1
|
Vadher KR, Sakure AA, Mankad PM, Rawat A, Bishnoi M, Kondepudi KK, Patel A, Sarkar P, Hati S. A comparative study on antidiabetic and anti-inflammatory activities of fermented whey and soy protein isolates and the release of biofunctional peptides: an in vitro and in silico studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3826-3842. [PMID: 39893650 DOI: 10.1002/jsfa.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND This study aims to evaluate the antidiabetic and anti-inflammatory activities of Lacticaseibacillus rhamnosus (M9) MTCC 25516 during the fermentation of whey and soy protein isolates. It also seeks to characterize protein profiles, identify multifunctional peptides, and assess structural changes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional (2D) gel electrophoresis, Fourier-transform infrared (FTIR) spectroscopy, and confocal laser scanning microscopy (CLSM). RESULTS Fermentation with Lacticaseibacillus rhamnosus (M9) significantly enhanced antidiabetic activity, with optimal peptide production at a 25 mL L-1 inoculation rate for 48 h at 37 °C. Proteolytic activity reduced inflammatory markers (IL-6, TNF-α, IL-1β, NO) in RAW 267.4 cells. SDS-PAGE and 2D gel electrophoresis revealed distinct protein profiles, with 19 and 49 protein spots in whey and soy isolates, respectively. Reverse-phase high-performance liquid chromatography (RP-HPLC) identified multifunctional peptides, and FTIR spectroscopy confirmed structural changes post-fermentation. Confocal microscopy further revealed protein modifications. CONCLUSION Fermentation of whey and soy protein isolates with Lacticaseibacillus rhamnosus (M9) enhances antidiabetic and anti-inflammatory properties. Optimal conditions (25 mL L-1 inoculation, 48-h incubation) improved peptide production, with analytical techniques confirming structural and functional changes. These findings suggest fermented protein isolates could be valuable in functional foods with health benefits. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, India
| | - Pooja M Mankad
- Department of Veterinary Biotechnology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Gandhinagar, India
| | - Anita Rawat
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Ashish Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science, Kamdhenu University, Anand, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| |
Collapse
|
2
|
Pearman NA, Morris GA, Smith AM. Angiotensin-Converting Enzyme (ACE)-Inhibitor Activity of Novel Peptides Derived from Porcine Liver and Placenta. Molecules 2025; 30:754. [PMID: 39942857 PMCID: PMC11820866 DOI: 10.3390/molecules30030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Peptides isolated from various biological materials are potential sources for novel angiotensin-converting enzyme (ACE) inhibitors. Here, the ACE-inhibitory activity of peptides derived from papain-digested hydrolysates of porcine liver and placenta were investigated. A high-throughput method was developed to identify potential bioactive peptides from the hydrolysates using in silico enzymatic cleavage, HPLC-MS/MS, and bioinformatics tools. Four peptides (FWG, MFLG, SDPPLVFVG, and FFNDA) were selected based on their predicted bioactivity, then synthesised and tested for ACE inhibition. All samples demonstrated ACE-inhibitory activity, with FWG and MFLG showing greater potency than SDPPLVFVG and FFNDA. The placenta hydrolysate outperformed both the liver hydrolysate and synthetic peptides in ACE inhibition, possibly due to it containing a higher proportion of dipeptides. The synthetic peptides' IC50 values were comparable to those reported for porcine muscle-derived peptides in previous studies. While less potent than the commercial ACE inhibitor captopril, the identified peptides showed promising ACE-inhibitory activity. This research demonstrates the potential of porcine liver and placenta as sources of novel ACE-inhibitory peptides and highlights the effectiveness of the developed high-throughput method for identifying bioactive peptides; this method could subsequently be adapted to other peptide sources, facilitating the development of innovative functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Nicholas A. Pearman
- Department of Physical and Life Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Gordon A. Morris
- Department of Physical and Life Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Alan M. Smith
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
3
|
Aurino E, Mora L, Marzocchella A, Kuchendorf CM, Ackermann B, Hayes M. Functional and Bioactive Benefits of Selected Microalgal Hydrolysates Assessed In Silico and In Vitro. Mar Drugs 2025; 23:53. [PMID: 39997177 PMCID: PMC11857603 DOI: 10.3390/md23020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
BIOPEP-UWM, a peptide database, contains 5128 peptides from a myriad of resources. Five listed peptides are Angiotensin-I-converting enzyme (ACE-1; EC3.4.15.1) inhibitory peptides derived from a red alga, while two from Chlorella vulgaris have anti-cancer and antioxidative bioactivities. Herein, we describe a process combining hydrolysis with two enzymes, Alcalase and Viscozyme, and filtration to generate protein-rich, bioactive peptide-containing hydrolysates from mixed species of Chlorella sp. and Scenedesmus sp. The potential of generated algal hydrolysates to act as food ingredients was determined by assessment of their techno-functional (foaming, emulsification, solubility, water holding, and oil holding capacity) properties. Bioactive screening of hydrolysates in vitro combined with mass spectrometry (MS) and in silico predictions identified bioactive and functional hydrolysates and six novel peptides. Peptides derived from Chlorella mix have the sequences YDYIGNNPAKGGLF and YIGNNPAKGGLF with predicted anti-inflammatory (medium confidence) and umami potential. Peptides from Scenedesmus mix have sequences IEWYGPDRPKFL, RSPTGEIIFGGETM, TVQIPGGERVPFLF, and IEWYGPDRPKFLGPF with predicted anti-inflammatory, anti-diabetic, and umami attributes. Such microalgal hydrolysates could provide essential amino acids to consumers as well as tertiary health benefits to improve human global health.
Collapse
Affiliation(s)
- Elena Aurino
- Dipartimento di Ingegneria Chimica, dei Materiali, e della Produzione Industriale, Università degli Studi di Napoli ‘Federico II’, Piazzale Tecchio, 80, 80125 Naples, Italy; (E.A.); (A.M.)
- Food BioSciences, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Spain;
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali, e della Produzione Industriale, Università degli Studi di Napoli ‘Federico II’, Piazzale Tecchio, 80, 80125 Naples, Italy; (E.A.); (A.M.)
| | - Christina M. Kuchendorf
- Institute of Bio- and Geosciences, IBG-2—Plant Sciences Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany;
| | - Bärbel Ackermann
- Stadt Erftstadt, Stabsstelle Klimaschutz, Holzdamm 10, 50374 Erftstadt, Germany;
| | - Maria Hayes
- Food BioSciences, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| |
Collapse
|
4
|
Alzain M, Ali EM, Zamzami M, Qadri I, Choudhry H, Chaieb K, Kouidhi B, Altayb HN. Identification of antimicrobial bioactive peptides from the camel milk protein lactoferrin: Molecular docking, molecular dynamic simulation, and in vitro study. FOOD AND HUMANITY 2024; 3:100414. [DOI: 10.1016/j.foohum.2024.100414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
|
5
|
Arámburo-Gálvez JG, Tinoco-Narez-Gil R, Mora-Melgem JA, Sánchez-Cárdenas CA, Gracia-Valenzuela MH, Flores-Mendoza LK, Figueroa-Salcido OG, Ontiveros N. In Silico Hydrolysis of Lupin ( Lupinus angustifolius L.) Conglutins with Plant Proteases Releases Antihypertensive and Antidiabetic Peptides That Are Bioavailable, Non-Toxic, and Gastrointestinal Digestion Stable. Int J Mol Sci 2024; 25:12866. [PMID: 39684577 DOI: 10.3390/ijms252312866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Lupin (Lupinus angustifolius L.) proteins are potential sources of bioactive peptides (LBPs) that can inhibit dipeptidyl peptidase IV (DPP-IV) and angiotensin I-converting enzyme (ACE-I) activity. However, the capacity of different enzymes to release LBPs, the pharmacokinetic and bioactivities of the peptides released, and their binding affinities with the active sites of DPP-IV and ECA-I are topics scarcely addressed. Therefore, we used in silico hydrolysis (BIOPEP-UWM platform) with various enzymes to predict the release of LBPs. Among the bioactive peptides identified in lupin proteins (n = 4813), 2062 and 1558 had DPP-IV and ACE-I inhibitory activity, respectively. Ficin, bromelain, and papain released the highest proportion of ACE-I (n = 433, 411, and 379, respectively) and DPP-IV (n = 556, 544, and 596, respectively) inhibitory peptides. LBPs with favorable pharmacokinetics and gastrointestinal stability tightly interacted with the active sites of ACE-I (-5.6 to -8.9 kcal/mol) and DPP-IV (-5.4 to -7.6 kcal/mol). Papain generated the most bioavailable LBPs (n = 459) with ACE-I (n = 223) and DPP-IV (n = 412) inhibitory activity. These peptides were non-toxic and gastrointestinal digestion stable. Notably, papain-based hydrolysis released some LBPs (n = 270) that inhibited both ACE-I and DPP-IV. Plant protease-based hydrolysis is a promising approach for producing lupin hydrolysates with ACE-I and DPP-IV inhibitory activities.
Collapse
Affiliation(s)
- Jesús Gilberto Arámburo-Gálvez
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico
| | - Raúl Tinoco-Narez-Gil
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico
| | - José Antonio Mora-Melgem
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico
| | - Cesar Antonio Sánchez-Cárdenas
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Sinaloa, Mexico
| | - Martina Hilda Gracia-Valenzuela
- Laboratory for the Research and Detection of Biological Agents and Contaminants (CONAHCYT National Laboratory, LANIBIOC), Yaqui Valley Technological Institute, National Technological Institute of Mexico, Bácum 85276, Sonora, Mexico
| | - Lilian Karem Flores-Mendoza
- Clinical and Research Laboratory (LACIUS, C.N., CONAHCYT National Laboratory, LANIBIOC), Deparment of Chemical, Biological, and Agricultural Sciences (DC-QB), Faculty of Biological and Health Sciences, University of Sonora, Navojoa 85880, Sonora, Mexico
| | - Oscar Gerardo Figueroa-Salcido
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Sinaloa, Mexico
| | - Noé Ontiveros
- Clinical and Research Laboratory (LACIUS, C.N., CONAHCYT National Laboratory, LANIBIOC), Deparment of Chemical, Biological, and Agricultural Sciences (DC-QB), Faculty of Biological and Health Sciences, University of Sonora, Navojoa 85880, Sonora, Mexico
| |
Collapse
|
6
|
Madhavi BGK, Wijethunga AM, Okagu OD, Sun X. Defatted Wheat Germ Protein-Derived Peptides Showed Multiple Biological Activities from the Stomach to Small Intestine: In Silico and In Vitro Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20527-20536. [PMID: 39231371 DOI: 10.1021/acs.jafc.4c06539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
This study aimed to test the hypothesis that bioactive peptides can exert multiple bioactivities at different sites in the gastrointestinal tract. Our previous research identified 33 gastric-resistant peptides derived from wheat germ with potential antiadhesive activity against Helicobacter pylori in the stomach. In this work, in silico digestion of these peptides with trypsin, thermolysin, and chymotrypsin produced 67 peptide fragments. Molecular docking was conducted to predict their ACE and DPP-IV inhibitory activities in the small intestine. Three peptides (VPIPNPSGDR, VPY, and AR) were selected and synthesized for in vitro validation. Their generation in the gastrointestinal tract was verified via in vitro digestion, followed by mass spectrometry analysis. The IC50 values for ACE inhibition were 199.5 μM (VPIPNPSGDR), 316.3 μM (VPY), and 446.7 μM (AR). For DPP-IV inhibition, their IC50 values were 0.5, 1.6, and 4.0 mM, respectively. This research pioneers new directions in the emerging field of multifunctional peptides, providing scientific evidence to support the utilization of wheat germ as value-added food ingredients.
Collapse
Affiliation(s)
- Bolappa Gamage Kaushalya Madhavi
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Anushi Madushani Wijethunga
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Ogadimma D Okagu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Xiaohong Sun
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| |
Collapse
|
7
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
8
|
Yang X, Li X, Wang X, Chen C, Wu D, Cheng Y, Wang Y, Sha L, Kang H, Liu S, Fan X, Chen Y, Zhou Y, Zhang H. Identification and Characterization of LBD Gene Family in Pseudoroegneria libanotica Reveals Functions of PseLBD1 and PseLBD12 in Response to Abiotic Stress. Biochem Genet 2024:10.1007/s10528-024-10859-6. [PMID: 38850375 DOI: 10.1007/s10528-024-10859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The lateral organ boundaries domain (LBD) plays a vital role as a transcriptional coactivator within plants, serving as an indispensable function in growth, development, and stress response. In a previous study, we found that the LBD genes of Pseudoroegneria libanotica (a maternal donor for three-quarter of perennial Triticeae species with good stress resistance, holds great significance in exploring its response mechanisms to abiotic stress for the Triticeae tribe) might be involved in responding to drought stress. Therefore, we further identified the LBD gene family in this study. A total of 29 PseLBDs were identified. Among them, 24 were categorized into subclass I, while 5 fell into subclass II. The identification of cis-acting elements reveals the extensive involvement of PseLBDs in various biological processes in P. libanotica. Collinearity analysis indicates that 86% of PseLBDs were single-copy genes and have undergone a single whole-genome duplication event. Transcriptomic differential expression analysis of PseLBDs under drought stress reveals that the most likely candidates for responding to abiotic stress were PseLBD1 and PseLBD12. They have been demonstrated to respond to drought, salt, heavy metal, and heat stress in yeast. Furthermore, it is plausible that functional divergence might have occurred among their orthologous genes in wheat. This study not only establishes a foundation for a deeper understanding of the biological roles of PseLBDs in P. libanotica but also unveils novel potential genes for enhancing the genetic background of crops within Triticeae crops, such as wheat.
Collapse
Affiliation(s)
- Xunzhe Yang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- UWA School of Agriculture and Environment, and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Xiang Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xia Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Chen Chen
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dandan Wu
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yonghong Zhou
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Pu L, Kong X, Xing R, Wang Y, Zhang C, Hua Y, Chen Y, Li X. Identification, rapid screening, docking mechanism and in vitro digestion stability of novel DPP-4 inhibitory peptides from wheat gluten with ginger protease. Food Funct 2024; 15:3848-3863. [PMID: 38512162 DOI: 10.1039/d3fo05423c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To better understand the hypoglycemic potential of wheat gluten (WG), we screened dipeptidyl peptidase IV (DPP-4) inhibitory active peptides from WG hydrolysates. WG hydrolysates prepared by ginger protease were found to have the highest DPP-4 inhibitory activity among the five enzymatic hydrolysates, from which a 1-3 kDa fraction was isolated by ultrafiltration. Further characterization of the fraction with nano-HPLC-MS/MS revealed 1133 peptides. Among them, peptides with P'2 (the second position of the N-terminal) and P2 (the second position of the C-terminal) as proline residues (Pro) accounted for 12.44% and 43.69%, respectively. The peptides including Pro-Pro-Phe-Ser (PPFS), Ala-Pro-Phe-Gly-Leu (APFGL), and Pro-Pro-Phe-Trp (PPFW) exhibited the most potent DPP-4 inhibitory activity with IC50 values of 56.63, 79.45, and 199.82 μM, respectively. The high inhibitory activity of PPFS, APFGL, and PPFW could be mainly attributed to their interaction with the S2 pocket (Glu205 and Glu206) and the catalytic triad (Ser630 and His740) of DPP-4, which adopted competitive, mixed, and mixed inhibitory modes, respectively. After comparative analysis of PPFS, PPFW, and PPF, Ser was found to be more conducive to enhancing the DPP-4 inhibitory activity. Interestingly, peptides with P2 as Pro also exhibited good DPP-4 inhibitory activity. Meanwhile, DPP-4 inhibitory peptides from WG showed excellent stability, suggesting a potential application in type 2 diabetes (T2DM) therapy or in the food industry as functional components.
Collapse
Affiliation(s)
- Linsong Pu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Ruoyu Xing
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yuqing Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yufei Hua
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yeming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xingfei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
10
|
Cui P, Shao T, Liu W, Li M, Yu M, Zhao W, Song Y, Ding Y, Liu J. Advanced review on type II collagen and peptide: preparation, functional activities and food industry application. Crit Rev Food Sci Nutr 2023; 64:11302-11319. [PMID: 37459185 DOI: 10.1080/10408398.2023.2236699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Type II collagen is a homologous super-helical structure consisting of three identical α1(II) chains. It is a major component of animal cartilage, and is widely used in the food industry. Type II collagen can be extracted by acids, salts, enzymes, and via auxiliary methods and can be further hydrolyzed chemically and enzymatically to produce collagen peptides. Recent studies have shown that type II collagen and its polypeptides have good self-assembly properties and important biological activities, such as maintaining cartilage tissue integrity, inducing immune tolerance, stimulating chondrocyte growth and redifferentiation, and providing antioxidant benefits. This review focuses specifically on type II collagen and describes its structure, extraction, and purification, as well as the preparation of type II collagen peptides. In particular, the self-assembly properties and functional activities of type II collagen and collagen peptides are reviewed. In addition, recent research advances in the application of type II collagen and collagen peptides in functional foods, food additives, food coating materials, edible films, and carriers for the food industry are presented. This paper provides more detailed and comprehensive information on type II collagen and peptide for their application.
Collapse
Affiliation(s)
- Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tianlun Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Mengyu Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Mingxiao Yu
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Weixue Zhao
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yanzhuo Song
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
11
|
Zou L, Zhou Y, Yu X, Chen C, Xiao G. Angiotensin I-Converting Enzyme Inhibitory Activity of Two Peptides Derived from In Vitro Digestion Products of Pork Sausage with Partial Substitution of NaCl by KCl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406188 DOI: 10.1021/acs.jafc.3c01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
This study aimed to identify angiotensin I-converting enzyme (ACE) from in vitro digestion products of pork sausage with partial substitution of NaCl by KCl (PSRK). Peptides from in vitro digestion products of PSRK were identified through liquid chromatography with tandem mass spectrometry analysis coupled with de novo sequencing. Subsequently, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were screened based on PeptideRanker, in silico absorption, molecular docking, and the determination of ACE inhibitory activity. In addition, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were mixed-type inhibitors; these peptides' ACE inhibitory activities were expressed as the 50% inhibitory concentration (IC50) values in vitro, which were 196.16 and 150.88 μM, respectively. After 2 h of incubation, LIVGFPAYGH and IVGFPAYGH could be transported through Caco-2 cell monolayers with paracellular passive diffusion. Furthermore, LIVGFPAYGH and IVGFPAYGH significantly increased the levels of ACE2 and nitric oxide while decreasing the levels of ACE, angiotensin II, and endothelin-1 in Ang I-treated human umbilical vein endothelial cells, indicating the ACE inhibitory effect of LIVGFPAYGH and IVGFPAYGH. In summary, LIVGFPAYGH and IVGFPAYGH from PSRK can be used as functional foods with antihypertensive activity.
Collapse
Affiliation(s)
- Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Yu Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Xia Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| |
Collapse
|
12
|
Taraszkiewicz A, Sinkiewicz I, Sommer A, Staroszczyk H. The biological role of prolyl oligopeptidase and the procognitive potential of its peptidic inhibitors from food proteins. Crit Rev Food Sci Nutr 2023; 64:6567-6580. [PMID: 36798052 DOI: 10.1080/10408398.2023.2170973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Prolyl oligopeptidase (POP) is a conserved serine protease belonging to proline-specific peptidases. It has both enzymatic and non-enzymatic activity and is involved in numerous biological processes in the human body, playing a role in e.g., cellular growth and differentiation, inflammation, as well as the development of some neurodegenerative and neuropsychiatric disorders. This article describes the physiological and pathological aspects of POP activity and the state-of-art of its peptidic inhibitors originating from food proteins, with a particular focus on their potential as cognition-enhancing agents. Although some milk, meat, fish, and plant protein-derived peptides have the potential to be applied as natural, procognitive nutraceuticals, their effectiveness requires further evaluation, especially in clinical trials. We demonstrated that the important features of the most promising POP-inhibiting peptides are very short sequence, high content of hydrophobic amino acids, and usually the presence of proline residue.
Collapse
Affiliation(s)
- Antoni Taraszkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Izabela Sinkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Agata Sommer
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
13
|
Bioactive peptides derived from fermented foods: Preparation and biological activities. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
14
|
Purcell D, Packer MA, Hayes M. Identification of Bioactive Peptides from a Laminaria digitata Protein Hydrolysate Using In Silico and In Vitro Methods to Identify Angiotensin-1-Converting Enzyme (ACE-1) Inhibitory Peptides. Mar Drugs 2023; 21:90. [PMID: 36827131 PMCID: PMC9967564 DOI: 10.3390/md21020090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Bioactive peptides range in size from 2-30 amino acids and may be derived from any protein-containing biomass using hydrolysis, fermentation or high-pressure processing. Pro-peptides or cryptides result in shorter peptide sequences following digestion and may have enhanced bioactivity. Previously, we identified a protein hydrolysate generated from Laminaria digitata that inhibited ACE-1 in vitro and had an ACE-1 IC50 value of 590 µg/mL compared to an ACE-1 IC50 value of 500 µg/mL (~2.3 µM) observed for the anti-hypertensive drug Captopril©. A number of peptide sequences (130 in total) were identified using mass spectrometry from a 3 kDa permeate of this hydrolysate. Predicted bioactivities for these peptides were determined using an in silico strategy previously published by this group utilizing available databases including Expasy peptide cutter, BIOPEP and Peptide Ranker. Peptide sequences YIGNNPAKGGLF and IGNNPAKGGLF had Peptide Ranker scores of 0.81 and 0.80, respectively, and were chemically synthesized. Synthesized peptides were evaluated for ACE-1 inhibitory activity in vitro and were found to inhibit ACE-1 by 80 ± 8% and 91 ± 16%, respectively. The observed ACE-1 IC50 values for IGNNPAKGGLF and YIGNNPAKGGLF were determined as 174.4 µg/mL and 133.1 µg/mL. Both peptides produced sequences following simulated digestion with the potential to inhibit Dipeptidyl peptidase IV (DPP-IV).
Collapse
Affiliation(s)
- Diane Purcell
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- Cawthron Institute, 98 Halifax Street, Nelson 7010, New Zealand
| | | | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
| |
Collapse
|
15
|
Secrets behind Protein Sequences: Unveiling the Potential Reasons for Varying Allergenicity Caused by Caseins from Cows, Goats, Camels, and Mares Based on Bioinformatics Analyses. Int J Mol Sci 2023; 24:ijms24032481. [PMID: 36768806 PMCID: PMC9916876 DOI: 10.3390/ijms24032481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
This study systematically investigated the differences in allergenicity of casein in cow milk (CM), goat milk (GM), camel milk (CAM), and mare milk (MM) from protein structures using bioinformatics. Primary structure sequence analysis reveals high sequence similarity between the α-casein of CM and GM, while all allergenic subtypes are likely to have good hydrophilicity and thermal stability. By analyzing linear B-cell epitope, T-cell epitope, and allergenic peptides, the strongest casein allergenicity is observed for CM, followed by GM, and the casein of MM has the weakest allergenicity. Meanwhile, 7, 9, and 16 similar or identical amino acid fragments in linear B-cell epitopes, T-cell epitopes, and allergenic peptides, respectively, were observed in different milks. Among these, the same T-cell epitope FLGAEVQNQ was shared by κ-CN in all four different species' milk. Epitope results may provide targets of allergenic fragments for reducing milk allergenicity through physical or/and chemical methods. This study explained the underlying secrets for the high allergenicity of CM to some extent from the perspective of casein and provided new insights for the dairy industry to reduce milk allergy. Furthermore, it provides a new idea and method for comparing the allergenicity of homologous proteins from different species.
Collapse
|
16
|
In Silico Prospecting for Novel Bioactive Peptides from Seafoods: A Case Study on Pacific Oyster ( Crassostrea gigas). Molecules 2023; 28:molecules28020651. [PMID: 36677709 PMCID: PMC9867001 DOI: 10.3390/molecules28020651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Pacific oyster (Crassostrea gigas), an abundant bivalve consumed across the Pacific, is known to possess a wide range of bioactivities. While there has been some work on its bioactive hydrolysates, the discovery of bioactive peptides (BAPs) remains limited due to the resource-intensive nature of the existing discovery pipeline. To overcome this constraint, in silico-based prospecting is employed to accelerate BAP discovery. Major oyster proteins were digested virtually under a simulated gastrointestinal condition to generate virtual peptide products that were screened against existing databases for peptide bioactivities, toxicity, bitterness, stability in the intestine and in the blood, and novelty. Five peptide candidates were shortlisted showing antidiabetic, anti-inflammatory, antihypertensive, antimicrobial, and anticancer potential. By employing this approach, oyster BAPs were identified at a faster rate, with a wider applicability reach. With the growing market for peptide-based nutraceuticals, this provides an efficient workflow for candidate scouting and end-use investigation for targeted functional product preparation.
Collapse
|
17
|
Villaró S, Jiménez-Márquez S, Musari E, Bermejo R, Lafarga T. Production of enzymatic hydrolysates with in vitro antioxidant, antihypertensive, and antidiabetic properties from proteins derived from Arthrospira platensis. Food Res Int 2023; 163:112270. [PMID: 36596181 DOI: 10.1016/j.foodres.2022.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
The microalga Arthrospira platensis BEA 005B was produced using 80 m2 (9 m3) raceway photobioreactors achieving a biomass productivity of 28.2 g·m-2·day-1 when operating the reactors in semi-continuous mode (0.33 day-1). The produced biomass was rich in proteins (58.1 g·100 g-1) and carbohydrates (25.6 g·100 g-1); the content of phycocyanins and allophycocyanins was 115.4 and 36.9 mg·g-1, respectively. Ultrasounds and high-pressure homogenisation allowed recovering approximately 90% of the initial protein content of the biomass; however, the energetic requirements of the former (∼100 kJ·kg-1) were significantly lower than those of high-pressure homogenisation (∼200 kJ·kg-1). An in silico analysis revealed that papain and ficin would allow releasing a large number of bioactive peptides with antioxidant, antihypertensive (ACE-I and renin), and antidiabetic (DPP-IV, α-amylase, and α-glucosidase) properties. Both were assessed in vitro together with Alcalase and pepsin leading to the generation of enzymatic hydrolysates with in vitro bioactivity.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120 Almeria, Spain
| | | | - Evan Musari
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Ruperto Bermejo
- Department of Physical and Analytical Chemistry, University of Jaen, 23700 Linares, Spain
| | - Tomás Lafarga
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120 Almeria, Spain.
| |
Collapse
|
18
|
Liu W, Wang X, Yang W, Li X, Qi D, Chen H, Liu H, Yu S, Pan Y, Liu Y, Wang G. Identification, Screening, and Comprehensive Evaluation of Novel DPP-IV Inhibitory Peptides from the Tilapia Skin Gelatin Hydrolysate Produced Using Ginger Protease. Biomolecules 2022; 12:biom12121866. [PMID: 36551294 PMCID: PMC9775409 DOI: 10.3390/biom12121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Inhibition of dipeptidyl peptidase-IV (DPP-IV) is an effective therapy for treating type II diabetes (T2D) that has been widely applied in clinical practice. We aimed to evaluate the DPP-IV inhibitory properties of ginger protease hydrolysate (GPH) and propose a comprehensive approach to screen and evaluate DPP-IV inhibitors. METHODS We evaluated the in vitro inhibitory properties of fish skin gelatin hydrolysates produced by five proteases, namely, neutral protease, alkaline protease, bromelain, papain, and ginger protease, toward DPP-IV. We screened the most potent DPP-IV inhibitory peptide (DIP) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with in silico analysis. Next, surface plasmon resonance (SPR) technology was innovatively introduced to explore the interactions between DPP-IV and DIP, as well as the IC50. Furthermore, we performed oral administration of DIP in rats to study its in vivo absorption. RESULTS GPH displayed the highest degree of hydrolysis (20.37%) and DPP-IV inhibitory activity (65.18%). A total of 292 peptides from the GPH were identified using LC-MS/MS combined with de novo sequencing. Gly-Pro-Hyp-Gly-Pro-Pro-Gly-Pro-Gly-Pro (GPXGPPGPGP) was identified as the most potent DPP-IV inhibitory peptide after in silico screening (Peptide Ranker and molecular docking). Then, the in vitro study revealed that GPXGPPGPGP had a high inhibitory effect on DPP-IV (IC50: 1012.3 ± 23.3 μM) and exhibited fast kinetics with rapid binding and dissociation with DPP-IV. In vivo analysis indicated that GPXGPPGPGP was not absorbed intact but partially, in the form of dipeptides and tripeptides. CONCLUSION Overall, the results suggested that GPH would be a natural functional food for treating T2D and provided new ideas for searching and evaluating potential antidiabetic compounds. The obtained GPXGPPGPGP can be structurally optimized for in-depth evaluation in animal and cellular experiments.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xinyu Wang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wenning Yang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xueyan Li
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dongying Qi
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Hongjiao Chen
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Huining Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shuang Yu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yanli Pan
- Institute of Information on Traditional Chinese Medicine China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (Y.P.); (Y.L.); (G.W.)
| | - Yang Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
- Correspondence: (Y.P.); (Y.L.); (G.W.)
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China
- Correspondence: (Y.P.); (Y.L.); (G.W.)
| |
Collapse
|
19
|
Hayes M, Mora L, Lucakova S. Identification of Bioactive Peptides from Nannochloropsis oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis. Biomolecules 2022; 12:biom12121806. [PMID: 36551234 PMCID: PMC9775090 DOI: 10.3390/biom12121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In vitro ACE-1 inhibitory peptides were characterised previously from a number of microalgal species including Spirulina platensis (peptide IAPG), Chlorella vulgaris (peptides FDL, AFL, VVPPA), Isochrysis galbana (peptide YMGLDLK), Chlorella sorokiniana (peptides IW and LW) and indeed Nannochloropsis oculata (peptides GMNNLTP and LEQ). The isolation of protein from Nannochloropsis oculata using a combination of ammonium salt precipitation and xylanase treatment of resulting biomass combined with molecular weight cut off filtration to produce a permeate and characterisation of bioactive peptides is described. The Angiotensin-1-converting enzyme (ACE-1) IC50 value for the generated permeate fraction was 370 µg/mL. Ninety-five peptide sequences within the permeate fraction were determined using mass spectrometry and eight peptides were selected for chemical synthesis based on in silico analysis. Synthesized peptides were novel based on a search of the literature and relevant databases. In silico, simulated gastrointestinal digestion identified further peptides with bioactivities including ACE-1 inhibitory peptides and peptides with antithrombotic and calcium/calmodulin-dependent kinase II (CAMKII) inhibition. This work highlights the potential of Nannochloropsis oculata biomass as both a protein and bioactive peptide resource, which could be harnessed for use in the development of functional foods and feeds.
Collapse
Affiliation(s)
- Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, D15 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-8059957
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos, Burjassot CSIC, 46980 Valencia, Spain
| | - Simona Lucakova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, 165 02 Prague, Czech Republic
| |
Collapse
|
20
|
Iram D, Kindarle UA, Sansi MS, Meena S, Puniya AK, Vij S. Peptidomics-based identification of an antimicrobial peptide derived from goat milk fermented by Lactobacillus rhamnosus (C25). J Food Biochem 2022; 46:e14450. [PMID: 36226982 DOI: 10.1111/jfbc.14450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023]
Abstract
Antimicrobial peptides (AMPs) are emerging as promising novel drug applicants. In the present study, goat milk was fermented using Lactobacillus rhamnosus C25 to generate bioactive peptides (BAPs). The peptide fractions generated were separated using ultrafiltration membranes with molecular weight cut-offs of 3, 5, and 10 kDa, and their antimicrobial activity toward Gram-positive and Gram-negative bacteria was investigated. Isolated AMPs were characterized using RP-HPLC and identified by LC-MS/MS. A total of 569 sequences of peptides were identified by mass spectrometry. Out of the 569, 36 were predicted as AMPs, 21 were predicted as cationic, and out of 21, 6 AMPs were helical peptides. In silico analysis indicated that the majority of peptides were antimicrobial and cationic in nature, an important factor for peptide interaction with the negative charge membrane of bacteria. The results showed that the peptides of <5 kDa exhibited maximum antibacterial activity against E. faecalis, E. coli, and S. typhi. Further, molecular docking was used to evaluate the potent MurD ligase inhibitors. On the basis of ligand binding energy, six predicted AMPs were selected and then analyzed by AutoDock tools. Among the six AMPs, peptides IGHFKLIFSLLRV (-7.5 kcal/mol) and KSFCPAPVAPPPPT (-7.6 kcal/mol), were predicted as a high-potent antimicrobial. Based on these findings, in silico investigations reveal that proteins of goat milk are a potential source of AMPs. This is for the first time that the antimicrobial peptides produced by Lactobacillus rhamnosus (C25) fermentation of goat milk have been identified via LC-MS/MS and predicted as AMPs, cationic charges, helical structure in nature, and potent MurD ligase inhibitors. These peptides can be synthesized and improved for use as antimicrobial agents. PRACTICAL APPLICATIONS: Goat milk is considered a high-quality source of milk protein. According to this study, goat milk protein is a potential source of AMPs, Fermentation can yield goat milk-derived peptides with a broad antibacterial activity spectrum at a low cost. The approach described here could be beneficial in that the significant AMPs can be synthesized and used in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Daraksha Iram
- Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Uday Arun Kindarle
- Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Biofunctional Peptidomics & Metabolic Syndrome Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sunita Meena
- Biofunctional Peptidomics & Metabolic Syndrome Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Anil Kumar Puniya
- Anaerobic Microbial Fermentation Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shilpa Vij
- Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
21
|
Madhu M, Kumar D, Sirohi R, Tarafdar A, Dhewa T, Aluko RE, Badgujar PC, Awasthi MK. Bioactive peptides from meat: Current status on production, biological activity, safety, and regulatory framework. CHEMOSPHERE 2022; 307:135650. [PMID: 35835242 DOI: 10.1016/j.chemosphere.2022.135650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
By-products of the meat processing industry which are often discarded as waste are excellent protein substrates for producing bioactive peptides through enzymatic hydrolysis. These peptides have tremendous potential for the development of functional food products but there is scanty information about the regulations on bioactive peptides or products in various parts of the world. This review focuses on the diverse bioactive peptides identified from different meat and meat by-products, their bioactivity and challenges associated in their production as well as factors limiting their effective commercialization. Furthermore, this report provides additional information on the possible toxic peptides formed during production of the bioactive peptides, which enables delineation of associated safety and risk. The regulatory framework in place for bioactive peptide-based foods in different jurisdictions and the future research directions are also discussed. Uniform quality, high cost, poor sensory acceptance, lack of toxicological studies and clinical evidence, paltry stability, and lack of bioavailability data are some of the key challenges hindering commercial advancement of bioactive peptide-based functional foods. Absorption, distribution, metabolism and excretion (ADME) studies in rodents, in vitro genotoxicity, and immunogenicity data could be considered as absolute pre-requisites to ensure safety of bioactive peptides. In the absence of ADME and genotoxicity data, long term usage to evaluate safety is highly warranted. Differences in legislations among countries pose challenge in the international trade of bioactive peptides-based functional foods. Harmonization of regulations could be a way out and hence further research in this area is encouraged.
Collapse
Affiliation(s)
- Madhuja Madhu
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat-131, 028, Haryana, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat-131, 028, Haryana, India; Food Science and Technology Section, Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad, 121004, Haryana, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat-131, 028, Haryana, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
22
|
Proteomics Characterization of Food-Derived Bioactive Peptides with Anti-Allergic and Anti-Inflammatory Properties. Nutrients 2022; 14:nu14204400. [PMID: 36297084 PMCID: PMC9609859 DOI: 10.3390/nu14204400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.
Collapse
|
23
|
He L, Wang X, Wang Y, Luo J, Zhao Y, Han G, Han L, Yu Q. Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded cowhide collagen. Food Chem 2022; 405:134793. [DOI: 10.1016/j.foodchem.2022.134793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
24
|
Senadheera TRL, Hossain A, Dave D, Shahidi F. In Silico Analysis of Bioactive Peptides Produced from Underutilized Sea Cucumber By-Products-A Bioinformatics Approach. Mar Drugs 2022; 20:610. [PMID: 36286434 PMCID: PMC9605078 DOI: 10.3390/md20100610] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 10/15/2023] Open
Abstract
Bioinformatic tools are widely used in predicting potent bioactive peptides from food derived materials. This study was focused on utilizing sea cucumber processing by-products for generating antioxidant and ACE inhibitory peptides by application of a range of in silico techniques. Identified peptides using LC-MS/MS were virtually screened by PepRank technique followed by in silico proteolysis simulation with representative digestive enzymes using BIOPEP-UWMTM data base tool. The resultant peptides after simulated digestion were evaluated for their toxicity using ToxinPred software. All digestive resistance peptides were found to be non-toxic and displayed favorable functional properties indicating their potential for use in a wide range of food applications, including hydrophobic and hydrophilic systems. Identified peptides were further assessed for their medicinal characteristics by employing SwissADME web-based application. Our findings provide an insight on potential use of undervalued sea cucumber processing discards for functional food product development and natural pharmaceutical ingredients attributed to the oral drug discovery process.
Collapse
Affiliation(s)
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Marine Institute, Memorial University, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
25
|
Kęska P, Stadnik J. Dipeptidyl Peptidase IV Inhibitory Peptides Generated in Dry-Cured Pork Loin during Aging and Gastrointestinal Digestion. Nutrients 2022; 14:nu14040770. [PMID: 35215420 PMCID: PMC8878428 DOI: 10.3390/nu14040770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
The ability of peptides from an aqueous and salt-soluble protein extract of dry-cured pork loins to inhibit the action of dipeptidyl peptidase IV was determined. This activity was assessed at different times of the production process, i.e., 28, 90, 180, 270 and 360 days. The resistance of the biological property during the simulated digestive process was also assessed. For this, the extracts were hydrolyzed with pepsin and pancreatin as a simulated digestion step of the gastrointestinal tract and fractionated (>7 kDa) as an intestinal absorption step. The results indicate that dried-pork-loin peptides may have potential as functional food ingredients in the prevention and treatment of type 2 diabetes mellitus. In particular, the APPPPAEV, APPPPAEVH, KLPPLPL, RLPLLP, VATPPPPPPK, VPIPVPLPM and VPLPVPVPI sequences show promise as natural food compounds helpful in maintaining good health.
Collapse
|
26
|
Xie D, Du L, Lin H, Su E, Shen Y, Xie J, Wei D. In vitro-in silico screening strategy and mechanism of angiotensin I-converting enzyme inhibitory peptides from α-lactalbumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Wenhui T, Shumin H, Yongliang Z, Liping S, Hua Y. Identification of in vitro angiotensin-converting enzyme and dipeptidyl peptidase IV inhibitory peptides from draft beer by virtual screening and molecular docking. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1085-1094. [PMID: 34309842 DOI: 10.1002/jsfa.11445] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hypertension and diabetes are two kinds of senile diseases which often occur simultaneously. The commonly used drugs in clinic may produce certain side effects. Food-derived polypeptide is a kind of polypeptide with great development potential, which has many functions of regulating human physiological function. Beer is rich in nutrition but there are few researches on bioactive peptides in beer. RESULTS In this study, a rapid virtual screening method was established to obtain bioactive peptides from Tsingtao draft beer. The peptide sequence was analyzed by ultra-performance liquid chromatography-quadrupole-Orbitrap-tandem mass spectrometry (UPLC-Q-Orbitrap-MS2 ), and 50 peptides were identified. Eight peptides with potential biological activities were screened by using Peptide Ranker software and previous literature references. On the basis of absorption prediction, toxicity prediction, and molecular docking analysis, LNFDPNR and LPQQQAQFK were finally confirmed. The molecular docking results showed that two peptides could bind angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) tightly by hydrogen bonding and hydrophobic interaction. The in vitro activity evaluation results showed that two peptides had obvious ACE and DPP-IV inhibitory activity. CONCLUSION This study established a method for rapidly screening bioactive peptides from Tsingtao draft beer, screened two ACE and DPP-IV inhibitory peptides in beer and analyzed their active action mechanism. This article may have great theoretical significance and practical value to further explore the health function of beer. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tian Wenhui
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd. Qingdao, Qingdao, China
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Hu Shumin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd. Qingdao, Qingdao, China
| | - Zhuang Yongliang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Sun Liping
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Yin Hua
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd. Qingdao, Qingdao, China
| |
Collapse
|
28
|
Shuli Z, Linlin L, Li G, Yinghu Z, Nan S, Haibin W, Hongyu X. Bioinformatics and Computer Simulation approaches to the discovery and analysis of Bioactive Peptides. Curr Pharm Biotechnol 2022; 23:1541-1555. [PMID: 34994325 DOI: 10.2174/1389201023666220106161016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
The traditional process of separating and purifying bioactive peptides is laborious and time-consuming. Using a traditional process to identify is difficult, and there is a lack of fast and accurate activity evaluation methods. How to extract bioactive peptides quickly and efficiently is still the focus of bioactive peptides research. In order to improve the present situation of the research, bioinformatics techniques and peptidome methods are widely used in this field. At the same time, bioactive peptides have their own specific pharmacokinetic characteristics, so computer simulation methods have incomparable advantages in studying the pharmacokinetics and pharmacokinetic-pharmacodynamic correlation models of bioactive peptides. The purpose of this review is to summarize the combined applications of bioinformatics and computer simulation methods in the study of bioactive peptides, with focuses on the role of bioinformatics in simulating the selection of enzymatic hydrolysis and precursor proteins, activity prediction, molecular docking, physicochemical properties, and molecular dynamics. Our review shows that new bioactive peptide molecular sequences with high activity can be obtained by computer-aided design. The significance of the pharmacokinetic-pharmacodynamic correlation model in the study of bioactive peptides is emphasized. Finally, some problems and future development potential of bioactive peptides binding new technologies are prospected.
Collapse
Affiliation(s)
- Zhang Shuli
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Liu Linlin
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Gao Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Zhao Yinghu
- School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi, 030051, China
| | - Shi Nan
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Wang Haibin
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Xu Hongyu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| |
Collapse
|
29
|
Shi C, Liu M, Zhao H, Lv Z, Liang L, Zhang B. A Novel Insight into Screening for Antioxidant Peptides from Hazelnut Protein: Based on the Properties of Amino Acid Residues. Antioxidants (Basel) 2022; 11:antiox11010127. [PMID: 35052631 PMCID: PMC8772696 DOI: 10.3390/antiox11010127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022] Open
Abstract
This study used the properties of amino acid residues to screen antioxidant peptides from hazelnut protein. It was confirmed that the type and position of amino acid residues, grand average of hydropathy, and molecular weight of a peptide could be comprehensively applied to obtain desirable antioxidants after analyzing the information of synthesized dipeptides and BIOPEP database. As a result, six peptides, FSEY, QIESW, SEGFEW, IDLGTTY, GEGFFEM, and NLNQCQRYM were identified from hazelnut protein hydrolysates with higher antioxidant capacity than reduced Glutathione (GSH) against linoleic acid oxidation. The peptides having Tyr residue at C-terminal were found to prohibit the oxidation of linoleic acid better than others. Among them, peptide FSEY inhibited the rancidity of hazelnut oil very well in an oil-in-water emulsion. Additionally, quantum chemical parameters proved Tyr-residue to act as the active site of FSEY are responsible for its antioxidation. This is the first presentation of a novel approach to excavating desired antioxidant peptides against lipid oxidation from hazelnut protein via the properties of amino acid residues.
Collapse
Affiliation(s)
- Chenshan Shi
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Miaomiao Liu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Zhaolin Lv
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China
- National Innovation Alliance of Hazelnut Industry, Beijing 100091, China
- Correspondence: (L.L.); (B.Z.); Tel.: +86-010-6288-9634 (L.L.); +86-010-6233-8221 (B.Z.)
| | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
- Correspondence: (L.L.); (B.Z.); Tel.: +86-010-6288-9634 (L.L.); +86-010-6233-8221 (B.Z.)
| |
Collapse
|
30
|
Shirsath AP, Henchion MM. Bovine and ovine meat co-products valorisation opportunities: A systematic literature review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Trends in In Silico Approaches to the Prediction of Biologically Active Peptides in Meat and Meat Products as an Important Factor for Preventing Food-Related Chronic Diseases. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The increasing awareness of modern consumers regarding the nutritional and health value of food has changed their preferences, as well their requirements, for food products, including meat and meat products. Expanding the knowledge on the impact of food on human health is currently one of the most important research areas for scientists worldwide, and it is also of interest to consumers who want to consciously compose their daily diets. New research methods, such as in silico techniques, offer solutions to these new challenges. These research methods are preferred over food evaluation, e.g., from meat, because of their advantages, such as low costs, shorter analysis times, and general availability (e.g., online databases), and are often used to design in vitro and, subsequently, in vivo tests. This review focuses on the possible use of in silico computerized methods to assess the potential of food as a source of these health-relevant biomolecules by using examples from the literature on meat and meat products. This review also provides information and important suggestions for analyzing peptides in terms of assessing their best sources, and screening those resistant to digestive factors and that show biological activity. The information provided in this review could contribute to the development of new sources of foods as biomolecules important for preventing or treating food-related chronic diseases, such as obesity, hypertension, and diabetes.
Collapse
|
32
|
Pramualkijja T, Pirak T, Euston SR. Valorization of chicken slaughterhouse by-products: Production and properties of chicken trachea hydrolysates using commercial proteases. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1986522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Teeda Pramualkijja
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Tantawan Pirak
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Stephen R. Euston
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
33
|
Chen J, Yu X, Chen Q, Wu Q, He Q. Screening and mechanisms of novel angiotensin-I-converting enzyme inhibitory peptides from rabbit meat proteins: A combined in silico and in vitro study. Food Chem 2021; 370:131070. [PMID: 34537424 DOI: 10.1016/j.foodchem.2021.131070] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Bioactive peptides derived from food proteins have various physiological roles and have attracted increasing attention in recent years. In this study, two novel ACE inhibitory peptides (EACF and CDF), screened from rabbit meat proteins using in silico methods, exhibited strong inhibitory effects in vitro. EACF and CDF were competitive and non-competitive inhibitors with half-maximal inhibitory concentrations of 41.06 ± 0.82 µM and 192.17 ± 2.46 µM, respectively. Molecular docking experiments revealed that EACF established eight H-bond interactions in the S1 and S2 pockets, and a metal-acceptor interaction with Zn 701. CDF shared four H-bond interactions in the S1 pocket of ACE. The results suggested that rabbit meat proteins could be a suitable material for the preparation of ACE inhibitory peptides, and that virtual screening is an effective, accurate and promising method for the discovery of novel active peptides.
Collapse
Affiliation(s)
- Junbo Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qianzi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyun Wu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
34
|
Wang B, Yu Z, Yokoyama W, Chiou BS, Chen M, Liu F, Zhong F. Collagen peptides with DPP-IV inhibitory activity from sheep skin and their stability to in vitro gastrointestinal digestion. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Xing L, Li G, Toldrá F, Zhang W. The physiological activity of bioactive peptides obtained from meat and meat by-products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:147-185. [PMID: 34311899 DOI: 10.1016/bs.afnr.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meat and meat products constitute an important source of nutrients and play vital roles for growth, maintenance and repair of the body. In addition to the high quality of proteins, meat is also regarded as a major resource to produce bioactive peptides. Meat processing industry also produces by-products such as bones, blood and viscera, which could be further used for the production of bioactive compounds. In the physiological analysis, meat bioactive peptides have been reported to exert antioxidant, anti-hypertensive, anti-inflammatory, anti-microbial and antitumoral activities, which endow nutritional and functional value of meat. With the objective to exert the functional effect, the bioavailability should also be considered due to the degradation by digestion enzymes and the absorption process in intestinal mucosa. In this chapter, the general source, the enzymatic hydrolysis, the physiological effects as well as the bioavailability of bioactive peptides in meat are discussed.
Collapse
Affiliation(s)
- Lujuan Xing
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Guanhao Li
- College of Agriculture, Yanbian University, Yanji, PR China
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Valencia, Spain
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China.
| |
Collapse
|
36
|
Qiao Q, Chen L, Li X, Lu X, Xu Q. Roles of Dietary Bioactive Peptides in Redox Balance and Metabolic Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5582245. [PMID: 34234885 PMCID: PMC8219413 DOI: 10.1155/2021/5582245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Bioactive peptides (BPs) are fragments of 2-15 amino acid residues with biological properties. Dietary BPs derived from milk, egg, fish, soybean, corn, rice, quinoa, wheat, oat, potato, common bean, spirulina, and mussel are reported to possess beneficial effects on redox balance and metabolic disorders (obesity, diabetes, hypertension, and inflammatory bowel diseases (IBD)). Peptide length, sequence, and composition significantly affected the bioactive properties of dietary BPs. Numerous studies have demonstrated that various dietary protein-derived BPs exhibited biological activities through the modulation of various molecular mechanisms and signaling pathways, including Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant response element in oxidative stress; peroxisome proliferator-activated-γ, CCAAT/enhancer-binding protein-α, and sterol regulatory element binding protein 1 in obesity; insulin receptor substrate-1/phosphatidylinositol 3-kinase/protein kinase B and AMP-activated protein kinase in diabetes; angiotensin-converting enzyme inhibition in hypertension; and mitogen-activated protein kinase and nuclear factor-kappa B in IBD. This review focuses on the action of molecular mechanisms of dietary BPs and provides novel insights in the maintenance of redox balance and metabolic diseases of human.
Collapse
Affiliation(s)
- Qinqin Qiao
- College of Information Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
37
|
Tu M, Xu S, Xu Z, Cheng S, Wu D, Liu H, Du M. Identification of dual-function bovine lactoferrin peptides released using simulated gastrointestinal digestion. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Singh BP, Aluko RE, Hati S, Solanki D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit Rev Food Sci Nutr 2021; 62:4593-4606. [PMID: 33506720 DOI: 10.1080/10408398.2021.1877109] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lifestyle-related diseases constitute a major concern in the twenty-first century, with millions dying worldwide each year due to chosen lifestyles and associated complications such as obesity, type 2 diabetes, hypertension, and hypercholesterolemia. Although synthetic drugs have been shown to be quite effective in the treatment of these conditions, safety of these compounds remains a concern. Natural alternatives to drugs include food-derived peptides are now being explored for the prevention and treatment of lifestyle-related complications. Peptides are fragments nascent in the primary protein sequences and could impart health benefits beyond basic nutritional advantages. Evidence suggests that by controlling adipocyte differentiation and lipase activities, bioactive peptides may be able to prevent obesity. Bioactive peptides act as agents against type 2 diabetes because of their ability to inhibit enzymatic activities of DPP-IV, α-amylase, and α-glucosidase. Moreover, bioactive peptides can act as competitive inhibitors of angiotensin-converting enzyme, thus eliciting an antihypertensive effect. Bioactive peptides may have a hypocholesterolemic effect by inhibiting cholesterol metabolism pathways and cholesterol synthesis. This review addresses current knowledge of the impact of food-derived bioactive peptides on lifestyle diseases. In addition, future insights on the clinical trials, allergenicity, cytotoxicity, gastrointestinal stability, and regulatory approvals have also been considered.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Subrota Hati
- SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat, India
| | - Divyang Solanki
- SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
39
|
de Oliveira Costa B, Franco OL. Cryptic Host Defense Peptides: Multifaceted Activity and Prospects for Medicinal Chemistry. Curr Top Med Chem 2021; 20:1274-1290. [PMID: 32209042 DOI: 10.2174/1568026620666200325112425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Host defense peptides (HDPs) comprise a heterogeneous group of evolutionarily conserved and biologically active small molecules that are produced by different organisms. HDPs are widely researched because they often have multiple biological activities, for example antimicrobial, immunomodulatory and anticancer activity. In this context, in this review we focus on cryptic HDPs, molecules derived specifically from proteolytic processing of endogenous precursor proteins. Here, we explore the biological activity of such molecules and we further discuss the development of optimized sequences based on these natural cryptic HDPs. In addition, we present clinical-phase studies of cryptic HDPs (natural or optimized), and point out the possible applicability of these molecules in medicinal chemistry.
Collapse
Affiliation(s)
- Bruna de Oliveira Costa
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil.,Department of Genomic Sciences and Biotechnology, Center for Analysis of Proteomics and Biochemistry, Catholic University of Brasília, Brasília, DF, Brazil.,Department of Molecular Pathology, Faculty of Medicine, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
40
|
Barati M, Javanmardi F, Mousavi Jazayeri SMH, Jabbari M, Rahmani J, Barati F, Nickho H, Davoodi SH, Roshanravan N, Mousavi Khaneghah A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr Rev Food Sci Food Saf 2020; 19:1488-1520. [PMID: 33337080 DOI: 10.1111/1541-4337.12578] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Due to the digestible refractory and absorbable structures of bioactive peptides (BPs), they could induce notable biological impacts on the living organism. In this regard, the current study was devoted to providing an overview regarding the available methods for BPs generation by the aid of a systematic review conducted on the published articles up to April 2019. In this context, the PubMed and Scopus databases were screened to retrieve the related publications. According to the results, although the characterization of BPs mainly has been performed using enzymatic and microbial in-vitro methods, they cannot be considered as suitable techniques for further stimulation of digestion in the gastrointestinal tract. Therefore, new approaches for both in-vivo and in-silico methods for BPs identification should be developed to overcome the obstacles that belonged to the current methods. The purpose of this review was to compile the recent analytical methods applied for studying various aspects of food-derived biopeptides, and emphasizing generation at in vitro, in vivo, and in silico.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jabbari
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetic, National Institute and Faculty of Nutrition and Food Technology; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
41
|
Zaky AA, Abd El-Aty AM, Ma A, Jia Y. An overview on antioxidant peptides from rice bran proteins: extraction, identification, and applications. Crit Rev Food Sci Nutr 2020; 62:1350-1362. [PMID: 33146021 DOI: 10.1080/10408398.2020.1842324] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rice by-products, generated through the milling processes, have recently been recognized as a potential source of bioactive compounds, such as proteins, essential amino acids, and phenolics. Owing to their antioxidant capacity (which improve the storage stability of foods), these compounds have gained much attention because of their beneficial impacts on human health. It has to be noted that large quantities of rice by-products are not efficiently utilized, which may result in industrial wastes and environmental consequences. Thence, the aim of this review is to provide a comprehensive insight on the antioxidant capabilities, extraction, identification, functional attributes, and applications of bioactive hydrolysates and peptides derived from rice bran protein. This overview would provide an insight on rice bran proteins, which are abundant in bioactive peptides, and could be used as value-added products in food and pharmaceutical applications. Inclusion of bioactive peptides to prevent food spoilage while maintaining food safety has also been highlighted.
Collapse
Affiliation(s)
- Ahmed A Zaky
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China.,Department of Food Technology, National Research Centre, Dokki, Cairo, Egypt
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Aijin Ma
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yingmin Jia
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
42
|
Pearman NA, Ronander E, Smith AM, Morris GA. The identification and characterisation of novel bioactive peptides derived from porcine liver. Curr Res Food Sci 2020; 3:314-321. [PMID: 33336193 PMCID: PMC7733001 DOI: 10.1016/j.crfs.2020.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bioactive peptides (BAPs) can be derived from a variety of sources; these could be from dietary proteins which are then broken down in the gastrointestinal tract to release BAPs, or they can be isolated from various sources ex vivo. Sources include plant-based proteins such as soy, and chickpeas, and animal proteins from waste from the meat industry and from fish skin. Bioinformatics is also a useful approach to assess the peptides released from digests due to the great number of possible sequences that can be isolated from proteins. Therefore, an in silico analysis of peptides could potentially lead to a more rapid discovery of BAPs. This article investigates a "crude" liver peptide mixture derived from papain hydrolysis of porcine liver and purified peptides derived from the hydrolysates following HPLC fractionation and in silico digestion of the host proteins identified using LC-MS/MS. This allowed the identification of two proteins (cytosol aminopeptidase and haemoglobin subunit alpha) present in the "crude" mixture after LC-MS/MS. In silico hydrolysis of these proteins identified that several peptides were predicted to be both present in the crude mixture using the BIOPEP database and to have potential bioactivity using the Peptide Ranker tool. Peptides (FWG, MFLG and SDPPLVFVG) with the greatest potential bioactivity and which had not previously been reported in the literature were then synthesised. The results indicated that the predicted bioactivity of the synthetic peptides would likely include antioxidant activity. FWG and MFLG derived from the in silico papain hydrolysis of cytosol aminopeptidase showed activity better or comparable to Trolox in the Oxygen Radical Absorbance Capacity (ORAC) assay. The use of these in silico tools, alongside a robust range of biochemical assays which cover a wider range of bioactivities would be a way of improving the discovery of novel bioactive peptides.
Collapse
Affiliation(s)
- Nicholas A. Pearman
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Elena Ronander
- Biofac A/S, Englandsvej 350-356, DK-2770, Kastrup, Denmark
| | - Alan M. Smith
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Gordon A. Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| |
Collapse
|
43
|
Toldrá F, Gallego M, Reig M, Aristoy MC, Mora L. Bioactive peptides generated in the processing of dry-cured ham. Food Chem 2020; 321:126689. [DOI: 10.1016/j.foodchem.2020.126689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
|
44
|
Kartal C, Kaplan Türköz B, Otles S. Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00434-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Tarang S, Kesherwani V, LaTendresse B, Lindgren L, Rocha-Sanchez SM, Weston MD. In silico Design of a Multivalent Vaccine Against Candida albicans. Sci Rep 2020; 10:1066. [PMID: 31974431 PMCID: PMC6978452 DOI: 10.1038/s41598-020-57906-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Invasive candidiasis (IC) is the most common nosocomial infection and a leading cause of mycoses-related deaths. High-systemic toxicity and emergence of antifungal-resistant species warrant the development of newer preventive approaches against IC. Here, we have adopted an immunotherapeutic peptide vaccine-based approach, to enhance the body's immune response against invasive candida infections. Using computational tools, we screened the entire candida proteome (6030 proteins) and identified the most immunodominant HLA class I, HLA class II and B- cell epitopes. By further immunoinformatic analyses for enhanced vaccine efficacy, we selected the 18- most promising epitopes, which were joined together using molecular linkers to create a multivalent recombinant protein against Candida albicans (mvPC). To increase mvPC's immunogenicity, we added a synthetic adjuvant (RS09) to the mvPC design. The selected mvPC epitopes are homologous against all currently available annotated reference sequences of 22 C. albicans strains, thus offering a higher coverage and greater protective response. A major advantage of the current vaccine approach is mvPC's multivalent nature (recognizing multiple-epitopes), which is likely to provide enhanced protection against complex candida antigens. Here, we describe the computational analyses leading to mvPC design.
Collapse
Affiliation(s)
- Shikha Tarang
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA.
| | - Varun Kesherwani
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Blake LaTendresse
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA
| | - Laramie Lindgren
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA
| | - Sonia M Rocha-Sanchez
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA
| | - Michael D Weston
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA
| |
Collapse
|
46
|
A multi-approach peptidomic analysis of hen egg white reveals novel putative bioactive molecules. J Proteomics 2020; 215:103646. [PMID: 31927067 DOI: 10.1016/j.jprot.2020.103646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022]
Abstract
Chicken egg white is a raw material broadly used as additive for the preparation of food and cosmetoceutical products. To describe its molecular properties, various proteomic investigations were performed in the last decade characterizing highly abundant components. No peptidomic counterparts were accomplished so far; scientific literature only reports on the characterization of specific bioactive peptides or preparations from egg white and its hydrolysates, which was performed through dedicated functional assays. In this study, a broad description of the egg white peptidome at 24, 336 and 672 h after laying was achieved using three peptide extraction procedures, which were combined with MALDI-TOF-TOF-MS and nanoLC-ESI-Q-Orbitrap-MS/MS analyses. In the whole, 506 peptides were characterized; they mostly resulted from the physiological degradation of intact proteins following the activity of endoprotease ArgC-, trypsin- and plasmin-like enzymes. Eventual detection of peptide post-translational modifications also provided structural information on parental proteins. When analyzed by bioinformatics and/or compared with literature data, identified peptides allowed recognizing a number of protein fragments associated with different hypothetical biological activities. These results confirmed previous observations regarding functional characteristics of egg white unfractionated preparations or purified molecules, emphasizing the useful application of this raw material in human nutrition and cosmetics. Finally, a comparative label-free peptidomic evaluation of samples stored for different times under refrigeration identified 31 peptides showing significant quantitative changes during storage. BIOLOGICAL SIGNIFICANCE: This study provided the largest inventory of peptides described in chicken egg while so far. In addition, it identified a number of protein fragments associated with hypothetical antihypertensive, antioxidant, antiinflammatory, antimicrobial, anticancer, antiviral, antibiofilm, calcium-binding, antidiabetic, antithrombotic, adipogenic differentiating, stimulating/immunostimulating, hormonal, lipid-binding and cell adhesion-affecting activities. These results confirmed previous observations regarding functional characteristics of egg white unfractionated preparations or purified molecules, emphasizing the useful application of this raw material in human nutrition and cosmetics.
Collapse
|
47
|
Ibrahim MA, Serem JC, Bester MJ, Neitz AW, Gaspar ARM. New Antidiabetic Targets of α-Glucosidase Inhibitory Peptides, SVPA, SEPA, STYV and STY: Inhibitory Effects on Dipeptidyl Peptidase-IV and Lipid Accumulation in 3T3-L1 Differentiated Adipocytes with Scavenging Activities Against Methylglyoxal and Reactive Oxygen Species. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09993-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Kęska P, Stadnik J. Structure-activity relationships study on biological activity of peptides as dipeptidyl peptidase IV inhibitors by chemometric modeling. Chem Biol Drug Des 2019; 95:291-301. [PMID: 31709757 DOI: 10.1111/cbdd.13643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
The aim of this study is to identify the potential descriptors affecting the inhibitory activity of the peptides inhibiting dipeptidyl peptidase IV (DPP-IV). This study provides important information for assessing the biological activity of the new peptide sequences of food origin or making structural modifications to the current inhibitors to improve their performance. For this purpose, the chemometric method describing the relationship between the structure of food peptides and their biological activity (structure-activity relationship [SAR]) was used to theoretically predict the potential of bioactivity of peptides. Data on the physicochemical properties of amino acids in the dipeptides acting as inhibitors of DPP-IV were collected and analyzed for using these properties as descriptors in further analysis. A total of 252 dipeptide sequences with confirmed DPP-IV inhibitory activity available in the BIOPEP-UWM database were included in the analysis, and 16 descriptors defining individual amino acids (such as molecular weight, polarity, hydropathicity, bulkiness, buried residue, and acceptable and normalized frequency of alpha-helix and beta-sheet) were identified. Based on this information, a data matrix was constructed and used in the chemometric analysis (principal component analysis and multiple linear regression). From the SAR model created, a multiple regression equation was derived to predict the biological activity of the dipeptide DPP-IV inhibitors.
Collapse
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Joanna Stadnik
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
49
|
Discovery of hPRDX5-based peptide inhibitors blocking PD-1/PD-L1 interaction through in silico proteolysis and rational design. Cancer Chemother Pharmacol 2019; 85:185-193. [PMID: 31745591 DOI: 10.1007/s00280-019-03995-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE The human peroxiredoxin-5 (hPRDX5) is a member of the family of antioxidant enzymes, which could resist immunosuppression by promoting immune organs development, lymphocyte proliferation and up-regulation of the levels of serum cytokines. However, being a recombinant protein, the hPRDX5 exhibits some problems including the high production cost and bad tissue penetration. Compared to macromolecular therapeutic agents, synthetic peptides have several advantages as drug candidates, such as lower manufacturing costs, reduced immunogenicity, and better organ or tumor penetration. The purpose of this research was to design the novel peptides come from hPRDX5 that can block the interaction of PD-1 and PD-L1. METHODS Herein in this work, we firstly confirmed the inhibitory activity of hPRDX5 on the binding of PD-L1 to PD-1 based on the previous observation, subsequently, in silico proteolysis and rational design (such as alanine scanning mutagenesis and truncation) were used to automate the design of new peptides derived from hPRDX5 with anti-tumour activity. RESULTS We found that the most potent peptide could block the PD-1/PD-L1 interaction effectively with an IC50 of 0.646 μM, and could restore the function of Jurkat T cells which had been suppressed by stimulated HCT116 cells. Moreover, experiments with tumor-bearing mice models showed that the peptide IMB-P6-10 could effectively inhibit tumor growth and showed extraordinary low acute toxicity in vivo. CONCLUSIONS The peptides described in this paper may provide novel low-molecular-weight drug candidates for cancer immunotherapy.
Collapse
|
50
|
Chen D, Fu Q, Lin J, Hu C, Huang N, Chang KX, Sun B, Liu Z. Gene synthesizing, expression and immunogenicity characterization of recombinant translation elongation factor 2 from Dermatophagoides farinae. Mol Med Rep 2019; 20:5324-5334. [PMID: 31702815 PMCID: PMC6854542 DOI: 10.3892/mmr.2019.10786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 09/04/2019] [Indexed: 11/06/2022] Open
Abstract
House dust mite (HDM) hypersensitivity increasingly affects millions of individuals worldwide. Although numerous major allergens produced by HDM species have been characterized, some of the less potent allergens remain to be studied. The present study aimed to obtain the recombinant allergen of Translation Elongation Factor 2 (TEF 2) from the HDM Dermatophagoides farinae by synthesizing, and then expressing the recombinant TEF 2 to identify its immunogenicity. In the present study, the D. farinae TEF 2 (Der f TEF 2) was synthesized, expressed and purified. The molecular characteristics of Der f TEF 2 were analyzed using bioinformatics approaches. The recombinant protein was purified via affinity chromatography, and the allergenicity was assessed using immunoblotting, ELISAs and skin prick tests. The gene for TEF 2 consists of 2,535 bp and encodes an 844‑amino acid protein. A positive response to recombinant Der f TEF 2 was detected in 16.2% of 37 patients with HDM allergies using skin prick tests. In addition, the immunoblotting indicated that the protein showed a high ability to bind serum IgE from patients allergic to HDMs, and that the recombinant TEF 2 was highly immunogenic. Bioinformatics analysis predicted 17 peptides as B cell epitopes (amino acids 29‑35, 55‑64, 92‑99, 173‑200, 259‑272, 311‑318, 360‑365, 388‑395, 422‑428, 496‑502, 512‑518, 567‑572, 580‑586, 602‑617, 785‑790, 811‑817 and 827‑836) and 14 peptides as T cell epitopes (amino acids 1‑15, 65‑79, 120‑134, 144‑159, 236‑250, 275‑289, 404‑418, 426‑440, 463‑477, 510‑524, 644‑658, 684‑698, 716‑730 and 816‑830). The software DNAStar predicted the secondary structure of TEF 2, and showed that 27 α‑helices and five β‑sheets were found in the protein. In conclusion, the present study cloned and expressed the Der f TEF 2 gene, and the recombinant protein exhibited immunogenicity, providing a theoretical bases, and references, for the diagnosis and treatment of allergic disease.
Collapse
Affiliation(s)
- Desheng Chen
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Qinghui Fu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Jianli Lin
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Chengshen Hu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Nana Huang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Ke Xin Chang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Baoqing Sun
- Department of Allergy, Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, Guangdong 518000, P.R. China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|