1
|
Annaz H, Cacciola F, Kounnoun A, Bouayad N, Rharrabe K. Impact of essential oils on enzymes activity, reserve products, biomarkers, and gene expression of Tribolium castaneum. Comp Biochem Physiol C Toxicol Pharmacol 2025; 293:110167. [PMID: 40032188 DOI: 10.1016/j.cbpc.2025.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 03/01/2025] [Indexed: 03/05/2025]
Abstract
Essential oils (EOs) are concentrated volatiles renowned for their strong fumigant, contact, feeding deterrence, and repellent effects. These oils can disrupt vital functions and the activity of essential enzymes in major stored product pests like Tribolium castaneum. Hence, the study of the physiological effects of these EOs can provide a better understanding of the impact of EOs and propose new strategies for the control of this pest. Therefore, this review aims to review available data regarding the potential impact of EOs on T. castaneum enzyme activities, biomarkers, gene expression, and transcriptomic profile. Articles retrieved provide interesting findings regarding the activity of digestive enzymes (α-amylase, alanine aminotransferase, and aspartate aminotransferase) detoxification enzymes (cytochrome P450 monooxygenase, esterase, glutathione S-transferase), antioxidant enzymes (catalase, superoxide dismutase) and acetylcholinesterase, ATPase, in adults and larvae exposed to different EOs. Moreover, some articles evaluated the content reserve products (proteins, lipids, carbohydrates) and biomarkers linked to stress (reactive oxygen species), lipid peroxidation (conjugated diene, malondialdehyde), and antioxidant system (reduced and oxidized glutathione). Other molecular aspects were also evaluated, including transcriptomics and gene expression, to assess the physiological interactions after exposure to EOs.
Collapse
Affiliation(s)
- Houssam Annaz
- Research Laboratory Biology, Environment and Sustainable Development, ENS. Abdelmalek Essaadi University, Tetouan, Morocco; Research team Biotechnologies and Biomolecular Engineering, Faculty of Science and Technology - Abdelmalek Essaadi University, Tangier, Morocco; Research team Agricultural and Aquaculture Engineering, FPL, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Francesco Cacciola
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy.
| | - Ayoub Kounnoun
- Faculty of Medical Sciences, University Mohammed IV Polytechnic, Benguerir, Morocco
| | - Noureddin Bouayad
- Research team Biotechnologies and Biomolecular Engineering, Faculty of Science and Technology - Abdelmalek Essaadi University, Tangier, Morocco
| | - Kacem Rharrabe
- Research Laboratory Biology, Environment and Sustainable Development, ENS. Abdelmalek Essaadi University, Tetouan, Morocco; Research team Agricultural and Aquaculture Engineering, FPL, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
2
|
Chen W, Xu H, Chen M, Tang P, Wang K. Spray-Induced Gene Silencing for Postharvest Protection: dsRNA Stability and Insecticidal Efficacy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10778-10786. [PMID: 40262032 DOI: 10.1021/acs.jafc.4c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Sprayable double-stranded RNA (dsRNA) pesticides, based on RNA interference (RNAi), have shown promise in preharvest crop protection, yet their use for postharvest grain storage remains underexplored. In this study, we evaluated the efficacy and stability of sprayable dsRNA in protecting stored rice grains from the lesser grain borer (Rhyzopertha dominica). Results showed significant insecticidal activity, with 72% mortality observed after ingestion of grains stored for 60 days post-treatment, compared to 90% mortality in freshly treated grains. To assess dsRNA persistence, we developed a sensitive detection method for low-input samples. Approximately 73% of the initial dsRNA remained detectable after 60 days of storage, with increased absorption into the rice hull over time. These findings demonstrate the durability and effectiveness of sprayable dsRNA in stored grain protection and underscore its potential as a sustainable alternative to chemical pesticides for postharvest pest management.
Collapse
Affiliation(s)
- Wei Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Honglei Xu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Mengjiao Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Peian Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Kangxu Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Kim D, Lee SE. Proteomic evaluation of pathways associated with phosphine-induced mitochondrial dysfunction and resistance mechanisms in Tribolium castaneum against phosphine fumigation: Whole and partial proteome identification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117652. [PMID: 39755090 DOI: 10.1016/j.ecoenv.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Phosphine (PH3) fumigation is widely used to control insect pests in stored products globally. However, intensive PH3 use has led to the emergence of significant resistance in target insects. To address this issue, this study investigated PH3 resistance mechanisms by conducting both qualitative and quantitative proteomic analyses on the whole proteome of a PH3-resistant Tribolium castaneum strain (AUS-07) using LC-MS/MS. Besides, proteins from both strains were separated in 1D-PAGE, and qualitatively analyzed using LC-MS/MS after in-gel digestion. Differentially expressed proteins (DEPs) with cut-off values (4-fold expression difference and p < 0.05) were selected, and 107 proteins were identified in the AUS-07 strain. Among them, several proteins involved in oxidative phosphorylation were notably upregulated in response to PH3 exposure. Upregulation of Complex I and III in the electron transport chain of the AUS-07 strain may lead to the excessive generation of reactive oxygen species (ROS) in the form of superoxide, which can damage Fe-S cluster-containing proteins such as cytochrome P450s (CYP450s). Upregulation of detoxifying enzymes, such as CYP450s and glutathione S-transferases (GSTs), was observed, likely to repair superoxide-induced damage on CYP450s as well as quenching superoxide. Upregulation of aldose reductases involved in polyol pathways and downregulation of the trehalose transporter were observed, suggesting that PH3-resistance may be linked to diapause-like physiological adaptations, including quiescence. Further studies are essential to quantify polyol levels in the AUS-07 strain and to conduct other molecular analyses to validate the roles of identified DEPs in PH3 resistance. Altogether, our findings suggest a new control strategy to stored product insect pests by other type of fumigant such as ethyl formate with different molecular structure.
Collapse
Affiliation(s)
- Donghyeon Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
4
|
Li X, Ma L, Yang W, Xu K. Knockdown of CYP6SZ3 and CYP6AEL1 genes increases the susceptibility of Lasioderma serricorne to ethyl formate and benzothiazole. Front Physiol 2024; 15:1503953. [PMID: 39633644 PMCID: PMC11615064 DOI: 10.3389/fphys.2024.1503953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Insect cytochrome P450 monooxygenases (CYPs) play crucial roles in the metabolic detoxification of insecticides. Ethyl formate and benzothiazole have recently regained popularity as fumigants due to rising resistance to phosphine in the stored-product pests. However, the mechanisms underlying tolerance to these two fumigants in Lasioderma serricorne, a major global insect pest of stored products, remain poorly understood. In this study, two CYP genes, named CYP6SZ3 and CYP6AEL1, were identified from L. serricorne, belonging to the CYP6 family and containing five conserved domains characteristic of CYP proteins. Spatiotemporal expression analysis revealed that both genes were predominantly expressed in the larval stage and showed the highest expression in the foregut. Upon exposure to ethyl formate and benzothiazole, both genes were upregulated, with significantly increased transcription levels following treatment. RNA interference-mediated silencing of CYP6SZ3 and CYP6AEL1 led to increased susceptibility and significantly higher mortality of L. serricorne when exposed to these fumigants. Homology modeling and molecular docking analyses showed stable binding of these fumigants to CYP6SZ3 and CYP6AEL1 proteins, with binding free energies from -26.88 to -94.68 kcal mol-1. These findings suggest that the induction of CYP6SZ3 and CYP6AEL1 is likely involved in the detoxification of ethyl formate and benzothiazole in L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Kangkang Xu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Guiyang University, Guiyang, China
| |
Collapse
|
5
|
Sakka MK, Mavridis K, Papapostolou KM, Riga M, Vontas J, Athanassiou CG. Development, application and evaluation of three novel TaqMan qPCR assays for phosphine resistance monitoring in major stored product pests Tribolium castaneum and Rhyzopertha dominica. PEST MANAGEMENT SCIENCE 2024; 80:275-281. [PMID: 37671455 DOI: 10.1002/ps.7755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
BACKROUND Stored product protection from insect pests relies heavily on the use of phosphine. The most serious drawback of phosphine is the development of resistance in major stored product insects worldwide, including the red flour beetle, Tribolium castaneum (Herbst) and the lesser grain borer, Rhyzopertha dominica (F.). Two genetic loci are responsible for phosphine resistance: the rph1 (S349G mutation in the cyt-b5-r homolog) in T. castaneum and the rph2 (P45/49S mutation in the dihydrolipoamide dehydrogenase (dld) gene) in T. castaneum and R. dominica. RESULTS In this study, we have developed and applied high-throughput, practical and specific molecular diagnostics (TaqMan qPCR) for monitoring mutations S349G, P45S and P49S. In our pilot monitoring application, we have included phosphine-resistant and susceptible populations from different parts of the world (USA, Australia, Brazil) and European strains from Greece and Serbia. Our results for the resistant T. castaneum showed a P45S mutant allele frequency (MAF) of 100% and 75.0% in the populations from Serbia and Brazil, respectively. Regarding the susceptible T. castaneum, P45S was detected in Greece (MAF = 62.5%) and was absent in Australia (MAF = 0.0%). Additionally, the S349G mutation was found to be fixed in all resistant populations, while it was also detected in susceptible ones (frequencies: 65.0% and 100.0%). The only case where both mutations were fixed (100%) was a resistant population from Serbia. In R. dominica, the P49S mutation was found only in the two resistant R. dominica populations from Serbia and Greece (50.0% and 100%) and was absent from the susceptible one from Greece; thus, P49S seems to be a satisfactory indicator for monitoring phosphine resistance. CONCLUSIONS Our P49S detection assay in R. dominica seems to be a viable option in this direction, yet its utilization needs additional large-scale confirmatory work. The identification of additional resistance markers also should be prioritized. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria K Sakka
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kyriaki Maria Papapostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
6
|
Gul H, Gadratagi BG, Güncan A, Tyagi S, Ullah F, Desneux N, Liu X. Fitness costs of resistance to insecticides in insects. Front Physiol 2023; 14:1238111. [PMID: 37929209 PMCID: PMC10620942 DOI: 10.3389/fphys.2023.1238111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
The chemical application is considered one of the most crucial methods for controlling insect pests, especially in intensive farming practices. Owing to the chemical application, insect pests are exposed to toxic chemical insecticides along with other stress factors in the environment. Insects require energy and resources for survival and adaptation to cope with these conditions. Also, insects use behavioral, physiological, and genetic mechanisms to combat stressors, like new environments, which may include chemicals insecticides. Sometimes, the continuous selection pressure of insecticides is metabolically costly, which leads to resistance development through constitutive upregulation of detoxification genes and/or target-site mutations. These actions are costly and can potentially affect the biological traits, including development and reproduction parameters and other key variables that ultimately affect the overall fitness of insects. This review synthesizes published in-depth information on fitness costs induced by insecticide resistance in insect pests in the past decade. It thereby highlights the insecticides resistant to insect populations that might help design integrated pest management (IPM) programs for controlling the spread of resistant populations.
Collapse
Affiliation(s)
- Hina Gul
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Basana Gowda Gadratagi
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, Ordu, Türkiye
| | - Saniya Tyagi
- Department of Entomology, BRD PG College, Deoria, Uttar Pradesh, India
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Xiaoxia Liu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Liao M, Peng Y, Zhao X, Yue S, Huang Y, Cao H. Identification of odorant receptors of Tribolium confusum in response to limonene repellent activity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105555. [PMID: 37666593 DOI: 10.1016/j.pestbp.2023.105555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
Tribolium confusum is an important storage pest showing significant resistance to various chemical pesticides, development of botanical pesticides is an effective strategy to resolve above problem and decrease utilization of chemical pesticides. Present study attempts to explore the molecular mechanism about the repellent activity of limonene. When treatment concentration of limonene was 200.00 μg/cm2, the repellent level remained at grade V after 24 hours. Our study showed that limonene could be distinguished by T. confusum antenna with a maximal electroantennography test value of 0.90 mV. Simultaneously, 88 upregulated and 98 downregulated genes were sequenced in limonene-repellent T. confusum, and RT-qPCR analysis showed that four down-regulated and one up-regulated OR genes play an important role in the response to limonene. The repellent rate was decreased by 22.13% mediated with a knockdown of dsTconOR93, while the EAG value of the female and male adults was reduced to 0.26 mV (49.06%) and 0.20 mV (54.05%), respectively. In conclusion, limonene had a strong repellent activity against T. confusum and TconOR93 gene was determined to be a major effector in perception of limonene. This study provides a basis for the development of limonene as a novel botanical pesticide for the control to storage pests, which will reduce the utilization of chemical pesticides and postpone the development of resistance.
Collapse
Affiliation(s)
- Min Liao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yu Peng
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinping Zhao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shuaili Yue
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yong Huang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Shen X, Che M, Xu H, Zhuang X, Chen E, Tang P, Wang K. Insight into the molecular mechanism of phosphine toxicity provided by functional analysis of cytochrome b5 fatty acid desaturase and dihydrolipoamide dehydrogenase in the red flour beetle, Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105482. [PMID: 37532347 DOI: 10.1016/j.pestbp.2023.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023]
Abstract
Phosphine is the dominant chemical used in postharvest pest control. Widespread and highly frequent use of phosphine has been selected for pest insects, including Tribolium castaneum, which is highly resistant. Lipid peroxidation and reactive oxygen species (ROS) are two major factors determining phosphine toxicity; however, the mechanisms of production of these two factors in phosphine toxicity are still unknown. Here, we first determined the time course of phosphine-induced lipid peroxidation and ROS production in T. castaneum. Our results showed that lipid peroxidation occurs before ROS in the process of phosphine toxicity, and fumigated beetles with higher resistance levels were associated with weaker activity on lipid peroxidation and ROS. A significant decline in lipid peroxidation was observed in fumigated individuals after knockdown of cytochrome b5 fatty acid desaturase (Cyt-b5-r) via RNA interference (RNAi), indicating that Cyt-b5-r is critical for triggering phosphine-induced lipid peroxidation. Moreover, significant decreases in both ROS and mortality were detected in fumigated T. castaneum adults fed melatonin for 7 days, an inhibitor of lipid peroxidation. Cyt-b5-r RNAi also inhibited ROS production and mortality in phosphine-treated beetles. Meanwhile, a significant decrease in ROS production (68.4%) was detected in dihydrolipoamide dehydrogenase (DLD) knockdown individuals with phenotypes susceptible to phosphine, suggesting that lipid peroxidation initiates ROS with the expression of DLD. However, a significant increase in ROS (122.1%) was detected in the DLD knockdown beetles with strongly resistant phenotypes, indicating that the DLD-involved pathway may not be the only mechanism of ROS generation in phosphine toxicity and the existence of a moonlighting role in downregulating ROS in strongly resistant T. castaneum.
Collapse
Affiliation(s)
- Xu Shen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Meiling Che
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Honglei Xu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinbo Zhuang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Erhu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peian Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Kangxu Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
9
|
Zhao X, Wu H, Yue S, Chen X, Huang Y, Cao H, Liao M. Role of CYP6MS subfamily enzymes in detoxification of Sitophilus zeamais after exposure to terpinen-4-ol and limonene. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105426. [PMID: 37248004 DOI: 10.1016/j.pestbp.2023.105426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/31/2023]
Abstract
Food security is an important basis and guarantee to national safety, the loss caused by storage pests was a serious problem which affects the food security widely. Frequent application of chemical pesticides caused several critical crises including the development of resistance, pesticide residues, environmental pollution, and exposure risk to human or non-target organisms. The utilization of volatile components acts as a natural alternative for controlling storage pests has aroused extensive interest in recent years. It has been reported that terpinene-4-ol and limonene showed significant insecticidal activity against Sitophilus zeamais in our previous studies, which was evaluated to have strong influences to CYP450 genes. To determine the links and roles of related genes, we identified the SzCYP6MS subfamily genes which encoded a putative protein of 493 or 494 amino acids. Then, the expression of four CYP6MS subfamily genes were increased significantly under the fumigation stress by terpinen-4-ol and limonene, which was determined by the RT-qPCR analysis compared with non-fumigated colonies. In addition, we determined that RNAi-mediated CYP6MS genes knockdown significantly increased the sensitivity of S. zeamais to terpinen-4-ol and limonene, the mortality rates of insects with knocked down CYP6MS1, CYP6MS5, CYP6MS6, CYP6MS8, and CYP6MS9 genes increased by 25%, 25%, 16%, 17%, and 4% in terpinen-4-ol treatment groups and by 29%, 25%, 15%, 22%, and 3% in limonene treatment groups compared with that in the control groups, respectively. Finally, it was validated that CYP6MS5 exhibited the most stable binding with terpinen-4-ol that was similar to the result between CYP6MS8 and limonene which were verified by molecular docking analysis. In together, this study demonstrates the potential of terpinen-4-ol and limonene used as novel botanical pesticides to control storage pests, thereby reducing application of chemical pesticides and postponing resistance development.
Collapse
Affiliation(s)
- Xinping Zhao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Hailong Wu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Shuaili Yue
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xin Chen
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Yong Huang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Min Liao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Liu M, Xiao F, Zhu J, Fu D, Wang Z, Xiao R. Combined PacBio Iso-Seq and Illumina RNA-Seq Analysis of the Tuta absoluta (Meyrick) Transcriptome and Cytochrome P450 Genes. INSECTS 2023; 14:363. [PMID: 37103178 PMCID: PMC10146655 DOI: 10.3390/insects14040363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Tuta absoluta (Meyrick) is a devastating invasive pest worldwide. The abamectin and chlorantraniliprole complex have become an alternative option for chemical control because they can enhance insecticidal activity and delay increased drug resistance. Notably, pests are inevitably resistant to various types of insecticides, and compound insecticides are no exception. To identify potential genes involved in the detoxification of abamectin and chlorantraniliprole complex in T. absoluta, PacBio SMRT-seq transcriptome sequencing and Illumina RNA-seq analysis of abamectin and chlorantraniliprole complex-treated T. absoluta were performed. We obtained 80,492 non-redundant transcripts, 62,762 (77.97%) transcripts that were successfully annotated, and 15,524 differentially expressed transcripts (DETs). GO annotation results showed that most of these DETs were involved in the biological processes of life-sustaining activities, such as cellular, metabolic, and single-organism processes. The KEGG pathway enrichment results showed that the pathways related to glutathione metabolism, fatty acid and amino acid synthesis, and metabolism were related to the response to abamectin and chlorantraniliprole complex in T. absoluta. Among these, 21 P450s were differentially expressed (11 upregulated and 10 downregulated). The qRT-PCR results for the eight upregulated P450 genes after abamectin and chlorantraniliprole complex treatment were consistent with the RNA-Seq data. Our findings provide new full-length transcriptional data and information for further studies on detoxification-related genes in T. absoluta.
Collapse
|
11
|
Vommaro ML, Donato S, Lo LK, Brandmayr P, Giglio A. Anatomical study of the red flour beetle using synchrotron radiation X-ray phase-contrast micro-tomography. J Anat 2023; 242:510-524. [PMID: 36417320 PMCID: PMC9919503 DOI: 10.1111/joa.13796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Synchrotron X-ray phase-contrast microtomography (SR-PhC micro-CT) is well established, fast and non-destructive imaging technique for data acquisition that is currently being used to obtain new insights into insect anatomy and function in physiological, morphological and phylogenetic studies. In this study, we described in situ the internal organs of the red flour beetle Tribolium castaneum Herbst 1797, a widespread pest of cereals and stored food causing serious damage to the human economy. Two-dimensional virtual sections and volumetric reconstructions of the nervous, alimentary and reproductive systems were carried out in both sexes. The results provided a comprehensive overview of the morphological characteristics of this species, such as the different maturation stages of ovarioles and the realistic location, size and shape of internal organs. Given the great interest in this model species in experimental biology and forensic entomology, complete knowledge of the general anatomy is required for future functional applications in pest control and experimental studies. In addition, this study confirms SR-PhC micro-CT as a powerful and innovative tool in entomology, particularly suitable for small species and chitinized structures that are difficult to analyse using conventional dissection and histological methods.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
| | - Sandro Donato
- Department of PhysicsUniversity of CalabriaCosenzaItaly
- Division of Frascati, Istituto Nazionale di Fisica NucleareRomeItaly
| | - Lai Ka Lo
- Animal Evolutionary Ecology GroupInstitute for Evolution and Biodiversity, University of MünsterMünsterGermany
| | - Pietro Brandmayr
- Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
| | - Anita Giglio
- Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
| |
Collapse
|
12
|
Wang YQ, Li GY, Li L, Song QS, Stanley D, Wei SJ, Zhu JY. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Tenebrionidea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21954. [PMID: 36065122 DOI: 10.1002/arch.21954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
13
|
Liao M, Li S, Wu H, Gao Q, Shi S, Huang Y, Cao H. Transcriptomic analysis of Sitophilus zeamais in response to limonene fumigation. PEST MANAGEMENT SCIENCE 2022; 78:4774-4782. [PMID: 35900300 DOI: 10.1002/ps.7097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/04/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Frequent application of chemical fumigants has contributed to the development of resistance in stored-product pests. Essential oils provide a novel and environmentally friendly alternative to conventional chemical pesticides. In this work, the fumigant activity of Taxodium 'zhongshansha' essential oil (TZEO) and main active components against Sitophilus zeamais were evaluated. In addition, the molecular mechanisms mediating the fumigant activity of limonene were assessed. RESULTS TZEO showed strong fumigant activity against Sitophilus zeamais, with a 50% lethal concentration (LC50 ) of 22.90 μL L-1 air in 24 h. The main components of TZEO were identified using gas chromatography-mass spectrometry, the main active ingredient (limonene) showed an LC50 of 9.93 μL L-1 air in 24 h which had a serious dose-time-effect. The LC50 value of the positive control (aluminum phosphide) was 1.91 μL L-1 . In total, 3982 up-regulated and 3067 down-regulated genes were sequenced in limonene-fumigated Sitophilus zeamais, the genes related to metabolic detoxification were significantly enriched. The mortality rate of 7 day-old Sitophilus zeamais adult mediated with knockdown of SzCYP6MS5 and SzCYP6MS6 raised up to 65.67% and 67.65% after fumigation with limonene in 24 h, respectively. The results showed that SzCYP6MS5 and SzCYP6MS6 are closely involved to the detoxification of limonene. CONCLUSION In this study, candidate genes affected by limonene treatment in Sitophilus zeamais were identified. These findings provided insights into the systemic metabolic response of Sitophilus zeamais to limonene and established a basis for the development of limonene as a botanical pesticide for the control of stored-product pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Liao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shengnan Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hailong Wu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Shi
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yong Huang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
14
|
Wang K, Che M, Chen E, Jian F, Tang P. Amplification refractory mutation system based real-time PCR (ARMS-qPCR) for rapid resistance characterization of Tribolium castaneum to phosphine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105181. [PMID: 36127043 DOI: 10.1016/j.pestbp.2022.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Resistance of Tribolium castaneum to phosphine is related to point mutations in DNA code corresponding to amino acid changes associated with a core metabolic enzyme dihydrolipoamide dehydrogenase (DLD), but the mutation patterns vary among different resistant populations. Thus, there is a great need to develop a cost-effective method to detect core mutations in T. castaneum, which would be the key factor to understand the molecular basis of phosphine resistance. Amplification refractory mutation system-based quantitative Real-Time PCR (ARMS-qPCR) is an ideal method that can rapidly detect point mutations. Here, the P45S and G131D mutations existed in the DLD of T. castaneum selected from strong Chinese resistance phenotypes, and the DLD P45S mutation, which represents a strong phosphine resistance allele, was confirmed as the most abundant mutation to determine strong resistance genotypes. Our study found that 85 out of 120 beetles carried the P45S resistance allele, including 51 homozygous and 34 heterozygous individuals. Moreover, there was a strong linear relationship (R2 = 0.917) between the resistance ratio and the resistance allele frequency among the strongly resistant populations. Our data showed that the ARMS-qPCR method that we developed could rapidly determine strong resistance phenotypes of T. castaneum to phosphine by detecting the DLD P45S mutation. These results not only provide a detailed example for developing an ARMS-qPCR-based method to characterize pesticide resistance, but also support further elucidation of the molecular basis of phosphine resistance.
Collapse
Affiliation(s)
- Kangxu Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| | - Meiling Che
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Erhu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Fuji Jian
- Department of Biosystems Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| | - Peian Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
15
|
Li X, Xu Y, Liu J, Yu X, Zhang W, You C. Biological activities and gene expression of detoxifying enzymes in Tribolium castaneum induced by Moutan cortex essential oil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:591-602. [PMID: 35435144 DOI: 10.1080/15287394.2022.2066038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tribolium castaneum is one of the most harmful storage pests in the world. The aim of this study was to determine the chemical composition, repellent, and contact activities of Moutan cortex essential oil against this insect pest. In addition, the effects of Moutan cortex were examined on the expressions of three major detoxifying enzyme genes in T. castaneum. Four components were identified in this essential oil by gas chromatography-mass spectrometry (GC-MS), which was predominantly paeonol (99.13%). Paeonol exerted significant repellent activity against T. castaneum, which was more potent than the positive control N.N-diethyl-meta-toluamide (DEET). The most significant contact toxicity was observed at 24 h after exposure to paeonol. Further, quantitative real-time PCR (qRT-PCR) was used to assess expression changes in three detoxification enzyme genes in T. castaneum, including carboxylesterase (CarE), glutathione S-transferase (Gst) and cytochrome P4506BQ8 (Cyp6bq8). Among these, Gst was most highly up-regulated after treatment with paeonol with the highest expression level of 4.9-fold (Rps18 as internal reference gene) greater than control at 24 h following treatment. Data indicated that Gst might play a critical role in metabolic detoxification of toxic xenobiotics. Taken together, our findings might lay a foundation for development of paeonol as a potential natural repellent or pesticide to control storage pests.
Collapse
Affiliation(s)
- Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| | - Yanjun Xu
- College of Science, China Agricultural University, Beijing,HA, China
| | - Jing Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| | - Xiaoxue Yu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| | - Chunxue You
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| |
Collapse
|
16
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
17
|
Campbell JF, Athanassiou CG, Hagstrum DW, Zhu KY. Tribolium castaneum: A Model Insect for Fundamental and Applied Research. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:347-365. [PMID: 34614365 DOI: 10.1146/annurev-ento-080921-075157] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tribolium castaneum has a long history as a model species in many distinct subject areas, but improved connections among the genetics, genomics, behavioral, ecological, and pest management fields are needed to fully realize this species' potential as a model. Tribolium castaneum was the first beetle whose genome was sequenced, and a new genome assembly and enhanced annotation, combined with readily available genomic research tools, have facilitated its increased use in a wide range of functional genomics research. Research into T. castaneum's sensory systems, response to pheromones and kairomones, and patterns of movement and landscape utilization has improved our understanding of behavioral and ecological processes. Tribolium castaneum has also been a model in the development of pest monitoring and management tactics, including evaluation of insecticide resistance mechanisms. Application of functional genomics approaches to behavioral, ecological, and pest management research is in its infancy but offers a powerful tool that can link mechanism with function and facilitate exploitation of these relationships to better manage this important food pest.
Collapse
Affiliation(s)
- James F Campbell
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, USA;
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos 382 21, Greece;
| | - David W Hagstrum
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| |
Collapse
|
18
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
19
|
Duarte S, Magro A, Tomás J, Hilário C, Alvito P, Ferreira RB, Carvalho MO. The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour. INSECTS 2021; 12:insects12080730. [PMID: 34442296 PMCID: PMC8396807 DOI: 10.3390/insects12080730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary It is important to hold cereals in storage conditions that exclude insect pests such as the red flour beetle and fungi, especially mycotoxin-producing ones (as a few strains of Aspergillus flavus). This work aims to investigate the interaction between these two organisms when thriving in maize flour. It was observed that when both organisms were together, the mycotoxins detected in maize flour were far higher than when the fungi were on their own, suggesting that the presence of insects may contribute positively to fungi development and mycotoxin production. The insects in contact with the fungi were almost all dead at the end of the trials, suggesting a negative effect of the fungi growth on the insects. Both organisms interacted when in contact. This is the first study on this issue, although further investigation would benefit from clarification on the mechanisms leading to the nature of the detected interactions. Abstract Tribolium castaneum is one of the most common insect pests of stored products. Its presence makes cereals more susceptible to the spread of the fungi Aspergillus flavus, which may produce mycotoxins. The aim of this work was to evaluate the influence of T. castaneum adults on the development of a mycotoxigenic A. flavus strain in maize flour as well as the influence of this fungus on the insects. Maize flour was exposed to T. castaneum, spores of A. flavus or to both. The results revealed an interaction between T. castaneum and A. flavus as the flour exposed to both organisms was totally colonized by the fungus whereas almost all the insects were killed. Aflatoxin B1 (AFB1) revealed a significantly higher concentration in the flour inoculated with both organisms (18.8 µg/kg), being lower when exposed only to A. flavus, suggesting that the presence of insects may trigger fungal development and enhance mycotoxin production. The ability of these organisms to thrive under the same conditions and the chemical compounds they release makes the interaction between them a subject of great importance to maintain the safety of stored maize. This is the first work evaluating the interaction between T. castaneum and A. flavus mycotoxin production.
Collapse
Affiliation(s)
- Sónia Duarte
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Magro
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- Correspondence:
| | - Joanna Tomás
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
| | - Carolina Hilário
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
| | - Paula Alvito
- National Health Institute Dr. Ricardo Jorge (INSA), 1600-609 Lisboa, Portugal;
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Boavida Ferreira
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Otília Carvalho
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
20
|
Wang YC, Chang YW, Bai J, Zhang XX, Iqbal J, Lu MX, Gong WR, Du YZ. Temperature affects the tolerance of Liriomyza trifolii to insecticide abamectin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112307. [PMID: 33965778 DOI: 10.1016/j.ecoenv.2021.112307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
The leafminer fly, Liriomyza trifolii, is an invasive pest of horticultural and vegetable crops that possesses a robust competitive ability when compared to congeneric species, especially with respect to temperature and insecticide tolerance. Abamectin, which is commonly used to control L. trifolii in the field, was selected as the target insecticide in this study. Our objective was to study the effect of abamectin and high temperature stress on L. trifolii mortality and the expression of genes encoding cytochrome P450 (CYP450s) and heat shock proteins (Hsps) by quantitative real-time reverse transcriptase PCR (qRT-PCR). When L. trifolii was exposed to abamectin followed by exposure to 40 °C (LC50 +HT40), mortality showed a significant increase, whereas exposure to 40 ℃ followed by abamectin (HT40+LC50) reduced mortality relative to abamectin or HT40 alone. Expression of three CYP450s in the CYP4 family was highest in the HT40+LC50 treatment, followed by the LC50+HT40 treatment. The expression levels of CYP18A1 (CYP18 family) were not significantly different among treatments, and CYP301A1 (CYP301 family) was only sensitive to temperature (HT40). The expression of five sHsps showed similar expression patterns and were highly responsive to the LC50+HT40 treatment, followed by the HT40 and HT40+LC50 treatments. Based on CYP450s and Hsps expression levels, our findings that suggest that L. trifolii exhibits adaptive cross-tolerance to high temperature and abamectin. This study provides a framework for selecting the most effective application time for abamectin with respect to controlling L. trifolii, which will ultimately reduce the overuse of pesticides.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Jing Bai
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.
| |
Collapse
|
21
|
Wang YC, Chang YW, Bai J, Zhang XX, Iqbal J, Lu MX, Hu J, Du YZ. High temperature stress induces expression of CYP450 genes and contributes to insecticide tolerance in Liriomyza trifolii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104826. [PMID: 33838719 DOI: 10.1016/j.pestbp.2021.104826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Liriomyza trifolii is an invasive leafminer fly that inflicts damage on many horticultural and vegetable crops. In this study, the effects of elevated temperatures on L. trifolii tolerance to insecticides abamectin (AB), monosultap (MO) and a mixture of abamectin and monosultap (AM) were firstly investigated, then five CYP450 genes (LtCYPs) were cloned, and expression patterns and NADPH cytochrome C reductase (NCR) activity in L. trifolii were compared in response to high temperature stress and insecticide exposure. Results showed elevated temperatures induced expression of LtCYP450s, the expression level of LtCYP4g1, LtCYP4g15 and LtCYP301A1 after exposed to different high temperature were significantly up-regulated compared with the control (25 °C), while there was no significant difference in LtCYP4E21 and LtCYP18A1. Under the joint high temperature and insecticide stress, the expression of LtCYP4g15, LtCYP18A1 and LtCYP301A1 was significantly higher under elevated temperatures than that of only under AB exposure. For MO and AM exposure, only 40 °C could induce the expression of LtCYP4g15, LtCYP18A1 and LtCYP301A1. In general, the LtCYPs expression pattern was correlated with increased NCR activity and decreased mortality in response to insecticide exposure under elevated temperatures. These all demonstrated that insecticide tolerance in L. trifolii could be mediated by high temperature. This study improves our understanding of L. trifolii physiology and offers a theoretical context for improved control that ultimately reduces the abuse of insecticides and decreases exposure to non-target organisms.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Jing Bai
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.
| |
Collapse
|
22
|
Chen EH, Duan JY, Song W, Wang DX, Tang PA. RNA-seq Analysis Reveals Mitochondrial and Cuticular Protein Genes Are Associated with Phosphine Resistance in the Rusty Grain Beetle (Coleoptera:Laemophloeidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:440-453. [PMID: 33346362 DOI: 10.1093/jee/toaa273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Indexed: 06/12/2023]
Abstract
The rusty grain beetle, Cryptolestes ferrugineus (Stephens), is a serious pest of stored grain, which has developed high levels of resistance to phosphine. In this study, five geographically distant populations of C. ferrugineus had been collected in China, specifically in granaries where phosphine fumigant is used for pest control, and they showed a high resistance ratio up to 1,907 (LC50 = 21.0 mg/liter). Then, a reference transcriptome was constructed to use as a basis for investigating the molecular mechanisms of phosphine resistance in this species, which consisted of 47,006 unigenes with a mean length of 1,090. Subsequently, the RNA-Seq analysis of individuals from the most susceptible and resistant populations led to the identification of 54 genes that are differentially expressed. GO and KEGG analysis demonstrated that genes associated with mitochondrial and respiration functions were significantly enriched. Also, the 'structural constituent of cuticle' term was annotated in the GO enrichment analysis and further qRT-PCR confirmed that the expression levels of nine cuticular protein genes were significantly increased in the resistant population. In conclusion, we present here a transcriptome-wide overview of gene expression changes between resistant and susceptible populations of C. ferrugineus, and this in turn documents that mitochondria and cuticular protein genes may play together a crucial role in phosphine resistance. Further gene function analysis should enable the provision of advice to expedite resistance management decisions.
Collapse
Affiliation(s)
- Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Jin-Yan Duan
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Wei Song
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Dian-Xuan Wang
- Collaborative Innovation Center of Grain Storage Security, Zhengzhou, Henan, China
| | - Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Zhang YC, Gao SS, Xue S, An SH, Zhang KP. Disruption of the cytochrome P450 CYP6BQ7 gene reduces tolerance to plant toxicants in the red flour beetle, Tribolium castaneum. Int J Biol Macromol 2021; 172:263-269. [PMID: 33453254 DOI: 10.1016/j.ijbiomac.2021.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
In insects, the cytochrome P450 CYP6B family plays key roles in the detoxification of toxic plant substances. However, the function of CYP6 family genes in degrading plant toxicants in Tribolium castaneum, an extremely destructive global storage pest, have yet to be elucidated. In this study, a T. castaneum CYP gene, TcCYP6BQ7, was characterized. TcCYP6BQ7 expression was significantly induced after exposure to essential oil of the plant Artemisia vulgaris (EOAV). Spatiotemporal expression profiling revealed that TcCYP6BQ7 expression was higher in larval and adult stages of T. castaneum than in other developmental stages, and that TcCYP6BQ7 was predominantly expressed in the brain and hemolymph from the late larval stage. TcCYP6BQ7 silencing by RNA interference increased larvae mortality in response to EOAV from 49.67% to 71.67%, suggesting that this gene is associated with plant toxicant detoxification. Combined results from this study indicate that the CYP6 family gene TcCYP6BQ7 likely plays a pivotal role in influencing the susceptibility of T. castaneum to plant toxicants. These findings may have implications for the development of novel therapeutics to control this agriculturally important pest.
Collapse
Affiliation(s)
- Yuan-Chen Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Huanghe Road 73, Wenfeng District, 455000 Anyang, Henan province, PR China; College of Plant Protection, Henan Agricultural University, Nongye Road 63, Jinshui District, 450002 Zhengzhou, Henan province, PR China
| | - Shan-Shan Gao
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Huanghe Road 73, Wenfeng District, 455000 Anyang, Henan province, PR China.
| | - Shuang Xue
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Huanghe Road 73, Wenfeng District, 455000 Anyang, Henan province, PR China
| | - Shi-Heng An
- College of Plant Protection, Henan Agricultural University, Nongye Road 63, Jinshui District, 450002 Zhengzhou, Henan province, PR China
| | - Kun-Peng Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Huanghe Road 73, Wenfeng District, 455000 Anyang, Henan province, PR China
| |
Collapse
|