1
|
Ashraf F, Weedall GD. Characterization of the glutathione S-transferase genes in the sand flies Phlebotomus papatasi and Lutzomyia longipalpis shows expansion of the novel glutathione S-transferase xi (X) class. INSECT MOLECULAR BIOLOGY 2022; 31:417-433. [PMID: 35238100 PMCID: PMC9540044 DOI: 10.1111/imb.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 05/17/2023]
Abstract
Leishmaniasis control often relies upon insecticidal control of phlebotomine sandfly vector populations. Such methods are vulnerable to the evolution of insecticide resistance via a range of molecular mechanisms. There is evidence that two major resistance mechanisms, target site insensitivity and metabolic resistance, have evolved in some sandfly populations and further genetic characterization of resistance would be useful to understand and combat it. To facilitate the study of the mechanisms of metabolic resistance, here we improved the annotation and characterized a major detoxification gene family, the glutathione-s-transferases (GST), in the genomes of two sand fly species: Phlebotomus papatasi and Lutzomyia longipalpis. The compositions of the GST gene family differ markedly from those of Aedes and Anopheles mosquitoes. Most strikingly, the xi (X) class of GSTs appears to have expanded in both sand fly genomes. Our results provide a basis for further studies of metabolic resistance mechanisms in these important disease vector species.
Collapse
Affiliation(s)
- Faisal Ashraf
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Gareth D. Weedall
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
2
|
Wang K, Zhao J, Han Z, Chen M. Comparative transcriptome and RNA interference reveal CYP6DC1 and CYP380C47 related to lambda-cyhalothrin resistance in Rhopalosiphum padi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105088. [PMID: 35430059 DOI: 10.1016/j.pestbp.2022.105088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The bird-cherry-oat aphid, Rhopalosiphum padi, is a serious agricultural pest of Triticeae crops, and pyrethroids are the most widely used chemical pesticides for the control of the aphid. Our previous studies found that some R. padi field populations have developed resistance against pyrethroids; an M918L target-site mutation of the voltage gated sodium channel was present in the pyrethroid resistant individuals, while the high-level resistance to lambda-cyhalothrin revealed the presence of other mechanisms in the pest. Here, we conducted genome-wide transcriptional analysis for the lambda-cyhalothrin susceptible (SS) and resistant (LC-RR) strains of R. padi. Results indicated that 2457 genes were differently expressed between the SS and LC-RR strains. In the LC-RR, a total of 1265 and 1192 genes were up- and down-regulated, respectively. KEGG analysis implicated enrichment of P450 involved in insecticide metabolic pathways in the resistant transcriptome. qRT-PCR results confirmed that two P450 genes (CYP6DC1 and CYP380C47) were significantly overexpressed in the LC-RR individuals. Furthermore, RNA interference (RNAi) of CYP6DC1 or CYP380C47 significantly increased mortality of R. padi exposure to lambda-cyhalothrin. These results suggest that the overexpression of CYP6DC1 and CYP380C47 contributed to the lambda-cyhalothrin resistance in the pest. This study provides knowledge for further analyzing the molecular mechanism of resistance to pyrethroids in R. padi.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Junning Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaojun Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Nawaz S, Tahir HM, Asif Mahmood M, Summer M, Ali S, Ali A, Gormani AH. Current Status of Pyrethroids Resistance in Aedes aegypti (Culicidae: Diptera) in Lahore District, Pakistan: A Novel Mechanistic Insight. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2432-2438. [PMID: 34343301 DOI: 10.1093/jme/tjab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Aedes aegypti (Linnaeus, 1762) is a major vector responsible for dengue transmission. Insecticides are being used as the most effective tool to control vector populations in Lahore, Pakistan. Control of Ae. aegypti is threatened by the development of resistance against insecticides. The current status of insecticide resistance was evaluated against pyrethroids (deltamethrin, cypermethrin, and lambda-cyhalothrin) in different populations of Lahore (Model Town, Mishri Shah, Sadar Cantt, Walton, and Valencia). The susceptibility of the larval and adult populations was tested following the standard WHO guidelines. Moderate to high levels of resistance were found against pyrethroids in the larval (RR50: 3.6-27.2 and RR90: 5-90) and adult populations (percentage mortality < 98%). Biochemical assays revealed a statistically significant increase in the enzyme level in all field populations compared to the laboratory strain. The value of esterase was one-fold higher, monooxygenase was 3.9- to 4.7-fold higher, and glutathione S-transferases was 1.9- to 2.6-fold higher in field populations compared to the laboratory strain. These results depict the presence of resistance against deltamethrin, cypermethrin, and lambda-cyhalothrin in field populations of Lahore mediated by metabolic enzymes i.e. esterases, monooxygenases, and glutathione S-transferase.
Collapse
Affiliation(s)
- Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | | | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
4
|
Shan J, Sun X, Li R, Zhu B, Liang P, Gao X. Identification of ABCG transporter genes associated with chlorantraniliprole resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2021; 77:3491-3499. [PMID: 33837648 DOI: 10.1002/ps.6402] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plutella xylostella (L.) is a serious worldwide pest that feeds on cruciferous plants and has evolved resistance to different classes of insecticides used for its control, including chlorantraniliprole. ATP-binding cassette (ABC) transporters, constituting the largest transport family in organisms, are involved in phase III of the detoxification process and may play important roles in insecticide resistance. RESULTS A total of 15 ABC transporter transcripts from subfamily G were identified in P. xylostella based on the latest DBM genome. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, significantly increased the toxicity of chlorantraniliprole against larvae of two chlorantraniliprole-resistant P. xylostella populations (NIL and BL). ABCG2, ABCG5, ABCG6, ABCG9, ABCG11, ABCG14 and ABCG15 were significantly overexpressed in NIL and BL compared with the susceptible population (SS), and ABCG1, ABCG6, ABCG8, ABCG9, ABCG14 and ABCG15 were significantly upregulated after treatment with the LC50 of chlorantraniliprole in SS. Subsequently, ABCG6, ABCG9 and ABCG14, which were overexpressed in both NIL and BL and could be induced in SS, were chosen for functional study. RNAi-mediated knockdown of each of the three ABCGs significantly increased the sensitivity of larvae to chlorantraniliprole. These results confirmed that overexpression of ABCG6, ABCG9 and ABCG14 may contribute to chlorantraniliprole resistance in P. xylostella. CONCLUSION Overexpression of some genes in the ABCG subfamily is involved in P. xylostella resistance to chlorantraniliprole. These results may help to establish a foundation for further studies investigating the role played by ABC transporters in chlorantraniliprole resistance in P. xylostella or other insect pests. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xi Sun
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Ran Li
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
5
|
Talipouo A, Mavridis K, Nchoutpouen E, Djiappi-Tchamen B, Fotakis EA, Kopya E, Bamou R, Kekeunou S, Awono-Ambene P, Balabanidou V, Balaska S, Wondji CS, Vontas J, Antonio-Nkondjio C. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci Rep 2021; 11:7322. [PMID: 33795804 PMCID: PMC8017000 DOI: 10.1038/s41598-021-86850-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Culex mosquitoes particularly Culex quinquefasciatus are important arboviral and filariasis vectors, however despite this important epidemiological role, there is still a paucity of data on their bionomics. The present study was undertaken to assess the insecticide resistance status of Cx. quinquefasciatus populations from four districts of Yaoundé (Cameroon). All Culex quinquefasciatus populations except one displayed high resistance to bendiocarb and malathion with mortalities ranging from 0 to 89% while high resistance intensity against both permethrin and deltamethrin was recorded. Molecular analyses revealed high frequencies of the ACE-1 G119S mutation (ranging from 0 to 33%) and kdr L1014F allele (ranging from 55 to 74%) in all Cx. quinquefasciatus populations. Significant overexpression was detected for cytochrome P450s genes CYP6AA7 and CYP6Z10, as well as for Esterase A and Esterase B genes. The total cuticular hydrocarbon content, a proxy of cuticular resistance, was significantly increased (compared to the S-lab strain) in one population. The study confirms strong insecticide resistance mediated by different mechanisms in Cx. quinquefasciatus populations from the city of Yaoundé. The expansion of insecticide resistance in Culex populations could affect the effectiveness of current vector control measures and stress the need for the implementation of integrated vector control strategies in urban settings.
Collapse
Affiliation(s)
- Abdou Talipouo
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun.
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon.
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Elysée Nchoutpouen
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
| | - Borel Djiappi-Tchamen
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Emmanouil Alexandros Fotakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Edmond Kopya
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon
| | - Roland Bamou
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Sévilor Kekeunou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Sofia Balaska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Charles Sinclair Wondji
- Department of Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroun
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun.
- Department of Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
6
|
Black WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. INSECTS 2021; 12:insects12040276. [PMID: 33804964 PMCID: PMC8063960 DOI: 10.3390/insects12040276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023]
Abstract
The threat of mosquito-borne diseases continues to be a problem for public health in subtropical and tropical regions of the world; in response, there has been increased use of adulticidal insecticides, such as pyrethroids, in human habitation areas over the last thirty years. As a result, the prevalence of pyrethroid-resistant genetic markers in natural mosquito populations has increased at an alarming rate. This review details recent advances in the understanding of specific mechanisms associated with pyrethroid resistance, with emphasis on features of insecticide detoxification and the interdependence of multiple cellular pathways. Together, these advances add important context to the understanding of the processes that are selected in resistant mosquitoes. Specifically, before pyrethroids bind to their targets on motoneurons, they must first permeate the outer cuticle and diffuse to inner tissues. Resistant mosquitoes have evolved detoxification mechanisms that rely on cytochrome P450s (CYP), esterases, carboxyesterases, and other oxidation/reduction (redox) components to effectively detoxify pyrethroids to nontoxic breakdown products that are then excreted. Enhanced resistance mechanisms have evolved to include alteration of gene copy number, transcriptional and post-transcriptional regulation of gene expression, as well as changes to cellular signaling mechanisms. Here, we outline the variety of ways in which detoxification has been selected in various mosquito populations, as well as key gene categories involved. Pathways associated with potential new genes of interest are proposed. Consideration of multiple cellular pathways could provide opportunities for development of new insecticides.
Collapse
|
7
|
Pavlidi N, Vontas J, Van Leeuwen T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. CURRENT OPINION IN INSECT SCIENCE 2018; 27:97-102. [PMID: 30025642 DOI: 10.1016/j.cois.2018.04.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/11/2023]
Abstract
Insecticide resistance seriously threatens efficient arthropod pest management. Arthropod glutathione S-transferases (GSTs) confer resistance via direct metabolism or sequestration of chemicals, but also indirectly by providing protection against oxidative stress induced by insecticide exposure. To date, GST activity has been associated with resistance to all main classes of insecticides. However, recent advances in genome and transcriptome sequencing, together with modern genetic, functional and biochemical techniques, facilitate the unraveling of specific GST-mediated resistance mechanisms. Recently, the role of a number of GSTs (BdGSTe2, BdGSTe4, AfGSTe2) has been validated by (reverse) genetic methods in vivo, while a number of GSTs (BmGSTu2, TuGSTd05, AfGSTe2) have now been shown to metabolize insecticides in vitro.
Collapse
Affiliation(s)
- Nena Pavlidi
- Department of Evolutionary Biology, Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands.
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FOH), 70013 Heraklion, Greece; Pesticide Science Laboratory, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Thomas Van Leeuwen
- Department of Evolutionary Biology, Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|