and adiponectin were the most frequently investigated molecules. We found that the evaluated biomarkers had different levels of diagnostic accuracy in discriminating patients with AMI from healthy controls. We also observed a lack of good-quality studies on the association between the occurrence of AMI and the presence of related salivary biomarkers. CONCLUSIONS There is evidence that salivary isoforms of cardiac troponin, C-reactive protein, and creatine phosphokinase (CPK) could be useful markers for the prompt diagnosis of AMI. However, the effective use of these markers as possible substitutes for serological markers should be confirmed by further studies that avoid the bias highlighted in the present review.
Collapse
Affiliation(s)
- Tuttolomondo Domenico
- Department of Cardiology, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy.
| | - Antonelli Rita
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy.
| | - Setti Giacomo
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy; Dentistry and Oral and Maxillofacial Surgery-Department of Surgical, Medical, Dental and Morphological Science with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy.
| | - Ardissino Diego
- Department of Cardiology, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy.
| | - Pertinhez Thelma
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Gallo Mariana
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Niccoli Giampaolo
- Department of Cardiology, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy.
| | - Nicolini Francesco
- Department of Cardiac Surgery, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy.
| | - Georgaki Maria
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str., 11527, Goudi, Athens, Greece
| | - Formica Francesco
- Department of Cardiac Surgery, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy.
| | - Borrello Bruno
- Department of Cardiac Surgery, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy.
| | - Meleti Marco
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy.
| | - Cassi Diana
- Dentistry and Oral and Maxillofacial Surgery-Department of Surgical, Medical, Dental and Morphological Science with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy.
| |
Collapse
|
13
|
Ozturk D, Melekoglu A, Altinbilek E, Calik M, Kosem A, Kilci H, Misirlioglu NF, Uzun H. Association Between Serum Irisin Levels and ST-Segment Elevation Myocardial Infarction. Int J Gen Med 2023; 16:1355-1362. [PMID: 37089138 PMCID: PMC10120592 DOI: 10.2147/ijgm.s403564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
Background An acute ST-elevation myocardial infarction (STEMI) is a serious cardiovascular condition with a high risk of morbidity and mortality. Irisin is adipomyokine that is associated with various health conditions. In post-STEMI, elevated serum irisin levels are associated with more adverse cardiovascular events. Objective The purpose of this study was to investigate associations between the serum irisin levels and acute MI (AMI) and whether irisin may be a useful biomarker for severity of AMI in patients with STEMI. Possible correlations between serum irisin and cardiac troponin-I (cTi) levels were investigated. Methods A total of 90 subjects (46 control subjects and 44 STEMI patients) were included in the study. Besides demographic data, presence of diabetes mellitus and hypertension, electrocardiography (ECG) findings, blood biochemistry, cardiac biomarkers (cTi) and serum irisin levels were examined. Results Significantly lower heart rate (HR) and significantly higher ST-elevation and QTc interval were detected in ECG recordings in STEMI patients (p < 0.05). Serum irisin levels were significantly lower in STEMI patients compared to the control subjects (p < 0.001). The decrease in the serum irisin levels was significantly correlated with the increase in cTi levels, as well as increased QTc (p < 0.05). The sensitivity and specificity of irisin were found to be 93% and 78%, respectively. Conclusion Decreased irisin levels were found to be highly predictive in STEMI. In patients with STEMI, the serum irisin levels were associated with cTi levels and QTc, suggesting that irisin is a promising biomarker for AMI cases.
Collapse
Affiliation(s)
- Derya Ozturk
- Sisli Hamidiye Etfal Education and Research Hospital, Department of Emergency, İstanbul, Turkey
| | - Adem Melekoglu
- Sisli Hamidiye Etfal Education and Research Hospital, Department of Emergency, İstanbul, Turkey
| | - Ertugrul Altinbilek
- Sisli Hamidiye Etfal Education and Research Hospital, Department of Emergency, İstanbul, Turkey
| | - Mustafa Calik
- Gaziosmanpasa Education and Research Hospital, Department of Emergency, İstanbul, Turkey
- Correspondence: Mustafa Calik, Gaziosmanpasa Education and Research Hospital, Emergency Department, İstanbul, 34255, Turkey, Email
| | - Arzu Kosem
- Ministry of Health Ankara City Hospital, Clinical Biochemistry Laboratory, Ankara, Turkey
| | - Hakan Kilci
- Sisli Hamidiye Etfal Education and Research Hospital, Department of Cardiology, Istanbul, Turkey
| | - Naile Fevziye Misirlioglu
- University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Department of Biochemistry, Istanbul, Turkey
| | - Hafize Uzun
- Istanbul Atlas University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
14
|
Chaulin AM. Hypertension as One of the Main Non-Myocardial Infarction-Related Causes of Increased Cardiospecific Troponins: From Mechanisms to Significance in Current Medical Practice. J Clin Med Res 2022; 14:448-457. [PMID: 36578369 PMCID: PMC9765318 DOI: 10.14740/jocmr4796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022] Open
Abstract
It is well known that many pathological conditions of both cardiovascular diseases (CVDs) (coronary heart disease, myocardial infarction, arrhythmias, myocarditis, cardiomyopathy, etc.) and non-cardiac (sepsis, anemia, kidney diseases, diabetes mellitus, etc.) origin in the course of their development cause injury to contractile cardiac muscle cells - myocardial cells (MCs). One of the most sensitive and specific criteria for detecting MC injury are cardiospecific troponins (CTs), which are regulatory protein molecules that are released into the blood serum from MC upon their death or injury. Current methods for determining CTs are called high-sensitive ones, and their main advantage is a very low minimum detectable concentration (limit of detection) (average 1 - 10 ng/L or less), which allows early detection of minor MC injury at the earliest stages of CVDs, and therefore they can change the understanding of disease development mechanisms and open up new diagnostic possibilities. One of the most common and dangerous early diseases of the cardiovascular system is hypertension (HT). The novelty of this article lies in the discussion of a new diagnostic direction - predicting the risk of developing CVDs and their dangerous complications in patients with HT by determining the concentration of CTs. In addition, pathophysiological mechanisms underlying MC injury and the release of CTs into the bloodstream and the elimination of CTs into the urine are proposed. This information will contribute to additional fundamental and clinical research to verify the new diagnostic possibility of using CTs in clinical practice (for the management of patients with HT).
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia
| |
Collapse
|
15
|
Chaulin AM. Cardiac Troponins as Biomarkers of Cardiac Myocytes Damage in Case of Arterial Hypertension: From Pathological Mechanisms to Predictive Significance. Life (Basel) 2022; 12:1448. [PMID: 36143484 PMCID: PMC9505657 DOI: 10.3390/life12091448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Many pathological conditions of both cardiovascular and non-cardiac origin in the course of their development cause damage to contractile cardiac muscle cells-cardiac myocytes (CMCs). One of the most sensitive and specific criteria for detecting CMCs are cardiac troponins (CTs), which are regulatory protein molecules that are released into the blood serum from CMCs upon their death or damage. New (high-sensitive) methods for detecting CTs allow the detection of minor CMCs damages at the earliest stages of cardiovascular diseases and can therefore change the understanding of disease development mechanisms and open up new diagnostic possibilities. One of the most common and dangerous early diseases of the cardiovascular system is arterial hypertension. The purpose of this paper is to summarize the pathophysiological mechanisms underlying CMCs damage and CTs release into the bloodstream in the case of arterial hypertension and to state the clinical significance of increased CTs levels in patients with arterial hypertension. MATERIALS AND METHODS This is a descriptive review, which was prepared using the following databases: Embase, Pubmed/Medline and Web of Science. The following key words were used in the literature search: "myocardial injury" and "arterial hypertension" in combination with the terms "cardiac troponins" and "mechanisms of increase". CONCLUSIONS According to a literature analysis, CMCs damage and CTs release in the case of arterial hypertension occur according to the following pathophysiological mechanisms: myocardial hypertrophy, CMCs apoptosis, damage to the CMC cell membrane and increase in its permeability for CTs molecules, as well as changes in the glomerular filtration rate. Most often, increased CTs serum levels in case of arterial hypertension indicate an unfavorable prognosis. Data on the CTs predictive significance in case of arterial hypertension open the prospects for the use of these biomarkers in the choice of patient management plans.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, 443099 Samara, Russia; or ; Tel.: +7-(927)-770-25-87
- Department of Histology and Embryology, Samara State Medical University, 443099 Samara, Russia
| |
Collapse
|
16
|
Huerta-Delgado AS, Roffe-Vazquez DN, Luna-Ceron E, Gonzalez-Gil AM, Casillas-Fikentscher A, Villarreal-Calderon JR, Enriquez C, de la Peña-Almaguer E, Castillo EC, Silva-Platas C, Garcia-Rivas G, Elizondo-Montemayor L. Association of irisin levels with cardiac magnetic resonance, inflammatory, and biochemical parameters in patients with chronic heart failure versus controls. Magn Reson Imaging 2022; 93:62-72. [PMID: 35842196 DOI: 10.1016/j.mri.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Chronic heart failure (CHF) represents a significant cause of morbidity and mortality globally. Metabolic maladaptation has proven to be critical in the progression of this condition. Preclinical studies have shown that irisin, an adipomyokine involved in metabolic regulations, can induce positive cardioprotective effects by improving cardiac remodeling, cardiomyocyte viability, calcium delivery, and reducing inflammatory mediators. However, data on clinical studies identifying the associations between irisin levels and functional imaging parameters are scarce in CHF patients. The objective of this study was to determine the association of irisin levels with cardiac imaging measurements through cardiac magnetic resonance, inflammatory markers, and biochemical parameters in patients with CHF compared with control subjects. METHODS AND RESULTS Thirty-two subjects diagnosed with CHF and thirty-two healthy controls were evaluated in a cross-sectional study. Serum irisin levels were significantly lower in patients with CHF than in controls. This is the first study to report a significant positive correlation between irisin levels and cardiac magnetic resonance parameters such as left ventricular ejection fraction, fraction shortening, and global radial strain. A negative correlation was demonstrated between irisin levels and brain natriuretic peptide, insulin levels, and Homeostatic model assessment for insulin resistance index. We did not observe significant correlations between irisin levels and inflammatory cytokines. CONCLUSIONS Given the importance of fraction shortening and global radial strain as accurate markers of ventricular wall motion, these results support the hypothesis that irisin may play an essential role in maintaining an adequate myocardial wall architecture, deformation, and thickness.
Collapse
Affiliation(s)
- Anna S Huerta-Delgado
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Daniel N Roffe-Vazquez
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Eder Luna-Ceron
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Adrian M Gonzalez-Gil
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Andrea Casillas-Fikentscher
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - José R Villarreal-Calderon
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico
| | - Cecilio Enriquez
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Erasmo de la Peña-Almaguer
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Elena C Castillo
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Christian Silva-Platas
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Gerardo Garcia-Rivas
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, 66278 San Pedro Garza-Garcia, N.L., Mexico; Tecnologico de Monterrey, Cardiovascular Medicine and Metabolomics Research Group, Escuela de Medicina, 66278 San Pedro Garza-Garcia, N.L., Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Escuela de Medicina, 64710 Monterrey, N.L., Mexico; Tecnologico de Monterrey, Cardiovascular Medicine and Metabolomics Research Group, Escuela de Medicina, 66278 San Pedro Garza-Garcia, N.L., Mexico.
| |
Collapse
|
17
|
Soliman SA, Gad R, Senosy T, Higazi AM, Elshereef R. Serum irisin level in rheumatoid arthritis patients: Relationship to disease activity, subclinical atherosclerosis, and cardiovascular risk factors. THE EGYPTIAN RHEUMATOLOGIST 2022. [DOI: 10.1016/j.ejr.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Association of lower serum irisin levels with diabetes mellitus: Irrespective of coronary collateral circulation, and syntax score. North Clin Istanb 2022; 8:607-614. [PMID: 35284785 PMCID: PMC8848496 DOI: 10.14744/nci.2021.73669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: Irisin is a myokine thought to be involved in the pathophysiological process of atherosclerosis with its’ cardiovascular protective effects. Patients with diabetes mellitus (DM) have lower levels of irisin. Therefore, we investigated whether there is a connection between irisin, DM, coronary collateral circulation (CCC), and SYNTAX scores representing coronary artery disease (CAD) severity. Methods: This study evaluated 86 patients who have at least one epicardial coronary artery with chronic total occlusion. We included Rentrop 0–1 into the poor CCC group (n=45) and Rentrop 2–3 into the good CCC group (n=41) and measured serum irisin levels. Results: Irisin levels did not differ (17585 [882–37741] pg/ml and (17504 [813–47683] pg/ml, p=0.772) between the two groups. Irisin levels were lower in patients with diabetes (n=41; 14485 [813–29398] pg/ml) than those without diabetes (n=45; 19724 [865–47683] pg/ml (p=0.002). Irisin was not correlated with SYNTAX scores. In multivariate analysis, DM (OR=0.463; CI: 0.184–0.783; p=0.012) was a negative predictor of good CCC development Conclusion: Although its level is decreased in patients with diabetes, serum irisin levels have no role in the pathophysiology of collateral development and CAD severity.
Collapse
|
19
|
Zhao R. Irisin at the crossroads of inter-organ communications: Challenge and implications. Front Endocrinol (Lausanne) 2022; 13:989135. [PMID: 36267573 PMCID: PMC9578559 DOI: 10.3389/fendo.2022.989135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The physiological functions of organs are intercommunicated occurring through secreted molecules. That exercise can improve the physiological function of organs or tissues is believed by secreting myokines from muscle to target remote organs. However, the underlying mechanism how exercise regulates the inter-organ communications remains incompletely understood yet. A recently identified myokine-irisin, primarily found in muscle and adipose and subsequently extending to bone, heart, liver and brain, provides a new molecular evidence for the inter-organ communications. It is secreted under the regulation of exercise and mediates the intercommunications between exercise and organs. To best our understanding of the regulatory mechanism, this review discusses the recent evidence involving the potential molecular pathways of the inter-organ communications, and the interactions between signalings and irisin in regulating the impact of exercise on organ functions are also discussed.
Collapse
|
20
|
The role of a recently discovered peptide—irisin—in physiological and pathological processes. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Irisin, a cleaved fragment of fibronectin type III domain-containing protein 5 (FNDC5), was originally described as a factor stimulating browning of white adipose tissue, produced during physical exercise by skeletal muscles. However, irisin is not only a new and promising biomarker of metabolism; its expression has been found in a wide variety of tissues and organs such as the peripheral nerves, stomach, pancreas, and skin, and recent data also indicate its role in cancer. Numerous studies focus on the protective role of this protein, which could become an important factor in predicting disease risk, disease prognosis, or possible metastases in cancer patients. Possible use of irisin in therapy is also worth considering. The aim of this paper is to systematize knowledge on the role of irisin in patients and to draw attention to its role in skin diseases including acne vulgaris, psoriasis vulgaris, and hidradenitis suppurativa.
Collapse
|
21
|
Wang Y, Liu H, Sun N, Li J, Peng X, Jia Y, Karch J, Yu B, Wehrens XHT, Tian J. Irisin: A Promising Target for Ischemia-Reperfusion Injury Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5391706. [PMID: 34745418 PMCID: PMC8570861 DOI: 10.1155/2021/5391706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
Ischemia-reperfusion injury (IRI) is defined as the total combined damage that occurs during a period of ischemia and following the recovery of blood flow. Oxidative stress, mitochondrial dysfunction, and an inflammatory response are factors contributing to IRI-related damage that can each result in cell death. Irisin is a polypeptide that is proteolytically cleaved from the extracellular domain of fibronectin type III domain-containing protein 5 (FNDC5). Irisin acts as a myokine that potentially mediates beneficial effects of exercise by reducing oxidative stress, improving mitochondrial fitness, and suppressing inflammation. The existing literature also suggests a possible link between irisin and IRI, involving mechanisms similar to those associated with exercise. This article will review the pathogenesis of IRI and the potential benefits and current limitations of irisin as a therapeutic strategy for IRI, while highlighting the mechanistic correlations between irisin and IRI.
Collapse
Affiliation(s)
- Yani Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Huibin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Na Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jing Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jason Karch
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine, Neuroscience, Pediatrics, And Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| |
Collapse
|
22
|
Abstract
Irisin, a novel hormone like polypeptide, is cleaved and secreted by an unknown protease from a membrane‐spanning protein, FNDC5 (fibronectin type III domain‐containing protein 5). The current knowledge on the biological functions of irisin includes browning white adipose tissue, regulating insulin use, and anti‐inflammatory and antioxidative properties. Dysfunction of irisin has shown to be involved in cardiovascular diseases such as hypertension, coronary artery disease, myocardial infarction, and myocardial ischemia–reperfusion injury. Moreover, irisin gene variants are also associated with cardiovascular diseases. In this review, we discuss the current knowledge on irisin‐mediated regulatory mechanisms and their roles in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinjuan Fu
- Department of Cardiology The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong University Chengdu Sichuan China
| | - Fangtang Li
- Department of Cardiology The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong University Chengdu Sichuan China
| | - Yuanjuan Tang
- Department of Cardiology The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong University Chengdu Sichuan China
| | - Lin Cai
- Department of Cardiology The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong University Chengdu Sichuan China
| | - Chunyu Zeng
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing China.,State Key Laboratory of Trauma, Burns and Combined Injury Daping Hospital The Third Military Medical University Chongqing China.,Department of Cardiology of Chongqing General Hospital Cardiovascular Research Center of Chongqing CollegeUniversity of Chinese Academy of Sciences Chongqing China
| | - Yongjian Yang
- Department of Cardiovascular Medicine The General Hospital of Western Theater Command PLA Chengdu China
| | - Jian Yang
- Department of Clinical Nutrition The Third Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
23
|
Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin 2021; 42:1390-1400. [PMID: 33214697 PMCID: PMC8379181 DOI: 10.1038/s41401-020-00557-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular and metabolic diseases are the leading causes of death and disability worldwide and impose a tremendous socioeconomic burden on individuals as well as the healthcare system. Fibronectin type III domain-containing 5 (FNDC5) is a widely distributed transmembrane glycoprotein that can be proteolytically cleaved and secreted as irisin to regulate glycolipid metabolism and cardiovascular homeostasis. In this review, we present the current knowledge on the predictive and therapeutic role of FNDC5 in a variety of cardiovascular and metabolic diseases, such as hypertension, atherosclerosis, ischemic heart disease, arrhythmia, metabolic cardiomyopathy, cardiac remodeling, heart failure, diabetes mellitus, and obesity.
Collapse
|
24
|
Role of Irisin in Myocardial Infarction, Heart Failure, and Cardiac Hypertrophy. Cells 2021; 10:cells10082103. [PMID: 34440871 PMCID: PMC8392379 DOI: 10.3390/cells10082103] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Irisin is a myokine derived from the cleavage of fibronectin type III domain-containing 5. Irisin regulates mitochondrial energy, glucose metabolism, fatty acid oxidation, and fat browning. Skeletal muscle and cardiomyocytes produce irisin and affect various cardiovascular functions. In the early phase of acute myocardial infarction, an increasing irisin level can reduce endothelial damage by inhibiting inflammation and oxidative stress. By contrast, higher levels of irisin in the later phase of myocardial infarction are associated with more cardiovascular events. During different stages of heart failure, irisin has various influences on mitochondrial dysfunction, oxidative stress, metabolic imbalance, energy expenditure, and heart failure prognosis. Irisin affects blood pressure and controls hypertension through modulating vasodilatation. Moreover, irisin can enhance vasoconstriction via the hypothalamus. Because of these dual effects of irisin on cardiovascular physiology, irisin can be a critical therapeutic target in cardiovascular diseases. This review focuses on the complex functions of irisin in myocardial ischemia, heart failure, and cardiac hypertrophy.
Collapse
|
25
|
Önalan Etem E, Diş Ö, Tektemur A, Korkmaz H, Buran Kavuran İ. Common single nucleotide polymorphisms in the FNDC5 gene and serum irisin levels in acute myocardial infarction. Anatol J Cardiol 2021; 25:528-535. [PMID: 34369880 DOI: 10.5152/anatoljcardiol.2021.36214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Acute myocardial infarction (AMI) is the most common type of coronary artery disease. The irisin hormone encoded by the fibronectin type III domain-containing protein-5 (FNDC5) gene is synthesized in muscle, heart, and fat tissues. The present study aims to investigate serum irisin concentrations and FNDC5 genetic variants in patients with AMI through comparison with controls. METHODS This study included 225 patients with AMI and 225 healthy subjects. Blood samples were obtained from patients during the first 1-24 hours after AMI. Serum irisin concentration was measured with enzyme-linked immunosorbent assay (ELISA). The variants of rs16835198, rs3480, and rs726344 in the FNDC5 gene were genotyped with real time polymerase chain reaction (RT-PCR). RESULTS Compared with control serum irisin concentrations were significantly lower in patients with AMI. Serum irisin concentrations of patients with AMI showed a significant and gradual decrease from 6 hours up to 24 hours (p<0.05). There were no significant differences between the patient and control groups based on genotype and allele frequencies of rs16835198, rs3480, and rs726344 in the FNDC5 gene (p>0.05). However, the frequency of the TT genotype in male patients with AMI (6.4%) was significantly lower compared with control male subjects (16.2%). In addition, the GGT haplotype was identified as the protective haplotype against the risk of AMI (p<0.001; odds ratio=0.107). CONCLUSIONS The findings of the study suggest that serum irisin concentration could serve as a novel biological marker for the early diagnosis of AMI.
Collapse
Affiliation(s)
- Ebru Önalan Etem
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Özge Diş
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Hasan Korkmaz
- Department Cardiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - İlay Buran Kavuran
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
26
|
Sundarrajan L, Rajeswari JJ, Weber LP, Unniappan S. The sympathetic/beta-adrenergic pathway mediates irisin regulation of cardiac functions in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111016. [PMID: 34126232 DOI: 10.1016/j.cbpa.2021.111016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Irisin is a 23 kDa myokine encoded in its precursor, fibronectin type III domain containing 5 (FNDC5). The exercise-induced increase in the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) promotes FNDC5 mRNA, followed by the proteolytic cleavage of FNDC5 to release irisin from the skeletal or cardiac muscle into the blood. Irisin is abundantly expressed in skeletal and cardiac muscle and plays an important role in feeding, modulates appetite regulatory peptides, and regulates cardiovascular functions in zebrafish. In order to determine the potential mechanisms of acute irisin effects, in this research, we explored whether adrenergic or muscarinic pathways mediate the cardiovascular effects of irisin. Propranolol (100 ng/g B·W) alone modulated cardiac functions, and when injected in combination with irisin (0.1 ng/g B·W) attenuated the effects of irisin in regulating cardiovascular functions in zebrafish at 15 min post-injection. Atropine (100 ng/g B·W) modulated cardiovascular physiology in the absence of irisin, while it was ineffective in influencing irisin-induced effects on cardiovascular functions in zebrafish. At 1 h post-injection, irisin downregulated PGC-1 alpha mRNA, myostatin-a and myostatin-b mRNA expression in zebrafish heart and skeletal muscle. Propranolol alone had no effect on the expression of these mRNAs in zebrafish and did not alter the irisin-induced changes in expression. At 1 h post-injection, irisin siRNA downregulated PGC-1 alpha, troponin C and troponin T2D mRNA expression, while upregulating myostatin a and b mRNA expression in zebrafish heart and skeletal muscle. Atropine alone had no effects on mRNA expression, and was unable to alter effects on mRNA expression of siRNA. Overall, this research identified a role for the sympathetic/beta-adrenergic pathway in regulating irisin effects on cardiovascular physiology and cardiac gene expression in zebrafish.
Collapse
Affiliation(s)
- Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Lynn P Weber
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
27
|
Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: A New Code Uncover the Relationship of Skeletal Muscle and Cardiovascular Health During Exercise. Front Physiol 2021; 12:620608. [PMID: 33597894 PMCID: PMC7882619 DOI: 10.3389/fphys.2021.620608] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Exercise not only produces beneficial effects on muscle itself via various molecular pathways, but also mediates the interaction between muscles and other organs in an autocrine/paracrine manner through myokines, which plays a positive role in maintaining overall health. Irisin, an exercise-derived myokine, has been found involved in the regulation of some cardiovascular diseases. However, the relationship between irisin and cardiovascular health is not fully elucidated and there are some divergences on the regulation of irisin by exercise. In this review, we present the current knowledge on the origin and physiology of irisin, describe the regulation of irisin by acute and chronic exercises, and discuss the divergences of the related research results. Importantly, we discuss the role of irisin as a biomarker in the diagnosis of cardiovascular diseases and describe its treatment and molecular mechanism in some cardiovascular diseases. It is expected that irisin will be used as a therapeutic agent to combat cardiovascular diseases or other disorders caused by inactivity in the near future.
Collapse
Affiliation(s)
- Chunlian Ma
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Haichao Ding
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yuting Deng
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaoling Xiong
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
28
|
Yang Y, Pullisaar H, Landin MA, Heyward CA, Schröder M, Geng T, Grano M, Reseland JE. FNDC5/irisin is expressed and regulated differently in human periodontal ligament cells, dental pulp stem cells and osteoblasts. Arch Oral Biol 2021; 124:105061. [PMID: 33508625 DOI: 10.1016/j.archoralbio.2021.105061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the expression and regulation of fibronectin type III domain-containing protein 5/irisin (FNDC5/irisin) in primary human periodontal ligament (hPDL) cells, dental pulp stem cells (hDPCs) and osteoblasts (hOBs). METHODS FNDC5/irisin was identified in sections of paraffin embedded rat maxillae, cryo-sections of 3D cultured spheroids hPDL cells, hDPCs and hOBs, 2D cultured hPDL cells, hDPCs and hOBs by immunohistochemistry. The expression of FNDC5/irisin was identified by qPCR, followed by sequencing of the qPCR product. Regulation of FNDC5/irisin expression in hPDL cells, hDPCs and hOBs were evaluated after administration of different concentrations of irisin and all-trans retinoic acid (ATRA). qPCR and ELISA were used to identify expression and secretion of FNDC5/irisin in odontoblast-like differentiation of hDPCs. RESULTS FNDC5/irisin was confirmed to be present in rat periodontium and dental pulp regions, as well as in 2D and 3D cultured hPDL cells, hDPCs and hOBs. BLAST analyses verified the generated nucleotide alignments matched human FNDC5/irisin. FNDC5/irisin gene expression was enhanced during odontoblast-like differentiation of hDPCs whereas the secretion of the protein was decreased compared to control. The protein signals in rat periodontal and pulpal tissues were higher than that of alveolar bone, and the expression of FNDC5/irisin was differently regulated by recombinant irisin and ATRA in hPDL cells and hDPCs compared to hOBs. CONCLUSIONS FNDC5/irisin expression was verified in rodent periodontium and dental pulp, and in hPDL cells, hDPCs and hOBs. The FNDC5/irisin expression was regulated by recombinant irisin and ATRA. Finally, expression and secretion of FNDC5/irisin were affected during odontoblast-like differentiation of hDPCs.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Helen Pullisaar
- Department of Orthodontics, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Maria A Landin
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - Maria Schröder
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tianxiang Geng
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
29
|
Kumsar Ş, Ciğerli Ö, Hasırcı E, Akay AF, Peşkircioğlu L. The relationship between serum irisin levels and erectile dysfunction in diabetic men (irisin and erectile dysfunction in diabetic patients). Andrologia 2021; 53:e13959. [PMID: 33400308 DOI: 10.1111/and.13959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023] Open
Abstract
Irisin is an exercise-induced myokine that alleviates endothelial dysfunction and reduces insulin resistance in type 2 diabetes mellitus. We conducted this cross-sectional prospective study to determine the association of serum irisin levels and erectile dysfunction in type 2 diabetic patients. We compared 34 diabetic patients with erectile dysfunction with 30 diabetic patients without erectile dysfunction. In our study, serum irisin levels were found to be statistically significantly higher in diabetic patients without erectile dysfunction compared to those with erectile dysfunction (p = .016) and according to correlation analysis, irisin levels had a significantly negative correlation with the serum HbA1C value (r = -.294, p = .018). Based on the results of our study, we think that this molecule can be used in the diagnosis or treatment of erectile dysfunction in diabetic patients, if these findings are supported by larger studies.
Collapse
Affiliation(s)
- Şükrü Kumsar
- Department of Urology, Baskent University Istanbul Hospital, İstanbul, Turkey
| | - Özlem Ciğerli
- Department of Endocrinology, Baskent University Istanbul Hospital, İstanbul, Turkey
| | - Eray Hasırcı
- Department of Urology, Baskent University Faculty of Medicine, İstanbul, Turkey
| | - Ali F Akay
- Department of Urology, Baskent University Istanbul Hospital, İstanbul, Turkey
| | - Levent Peşkircioğlu
- Department of Urology, Baskent University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
30
|
Ou-Yang WL, Guo B, Xu F, Lin X, Li FXZ, Shan SK, Wu F, Wang Y, Zheng MH, Xu QS, Yuan LQ. The Controversial Role of Irisin in Clinical Management of Coronary Heart Disease. Front Endocrinol (Lausanne) 2021; 12:678309. [PMID: 34276559 PMCID: PMC8281113 DOI: 10.3389/fendo.2021.678309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
Irisin, a PGC1α-dependent myokine, was once believed to have beneficial effects induced by exercise. Since its first discovery of adipose browning in 2012, multiple studies have been trying to explore the metabolic functions of irisin, such as glucose and lipid metabolism. However, recently many studies with irisin concentration measuring were doubt for methodological problems, which may account for the continuous inconsistencies. New tools like recombinant irisin and gene-knockout mice are required to reconfirm the questioned functions of irisin. In this paper, we make a critical introduction to the latest researches concerning the relationship between irisin and coronary heart disease, which includes atherosclerosis, stable angina pectoris and acute coronary syndromes. These studies provided various controversial evidence of short and long-term monitoring and therapeutic effect from molecular cellular mechanisms, in vivo experiments and epidemiological investigation. But with ambiguities, irisin still has a long way to go to identify its functions in the clinical management.
Collapse
Affiliation(s)
- Wen-Lu Ou-Yang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan,
| |
Collapse
|
31
|
Bahbah EI, Noehammer C, Pulverer W, Jung M, Weinhaeusel A. Salivary biomarkers in cardiovascular disease: An insight into the current evidence. FEBS J 2020; 288:6392-6405. [PMID: 33370493 DOI: 10.1111/febs.15689] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/28/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVDs) are the most common cause of mortality worldwide. In acute cardiovascular conditions, time is a crucial player in the outcomes of disease management. Given the ease and noninvasiveness of obtaining saliva, salivary biomarkers may provide a rapid and efficient diagnosis of CVD. Here, we reviewed the published data on the value of salivary molecules for diagnosis of CVD, especially in acute care settings. In this review, we show that some biomarkers such as salivary creatinine kinase myocardial band, C-reactive protein, troponin-1, and myoglobin exhibited promising diagnostic values that were comparable to their serum counterparts. Other molecules were also investigated and showed controversial results, including myeloperoxidase, brain natriuretic peptide, and some oxidative stress markers. Based on our review, we concluded that the clinical use of salivary biomarkers to diagnose CVD is promising; however, it is still in the early stage of development. Further studies are needed to validate these findings, determine cutoff values for diagnosis, and compare them to other established biomarkers currently in clinical use.
Collapse
Affiliation(s)
- Eshak I Bahbah
- AIT Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria.,Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Christa Noehammer
- AIT Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Walter Pulverer
- AIT Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Martin Jung
- AIT Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Andreas Weinhaeusel
- AIT Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| |
Collapse
|
32
|
Reyes-Retana JA, Duque-Ossa LC. Acute Myocardial Infarction Biosensor: A Review From Bottom Up. Curr Probl Cardiol 2020; 46:100739. [PMID: 33250264 DOI: 10.1016/j.cpcardiol.2020.100739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/09/2023]
Abstract
Acute myocardial infarction (AMI) is a cardiovascular disease that is produced due to a deficiency of oxygen generating irreversible damage in the heart muscle. In diagnosis, electrocardiogram (ECG) investigation has been the main method but is insufficient, so approaches like the measurement of biomarkers levels in plasma or saliva have become one of the most commonly applied strategies for prognosis of AMI, as some of them are specifically related to a heart attack. Many tests are carrying on to determine biological markers changes, but usually, they present disadvantages related to time consumption and laborious work. To overcome the issues, researchers around the world have been developing different ways to enhance detection through the use of biosensors. These diagnostic devices have a biological sensing element associated to a physicochemical transducer that can be made from different materials and configurations giving place to different kinds of detection: Electrical/Electrochemical, Optical and Mechanical. In this review, the authors presents relevant investigations related to the most important biomarkers and biosensors used for their detection having in mind the nanotechnology participation in the process through the application of nanostructures as a good choice for device configuration.
Collapse
Affiliation(s)
- J A Reyes-Retana
- Tecnologico de Monterrey, School of Engineering and Science, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico. https://tec.mx
| | - L C Duque-Ossa
- Tecnologico de Monterrey, School of Engineering and Science, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico. https://tec.mx
| |
Collapse
|
33
|
Badr EAE, Mostafa RG, Awad SM, Marwan H, Abd El-Bary HM, Shehab HEM, Ghanem SE. A pilot study on the relation between irisin single-nucleotide polymorphism and risk of myocardial infarction. Biochem Biophys Rep 2020; 22:100742. [PMID: 32123756 PMCID: PMC7038008 DOI: 10.1016/j.bbrep.2020.100742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) is the major cause of death and disability worldwide. Many recent studies revealed the relationship between circulating irisin levels, endothelial dysfunctions and subclinical atherosclerosis in adult patients. OBJECTIVES The aim of this study was to investigate the distribution of Irisin gene single nucleotide polymorphism in patients with MI and its association with other clinical and laboratory variables in these patients. PATIENTS AND METHODS This study was carried out in 100 patients with MI, and 100 healthy subjects served as controls. All studied subjects underwent laboratory investigations, including measurement of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-c) high-density lipoprotein cholesterol (HDL-c), creatinine kinase-MB (CK-MB), troponin I (TnI) and genotyping of rs 3480 and rs726344 of Irisin genes using the TaqMan Allelic Discrimination assay technique. RESULTS There was a significant difference of Irisin genotypes in patients when compared to controls. By estimating odd ratio (OR) an association was found between G allele of rs 3480 and A allele of rs726344with increase the risk of developing myocardial infarction by 4.03 and 3.47 fold respectively. GG of rs 3480 carriers had significantly increased Troponin I and triglyceride levels, while GA carriers of rs726344 had significantly increased CKMB, Total cholesterol, LDLc, HDLc, troponin I and triglyceride levels compared with other genotypes. CONCLUSION G allele of rs 3480 and A allele of rs726344can considered as genetic risk factors for MI; these findings could have an impact on preventive strategy for myocardial infarction.
Collapse
Affiliation(s)
- Eman AE. Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| | - Rasha G. Mostafa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Egypt
| | - Samah M. Awad
- Department of Medical Microbiology and Immunology, National Liver Institute, Faculty of Medicine, Menoufia University, Egypt
| | - Hala Marwan
- Department of Public Health and Community Faculty of Medicine, Menoufia University, Egypt
| | | | - Hossam EM. Shehab
- Chemist at Faculty of Applied Medical Science, Menoufia University, Egypt
| | - Samar Ebrahim Ghanem
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
34
|
Askin L, Uzel KE, Tanriverdi O, Turkmen S. Serum Irisin: Pathogenesis and Clinical Research in Cardiovascular Diseases. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2020. [DOI: 10.15212/cvia.2019.0569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, muscular function/dysfunction has gained importance in the maintenance of metabolic homeostasis in cardiovascular diseases. Skeletal muscle plays a vital role in coordinating the activity and metabolism of endocrine organs by secreting many myokines, especially irisin. Irisin
is a polypeptide hormone consisting of 112 amino acids secreted into the blood from muscle and adipose tissues. Serum irisin levels are associated with cardiometabolic risk factors such as obesity and insulin resistance as defined by homeostatic model assessment. Irisin reduces endothelial
damage by inhibiting inflammation and oxidative stress, thus playing a key role in maintaining endothelial cell function. Unsurprisingly, low irisin levels cause endothelial dysfunction and increase the incidence of atherosclerosis. We aimed to summarize the studies on this issue since we
have not found any review in the literature on the role of serum irisin levels in the process of atherosclerosis and other cardiovascular events in cardiovascular diseases.
Collapse
Affiliation(s)
- Lutfu Askin
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Kader Eliz Uzel
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Okan Tanriverdi
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| | - Serdar Turkmen
- Department of Cardiology, Adiyaman Education and Research Hospital, Adiyaman, Turkey
| |
Collapse
|
35
|
Ciołkiewicz M, Kuryliszyn-Moskal A, Hryniewicz A, Kamiński K. Sarcopenia and myokines profile as risk factors in cardiovascular diseases? POSTEP HIG MED DOSW 2019; 73:550-562. [DOI: 10.5604/01.3001.0013.5442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Skeletal muscles and substances released during physical activity (myokines) have a beneficial influence on the functioning of the organism. Myokines (released also by myocardium) together with hepatokines and adipokines play an important role not only in energetic metabolism, but they also influence, among others, the function of the circulatory and nervous systems, modulation of inflammatory state and atherogenesis. Under pathological conditions connected with the presence of chronic diseases, chronic inflammatory state, low physical activity, long-term immobility the following consequences are observed: reduction of muscle mass and strength (sarcopenia) and changed profile of released myokines. The incidence of sarcopenia is connected with an unfavorable course of the aging process, often leading to disability and multiple morbidities. Sarcopenia can also lead to frailty syndrome, which not only worsens the prognosis of various diseases, but it can also increase the risk of medical procedures. Sarcopenia and adverse przymyokine profile are modifiable risk factors of cardiovascular diseases and affecting them may improve functional status and prognosis. An important intervention to improve muscles function and myokine profile, apart from nutritional treatment and pharmacotherapy, is regular physical activity as a component of cardiac rehabilitation. In our paper we focused on a review of the newest research regarding the association of sarcopenia and the profile of released myokines with incidence and course of cardiovascular diseases such as chronic heart failure, coronary artery disease, carotid artery atherosclerosis or ischemic cerebral stroke.
Collapse
Affiliation(s)
| | | | - Anna Hryniewicz
- Klinika Rehabilitacji, Uniwersytet Medyczny, Białystok, Polska
| | - Karol Kamiński
- Klinika Rehabilitacji, Uniwersytet Medyczny, Białystok, Polska
| |
Collapse
|
36
|
Irisin Contributes to the Hepatoprotection of Dexmedetomidine during Intestinal Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7857082. [PMID: 31191804 PMCID: PMC6525857 DOI: 10.1155/2019/7857082] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
Abstract
Intestinal ischemia/reperfusion (I/R), which is associated with high morbidity and mortality, is also accompanied with abnormal energy metabolism and liver injury. Irisin, a novel exercise-induced hormone, can regulate adipose browning and thermogenesis. The following study investigated the potential role of dexmedetomidine in liver injury during intestinal I/R in rats. Adult male Sprague-Dawley rats underwent occlusion of the superior mesenteric artery for 90 min followed by 2 h of reperfusion. Dexmedetomidine or irisin-neutralizing antibody was intravenously administered for 1 h before surgery. The results demonstrated that severe intestine and liver injuries occurred during intestinal I/R as evidenced by pathological scores and an apparent increase in serum diamine oxidase (DAO), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) levels. In addition, the hepatic irisin, cleaved caspase-3, Bax, and NLRP3 inflammasome components (including NLRP3, ASC, and caspase-1), protein expressions, apoptotic index, reactive oxygen species (ROS), malondialdehyde (MDA), myeloperoxidase (MPO), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 levels increased; however, the serum irisin level and hepatic Bcl-2 protein expression and superoxide dismutase (SOD) activity decreased after intestinal I/R. Interestingly, dexmedetomidine could reduce the above listed changes and increase the irisin levels in plasma and the liver in I/R rats. Dexmedetomidine-mediated protective effects on liver injury and NLRP3 inflammasome activation during intestinal I/R were partially abrogated via irisin-neutralizing antibody treatment. The results suggest that irisin might contribute to the hepatoprotection of dexmedetomidine during intestinal ischemia/reperfusion.
Collapse
|
37
|
Abd El-Mottaleb NA, Galal HM, El Maghraby KM, Gadallah AI. Serum irisin level in myocardial infarction patients with or without heart failure. Can J Physiol Pharmacol 2019; 97:932-938. [PMID: 30958967 DOI: 10.1139/cjpp-2018-0736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study aimed to assess serum irisin level in myocardial infarction (MI) with or without heart failure (HF) and the possible relation between irisin and cardiac markers, tumor necrosis factor-α (TNF-α) and lipid profile. Eighty-six subjects were included (33 patients had MI, 33 patients had MI with HF, and 20 controls). Body mass index (BMI), waist/hip ratio (WHR), systolic and diastolic blood pressure (SBP and DBP), heart rate, and left ventricular ejection fraction (LVEF) were measured. Blood samples were withdrawn on admission for measuring irisin, cardiac markers, TNF-α, total cholesterol (TC), triglycerides (TGs), low-density lipoprotein-cholesterol concentration (LDL-C), and high-density lipoprotein-cholesterol concentration (HDL-C). Patients with MI and HF had reduced serum irisin, LVEF, and HDL-C and higher levels of BMI, WHR, SBP, DBP, troponin-I, creatine kinase-MB (CK-MB), TNF-α, TC, TGs, and LDL-C compared with control. Negative correlations were observed between irisin and BMI, WHR, SBP, DBP, troponin-I, CK-MB, TNF-α, TC, TGs, and LDL-C. However, positive association was noticed between irisin and LVEF and HDL-C. Irisin might be a useful biomarker in diagnosis of MI with or without HF. It could have anti-inflammatory and hypolipidemic effects. Further studies are needed to elucidate the role of irisin as a promising prophylactic or therapeutic agent in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Heba M Galal
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Egypt.,Department of Medical Physiology, Faculty of Medicine, Jouf University, Saudi Arabia
| | | | - Aml I Gadallah
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Egypt
| |
Collapse
|
38
|
Wu Y, Zhu B, Chen Z, Duan J, Luo A, Yang L, Yang C. New Insights Into the Comorbidity of Coronary Heart Disease and Depression. Curr Probl Cardiol 2019; 46:100413. [PMID: 31005351 DOI: 10.1016/j.cpcardiol.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022]
Abstract
Coronary heart disease (CHD) and depression are common disorders that markedly impair quality of life and impose a great financial burden on society. They are also frequently comorbid, exacerbating patient condition, and worsening prognosis. This comorbidity strongly suggests shared pathologic mechanisms. This review focuses on the incidence of depression in patients with CHD, deleterious effects of depression on CHD symptoms, and the potential mechanisms underlying comorbidity. In addition to the existing frequent mechanisms that are well known for decades, this review summarized interesting and original potential mechanisms to underlie the comorbidity, such as endocrine substances, gut microbiome, and microRNA. Finally, there are several treatment strategies for the comorbidity, involving drugs and psychotherapy, which may provide a theoretical basis for further basic research and clinical investigations on improved therapeutic interventions.
Collapse
|
39
|
Aydin S, Ugur K, Aydin S, Sahin İ, Yardim M. Biomarkers in acute myocardial infarction: current perspectives. Vasc Health Risk Manag 2019; 15:1-10. [PMID: 30697054 PMCID: PMC6340361 DOI: 10.2147/vhrm.s166157] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Acute myocardial infarction (AMI) is the most common cause of death in the world. Comprehensive risk assessment of patients presenting with chest pain and eliminating undesirable results should decrease morbidity and mortality rates, increase the quality of life of patients, and decrease health expenditure in many countries. In this study, the advantages and disadvantages of the enzymatic and nonenzymatic biomarkers used in the diagnosis of patients with AMI are given in historical sequence, and some candidate biomarkers - hFABP, GPBB, S100, PAPP-A, RP, TNF, IL6, IL18, CD40 ligand, MPO, MMP9, cell-adhesion molecules, oxidized LDL, glutathione, homocysteine, fibrinogen, and D-dimer procalcitonin - with a possible role in the diagnosis of AMI are discussed. METHODS The present study was carried out using meta-analyses, reviews of clinical trials, evidence-based medicine, and guidelines indexed in PubMed and Web of Science. RESULTS These numerous AMI biomarkers guide clinical applications (diagnostic methods, risk stratification, and treatment). Today, however, TnI remains the gold standard for the diagnosis of AMI. Details in the text will be given of many biomarkers for the diagnosis of AMI. CONCLUSION We evaluated the advantages and disadvantages of routine enzymatic and nonenzymatic biomarkers and the literature evidence of other candidate biomarkers in the diagnosis of AMI, and discuss challenges and constraints that limit translational use from bench to bedside.
Collapse
Affiliation(s)
- Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, Elazig 23119, Turkey,
| | - Kader Ugur
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), School of Medicine, Firat University, Elazig 23119, Turkey
| | - Suna Aydin
- Cardiovascular Surgery Department, Elazig Research and Education Hospital, Health Science University, Elazig 23119, Turkey
| | - İbrahim Sahin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, Elazig 23119, Turkey,
- Department of Medical Biology, Medical School, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Meltem Yardim
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, Elazig 23119, Turkey,
| |
Collapse
|
40
|
Khorasani ZM, Bagheri RK, Yaghoubi MA, Chobkar S, Aghaee MA, Abbaszadegan MR, Sahebkar A. The association between serum irisin levels and cardiovascular disease in diabetic patients. Diabetes Metab Syndr 2019; 13:786-790. [PMID: 30641808 DOI: 10.1016/j.dsx.2018.11.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cardiovascular disease is the most common cause of mortality and morbidity in diabetic patients. Insulin resistance has been shown to be reduced by the secretion of irisin from muscle and adipose tissues. This study was aimed at determining the relationship between serum irisin levels and angiographically defined coronary artery disease (CAD) in type II diabetic patients. METHODS In this case-control study, 30 diabetic subjects with angiographically defined CAD were compared with 30 age- and sex-matched diabetic subjects without CAD in terms of clinical and laboratory parameters including serum irisin levels. RESULTS Serum levels of Irisin were significantly higher in the diabetic group without CAD compared with the group with CAD (P = 0.048). Serum irisin levels showed a significant positive correlation with BMI (r = 0.374, P = 0.004) and fasting insulin (r = 0.303, P = 0.021), and a significant negative correlation with diabetes duration (r = -0.384, P = 0.002). Based on the results of the binary logistic regression model, circulating levels of irisin were associated with the presence of CAD in diabetes (p = 0.038) after adjusting for potential confounders. CONCLUSION Serum irisin levels were lower in the diabetic patients with cardiovascular complication compared with the uncomplicated diabetic patients. Therefore, additional larger scale studies are needed to determine the role of irisin in monitoring CAD in diabetic patients.
Collapse
Affiliation(s)
| | - Ramin Khameneh Bagheri
- Department of Cardiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Yaghoubi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Chobkar
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Monavvar Afzal Aghaee
- Department of Social Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Hsieh IC, Ho MY, Wen MS, Chen CC, Hsieh MJ, Lin CP, Yeh JK, Tsai ML, Yang CH, Wu VCC, Hung KC, Wang CC, Wang CY. Serum irisin levels are associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Int J Cardiol 2018; 261:12-17. [PMID: 29657036 DOI: 10.1016/j.ijcard.2017.11.072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/15/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022]
Abstract
Irisin, a recently identified myokine, regulates mitochondrial function and energy expenditure. The concentration of irisin is significantly altered after ST-elevation myocardial infarction (STEMI). We hypothesized that serum irisin concentration is associated with adverse cardiovascular outcomes after myocardial infarction. Serum irisin concentrations were measured using enzyme-linked immunosorbent assay (ELISA) in 399 patients 28d after the onset of STEMI in a prospective single-center cohort study. We assessed the association between irisin concentrations and adverse cardiovascular events during a 3-year follow-up. The excess risks of cardiovascular mortality, stroke, heart failure, and revascularization were predominantly seen among those with the highest concentrations of irisin, with concentrations higher than 75th percentile of the overall distribution had a ~4-fold increase in risk (hazard ratio=3.96, 95% confidence interval 1.55 to 10.11, P<0.01). Our findings showed that serum concentrations of irisin are elevated in post-STEMI patients with increased risk for adverse cardiovascular events. Novel therapies targeting irisin may represent a new direction in the treatment of STEMI.
Collapse
Affiliation(s)
- I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Yun Ho
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chun-Chi Chen
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Jer Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chia-Pin Lin
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Lung Tsai
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Victor Chien-Chia Wu
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chun-Chieh Wang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan.
| |
Collapse
|
42
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
43
|
The Diagnostic Value of Irisin in Pediatric Patients with Acute Abdominal Pain. Emerg Med Int 2018; 2018:3296535. [PMID: 30345115 PMCID: PMC6174778 DOI: 10.1155/2018/3296535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Objectives Diagnosis of pediatric patients presenting to the Emergency Department with acute abdominal pain is not always easy. The purpose of this study was to investigate the effectiveness of irisin, a peptide hormone with reactivity shown in the appendix and neutrophils, in the differential diagnosis of pediatric patients with acute abdominal pain. Methods 162 subjects consenting to participate, including 112 patients presenting to the Pediatric Emergency and Pediatric Surgery clinics with acute abdominal pain and 50 controls, were enrolled in the study. Blood was collected from all patients following initial examination for irisin, WBC, and CRP investigation. Results Mean irisin levels in cases of acute appendicitis (AA) and perforated appendicitis (PA) were statistically significantly higher compared to nonspecific abdominal pains and the control group. No statistically significant difference was observed in irisin levels between AA and PA cases. WBC and CRP levels were also significantly higher in cases of AA and PA compared to nonspecific abdominal pains. Conclusions Differential diagnosis of acute abdominal pains in children and deciding on surgery are a difficult and complex process. Our study shows that irisin can be a useful biomarker in differentiating AA and PA from other acute abdominal pains in children.
Collapse
|
44
|
Zhao YT, Wang J, Yano N, Zhang LX, Wang H, Zhang S, Qin G, Dubielecka PM, Zhuang S, Liu PY, Chin YE, Zhao TC. Irisin promotes cardiac progenitor cell-induced myocardial repair and functional improvement in infarcted heart. J Cell Physiol 2018; 234:1671-1681. [PMID: 30171682 DOI: 10.1002/jcp.27037] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
Irisin, a newly identified hormone and cardiokine, is critical for modulating body metabolism. New evidence indicates that irisin protects the heart against myocardial ischemic injury. However, whether irisin enhances cardiac progenitor cell (CPC)-induced cardiac repair remains unknown. This study examines the effect of irisin on CPC-induced cardiac repair when these cells are introduced into the infarcted myocardium. Nkx2.5+ CPC stable cells were isolated from mouse embryonic stem cells. Nkx2.5 + CPCs (0.5 × 10 6 ) were reintroduced into the infarcted myocardium using PEGlylated fibrin delivery. The mouse myocardial infarction model was created by permanent ligation of the left anterior descending (LAD) artery. Nkx2.5 + CPCs were pretreated with irisin at a concentration of 5 ng/ml in vitro for 24 hr before transplantation. Myocardial functions were evaluated by echocardiographic measurement. Eight weeks after engraftment, Nkx2.5 + CPCs improved ventricular function as evident by an increase in ejection fraction and fractional shortening. These findings are concomitant with the suppression of cardiac hypertrophy and attenuation of myocardial interstitial fibrosis. Transplantation of Nkx2.5 + CPCs promoted cardiac regeneration and neovascularization, which were increased with the pretreatment of Nkx2.5 + CPCs with irisin. Furthermore, irisin treatment promoted myocyte proliferation as indicated by proliferative markers Ki67 and phosphorylated histone 3 and decreased apoptosis. Additionally, irisin resulted in a marked reduction of histone deacetylase 4 and increased p38 acetylation in cultured CPCs. These results indicate that irisin promoted Nkx2.5 + CPC-induced cardiac regeneration and functional improvement and that irisin serves as a novel therapeutic approach for stem cells in cardiac repair.
Collapse
Affiliation(s)
- Yu Tina Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Jianguo Wang
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | | | - Ling X Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Hao Wang
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Shouyan Zhang
- Department of Medicine, Luoyang Central Hospital, Zhengzhou University, Luoyang, China
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Paul Y Liu
- Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| |
Collapse
|
45
|
Buscemi S, Corleo D, Buscemi C, Giordano C. Does iris(in) bring bad news or good news? Eat Weight Disord 2018; 23:431-442. [PMID: 28933009 DOI: 10.1007/s40519-017-0431-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/12/2017] [Indexed: 12/15/2022] Open
Abstract
Irisin, a novel myokine produced in response to physical activity, promotes white-to-brown fat transdifferentiation. The name irisin referred to the ancient Greek goddess Iris, the messenger who delivered (bad) news from the gods. In mice, it has been demonstrated that irisin plays a key role in metabolic regulation, energy expenditure and glucose homeostasis. New findings from various studies carried out in both animals and humans suggest that irisin might also have other favorable effects, such as increasing bone cortical mass, preventing hepatic lipid accumulation, and improving cognitive functions, thus mediating many exercise-induced health benefits. However, data on the role and function of irisin in humans have prompted controversy, due mostly to the only recent confirmation of the presence of irisin in humans. Another strong limitation to the understanding of irisin mechanisms of action is the lack of knowledge about its receptor, which until now remains unidentified in humans and in animals. This review presents an overall analysis of the history of irisin, its expression, and its involvement in health, especially in humans. Level of Evidence Level V, review.
Collapse
Affiliation(s)
- Silvio Buscemi
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy. .,Unit of Malattie Endocrine, del Ricambio e della Nutrizione, AOU Policlinico "P. Giaccone", Piazza delle cliniche 2, 90127, Palermo, Italy.
| | - Davide Corleo
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy.,Unit of Malattie Endocrine, del Ricambio e della Nutrizione, AOU Policlinico "P. Giaccone", Piazza delle cliniche 2, 90127, Palermo, Italy
| | - Carola Buscemi
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy.,Unit of Malattie Endocrine, del Ricambio e della Nutrizione, AOU Policlinico "P. Giaccone", Piazza delle cliniche 2, 90127, Palermo, Italy
| | - Carla Giordano
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy.,Unit of Malattie Endocrine, del Ricambio e della Nutrizione, AOU Policlinico "P. Giaccone", Piazza delle cliniche 2, 90127, Palermo, Italy
| |
Collapse
|
46
|
Li RL, Wu SS, Wu Y, Wang XX, Chen HY, Xin JJ, Li H, Lan J, Xue KY, Li X, Zhuo CL, Cai YY, He JH, Zhang HY, Tang CS, Wang W, Jiang W. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway. J Mol Cell Cardiol 2018; 121:242-255. [PMID: 30053525 DOI: 10.1016/j.yjmcc.2018.07.250] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023]
Abstract
In hypertrophic hearts, autophagic flux insufficiency is recognized as a key pathology leading to maladaptive cardiac remodeling and heart failure. This study aimed to illuminate the cardioprotective role and mechanisms of a new myokine and adipokine, irisin, in cardiac hypertrophy and remodeling. Adult male wild-type, mouse-FNDC5 (irisin-precursor)-knockout and FNDC5 transgenic mice received 4 weeks of transverse aortic constriction (TAC) alone or combined with intraperitoneal injection of chloroquine diphosphate (CQ). Endogenous FNDC5 ablation aggravated and exogenous FNDC5 overexpression attenuated the TAC-induced hypertrophic damage in the heart, which was comparable to the protection of irisin against cardiomyocyte hypertrophy induced by angiotensin II (Ang II) or phenylephrine (PE). Accumulated autophagosome and impaired autophagy flux occurred in the TAC-treated myocardium and Ang II- or PE-insulted cardiomyocytes. Irisin deficiency caused reduced autophagy and aggravated autophagy flux failure, whereas irisin overexpression or supplementation induced protective autophagy and improved autophagy flux, which were reversed by autophagy inhibitors Atg5 siRNA, 3-MA and CQ. Irisin boosted the activity of only AMPK but not Akt and MAPK family members in hypertrophic hearts and cultured cardiomyocytes and further activated ULK1 at Ser555 but not Ser757 and did not affect the mTOR-S6K axis. Blockage of AMPK and ULK1 with compund C and SBI-0206965, respectively, both abrogated irisin's protection against cardiomyocyte hypertrophic injury and reversed its induction of both autophagy and autophagy flux. Our results suggest that irisin protects against pressure overload-induced cardiac hypertrophy by inducing protective autophagy and autophagy flux via activating AMPK-ULK1 signaling.
Collapse
Affiliation(s)
- Ru-Li Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Si-Si Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yao Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Xiao Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hong-Ying Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Juan-Juan Xin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - He Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jie Lan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kun-Yue Xue
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Cai-Li Zhuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yu-Yan Cai
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jin-Han He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Heng-Yu Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chao-Shu Tang
- Department of Pathology and Physiology, Peking University Health Science Center, Beijing 10038, PR China
| | - Wang Wang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, 850 Republican Street N121, Seattle, WA 98109, USA
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
47
|
Mansur AJ. Adropin and Irisin in Patients with Cardiac Cachexia. Arq Bras Cardiol 2018; 111:48-49. [PMID: 29972412 PMCID: PMC6078362 DOI: 10.5935/abc.20180109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Alfredo José Mansur
- Instituto do Coração (InCor) do Hospital das
Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC
FMUSP), São Paulo, SP – Brazil
| |
Collapse
|
48
|
Asadi Y, Gorjipour F, Behrouzifar S, Vakili A. Irisin Peptide Protects Brain Against Ischemic Injury Through Reducing Apoptosis and Enhancing BDNF in a Rodent Model of Stroke. Neurochem Res 2018; 43:1549-1560. [PMID: 29882126 DOI: 10.1007/s11064-018-2569-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood-brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P < 0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P < 0.001) without changing BBB permeability (P > 0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P < 0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.
Collapse
Affiliation(s)
- Yasin Asadi
- Research Center and Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fazel Gorjipour
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Behrouzifar
- Research Center and Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abedin Vakili
- Research Center and Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
49
|
Timurkaan S, Gür FM, Gençer Tarakçı B, Yalçın MH, Girgin M. Identification of irisin immunoreactivity in porcupine (Hystrix cristata) adrenal glands and kidneys. Anat Histol Embryol 2018; 47:405-409. [PMID: 29862553 DOI: 10.1111/ahe.12371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/13/2018] [Indexed: 11/30/2022]
Abstract
Irisin, a novel peptide, was initially been shown to be expressed explicitly in the muscle tissues. We studied the presence of irisin immunoreactivity in porcupine adrenal glands and kidneys. Immunocytochemistry showed that irisin was localised both in the adrenal cortex and adrenal medulla. In organs, irisin immunoreactivity was found in the tubular and collecting system of the nephron. The functional role of irisin in the adrenal gland and kidney has not been precisely yet. However, irisin might have a paracrine and autocrine function as do other locally produced peptides.
Collapse
Affiliation(s)
- Sema Timurkaan
- Department of Histology and Embriyology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Fatih M Gür
- Department of Histology and Embryology, School of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Berrin Gençer Tarakçı
- Department of Histology and Embriyology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Mehmet H Yalçın
- Department of Histology and Embriyology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Mustafa Girgin
- Department of Surgery, School of Medicine, Fırat University, Elazıg, Turkey
| |
Collapse
|
50
|
Mahgoub MO, D'Souza C, Al Darmaki RSMH, Baniyas MMYH, Adeghate E. An update on the role of irisin in the regulation of endocrine and metabolic functions. Peptides 2018; 104:15-23. [PMID: 29608940 DOI: 10.1016/j.peptides.2018.03.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Irisin is a novel myokine and adipokine that has gained much attention recently due to its mechanisms of action. Irisin is secreted following proteolytic cleavage of its precursor fibronectin type III domain containing 5 (FNDC5). Following its release, irisin exerts its major action by increasing the expression of mitochondrial uncoupling protein 1 (UCP 1), which facilitates the conversion of white adipose tissue (WAT) into beige adipose tissue. Irisin is distributed in various body tissues and several actions have been attributed to its presence in those tissues. It has been suggested that it plays a role in metabolic diseases, ageing, inflammation and neurogenesis. However, the circulating levels of irisin are modulated by several factors such as diet, obesity, exercise, pharmacological agents and different pathological conditions. In this review, we have discussed the mechanisms by which irisin influences the functions of different body systems and how external factors in turn affect the circulating level of irisin. In conclusion, modification of circulating irisin level may help in the management of a variety of endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Mohamed Omer Mahgoub
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Post Box 17666, Al Ain, United Arab Emirates
| | - Crystal D'Souza
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Post Box 17666, Al Ain, United Arab Emirates
| | - Reem S M H Al Darmaki
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Post Box 17666, Al Ain, United Arab Emirates
| | - May M Y H Baniyas
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Post Box 17666, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Post Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|