1
|
Cong L, Li SC, Wei ZT, Yu SJ, Huang ZH, Cui YY, Yang QQ, Ding LL, Pan Q, Liu L, Li Y, Ran C. Identification and functional characterization of UDP-glycosyltransferase genes involved in cyetpyrafen resistance in Panonychus citri (McGregor). PEST MANAGEMENT SCIENCE 2025; 81:3212-3219. [PMID: 39887928 DOI: 10.1002/ps.8691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/15/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Cyetpyrafen is a newly developed acaricide. The citrus red mite, Panonychus citri (McGregor), is an important citrus pest that has developed resistance to cyetpyrafen. Uridine diphosphate-glycosyltransferases (UGTs) have been widely reported to be associated with resistance to multiple acaricides. However, it has been rarely documented that UGT genes participate in cyetpyrafen resistance in P. citri. RESULTS In this study, a significantly upregulated UGT gene, PcUGT201E1, was identified in P. citri using transcriptome analysis. Expression of PcUGT201E1 was significantly upregulated at all stages in the cyetpyrafen-resistant strain and silencing PcUGT201E1 significantly increased the susceptibility of P. citri to cyetpyrafen. Molecular docking of PcUGT201E1 with uridine diphosphate glucose (UDPG) and cyetpyrafen indicated that UDPG and cyetpyrafen can interact with PcUGT202E1 via hydrogen bonds. Heterologous expression and in vitro functional assays revealed that enzyme activity could be inhibited by cyetpyrafen and that recombinant PcUGT201E1 can deplete cyetpyrafen. CONCLUSION These results indicated that PcUGT201E1 participates in cyetpyrafen resistance in P. citri by sequestration, and provided a molecular foundation for understanding cyetpyrafen resistance in P. citri. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Cong
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Si-Chen Li
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Zhi-Tang Wei
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Ze-Hao Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yang-Yang Cui
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Qi-Qi Yang
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Qi Pan
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Liu Liu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Yang Li
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| | - Chun Ran
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
2
|
Wang X, Zhao X, Tu H. Study on the variations in acaricide sensitivity between two spider mite species, Amphitetranychus viennensis and Tetranychus urticae, in Chinese orchards. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106367. [PMID: 40262878 DOI: 10.1016/j.pestbp.2025.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
Amphitetranychus viennensis and Tetranychus urticae, are destructive agricultural and horticultural pests. Their management primarily relies on acaricides; however, little is known about the susceptibility of these two species to these chemicals. The current study assessed the susceptibility of A. viennensis and T. urticae to ten acaricides, investigated the detoxification enzyme activities, and conducted transcriptional analyses after bifenazate and cyetpyrafen exposure. The results showed that the LC50 values of most acaricides against T. urticae were notably higher than those for A. viennensis at different developmental stages. At the adult stage, A. viennensis was more tolerant to bifenazate than T. urticae, while A. viennensis showed increased sensitivity to cyetpyrafen than T. urticae. After cyetpyrafen exposure, glutathione S-transferases (GSTs) activity in T. urticae were markedly higher at 6 and 12 h, whereas that in A. viennensis increased only at 6 h. No notable differences in cytochrome P450 monooxygenases (P450s) levels were found in T. urticae between the control and treatment groups (cyetpyrafen or bifenazate). However, A. viennensis treated with either cyetpyrafen or bifenazate showed a marked decrease in P450 levels at 12 h. Furthermore, more detoxification genes in both species were activated in response to bifenazate or cyetpyrafen. Differential metabolic detoxification mediated by P450 and GST genes may primarily account for the distinct responses of these species to bifenazate and cyetpyrafen. These findings reveal the distinct detoxification capacities of the two species in response to acaricides and highlight the importance of applying species-specific management strategies for these pests.
Collapse
Affiliation(s)
- Xueli Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, China
| | - Xiangjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, China; Agricultural Technology Extension and Service Center of Jiading District of Shanghai, Shanghai 201899, China
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, China.
| |
Collapse
|
3
|
Li K, Zhang C, Ren Y, Liu X, Pan D, Dou W, Wang JJ, Yuan G. Risk assessment of broflanilide resistance in Panonychus citri (McGregor): Cross-resistance, inheritance and relative fitness. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106256. [PMID: 40015849 DOI: 10.1016/j.pestbp.2024.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 03/01/2025]
Abstract
Panonychus citri (McGregor) is an important economic pest in the orange orchard of the world, which has developed varying degrees of resistance to many acaricides. Broflanilide is a novel γ-aminobutyric acid (GABA) receptor allosteric modulator with high insecticidal activity against a broad spectrum of insects. However, the risk of resistance to broflanilide in P. citri has not been studied. In this study, the BR strain selected from susceptible strain of P. citri with broflanilide for 44 generations, developed 32.5-fold resistance to broflanilide, and did not exhibit cross-resistance to fipronil, fluxametamide, abamectin, pyridaben, and cyflumetofen. Broflanilide resistance in the BR strain of P. citri was autosomal, incomplete dominant and polygenic. The duration of larval and deutonymph, total life span and the number of eggs were significantly increased in the BR strain compared to the SS strain. The higher relative fitness (Rf) value (1.289) indicated that there was a fitness advantage in the BR strain. Glutathione S-transferase and esterase activities in the BR strain were significantly increased compared with the SS strain. These findings provide valuable information for developing resistance management strategies to delay broflanilide resistance and maintain sustainable control of P. citri.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chunyu Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yiting Ren
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xunyan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guorui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Jiang L, Wang H, Qiao K, Wu C. Increasing Cyetpyrafen Spray Volume and Ozone Spray Improves the Control Effects against Two-Spotted Spider Mite ( Tetranychus urticae) in Strawberries. PLANTS (BASEL, SWITZERLAND) 2024; 13:1792. [PMID: 38999632 PMCID: PMC11244566 DOI: 10.3390/plants13131792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
The two-spotted spider mite (Tetranychus urticae) is a constant threat to greenhouse strawberry production. The application of synthetic acaricides is the main method of controlling T. urticae. However, resistance development to traditional acaricides reduces their efficacy and eventually leads to control failure. It is important for strawberry growers to look for new acaricides and application technologies that can limit the harmfulness of T. urticae in environmentally friendly ways. In the current study, laboratory toxicity tests and field trials were performed to screen high-efficiency acaricides, and then application technologies were improved to enhance the management of T. urticae. In the laboratory toxicity tests, the results showed that the LC50 (median lethal concentration) value of cyetpyrafen, cyenopyrafen, cyflumetofen, bifenazate, abamectin, azocyclotin, pyridaben, spirodiclofen, and etoxazole against adult T. urticae was 0.226, 0.240, 0.415, 3.583, 5.531, 25.58, 39.69, 140.3, and 267.7 mg/L, respectively. In addition, the LC50 value of the nine acaricides against eggs of T. urticae was 0.082, 0.097, 0.931, 18.56, 25.52, 45.61, 36.32, 1.954, and 0.040 mg/L, respectively. The field trial results showed that the best control effect was obtained in cyetpyrafen at 300 mL/ha treatment. Cyetpyrafen was chosen for further application technology tests. In the spray volume tests, the results showed that increasing the spray volume from 900 to 1050 L/ha significantly improved the control of T. urticae. In addition, the results from the spray instrument tests demonstrated that the control effects on T. urticae in the ozone spray treatments were significantly higher than those of the conventional and electrostatic sprays 1 and 3 days after treatment (DAT). Therefore, this study suggested that cyetpyrafen effectively controlled T. urticae both in the laboratory tests and in the field trials. Increasing the spray volume and application of ozone spray significantly improved T. urticae management.
Collapse
Affiliation(s)
- Lili Jiang
- Shandong Institute of Pomology, Tai'an 271000, China
| | - Hairong Wang
- Shandong Institute of Pomology, Tai'an 271000, China
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Chong Wu
- Shandong Institute of Pomology, Tai'an 271000, China
| |
Collapse
|
5
|
Tran GH, Tran TH, Pham SH, Xuan HL, Dang TT. Cyclotides: The next generation in biopesticide development for eco-friendly agriculture. J Pept Sci 2024; 30:e3570. [PMID: 38317283 DOI: 10.1002/psc.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Chemical pesticides remain the predominant method for pest management in numerous countries. Given the current landscape of agriculture, the development of biopesticides has become increasingly crucial. The strategy empowers farmers to efficiently manage pests and diseases, while prioritizing minimal adverse effects on the environment and human health, hence fostering sustainable management. In recent years, there has been a growing interest and optimism surrounding the utilization of peptide biopesticides for crop protection. These sustainable and environmentally friendly substances have been recognized as viable alternatives to synthetic pesticides due to their outstanding environmental compatibility and efficacy. Numerous studies have been conducted to synthesize and identify peptides that exhibit activity against significant plant pathogens. One of the peptide classes is cyclotides, which are cyclic cysteine-rich peptides renowned for their wide range of sequences and functions. In this review, we conducted a comprehensive analysis of cyclotides, focusing on their structural attributes, developmental history, significant biological functions in crop protection, techniques for identification and investigation, and the application of biotechnology to enhance cyclotide synthesis. The objective is to emphasize the considerable potential of cyclotides as the next generation of plant protection agents on the global scale.
Collapse
Affiliation(s)
- Gia-Hoa Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi-Huyen Tran
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
| | - Huy Luong Xuan
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
6
|
Ding LL, Yu SJ, Lei S, Pan Q, Liu L, Li SC, Chen TY, Wang SQ, Wei ZT, Liu HQ, Cong L, Ran C. Identification and Functional Characterization of an Omega-Class Glutathione S-Transferase Gene PcGSTO1 Associated with Cyetpyrafen Resistance in Panonychus citri (McGregor). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7010-7020. [PMID: 38529524 DOI: 10.1021/acs.jafc.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cyetpyrafen is a recently developed acaricide. The citrus red mite, Panonychus citri (McGregor), has developed significant resistance to cyetpyrafen. However, the molecular mechanism underlying the cyetpyrafen resistance in P. citri remains unclear. Glutathione S-transferases (GSTs) play a critical role in arthropod pesticide resistance. This study showed that GSTs were potentially related to the resistance of P. citri to cyetpyrafen through synergistic experiments and enzyme activity analysis. An omega-family GST gene, PcGSTO1, was significantly up-regulated in the egg, nymph, and adult stages of the cyetpyrafen-resistant strain. Additionally, silencing of PcGSTO1 significantly increased the mortality of P. citri to cyetpyrafen and recombinant PcGSTO1 demonstrated the ability to metabolize cyetpyrafen. Our results indicated that the overexpression of PcGSTO1 is associated with cyetpyrafen resistance in P. citri, and they also provided valuable information for managing resistance in P. citri.
Collapse
Affiliation(s)
- Li-Li Ding
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Shi-Jiang Yu
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Shuang Lei
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Qi Pan
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Liu Liu
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Si-Chen Li
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Ting-Yu Chen
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Shu-Qi Wang
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Zhi-Tang Wei
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Hao-Qiang Liu
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| |
Collapse
|
7
|
Zhu Y, Wu T, Hu Q, He W, Zheng Y, Xie Y, Rao Q, Liu X. Plant Essential Oils: Dual Action of Toxicity and Egg-Laying Inhibition on Tetranychus urticae (Acari: Tetranychidae), Unveiling Their Potential as Botanical Pesticides. PLANTS (BASEL, SWITZERLAND) 2024; 13:763. [PMID: 38592755 PMCID: PMC10975855 DOI: 10.3390/plants13060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Tetranychus urticae, a prominent pest mite in strawberry and vegetable cultivation in China, has developed escalating resistance due to extensive chemical pesticide application. Consequently, there is an urgent need to identify safe and efficacious methods to reduce resistance development. In this study, 38 commercially available plant essential oils (EOs) were screened for their acaricidal potential and ability to inhibit oviposition. The findings revealed that 13 EOs exhibited notable acaricidal activity, with lemon EO demonstrating the highest toxicity, followed by sage, patchouli, frankincense, lemongrass, palmarosa, and oregano EOs. In addition, 18 EOs displayed significant inhibitory effects on oviposition, with lemon EO exhibiting the highest inhibition rate (99.15%) and inhibition index (0.98). Subsequently, sage, frankincense, clove, lemongrass, oregano, patchouli, myrrh, black pepper, palmarosa, and geranium EOs also showed inhibition rates exceeding 50%. Despite black pepper, clove, myrrh, and oregano EOs demonstrating relatively low toxicity against T. urticae, they exhibited heightened efficacy in inhibiting oviposition and suppressing population expansion. This study conducted a comparative assessment of the acaricidal and oviposition inhibition activities of EOs and their principal constituents, thus providing a theoretical basis for the development of botanical acaricides against T. urticae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Rao
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (Y.Z.); (T.W.); (Q.H.); (W.H.); (Y.Z.); (Y.X.)
| | - Xunyue Liu
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (Y.Z.); (T.W.); (Q.H.); (W.H.); (Y.Z.); (Y.X.)
| |
Collapse
|
8
|
Njiru C, Saalwaechter C, Mavridis K, Vontas J, Geibel S, Wybouw N, Van Leeuwen T. The complex II resistance mutation H258Y in succinate dehydrogenase subunit B causes fitness penalties associated with mitochondrial respiratory deficiency. PEST MANAGEMENT SCIENCE 2023; 79:4403-4413. [PMID: 37394630 DOI: 10.1002/ps.7640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The acaricides cyflumetofen, cyenopyrafen and pyflubumide inhibit the mitochondrial electron transport chain at complex II [succinate dehydrogenase (SDH) complex]. A target site mutation H258Y was recently discovered in a resistant strain of the spider mite pest Tetranychus urticae. H258Y causes strong cross-resistance between cyenopyrafen and pyflubumide, but not cyflumetofen. In fungal pests, fitness costs associated with substitutions at the corresponding H258 position that confer resistance to fungicidal SDH inhibitors have not been uncovered. Here, we used H258 and Y258 near-isogenic lines of T. urticae to quantify potential pleiotropic fitness effects on mite physiology. RESULTS The H258Y mutation was not associated with consistent significant changes of single generation life history traits and fertility life table parameters. In contrast, proportional Sanger sequencing and droplet digital polymerase chain reaction showed that the frequency of the resistant Y258 allele decreased when replicated 50:50 Y258:H258 experimentally evolving populations were maintained in an acaricide-free environment for approximately 12 generations. Using in vitro assays with mitochondrial extracts from resistant (Y258) and susceptible (H258) lines, we identified a significantly reduced SDH activity (48% lower activity) and a slightly enhanced combined complex I and III activity (18% higher activity) in the Y258 lines. CONCLUSION Our findings suggest that the H258Y mutation is associated with a high fitness cost in the spider mite T. urticae. Importantly, while it is the most common approach, it is clear that only comparing life history traits and life table fecundity does not allow to reliably estimate fitness costs of target site mutations in natural pest populations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christine Njiru
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Sven Geibel
- Crop Science Division, Bayer AG, Monheim, Germany
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Abubakar M, Umer A, Shad SA, Sarwar ZM, Kamran M. Negative Impact of Unstable Spiromesifen Resistance on Fitness of Tetranychus urticae (Acari: Tetranychidae). NEOTROPICAL ENTOMOLOGY 2023; 52:772-780. [PMID: 37195556 DOI: 10.1007/s13744-023-01050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a phytophagous haplodiploid mite and its control is largely based on the use of pesticides. But, the short life cycle and high reproductive rate allow them to develop resistance to many pesticides. To design a strategy for resistance management, a fitness cost study was conducted on different populations of T. urticae, i.e., spiromesifen selected (SPIRO-SEL), unselected (Unsel), and reciprocal crosses. After twelve rounds of selections, T. urticae developed high spiromesifen resistance (71.7-fold) compared to the Unsel strain. Results showed a fitness cost for SPIRO-SEL, Cross1 (Unsel ♀ × SPIRO-SEL ♂), and Cross2 (SPIRO-SEL ♀ × Unsel ♂) with a relative fitness values of 0.63, 0.86, and 0.70, respectively. There was a significant increase in the incubation period, quiescent larvae, and egg to adult male and female developmental period of the SPIRO-SEL compared with Unsel strain. Moreover, resistance to spiromesifen was unstable with a decline in resistance value of - 0.05. The presence of unstable spiromesifen resistance associated with fitness costs suggests that intermittent withdrawal of its usage could potentially preserve its effectiveness for management of T. urticae.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan.
| | - Ayyan Umer
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan
| | - Sarfraz Ali Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan.
| | - Zahid Mehmood Sarwar
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan
| | - Muhammad Kamran
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya Univ, Multan, Punjab, Pakistan
| |
Collapse
|
10
|
Ayllón-Gutiérrez R, López-Maldonado EA, Macías-Alonso M, González Marrero J, Díaz-Rubio L, Córdova-Guerrero I. Evaluation of the Stability of a 1,8-Cineole Nanoemulsion and Its Fumigant Toxicity Effect against the Pests Tetranychus urticae, Rhopalosiphum maidis and Bemisia tabaci. INSECTS 2023; 14:663. [PMID: 37504669 PMCID: PMC10380510 DOI: 10.3390/insects14070663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Pest control is a main concern in agriculture. Indiscriminate application of synthetic pesticides has caused negative impacts leading to the rapid development of resistance in arthropod pests. Plant secondary metabolites have been proposed as a safer alternative to conventional pesticides. Monoterpenoids have reported bioactivities against important pests; however, due to their high volatility, low water solubility and chemical instability, the application of these compounds has been limited. Nanosystems represent a potential vehicle for the broad application of monoterpenoids. In this study, an 1,8-cineole nanoemulsion was prepared by the low energy method of phase inversion, characterization of droplet size distribution and polydispersity index (PDI) was carried out by dynamic light scattering and stability was evaluated by centrifugation and Turbiscan analysis. Fumigant bioactivity was evaluated against Tetranychus urticae, Rhopalosiphum maidis and Bemisia tabaci. A nanoemulsion with oil:surfactant:water ratio of 0.5:1:8.5 had a droplet size of 14.7 nm and PDI of 0.178. Formulation was stable after centrifugation and the Turbiscan analysis showed no particle migration and a delta backscattering of ±1%. Nanoemulsion exhibited around 50% more bioactivity as a fumigant on arthropods when compared to free monoterpenoid. These results suggest that nanoformulations can provide volatile compounds of protection against volatilization, improving their bioactivity.
Collapse
Affiliation(s)
- Rocío Ayllón-Gutiérrez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | | | - Mariana Macías-Alonso
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior, Silao 36275, Mexico
| | - Joaquín González Marrero
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior, Silao 36275, Mexico
| | - Laura Díaz-Rubio
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| |
Collapse
|
11
|
Shen XJ, Zhang YJ, Wang SY, Chen JC, Cao LJ, Gong YJ, Pang BS, Hoffmann AA, Wei SJ. A high-throughput KASP assay provides insights into the evolution of multiple resistant mutations in populations of the two-spotted spider mite Tetranychus urticae across China. PEST MANAGEMENT SCIENCE 2023; 79:1702-1712. [PMID: 36594581 DOI: 10.1002/ps.7344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The two-spotted spider mite (TSSM), Tetranychus urticae (Acari: Tetranychidae), is a cosmopolitan phytophagous pest in agriculture and horticulture. It has developed resistance to many acaricides by target-site mutations. Understanding the status and evolution of resistant mutations in the field is essential for resistance management. Here, we applied a high-throughput Kompetitive allele-specific polymerase chain reaction (KASP) method for detecting six mutations conferring resistance to four acaricides of the TSSM. We genotyped 3274 female adults of TSSM from 43 populations collected across China in 2017, 2020, and 2021. RESULTS The KASP genotyping of 24 testing individuals showed 99% agreement with Sanger sequencing results. KASP assays showed that most populations had a high frequency of mutations conferring avermectin (G314D and G326E) and pyridaben (H92R) resistance. The frequency of mutation conferring bifenazate (A269V and G126S) and etoxazole (I1017F) resistance was relatively low. Multiple mutations were common in the TSSM, with 70.2% and 24.6% of individuals having 2-6 and 7-10 of 10 possible resistant alleles, respectively. No loci were linked in most populations among the six mutations, indicating the development of multiple resistance is mainly by independent selection. However, G314D and I1017F on the nuclear genome deviated from Hardy-Weinberg equilibrium in most populations, indicating significant selective pressure on TSSM populations by acaricides or fitness cost of the mutations in the absence of acaricide selection. CONCLUSION Our study revealed that the high frequency of TSSMs evolved multiple resistant mutations in population and individual levels by independent selection across China, alarming for managing multiple-acaricides resistance. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Jing Shen
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yu-Jie Zhang
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | - Jin-Cui Chen
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin-Shuang Pang
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
12
|
Li J, Wei P, Qin J, Feng K, Shen G, Dou W, Zhang Y, Cao P, Yuchi Z, Van Leeuwen T, He L. Molecular Basis for the Selectivity of the Succinate Dehydrogenase Inhibitor Cyflumetofen between Pest and Predatory Mites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3658-3669. [PMID: 36787109 DOI: 10.1021/acs.jafc.2c06149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acaricides that act as inhibitors of the mitochondrial succinate dehydrogenase (SDHIs) provide excellent control of phytophagous mites but display limited toxicity to predatory mites and other beneficial organisms. However, the molecular mechanism of selectivity is not fully understood. Here, we first confirm that SDHI acaricides are over 10,000-fold more toxic to spider mites than predatory mites. Next, we show that differential penetration, pro-acaricide activation, or metabolism are most likely not the main reason for this selectivity. In contrast, the inhibition of AB-1 on the SDH target is approximately 200-fold more potent in spider mites compared to predatory mites, revealing strong target-site selectivity. Strikingly, a key motif associated with differential binding was identified and validated by gene editing in Drosophila. Our findings contribute to understanding the selectivity of SDHIs, which can be used for the rational design of selective acaricides in support of an integrated pest management.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210046 Nanjing, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| |
Collapse
|
13
|
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 2023; 13:1112278. [PMID: 36699674 PMCID: PMC9868318 DOI: 10.3389/fphys.2022.1112278] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Hira Naz
- Research and Development Centre for Fine Chemicals, National Key Laboratory of Green Pesticides, Guizhou University, Guiyang, China
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yiming Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| |
Collapse
|
14
|
Acaricidal Activity and Field Efficacy Analysis of the Potential Biocontrol Agent Bacillus vallismortis NBIF-001 against Spider Mites. Microorganisms 2022; 10:microorganisms10091750. [PMID: 36144351 PMCID: PMC9504962 DOI: 10.3390/microorganisms10091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, spider mites have caused considerable economic losses to global agriculture. However, currently available management strategies are limited because of the rapid development of resistance. In this study, Bacillus vallismortis NBIF-001 was isolated and evaluated for its acaricidal activity. NBIF-001 exhibited a significant lethal effect on spider mites within 48 h. The median lethal concentration (LC50) of the culture powders (3.2 × 1010 CFU/g) was 50.2 µg/mL for Tetranychus urticae (red form), 18.0 µg/mL for T. urticae (green form), and 15.7 µg/mL for Panonychus citri (McGregor). Cultivation optimisation experiments showed that when the number of spores increased, fermentation toxicity also increased. Moreover, field experiments demonstrated that NBIF-001 performed well in the biocontrol of P. citri, which showed a similar corrected field efficacy with the chemical control (67.1 ± 7.9% and 71.1 ± 6.4% after 14 days). Genomics analysis showed that NBIF-001 contains 231 factors and seven gene clusters of metabolites that may be involved in its acaricidal activity. Further bioassays of the fermentation supernatants showed that 50× dilution treatments killed 72.5 ± 5.4% of the mites in 48 h, which was similar with those of the broth. Bioassays of the supernatant proteins confirmed that various proteins exhibited acaricidal activity. Five candidate proteins were expressed and purified successfully. The bioassays showed that the small protein BVP8 exhibited significant acaricidal activity with an LC50 of 12.4 μg/mL (T. urticae). Overall, these findings suggest that B. vallismortis NBIF-001 is a potential biocontrol agent for spider mite management.
Collapse
|