1
|
Sadeghi E, Rahmanipour E, Valsecchi N, Kapoor S, Cicinelli MV, Chhablani J. An update on ocular effects of antidiabetic medications. Surv Ophthalmol 2025; 70:704-712. [PMID: 39855606 DOI: 10.1016/j.survophthal.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The global increase in the prevalence of type 2 diabetes has led to the development and implementation of new classes of antidiabetic medications, introducing advanced therapeutic options for the management of the disease. These new medications, though primarily designed to regulate blood glucose levels, also have applications in weight management, potentially transforming the current approaches to diabetes treatment. Newer medications, however, have ophthalmic side effects with controversies in trials and real-life data. We comprehensively assessed the ocular benefits and adverse effects of traditional and newer-generation anti-diabetic drugs. Our primary focus is on how these newer medications affect the stage of diabetic retinopathy. Additionally, we explore the associations between these medications and other ocular conditions, including age-related macular degeneration, glaucoma, orbital conditions, and diseases impacting the ocular surface. Furthermore, we provide contextual background by discussing the ocular effects of traditional anti-diabetic drugs.
Collapse
Affiliation(s)
- Elham Sadeghi
- University of Pittsburgh, School of Medicine, PA, USA.
| | - Elham Rahmanipour
- Immunology Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| | - Nicola Valsecchi
- University of Pittsburgh, School of Medicine, PA, USA; Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Saloni Kapoor
- University of Pittsburgh, School of Medicine, PA, USA.
| | | | - Jay Chhablani
- University of Pittsburgh, School of Medicine, PA, USA.
| |
Collapse
|
2
|
Li R, Du S, Ye Z, Yang W, Liu Y. Blueberry Anthocyanin Extracts (BAEs) Protect Retinal and Retinal Pigment Epithelium Function from High-Glucose-Induced Apoptosis by Activating GLP-1R/Akt Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5886-5898. [PMID: 40017023 DOI: 10.1021/acs.jafc.4c08978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Diabetic retinopathy is a severe diabetes complication leading to vision impairment and blindness primarily due to the disruption of insulin signaling in the retina. This study investigated the protective effects of blueberry anthocyanin extracts (BAEs) and its main component, anthocyanin-3-glucoside (C3G), in the retinas of diabetic mice and ARPE-19 cells under high-glucose (HG) conditions. The results showed that diabetic mice suffered significant weight loss, elevated glycemic levels, and increased retinal cell apoptosis after 10 weeks. Treatment with various doses of BAEs resulted in a significant reduction in glycemic levels, weight stabilization, decreased levels of inflammatory cytokines, and inhibition of retinal cell apoptosis. These findings suggested that BAEs possess hypoglycemic properties, potentially mitigating diabetes-induced retinal damage by modulating associated signaling pathways. Immunoblotting analysis revealed that persistent hyperglycemia impaired the Akt/GSK3β signaling pathway in diabetic mice, while high doses of BAEs significantly restored the function of these pathways and promoted GLP-1 release, enhancing GLP-1R expression in the retina and potentially mitigating retinal injury. Finally, studies on the effects of C3G on ARPE-19 cell models deficient in REDD1 under HG conditions showed that C3G protected cells from HG damage through the GLP-1R/Akt signaling pathway. In conclusion, this research provides valuable insights into the therapeutic potential of BAEs and C3G for managing diabetes-related ocular complications.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
| | - Shumeng Du
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
| | - Zhan Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi , Jiangsu 214122, P. R. China
| | - Wei Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi , Jiangsu 214122, P. R. China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi , Jiangsu 214122, P. R. China
- Wuxi Shihezi Future Food Research Institute Ltd, Wuxi , Jiangsu 214000, P. R. China
- Future Food (Bai Ma) Research Institute, Nanjing , Jiangsu 211200, P. R. China
| |
Collapse
|
3
|
Michaeli T, Khateb S, Levy J. The Effect of Glucagon-like-Peptide-1 Receptor Agonists on Diabetic Retinopathy Progression, Central Subfield Thickness, and Response to Intravitreal Injections. J Clin Med 2024; 13:6269. [PMID: 39458219 PMCID: PMC11508636 DOI: 10.3390/jcm13206269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: To examine the effects of glucagon-like-peptide-1 receptor agonists (GLP1-RAs) on diabetic retinopathy (DR) progression, visual acuity (VA), central subfield thickness (CST), and response to intravitreal injections (IVIs) in the Hadassah ophthalmological cohort. Methods: Of 4500 Hadassah patients with DR, 146 had a documented first course of GLP1-RA treatment lasting at least a year along with ophthalmological follow-up. Of these, 35 underwent at least two optical coherence tomography (OCT) exams with a one-year interval. These 35 GLP1-RA-naïve patients were compared to a control group of 31 patients with DR who did not receive GLP1-RA treatment. We compared demographics, medical records, ocular data, and OCT characteristics between the two study groups. Results: At baseline, patients who received GLP1-RA treatment had a significantly higher prevalence of retinal detachment and vitreous hemorrhage, as well as a higher (though not statistically significant) prevalence of cardiovascular comorbidities compared to the control group. At the end of the follow-up period, the GLP1-RA group had a higher prevalence of DR progression compared to controls (3/19 vs. 0/20, respectively; p = 0.106, Fisher's exact test), but also showed a better response to IVIs (27/35 vs. 17/31, respectively; unadjusted OR: 2.78, p = 0.058; 95% CI: [0.963, 8.020], Pearson's chi-square test). However, vitreous hemorrhage and hyperreflective retinal foci were confounding factors (adjusted IVI response OR: 1.76, p = 0.229, 95% CI: [0.553, 5.650], logistic regression). No significant differences were observed between the two groups in terms of change in visual acuity (-0.135 vs. -0.063 logMAR, respectively; p = 0.664, Student's t-test) or CST (-13.49 vs. -30.13 μm; p = 0.464, Student's t-test). Conclusions: This study presents preliminary findings showing no significant differences in DR progression, visual acuity, and CST between patients treated with GLP1-RA and control patients. Moreover, GLP1-RA therapy was not significantly associated with improved IVI response, with ocular parameters acting as confounding factors.
Collapse
Affiliation(s)
- Tomer Michaeli
- “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Medical Corps, Israel Defense Forces, Ramat Gan 52625, Israel
| | - Samer Khateb
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Jaime Levy
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| |
Collapse
|
4
|
Hui BTK, Yeong JL, Peto T, Willoughby CE. Glucagon-like Peptide 1 Receptor Agonist use and the effect on diabetic retinopathy: An uncertain relationship. Peptides 2024; 178:171240. [PMID: 38705472 DOI: 10.1016/j.peptides.2024.171240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Glucagon-like Peptide 1 Receptor Agonists (GLP-1 RAs) are a group of relatively novel medications for the treatment of diabetes mellitus. These medications can mimic the naturally occurring incretins of the body, which promote the release of insulin in response to hyperglycaemia. The anti-glycaemic effects of these medications can be profound and carry other metabolic benefits such as promoting weight loss. Clinical trials have shown GLP-1 RAs are safe to use from a cardiovascular perspective. However, some trials have suggested a link between GLP-1 RA use and worsening diabetic retinopathy. The conclusions surrounding this link are poorly established as data is drawn primarily from cardiovascular outcome trials. If an association does exist, a possible explanation might be the observed phenomenon of early worsening diabetic retinopathy with rapid correction of hyperglycaemic states. Trials which look at diabetic retinopathy as a primary outcome in relation to use of GLP-1 RAs are sparse and warrant investigation given the growing use of this group of medications. Therefore currently, it is uncertain what effect, beneficial or adverse, GLP-1 RA use has on diabetic retinopathy. This article provides an overview of GLP-1 RA use as a treatment for diabetes mellitus and the current understanding of their relationship with diabetic retinopathy.
Collapse
Affiliation(s)
- Benjamin T K Hui
- Department of Ophthalmology, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Jian Lee Yeong
- Department of Ophthalmology, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Tunde Peto
- Department of Ophthalmology, Royal Victoria Hospital, Belfast, Northern Ireland, UK; Institute of Clinical Science, Queens University, Belfast, Northern Ireland, UK
| | - Colin E Willoughby
- Department of Ophthalmology, Royal Victoria Hospital, Belfast, Northern Ireland, UK; Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
5
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
6
|
Phu A, Banghart M, Bahrainian M, Liu TYA, Wolf RM, Channa R. Dipeptidyl peptidase 4 inhibitors, sodium glucose cotransporter 2 inhibitors, and glucagon-like peptide 1 receptor agonists do not worsen diabetic macular edema. J Diabetes Complications 2024; 38:108808. [PMID: 39018897 PMCID: PMC11315198 DOI: 10.1016/j.jdiacomp.2024.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
AIMS There are limited studies on dipeptidyl-peptidase 4 inhibitor (DPP-4i), sodium glucose cotransporter 2 inhibitor (SGLT2-i), and glucagon-like peptide 1 (GLP-1) receptor agonist use and occurrence of diabetic macular edema (DME). The objective of this study was to determine the association between DPP-4i, SGLT2-i, and GLP-1 receptor agonist use and occurrence of DME. METHODS Proportional hazard models were used to evaluate the change in hazard of developing DME associated with DPP-4i, SGLT2-i, or GLP-1 receptor agonist use. Models accounted for age at DR diagnosis, DR severity (proliferative vs non-proliferative stage), time-weighted average of HbA1c level, sex, and self-reported race/ethnicity. A p-value ≤ 0.05 was considered statistically significant. RESULTS The hazard ratio of developing DME after diagnosis of DR was 1.2 (CI = 0.75 to 1.99; p = 0.43) for DPP-4i use, 0.93 (CI = 0.54 to 1.61; p = 0.81) for GLP-1 receptor agonist use, 0.82 (CI = 0.20 to 3.34; p = 0.78) for SGLT2-i use, 1.1 (CI = 0.75 to 1.59; p = 0.66) for any one medication use, 1.1 (CI = 0.62 to 2.09; p = 0.68) and for any two or more medications use. CONCLUSIONS We did not find an association between DPP-4i, SGLT2-i, or GLP-1 receptor agonist use and increased hazard of development of DME among patients with DR.
Collapse
Affiliation(s)
- Alexander Phu
- Department of Medicine, Kansas City University, Kansas City, MO, USA
| | - Mark Banghart
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Mozhdeh Bahrainian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - T Y Alvin Liu
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Risa M Wolf
- Department of Pediatrics, Division of Endocrinology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Roomasa Channa
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
7
|
Fatima H, Rangwala HS, Mustafa MS, Shafique MA, Abbas SR, Rizwan A, Fadlalla Ahmed TK, Arshad A. Evaluating Glycemic Control Efficacy and Safety of the Oral Small Molecule Glucagon-Like Peptide 1 Receptor Agonist Danuglipron in Type 2 Diabetes Patients: A Systemic Review and Meta-Analysis. Diabetes Metab Syndr Obes 2023; 16:3567-3578. [PMID: 37954886 PMCID: PMC10638946 DOI: 10.2147/dmso.s439587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
INTRODUCTION Diabetes Mellitus (DM) is a significant global health concern, with Type 2 DM (T2DM) being highly prevalent. Glucagon-Like Peptide 1 receptor agonists (GLP-1RA), such as Danuglipron, offer potential benefits in T2DM management. This meta-analysis examines the safety and efficacy of Danuglipron, focusing on adverse outcomes and glycemic parameters. METHODS A systematic search was conducted in PubMed, Scopus, and Cochrane Library for RCTs involving Danuglipron till August 2023, following PRISMA guidelines. The Cochrane risk-of-bias tool was used for quality assessment. Adverse outcomes (diarrhea, nausea, vomiting, headache, decreased appetite, dyspepsia, dizziness) and glycemic parameters like changes in HbA1C, fasting plasma glucose (FPG), and body weight were analyzed. RESULTS Four RCTs published from 2021 to 2023 were included. Both doses of Danuglipron were associated with diarrhea (RR=2.66, 90% CI: 1.32 to 5.35, p=0.02), nausea (RR=5.5, 90% CI: 3.4 to 8.88, p<0.00001), and vomiting (RR=5.98, 90% CI: 2.93 to 12.23, p=0.0001). The 120mg dose showed decreased appetite (RR=3.46, 90% CI: 1.57 to 7.62, p=0.01), dyspepsia (RR=4.04, 90% CI: 1.93 to 8.43, p=0.002), and dizziness (RR=5.08, 90% CI: 1.45 to 17.82, p=0.03). Reductions in HbA1C (SMD -1.09, 90% CI -1.39 to -0.8, p < 0.00001), FPG (SMD -1.10, 90% CI -1.46 to -0.75, p < 0.00001), and body weight (SMD -1.08, 90% CI -1.42 to -0.74, p < 0.00001) were observed for both doses. CONCLUSION Danuglipron demonstrates potential for glycemic control and weight reduction in T2DM. Adverse outcomes include diarrhea, nausea, vomiting, and decreased appetite, with dose-related effects. Clinicians must weigh benefits against side effects when considering Danuglipron for T2DM management.
Collapse
Affiliation(s)
- Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | | | | | - Syed Raza Abbas
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Azra Rizwan
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Ainan Arshad
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
8
|
Cigrovski Berkovic M, Strollo F. Semaglutide-eye-catching results. World J Diabetes 2023; 14:424-434. [PMID: 37122431 PMCID: PMC10130900 DOI: 10.4239/wjd.v14.i4.424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Semaglutide is a glucagon-like peptide-1 receptor agonist used either orally every day or subcutaneously once a week for the treatment of type 2 diabetes mellitus and, more recently, at higher doses, for the treatment of obesity. Both diseases are reaching epidemic proportions and often coexist, posing patients with a high risk for cardiovascular disease and death. Therefore, an agent such as semaglutide, which offers clinically significant weight loss and cardiovascular benefits, is essential and will be increasingly used in high-risk patients. However, during the SUSTAIN clinical trial program (Semaglutide Unabated Sustainability in treat-ment of type 2 diabetes), a safety issue concerning the progression and worsening of diabetic retinopathy emerged. The existing explanation so far mainly supports the role of the magnitude and speed of HbA1c reduction, a phenomenon also associated with insulin treatment and bariatric surgery. Whether and to which extent the effect is direct is still a matter of debate and an intriguing topic to investigate for suitable preventative and rehabilitative purposes. In this minireview, we will summarize the available data and suggest guidelines for a comprehensive semaglutide clinical utilization until new evidence becomes available.
Collapse
Affiliation(s)
| | - Felice Strollo
- Department of Endocrinology and Metabolism, IRCCS San Raffaele Pisana, Rome 00163, Italy
| |
Collapse
|
9
|
Wołos-Kłosowicz K, Matuszewski W, Rutkowska J, Krankowska K, Bandurska-Stankiewicz E. Will GLP-1 Analogues and SGLT-2 Inhibitors Become New Game Changers for Diabetic Retinopathy? J Clin Med 2022; 11:6183. [PMID: 36294503 PMCID: PMC9604821 DOI: 10.3390/jcm11206183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of diabetes mellitus (DM), estimated to affect approximately one-third of the diabetic population, and the most common cause of preventable vision loss. The available treatment options focus on the late stages of this complication, while in the early stages there is no dedicated treatment besides optimizing blood pressure, lipid and glycemic control; DR is still lacking effective preventive methods. glucagon-like peptide 1 receptor agonists (GLP-1 Ras) and sodium-glucose cotransporter 2 (SGLT-2) inhibitors have a proven effect in reducing risk factors of DR and numerous experimental and animal studies have strongly established its retinoprotective potential. Both drug groups have the evident potential to become a new therapeutic option for the prevention and treatment of diabetic retinopathy and there is an urgent need for further comprehensive clinical trials to verify whether these findings are translatable to humans.
Collapse
Affiliation(s)
- Katarzyna Wołos-Kłosowicz
- Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
10
|
Bailey J, Coucha M, Bolduc DR, Burnett FN, Barrett AC, Ghaly M, Abdelsaid M. GLP-1 receptor nitration contributes to loss of brain pericyte function in a mouse model of diabetes. Diabetologia 2022; 65:1541-1554. [PMID: 35687178 PMCID: PMC11973880 DOI: 10.1007/s00125-022-05730-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS We have previously shown that diabetes causes pericyte dysfunction, leading to loss of vascular integrity and vascular cognitive impairment and dementia (VCID). Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), used in managing type 2 diabetes mellitus, improve the cognitive function of diabetic individuals beyond glycaemic control, yet the mechanism is not fully understood. In the present study, we hypothesise that GLP-1 RAs improve VCID by preventing diabetes-induced pericyte dysfunction. METHODS Mice with streptozotocin-induced diabetes and non-diabetic control mice received either saline (NaCl 154 mmol/l) or exendin-4, a GLP-1 RA, through an osmotic pump over 28 days. Vascular integrity was assessed by measuring cerebrovascular neovascularisation indices (vascular density, tortuosity and branching density). Cognitive function was evaluated with Barnes maze and Morris water maze. Human brain microvascular pericytes (HBMPCs), were grown in high glucose (25 mmol/l) and sodium palmitate (200 μmol/l) to mimic diabetic conditions. HBMPCs were treated with/without exendin-4 and assessed for nitrative and oxidative stress, and angiogenic and blood-brain barrier functions. RESULTS Diabetic mice treated with exendin-4 showed a significant reduction in all cerebral pathological neovascularisation indices and an improved blood-brain barrier (p<0.05). The vascular protective effects were accompanied by significant improvement in the learning and memory functions of diabetic mice compared with control mice (p<0.05). Our results showed that HBMPCs expressed the GLP-1 receptor. Diabetes increased GLP-1 receptor expression and receptor nitration in HBMPCs. Stimulation of HBMPCs with exendin-4 under diabetic conditions decreased diabetes-induced vascular inflammation and oxidative stress, and restored pericyte function (p<0.05). CONCLUSIONS/INTERPRETATION This study provides novel evidence that brain pericytes express the GLP-1 receptor, which is nitrated under diabetic conditions. GLP-1 receptor activation improves brain pericyte function resulting in restoration of vascular integrity and BBB functions in diabetes. Furthermore, the GLP-1 RA exendin-4 alleviates diabetes-induced cognitive impairment in mice. Restoration of pericyte function in diabetes represents a novel therapeutic target for diabetes-induced cerebrovascular microangiopathy and VCID.
Collapse
Affiliation(s)
- Joseph Bailey
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA, USA
| | - Deanna R Bolduc
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Faith N Burnett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Amy C Barrett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mark Ghaly
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA.
| |
Collapse
|
11
|
Zhang Y, Wang S, Chen X, Wang Z, Wang X, Zhou Q, Fang W, Zheng C. Liraglutide prevents high glucose induced HUVECs dysfunction via inhibition of PINK1/Parkin-dependent mitophagy. Mol Cell Endocrinol 2022; 545:111560. [PMID: 35032624 DOI: 10.1016/j.mce.2022.111560] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/25/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023]
Abstract
Functional loss of endothelial cells will lead to development and progression of atherosclerosis in diabetic patients. However, dysfunction of endothelial cells in diabetes has yet to be fully understood. We aimed to characterize the potential effects of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, on preventing high glucose-induced endothelial dysfunction and excessive mitophagic response. Pretreatment with liraglutide prevented downregulation of eNOS phosphorylation and NO secretion, and reduced apoptosis and oxidative stress of the human umbilical vein endothelial cells (HUVECs) exposed to high glucose. We further demonstrated that liraglutide likely mediated such protective effects by reducing PINK1/Parkin mediated mitophagy. Liraglutide markedly decreased high glucose-induced mitochondrial ROS, lessened PINK1 expression and mitochondrial accumulation of Parkin, but recovered SIRT1 expression. Seahorse analysis revealed that liraglutide mitigated high glucose-induced reduction of basal and maximum respiration rates as well as spare respiration capacity. Inhibition of Parkin by RNA silencing not only resulted in increased mitochondrial and cytosolic ROS and reduced mitochondrial mass and mitochondrial membrane potential, but also led to increased apoptotic responses in high glucose treated HUVECs which were not preventable by liraglutide. Together, our study reveals that liraglutide acts upstream of the PINK1/Parkin pathway to effectively counteract high glucose induced cell dysfunction by suppression of the PINK1/Parkin-dependent mitophagy. Therefore, its use as an adjunct therapy for type 2 diabetes mellitus is warranted to reduce the risk of atherosclerosis. Further research is required to examine the exact molecules, including SIRT1, upstream of the PINK1/parkin pathway that liraglutide targets to maintain the mitochondrial homeostasis.
Collapse
Affiliation(s)
- Yikai Zhang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shengyao Wang
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xia Chen
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhe Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyi Wang
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
12
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Chen H, Zhang X, Liao N, Ji Y, Mi L, Gan Y, Su Y, Wen F. Decreased expression of Glucagon-like peptide-1 receptor and Sodium-glucose co-transporter 2 in patients with proliferative diabetic retinopathy. Front Endocrinol (Lausanne) 2022; 13:1020252. [PMID: 36465606 PMCID: PMC9712753 DOI: 10.3389/fendo.2022.1020252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the expression of Glucagon-like peptide-1 receptor (GLP-1R), sodium-glucose co-transporter (SGLT) 1, SGLT2, Glucose transporter type 1 (GLUT1) and GLUT2 in patients with diabetic retinopathy (DR). METHODS We obtained peripheral blood mononuclear cells (PBMCs) and vitreous samples from 26 proliferative DR (PDR) patients, 25 non-proliferative DR (NPDR) patients, 25 non-DR (NDR) patients, and 26 nondiabetic patients with idiopathic epiretinal membranes (ERMs, control). The protein level and mRNA expression level of GLP-1R were quantified by immunoblot and qRT-PCR and the levels of SGLT1, SGLT2, GLUT1, and GLUT2 expression were determined by PCR. Their association with clinical parameters and PBMCs/vitreous cytokine was analyzed. Furthermore, immunofluorescence staining of GLP-1R and SGLT2 was carried out on samples of fibrovascular membranes (FVMs) retrieved from 26 patients with PDR and 26 patients with ERMs. RESULTS The transcriptional levels of GLP-1R and SGLT2 in PBMCs were significantly more decreased in PDR patients than in patients without DR and controls, which was simultaneously associated with an increased level of expression of tumor necrosis factor (TNF)-α and interferon (IFN)-γ. The expression levels of GLUT1 and GLUT2 were tightly correlated with their SGLT partners, respectively. Further, Immunofluorescence staining showed no positive staining of GLP-1R and SGLT2 was detected in the FVMs from PDR. CONCLUSIONS GLP-1R and SGLT2 were significantly decreased in PDR patients which was associated with an increased level of expression of TNF-α and IFN-γ. These findings implicate that defective GLP-1R and SGLT2 signaling may potentially correlate with immune response cytokines in patients with PDR.
Collapse
|
14
|
Arendt Nielsen T, Sega R, Uggerhøj Andersen C, Vorum H, Mohr Drewes A, Jakobsen PE, Brock B, Brock C. Liraglutide Treatment Does Not Induce Changes in the Peripapillary Retinal Nerve Fiber Layer Thickness in Patients with Diabetic Retinopathy. J Ocul Pharmacol Ther 2021; 38:114-121. [PMID: 34918951 DOI: 10.1089/jop.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Liraglutide treatment has shown promising anti-inflammatory and nerve regenerative results in preclinical and clinical trials. We sought to assess if liraglutide treatment would induce nerve regeneration through its anti-inflammatory and neurotrophic mechanisms by increasing peripapillary retinal nerve fiber layer (RNFL) thickness in individuals with long-term type 1 diabetes. Methods: Secondary analyses were performed on a prospective, double-blinded, randomized, placebo-controlled trial on adults with type 1 diabetes, distal symmetric polyneuropathy (DSPN), and confirmed diabetic retinopathy, who were randomized 1:1 to either 26 weeks placebo or liraglutide treatment. The primary endpoint was a change in peripapillary RNFL thickness between treatments, assessed by optical coherence tomography. Results: Thirty-seven participants were included in the secondary analysis. No differences in mean peripapillary RNFL thickness (overall ΔMean RNFL thickness; liraglutide -1 (±8) μm (-1%) vs. placebo -1 (±5) μm (-1%), P = 0.78, n = 37) or any of the quadrants. Peripapillary RNFL thicknesses were shown between treatments in either nonproliferative (ΔMean RNFL thickness; liraglutide -1 (±5) μm (-1%) vs. placebo 0 (±4) μm (0%), P = 0.80, N = 26) or proliferative diabetic retinopathy subgroup (ΔMean RNFL thickness; liraglutide -2 (±14) μm (-3%) vs. placebo -1 (±6) μm (-2%), P = 0.88, N = 11). Conclusions: In this study, 26 weeks of liraglutide treatment did not induce measurable changes in the assessed optic nerve thickness. Thus, this methodology does not support the induction of substantial nerve regeneration in this cohort with established retinopathy and DSPN. The trial was approved by the Danish Health and Medicines Authority. Informed consent was obtained from all participants. TODINELI study: EUDRA CT: 2013-004375-12, Ethics Ref: N-20130077 Clinical trial registration number: clinicaltrials.gov NCT02138045.
Collapse
Affiliation(s)
- Thomas Arendt Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Ophthalmology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Rok Sega
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital & Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Carl Uggerhøj Andersen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Ophthalmology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Ophthalmology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital & Clinical Institute, Aalborg University, Aalborg, Denmark.,Steno Diabetes Center North, Aalborg, Denmark
| | - Poul Erik Jakobsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Steno Diabetes Center North, Aalborg, Denmark.,Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Birgitte Brock
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Christina Brock
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital & Clinical Institute, Aalborg University, Aalborg, Denmark.,Steno Diabetes Center North, Aalborg, Denmark
| |
Collapse
|
15
|
Zhou HR, Ma XF, Lin WJ, Hao M, Yu XY, Li HX, Xu CY, Kuang HY. Neuroprotective Role of GLP-1 Analog for Retinal Ganglion Cells via PINK1/Parkin-Mediated Mitophagy in Diabetic Retinopathy. Front Pharmacol 2021; 11:589114. [PMID: 33679385 PMCID: PMC7928389 DOI: 10.3389/fphar.2020.589114] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
GLP-1 analogs have been widely used to treat patients with type 2 diabetes in recent years and studies have found that GLP-1 analogs have multiple organ benefits. However, the role of GLP-1 analogs in diabetic retinopathy (DR), a common complication of diabetes mellitus (DM), remains controversial. Retinal ganglion cells (RGCs) are the only afferent neurons responsible for transmitting visual information to the visual center and are vulnerable in the early stage of DR. Protection of RGC is vital for visual function. The incretin glucagon-like peptide-1 (GLP-1), which is secreted by L-cells after food ingestion, could lower blood glucose level through stimulating the release of insulin. In the present study, we evaluated the effects of GLP-1 analog on RGCs both in vitro and in vivo. We established diabetic rat models in vivo and applied an RGC-5 cell line in vitro. The results showed that in high glucose conditions, GLP-1 analog alleviated the damage of RGCs. In addition, GLP-1 analog prevented mitophagy through the PINK1/Parkin pathway. Here we demonstrated the neuroprotective effect of GLP-1 analog, which may be beneficial for retinal function, and we further elucidated a novel mechanism in GLP-1 analog-regulated protection of the retina. These findings may expand the multi-organ benefits of GLP-1 analogs and provide new insights for the prevention of DR.
Collapse
Affiliation(s)
- Huan-Ran Zhou
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue-Fei Ma
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Jian Lin
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin-Yang Yu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Xue Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cheng-Ye Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Yu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Beneficial Effects of Glucagon-Like Peptide-1 (GLP-1) in Diabetes-Induced Retinal Abnormalities: Involvement of Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9090846. [PMID: 32927585 PMCID: PMC7554849 DOI: 10.3390/antiox9090846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Hyperglycemia-induced oxidative stress plays a key role in diabetic complications, including diabetic retinopathy. The main goal of this study was to assess whether the topical administration (eye drops) of glucagon-like peptide-1 (GLP-1) has any effect on oxidative stress in the retina. Methods: db/db mice were treated with eye drops of GLP-1 or vehicle for three weeks, with db/+ mice being used as control. Studies included the assessment by western blot of the antioxidant defense markers CuZnSOD, MnSOD, glutathione peroxidase and reductase; immunofluorescence measurements of DNA/RNA damage, nitro tyrosine and Ki67 and Babam2 proteins. Results: GLP-1 eye drops protected from oxidative stress by increasing the protein levels of glutathione reductase, glutathione peroxidase and CuZnSOD and MnSOD in diabetic retinas. This was associated with a significant reduction of DNA/RNA damage and the activation of proteins involved in DNA repair in the retina (Babam2) and Ki67 (a biomarker of cell proliferation). Conclusions: GLP-1 modulates the antioxidant defense system in the diabetic retina and has a neuroprotective action favoring DNA repair and neuron cells proliferation.
Collapse
|
17
|
Chung YW, Lee JH, Lee JY, Ju HH, Lee YJ, Jee DH, Ko SH, A Choi J. The Anti-Inflammatory Effects of Glucagon-Like Peptide Receptor Agonist Lixisenatide on the Retinal Nuclear and Nerve Fiber Layers in an Animal Model of Early Type 2 Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1080-1094. [PMID: 32354571 DOI: 10.1016/j.ajpath.2020.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
This study explored the anti-inflammatory effects of a glucagon-like peptide-1 receptor agonist (GLP-1RA), known as lixisenatide, on the eyes of early type 2 diabetic mice. Diabetic (db/db) mice were divided into three groups: GLP-1RA [lixisenatide (LIX)], insulin (INS) with controlled hyperglycemia based on the glucose concentration of lixisenatide, and diabetic control (D-CON). Nondiabetic control mice (db/dm) were also characterized for comparison. After 8 weeks of treatment, mRNA levels of inflammatory markers, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, immunohistochemical staining; Western blot of glial fibrillary acidic protein (GFAP) and thioredoxin-interacting protein; and retinal thickness were assessed in the central and peripheral neurosensory retina. LIX showed decreased immunohistochemical staining for both thioredoxin-interacting protein and GFAP in the central and peripheral neurosensory retina compared with D-CON and INS, and decreased expression of these proteins in the neurosensory retina and immunohistochemical staining in the optic nerve head for GFAP compared with D-CON. The inner nuclear layer in the peripheral retina in LIX was only thinner than those of D-CON and INS. In an early type 2 diabetic mouse model, lixisenatide treatment showed superior anti-inflammatory effects on the retina and optic nerve head independent of hyperglycemia. Thus, the neuroprotective effects of lixisenatide treatment in the peripheral inner nuclear layer should be evaluated in early type 2 diabetic retinopathy.
Collapse
Affiliation(s)
- Yeon Woong Chung
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Hyung Lee
- Department of Ophthalmology and Visual Science, St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Young Lee
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Hee Ju
- Clinical Research Center, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ye-Jee Lee
- Division of Endocrinology & Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyun Jee
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Hyun Ko
- Division of Endocrinology & Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin A Choi
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Lyseng-Williamson KA. Glucagon-Like Peptide-1 Receptor Analogues in Type 2 Diabetes: Their Use and Differential Features. Clin Drug Investig 2019; 39:805-819. [PMID: 31317516 PMCID: PMC6746674 DOI: 10.1007/s40261-019-00826-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are well established as effective adjuncts to lifestyle modification in the treatment of type 2 diabetes (T2D) as monotherapy or in combination with oral glucose-lowering drugs ± insulin. The six subcutaneous GLP-1RA formulations (i.e. twice-daily exenatide, once-daily liraglutide and lixisenatide, and once-weekly dulaglutide, exenatide and semaglutide) currently available in the EU and USA have many similarities, but also some unique features and properties. By stimulating GLP-1 receptors, GLP-1RAs increase insulin secretion and suppress glucagon release in a glucose-dependent manner, thereby improving clinical and patient-reported outcomes related to glycaemic control and weight. They also have been shown to reduce, or at least not increase, the risk of major cardiovascular outcomes. GLP-1RAs are generally well tolerated, with gastrointestinal and injection-site reactions being the most troublesome drug-related adverse events, and are associated with a very low intrinsic risk of hypoglycaemia. Treatment with GLP-1RAs should be customized to meet the clinical needs and personal preferences of the individual.
Collapse
|
19
|
Millan-Linares MC, Toscano R, Lemus-Conejo A, Martin ME, Pedroche J, Millan F, Montserrat-de la Paz S. GPETAFLR, a biopeptide from Lupinus angustifolius L., protects against oxidative and inflammatory damage in retinal pigment epithelium cells. J Food Biochem 2019; 43:e12995. [PMID: 31659814 DOI: 10.1111/jfbc.12995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 01/23/2023]
Abstract
GPETAFLR, an octapeptide released from the enzymatic hydrolysis of lupine (Lupinus angustifolius L.) protein, has demonstrated anti-inflammatory effect in myeloid lineage. This work aims to evaluate in retinal pigment epithelium (RPE) cells the protective role of GPETAFLR on both oxidative and inflammatory markers known to be involved in age-related macular degeneration (AMD). In comparison with stimulated control cells, GPETAFLR increased glutathione production and diminished the secretion and gene expression of VEFG, IL-1β, IL-6, IFNγ, and TNF-α, as well as reactive oxygen species, and nitrite output. Our findings reveal that GPETAFLR, a novel plant peptide, is able to protect against RPE oxidative stress and inflammation. Taken together, these results strongly support innovative nutritional strategies considering Lupinus angustifolius L. as source of proteins to prevent the onset and progression of AMD. PRACTICAL APPLICATIONS: We reveal a novel nutraceutical impact of GPETAFLR peptide in human RPE cells to prevent oxidative and inflammatory mediators. Our results support that the intake of Lupine angustifolius L., proposed to be a reservoir of GPETAFLR, could lessen the functional decay of RPE cells, leading therefore to a slowdown of the progress of AMD during age. Not only this work, but also future simple clinical studies should raise new nutritional strategies focused on understanding the etiological role of the foods, nutrition, and metabolism in the pathogenesis of ocular disorders.
Collapse
Affiliation(s)
| | - Rocio Toscano
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Ana Lemus-Conejo
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain
| | - Francisco Millan
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
20
|
New anti-hyperglycaemic agents for type 2 diabetes and their effects on diabetic retinopathy. Eye (Lond) 2019; 33:1842-1851. [PMID: 31227789 DOI: 10.1038/s41433-019-0494-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
There has been an increase in the range of non-insulin anti-hyperglycaemic agents used to treat type 2 diabetes. With the globally rising rates of type 2 diabetes and complications such as diabetic retinopathy, it is important for ophthalmologists to be aware of these new agents and their impacts on diabetic retinopathy and diabetic macular oedema. We conducted a review of the literature to determine if there were any beneficial or harmful effects of the currently used anti-hyperglycaemic agents on diabetic retinopathy or diabetic macular oedema. Our review of the current literature found that apart from thiazolidinediones, anti-hyperglycaemic agents have been reported to have beneficial or neutral effects on diabetic eye complications. Thiazolidinediones (pioglitazone is the only one currently available) have been linked to incident or worsening diabetic macular oedema, although the rate is believed to be low. Glucagon-like peptide 1 (GLP1) agonists (incretins) in general are beneficial except semaglutide which is associated with increased rates of diabetic retinopathy complications. These results have implications for selection of anti-hyperglycaemic agents for patients with diabetic retinopathy or macular oedema. Further studies need to be conducted to identify if reported beneficial effects are independent of the impact of glycaemic control. Early worsening of retinopathy with tight glycaemic control should also be noted in interpretation of future studies.
Collapse
|
21
|
Mousa SA, Ayoub BM. Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 agonists as potential neuroprotective agents. Neural Regen Res 2019; 14:745-748. [PMID: 30688255 PMCID: PMC6375047 DOI: 10.4103/1673-5374.249217] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists is a breakthrough in the field of neural regeneration research increasing glucagon like peptide-1 bioavailability, hence its neuroprotective activities. In this article, the authors suggest not only crossing blood-brain barrier and neurodegenerative disease as off target for dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists, but also for ophthalmic preparations for diabetic retinopathy, which may be the latest breakthrough in the field if prepared and used in an appropriate nano-formulation to target the retinal nerves. The relation of neurodegenerative diseases’ different mechanisms to the dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists should be further examined in preclinical and clinical settings. The repositioning of already marketed antidiabetic drugs for neurodegenerative diseases should save the high cost of the time-consuming normal drug development process. Drug repositioning is a hot topic as an alternative to molecular target based drug discovery or therapeutic switching. It is a relatively inexpensive pathway due to availability of previous pharmacological and safety data. The glucagon like peptide-1 produced in brain has been linked to enhanced learning and memory functions as a physiologic regulator in central nervous system by restoring insulin signaling. Intranasal administration of all marketed gliptins (or glucagon like peptide-1 receptor agonists) may show enhanced blood-brain barrier crossing and increased glucagon like peptide-1 levels in the brain after direct crossing of the drug for the olfactory region, targeting the cerebrospinal fluid. Further blood-brain barrier crossing tests may extend dipeptidyl peptidase-4 inhibitors’ effects beyond the anti-hyperglycemic control to intranasal spray, intranasal powder, or drops targeting the blood-brain barrier and neurodegenerative diseases with the most suitable formula. Moreover, novel nano-formulation is encouraged either to obtain favorable pharmacokinetic parameters or to achieve promising blood-brain barrier penetration directly through the olfactory region. Many surfactants should be investigated either as a solubilizing agent for hydrophobic drugs or as penetration enhancers. Different formulae based on in vitro and in vivo characterizations, working on sister gliptins (or glucagon like peptide-1 receptor agonists), different routes of administration, pharmacokinetic studies, dose response relationship studies, monitoring of plasma/brain concentration ratio after single and multiple dose, and neurodegenerative disease animal models are required to prove the new method of use (utility) for dipeptidyl peptidase-4 inhibitors as potential neuroprotective agents. Furthermore, investigations of glucagon like peptide-1 receptor agonists’ neuroprotective effects on animal models will be considered carefully because they crossed the blood-brain barrier in previous studies, enabling their direct action on the central nervous system. Combination therapy of dipeptidyl peptidase-4 inhibitors or glucagon like peptide-1 receptor agonists with already marketed drugs for neurodegenerative disease should be considered, especially regarding the novel intranasal route of administration.
Collapse
Affiliation(s)
- Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; The Center for Drug Research and Development (CDRD), Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
| | - Bassam M Ayoub
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; The Center for Drug Research and Development (CDRD), Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
| |
Collapse
|
22
|
Lin WJ, Ma XF, Hao M, Zhou HR, Yu XY, Shao N, Gao XY, Kuang HY. Liraglutide attenuates the migration of retinal pericytes induced by advanced glycation end products. Peptides 2018; 105:7-13. [PMID: 29746877 DOI: 10.1016/j.peptides.2018.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
Retinal pericyte migration represents a novel mechanism of pericyte loss in diabetic retinopathy (DR), which plays a crucial role in the early impairment of the blood-retinal barrier (BRB). Glucagon-like peptide-1 (GLP-1) has been shown to protect the diabetic retina in the early stage of DR; however, the relationship between GLP-1 and retinal pericytes has not been discussed. In this study, advanced glycation end products (AGEs) significantly increased the migration of primary bovine retinal pericytes without influencing cell viability. AGEs also significantly enhanced phosphatidylinositol 3-kinase (PI3K)/Akt activation, and changed the expressions of migration-related proteins, including phosphorylated focal adhesion kinase (p-FAK), matrix metalloproteinase (MMP)-2 and vinculin. PI3K inhibition significantly attenuated the AGEs-induced migration of retinal pericytes and reversed the overexpression of MMP-2. Glucagon-like peptide-1 receptor (Glp1r) was expressed in retinal pericytes, and liraglutide, a GLP-1 analog, significantly attenuated the migration of pericytes by Glp1r and reversed the changes in p-Akt/Akt, p-FAK/FAK, vinculin and MMP-2 levels induced by AGEs, indicating that the protective effect of liraglutide was associated with the PI3K/Akt pathway. These results provided new insights into the mechanism underlying retinal pericyte migration. The early use of liraglutide exerts a potential bebefical effect on regulating pericyte migration, which might contribute to mechanisms that maintain the integrity of vascular barrier and delay the development of DR.
Collapse
Affiliation(s)
- Wen-Jian Lin
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue-Fei Ma
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huan-Ran Zhou
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin-Yang Yu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Shao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin-Yuan Gao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Yu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|