1
|
Taura D, Nakao K, Nakagawa Y, Kinoshita H, Sone M, Nakao K. C-type natriuretic peptide (CNP)/guanylate cyclase B (GC-B) system and endothelin-1(ET-1)/ET receptor A and B system in human vasculature. Can J Physiol Pharmacol 2020; 98:611-617. [PMID: 32268070 DOI: 10.1139/cjpp-2019-0686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To assess the physiological and clinical implications of the C-type natriuretic peptide (CNP)/guanylyl cyclase B (GC-B) system in the human vasculature, we have examined gene expressions of CNP and its receptor, GC-B, in human vascular endothelial cells (ECs) and smooth muscle cells (SMCs) and have also compared the endothelin-1(ET-1)/endothelin receptor-A (ETR-A) and endothelin receptor-B (ETR-B) system in human aortic ECs (HAECs) and vascular SMCs (HSMCs) in vitro. We also examined these gene expressions in human embryonic stem (ES)/induced pluripotent stem cell (iPS)-derived ECs and mural cells (MCs). A little but significant amount of mRNA encoding CNP was detected in both human ES-derived ECs and HAECs. A substantial amount of GC-B was expressed in both ECs (iPS-derived ECs and HAECs) and SMCs (iPS-derived MCs and HSMCs). ET-1 was expressed solely in ECs. ETR-A was expressed in SMCs, while ETR-B was expressed in ECs. These results indicate the existence of a vascular CNP/GC-B system in the human vascular wall, indicating the evidence for clinical implication of the CNP/GC-B system in concert with the ET-1/ETR-A and ETR-B system in the human vasculature.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhiro Nakao
- National Cardiovascular, Cerebrovascular Research Center Hospital, Suita, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Kinoshita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
NAKAO K. Translational science: Newly emerging science in biology and medicine - Lessons from translational research on the natriuretic peptide family and leptin. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:538-567. [PMID: 31708497 PMCID: PMC6856003 DOI: 10.2183/pjab.95.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Translation is the process of turning observations in the laboratory, clinic, and community into interventions that improve the health of individuals and the public, ranging from diagnostics and therapeutics to medical procedures and behavioral changes. Translational research is defined as the effort to traverse a particular step of the translation process for a particular target or disease. Translational science is a newly emerging science, distinct from basic and clinical sciences in biology and medicine, and is a field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Advances in translational science will increase the efficacy and safety of translational research in all diagnostic and therapeutic areas. This report examines translational research on novel hormones, the natriuretic peptide family and leptin, which have achieved clinical applications or for which studies are still ongoing, and also emphasizes the lessons that translational science has learned from more than 30 years' experience in translational research.
Collapse
Affiliation(s)
- Kazuwa NAKAO
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Benomar K, Espiard S, Loyer C, Jannin A, Vantyghem MC. [Atrial natriuretic hormones and metabolic syndrome: recent advances]. Presse Med 2018; 47:116-124. [PMID: 29496376 DOI: 10.1016/j.lpm.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
Abstract
Natriuretic peptides are a group of hormones including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C type (CNP), urodilatin and guanilyn. ANP (half-life: 2-4 min), is secreted by the atrium, BNP (half-life: 20 min) by the ventricle, CNP by the vascular endothelium, urodilatin by the kidney and guanylin by the intestine. These natriuretic peptides prevent water and salt retention through renal action, vasodilatation and hormonal inhibition of aldosterone, vasopressin and cortisol. These peptides also have a recently demonstrated metabolic effect through an increase of lipolysis, thermogenesis, beta cell proliferation and muscular sensitivity to insulin. Blood levels of these natriuretic peptides depend on "active NPR-A receptors/clearance NPR-C receptors", the last ones being abundant on adipocytes. Therefore, natriuretic peptides act as adipose tissue regulator and constitute a link between blood pressure and metabolic syndrome. They are used as markers and treatment of cardiac failure. Other applications are on going. BNP and NT-proBNP (inactive portion de la pro-hormone) are used as markers of cardiac failure since they have a longer half-life than ANP. BNP decrease is quicker and more important than that one of NT-ProBNP in case of improvement of cardiac failure. Chronic renal insufficiency and beta-blockers increase BNP levels. BNP measurement is useless under treatment with neprilysine inhibitors such as sacubitril, one of the neutral endopeptidases involved in catabolism of natriuretic peptides. The association sacubitril/valsartan is a new treatment of chronic cardiac failure, acting through the decrease of ANP catabolism.
Collapse
Affiliation(s)
- Kanza Benomar
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France; UMR 1190 recherche translationnelle sur le diabète Inserm, 59000 Lille, France; EGID (European Genomic Institute for Diabetes), université de Lille, 59000 Lille, France
| | - Stéphanie Espiard
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France
| | - Camille Loyer
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France
| | - Arnaud Jannin
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France
| | - Marie-Christine Vantyghem
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France; UMR 1190 recherche translationnelle sur le diabète Inserm, 59000 Lille, France; EGID (European Genomic Institute for Diabetes), université de Lille, 59000 Lille, France.
| |
Collapse
|
4
|
Obesity-promoting and anti-thermogenic effects of neutrophil gelatinase-associated lipocalin in mice. Sci Rep 2017; 7:15501. [PMID: 29138470 PMCID: PMC5686189 DOI: 10.1038/s41598-017-15825-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/01/2017] [Indexed: 01/22/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL, lipocalin 2 or LCN2) is an iron carrier protein whose circulating level is increased by kidney injury, bacterial infection and obesity, but its metabolic consequence remains elusive. To study physiological role of LCN2 in energy homeostasis, we challenged female Lcn2 knockout (KO) and wild-type (WT) mice with high fat diet (HFD) or cold exposure. Under normal diet, physical constitutions of Lcn2 KO and WT mice were indistinguishable. During HFD treatment, Lcn2 KO mice exhibited larger brown adipose tissues (BAT), consumed more oxygen, ate more food and gained less body weights as compared to WT mice. When exposed to 4 °C, KO mice showed higher body temperature and more intense 18F-fluorodeoxyglucose uptake in BAT, which were cancelled by β3 adrenergic receptor blocker or iron-loaded (but not iron-free) LCN2 administration. These findings suggest that circulating LCN2 possesses obesity-promoting and anti-thermogenic effects through inhibition of BAT activity in an iron-dependent manner.
Collapse
|
5
|
Glöde A, Naumann J, Gnad T, Cannone V, Kilic A, Burnett JC, Pfeifer A. Divergent effects of a designer natriuretic peptide CD-NP in the regulation of adipose tissue and metabolism. Mol Metab 2017; 6:276-287. [PMID: 28271034 PMCID: PMC5323888 DOI: 10.1016/j.molmet.2016.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023] Open
Abstract
Objective Obesity is defined as an abnormal increase in white adipose tissue (WAT) and is a major risk factor for type 2 diabetes and cardiovascular disease. Brown adipose tissue (BAT) dissipates energy and correlates with leanness. Natriuretic peptides have been shown to be beneficial for brown adipocyte differentiation and browning of WAT. Methods Here, we investigated the effects of an optimized designer natriuretic peptide (CD-NP) on murine adipose tissues in vitro and in vivo. Results In murine brown and white adipocytes, CD-NP activated cGMP production, promoted adipogenesis, and increased thermogenic markers. Consequently, mice treated for 10 days with CD-NP exhibited increased “browning” of WAT. To study CD-NP effects on diet-induced obesity (DIO), we delivered CD-NP for 12 weeks. Although CD-NP reduced inflammation in WAT, CD-NP treated DIO mice exhibited a significant increase in body mass, worsened glucose tolerance, and hepatic steatosis. Long-term CD-NP treatment resulted in an increased expression of the NP scavenging receptor (NPR-C) and decreased lipolytic activity. Conclusions NP effects differed depending on the duration of treatment raising questions about the rational of natriuretic peptide treatment in obese patients. The optimized designer natriuretic peptide CD-NP promotes adipogenesis. Duration of treatment is decisive: short-term promotes browning whereas long-term treatment exacerbates obesity and diabetes. Long-term CD-NP treatment reduces WAT inflammation and increases adiponectin expression.
Collapse
Affiliation(s)
- Anja Glöde
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany
| | - Jennifer Naumann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Ana Kilic
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany.
| |
Collapse
|
6
|
Moro C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert Opin Ther Targets 2016; 20:1445-1452. [DOI: 10.1080/14728222.2016.1254198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Ueda Y, Yasoda A, Yamashita Y, Kanai Y, Hirota K, Yamauchi I, Kondo E, Sakane Y, Yamanaka S, Nakao K, Fujii T, Inagaki N. C-type natriuretic peptide restores impaired skeletal growth in a murine model of glucocorticoid-induced growth retardation. Bone 2016; 92:157-167. [PMID: 27594049 DOI: 10.1016/j.bone.2016.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoids are widely used for treating autoimmune conditions or inflammatory disorders. Long-term use of glucocorticoids causes impaired skeletal growth, a serious side effect when they are used in children. We have previously demonstrated that C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone growth. In this study, we investigated the effect of CNP on impaired bone growth caused by glucocorticoids by using a transgenic mouse model with an increased circulating CNP level. Daily administration of a high dose of dexamethasone (DEX) to 4-week-old male wild-type mice for 4weeks significantly shortened their naso-anal length, which was restored completely in DEX-treated CNP transgenic mice. Impaired growth of the long bones and vertebrae by DEX was restored to a large extent in the CNP transgenic background, with recovery in the narrowed growth plate by increased cell volume, whereas the decreased proliferation and increased apoptosis of the growth plate chondrocytes were unaffected. Trabecular bone volume was not changed by DEX treatment, but decreased significantly in a CNP transgenic background. In young male rats, the administration of high doses of DEX greatly decreased N-terminal proCNP concentrations, a marker of CNP production. In organ culture experiments using fetal wild-type murine tibias, longitudinal growth of tibial explants was inhibited by DEX but reversed by CNP. These findings now warrant further study of the therapeutic potency of CNP in glucocorticoid-induced bone growth impairment.
Collapse
Affiliation(s)
- Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Eri Kondo
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Shigeki Yamanaka
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Kazumasa Nakao
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| |
Collapse
|
8
|
Rossi J. Central natriuretic peptide receptor (NPR)-B and peripheral lipid accumulation. Peptides 2016; 84:68-9. [PMID: 27554311 DOI: 10.1016/j.peptides.2016.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Jari Rossi
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|