1
|
Guan WX, Lan Z, Wang QC, Wa HR, Muren H, Bai LL, Men SR, Liu GQ, Gao JX, Bai CX. Effects of Prolonged Cold Stress on Vascular Function in Guinea Pigs With Atherosclerosis. J Cardiovasc Pharmacol 2025; 85:63-74. [PMID: 39591604 DOI: 10.1097/fjc.0000000000001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024]
Abstract
RESEARCH OBJECTIVE This study explored the effects of long-term cold stress (CS) on aortic vascular function in guinea pigs. RESEARCH METHODS Hartley guinea pigs (n = 32) were divided into the following groups: atherosclerosis (AS), CS, and menthol-stimulated (M), and control (C). On days 1, 15, 30, 45, and 60, guinea pigs in the AS, CS, and M groups were intraperitoneally injected with bovine serum albumin. The C group was provided with maintenance feed and room temperature water. The AS group was provided with a high-fat diet and room temperature water. The CS group was maintained in a refrigerator at 4°C, while providing a high-fat diet and iced water. The M group was administered menthol solution, and provided with a high-fat diet and room temperature water. The modeling period lasted for 120 days. On day 121, abdominal aortic sera and aortic samples were obtained after intraperitoneal injection of sodium pentobarbital. Blood rheology tests were conducted to assess blood adhesion, biochemical tests to assess lipid levels, and enzyme-linked immunosorbent assays to detect serum nuclear factor-κB, tumor necrosis factor-α, and interleukin-1β, and endothelial nitric oxide synthase, nitric oxide, and endothelin-1 (ET-1) in aortic tissue. Hematoxylin and eosin and oil red O staining were used to examine pathologic changes in the aorta, Western blotting to detect transient receptor potential melastatin 8 and protein kinase G protein expression, quantitative polymerase chain reaction was used to measure VCAM-1 mRNA expression level. RESEARCH FINDINGS Prolonged exposure to CS exacerbated lipid-metabolism disorders in guinea pigs fed a high-fat diet, increased aortic vascular cell adhesion, and exacerbated vascular inflammation, leading to endothelial injury, ultimately worsening pathologic changes associated with aortic atherosclerosis.
Collapse
Affiliation(s)
| | - Zhuo Lan
- Institute of Chinese and Mongolian Medicine, Inner Mongolia Autonomous Region, Hohhot, China
| | - Qing-Chun Wang
- Institute of Chinese and Mongolian Medicine, Inner Mongolia Autonomous Region, Hohhot, China
| | - Hao Ri Wa
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Huhe Muren
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Li-Li Bai
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Si Ri Men
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Guo-Qing Liu
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Jing-Xian Gao
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Chang-Xi Bai
- Inner Mongolia Medical University, Hohhot, China ; and
| |
Collapse
|
2
|
Ruan Y, Yu Y, Wu M, Jiang Y, Qiu Y, Ruan S. The renin-angiotensin-aldosterone system: An old tree sprouts new shoots. Cell Signal 2024; 124:111426. [PMID: 39306263 DOI: 10.1016/j.cellsig.2024.111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The intricate physiological and pathological diversity of the Renin-Angiotensin-Aldosterone System (RAAS) underpins its role in maintaining bodily equilibrium. This paper delves into the classical axis (Renin-ACE-Ang II-AT1R axis), the protective arm (ACE2-Ang (1-7)-MasR axis), the prorenin-PRR-MAP kinases ERK1/2 axis, and the Ang IV-AT4R-IRAP cascade of RAAS, examining their functions in both physiological and pathological states. The dysregulation or hyperactivation of RAAS is intricately linked to numerous diseases, including cardiovascular disease (CVD), renal damage, metabolic disease, eye disease, Gastrointestinal disease, nervous system and reproductive system diseases. This paper explores the pathological mechanisms of RAAS in detail, highlighting its significant role in disease progression. Currently, in addition to traditional drugs like ACEI, ARB, and MRA, several novel therapeutics have emerged, such as angiotensin receptor-enkephalinase inhibitors, nonsteroidal mineralocorticoid receptor antagonists, aldosterone synthase inhibitors, aminopeptidase A inhibitors, and angiotensinogen inhibitors. These have shown potential efficacy and application prospects in various clinical trials for related diseases. Through an in-depth analysis of RAAS, this paper aims to provide crucial insights into its complex physiological and pathological mechanisms and offer valuable guidance for developing new therapeutic approaches. This comprehensive discussion is expected to advance the RAAS research field and provide innovative ideas and directions for future clinical treatment strategies.
Collapse
Affiliation(s)
- Yaqing Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiqin Wu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuliang Qiu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| | - Shiwei Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| |
Collapse
|
3
|
Dhalla NS, Mota KO, Elimban V, Shah AK, de Vasconcelos CML, Bhullar SK. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024; 13:856. [PMID: 38786079 PMCID: PMC11119949 DOI: 10.3390/cells13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins. All these hormones are released in the circulation and stimulate different signal transduction systems by acting on their respective receptors on the cell membrane to promote protein synthesis in cardiomyocytes and induce cardiac hypertrophy. The elevated levels of these vasoactive hormones induce hemodynamic overload, increase ventricular wall tension, increase protein synthesis and the occurrence of cardiac remodeling. In addition, there occurs an increase in proinflammatory cytokines and collagen synthesis for the induction of myocardial fibrosis and the transition of adaptive to maladaptive hypertrophy. The prolonged exposure of the hypertrophied heart to these vasoactive hormones has been reported to result in the oxidation of catecholamines and serotonin via monoamine oxidase as well as the activation of NADPH oxidase via angiotensin II and endothelins to promote oxidative stress. The development of oxidative stress produces subcellular defects, Ca2+-handling abnormalities, mitochondrial Ca2+-overload and cardiac dysfunction by activating different proteases and depressing cardiac gene expression, in addition to destabilizing the extracellular matrix upon activating some metalloproteinases. These observations support the view that elevated levels of various vasoactive hormones, by producing hemodynamic overload and activating their respective receptor-mediated signal transduction mechanisms, induce cardiac hypertrophy. Furthermore, the occurrence of oxidative stress due to the prolonged exposure of the hypertrophied heart to these hormones plays a critical role in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Karina O. Mota
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Anureet K. Shah
- Department of Nutrition and Food Science, California State University, Los Angeles, CA 90032-8162, USA;
| | - Carla M. L. de Vasconcelos
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| |
Collapse
|
4
|
Song R, Yadav P, Dangudubiyyam SV, Hofmann A, Mishra JS, Kumar S. Gestational intermittent hypoxia induces endothelial dysfunction and hypertension in pregnant rats: role of endothelin type B receptor†. Biol Reprod 2024; 110:185-197. [PMID: 37823770 PMCID: PMC11484499 DOI: 10.1093/biolre/ioad139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023] Open
Abstract
Obstructive sleep apnea is a recognized risk factor for gestational hypertension, yet the exact mechanism behind this association remains unclear. Here, we tested the hypothesis that intermittent hypoxia, a hallmark of obstructive sleep apnea, induces gestational hypertension through perturbed endothelin-1 signaling. Pregnant Sprague-Dawley rats were subjected to normoxia (control), mild intermittent hypoxia (10.5% O2), or severe intermittent hypoxia (6.5% O2) from gestational days 10-21. Blood pressure was monitored. Plasma was collected and mesenteric arteries were isolated for myograph and protein analyses. The mild and severe intermittent hypoxia groups demonstrated elevated blood pressure, reduced plasma nitrate/nitrite, and unchanged endothelin-1 levels compared to the control group. Western blot analysis revealed decreased expression of endothelin type B receptor and phosphorylated endothelial nitric oxide synthase, while the levels of endothelin type A receptor and total endothelial nitric oxide synthase remained unchanged following intermittent hypoxia exposure. The contractile responses to potassium chloride, phenylephrine, and endothelin-1 were unaffected in endothelium-denuded arteries from mild and severe intermittent hypoxia rats. However, mild and severe intermittent hypoxia rats exhibited impaired endothelium-dependent vasorelaxation responses to endothelin type B receptor agonist IRL-1620 and acetylcholine compared to controls. Endothelium denudation abolished IRL-1620-induced vasorelaxation, supporting the involvement of endothelium in endothelin type B receptor-mediated relaxation. Treatment with IRL-1620 during intermittent hypoxia exposure significantly attenuated intermittent hypoxia-induced hypertension in pregnant rats. This was associated with elevated circulating nitrate/nitrite levels, enhanced endothelin type B receptor expression, increased endothelial nitric oxide synthase activation, and improved vasodilation responses. Our data suggested that intermittent hypoxia exposure during gestation increases blood pressure in pregnant rats by suppressing endothelin type B receptor-mediated signaling, providing a molecular mechanism linking intermittent hypoxia and gestational hypertension.
Collapse
Affiliation(s)
- Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sri Vidya Dangudubiyyam
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alissa Hofmann
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Xu J, Zhou Q, Hou P, Wang Y, Geng P, Lu Z, Zhou Y, Dai D, Wang S. Effects of bergapten on the pharmacokinetics of macitentan in rats both in vitro and in vivo. Front Pharmacol 2023; 14:1204649. [PMID: 37492094 PMCID: PMC10363979 DOI: 10.3389/fphar.2023.1204649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Macitentan was approved by the United States Food and Drug Administration (FDA) in 2013 for the treatment of pulmonary arterial hypertension (PAH). Bergapten is a furanocoumarin that is abundant in Umbelliferae and Rutaceae plants and is widely used in many Chinese medicine prescriptions. Considering the possible combination of these two compounds, this study is aimed to investigate the effects of bergapten on the pharmacokinetics of macitentan both in vitro and in vivo. Rat liver microsomes (RLMs), human liver microsomes (HLMs), and recombinant human CYP3A4 (rCYP3A4) were used to investigate the inhibitory effects and mechanisms of bergapten on macitentan in vitro. In addition, pharmacokinetic parameters were also studied in vivo. Rats were randomly divided into two groups (six rats per group), with or without bergapten (10 mg/kg), and pretreated for 7 days. An oral dose of 20 mg/kg macitentan was administered to each group 30 min after bergapten or 0.5% CMC-Na administration on day 7. Blood was collected from the tail veins, and the plasma concentrations of macitentan and its metabolites were assessed by ultra-performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS). Finally, we analyzed the binding force of the enzyme and two small ligands by in silico molecular docking to verify the inhibitory effects of bergapten on macitentan. The in vitro results revealed that the IC50 values for RLMs, HLMs, and rCYP3A4 were 3.84, 17.82 and 12.81 μM, respectively. In vivo pharmacokinetic experiments showed that the AUC(0-t), AUC(0-∞), and Cmax of macitentan in the experimental group (20,263.67 μg/L*h, 20,378.31 μg/L*h and 2,999.69 μg/L, respectively) increased significantly compared with the control group (7,873.97 μg/L*h, 7,897.83 μg/L*h and 1,339.44 μg/L, respectively), while the CLz/F (1.07 L/h/kg) of macitentan and the metabolite-parent ratio (MR) displayed a significant decrease. Bergapten competitively inhibited macitentan metabolism in vitro and altered its pharmacokinetic characteristics in vivo. Further molecular docking analysis was also consistent with the experimental results. This study provides a reference for the combined use of bergapten and macitentan in clinical practice.
Collapse
Affiliation(s)
- Jia Xu
- Department of Pharmacy, The Sencond Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Pengjiao Hou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Zebei Lu
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Dapeng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
6
|
Novel Dual Endothelin Inhibitors in the Management of Resistant Hypertension. Life (Basel) 2023; 13:life13030806. [PMID: 36983961 PMCID: PMC10051756 DOI: 10.3390/life13030806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Resistant hypertension (RH) is defined as the failure to achieve blood pressure control despite using triple combination therapy with a renin-angiotensin system inhibitor (RAS-i), a calcium antagonist, and a diuretic. The endothelin (ET) system is implicated in the regulation of vascular tone, primarily through vasoconstriction, intervenes in cardiac contractility with inotropic effects, and contributes to water and sodium renal reabsorption. ET inhibitors, currently approved for the treatment of pulmonary hypertension, seem to be also useful for essential hypertension and RH as well. Studies into the development of new dual ET inhibitors, which inhibit both type A and B ET (ETA and ETB) receptors, present initial results of managing RH. Aprocitentan (ACT-132577) is a novel, orally active and well tolerated dual ET receptor antagonist, which has been examined in several experimental studies and clinical trials with promising results for RH control. The recent publication of the large PRECISION study in The Lancet journal provides further reassurance regarding the efficacy and safety of aprocitentan for RH, with the aim of overcoming unmet needs in the management of this difficult group of patients.
Collapse
|
7
|
Abassi Z, Khoury EE, Karram T, Aronson D. Edema formation in congestive heart failure and the underlying mechanisms. Front Cardiovasc Med 2022; 9:933215. [PMID: 36237903 PMCID: PMC9553007 DOI: 10.3389/fcvm.2022.933215] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Congestive heart failure (HF) is a complex disease state characterized by impaired ventricular function and insufficient peripheral blood supply. The resultant reduced blood flow characterizing HF promotes activation of neurohormonal systems which leads to fluid retention, often exhibited as pulmonary congestion, peripheral edema, dyspnea, and fatigue. Despite intensive research, the exact mechanisms underlying edema formation in HF are poorly characterized. However, the unique relationship between the heart and the kidneys plays a central role in this phenomenon. Specifically, the interplay between the heart and the kidneys in HF involves multiple interdependent mechanisms, including hemodynamic alterations resulting in insufficient peripheral and renal perfusion which can lead to renal tubule hypoxia. Furthermore, HF is characterized by activation of neurohormonal factors including renin-angiotensin-aldosterone system (RAAS), sympathetic nervous system (SNS), endothelin-1 (ET-1), and anti-diuretic hormone (ADH) due to reduced cardiac output (CO) and renal perfusion. Persistent activation of these systems results in deleterious effects on both the kidneys and the heart, including sodium and water retention, vasoconstriction, increased central venous pressure (CVP), which is associated with renal venous hypertension/congestion along with increased intra-abdominal pressure (IAP). The latter was shown to reduce renal blood flow (RBF), leading to a decline in the glomerular filtration rate (GFR). Besides the activation of the above-mentioned vasoconstrictor/anti-natriuretic neurohormonal systems, HF is associated with exceptionally elevated levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). However, the supremacy of the deleterious neurohormonal systems over the beneficial natriuretic peptides (NP) in HF is evident by persistent sodium and water retention and cardiac remodeling. Many mechanisms have been suggested to explain this phenomenon which seems to be multifactorial and play a major role in the development of renal hyporesponsiveness to NPs and cardiac remodeling. This review focuses on the mechanisms underlying the development of edema in HF with reduced ejection fraction and refers to the therapeutic maneuvers applied today to overcome abnormal salt/water balance characterizing HF.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
- *Correspondence: Zaid Abassi,
| | - Emad E. Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Tony Karram
- Department of Vascular Surgery and Kidney Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
8
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Liu Z, Yan F, Mi H, Lv X, Wang K, Li B, Jin T, Chen L, Zhang G, Huang X, Zhou C, Tan Z. N-Carbamoylglutamate Supplementation on the Digestibility, Rumen Fermentation, Milk Quality, Antioxidant Parameters, and Metabolites of Jersey Cattle in High-Altitude Areas. Front Vet Sci 2022; 9:848912. [PMID: 35445104 PMCID: PMC9014120 DOI: 10.3389/fvets.2022.848912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to assess the impact of the dietary supplementation of N-carbamoylglutamate (NCG) on nutrient digestibility, rumen fermentation, milk quality, oxidative stress, and metabolites in the plasma and feces of Jersey cattle under high altitude with the hypoxic condition. A total of 14 healthy lactating Jersey dairy cows with similar body conditions were selected and randomly divided into 2 groups. The control group (CON group, N = 6 replicates) was fed with a conventional complete diet, whereas the experimental group (NCG group, N = 8 replicates) received 20 g/d per head NCG supplementation. The experiment lasted for 60 days, the adaptation period was 12 days, and the formal experiment period was 48 days. Except that the NCG group showed an upward trend in dry matter intake (DMI) (p = 0.09) and the fermentation parameters, the molar proportion of butyric acid tended to decrease (p = 0.08); the two groups had no significant differences (p > 0.05) in nutrients digestibility, plasma immunity, and antioxidant ability. However, compared with the CON group, the milk fat rate and blood oxygen saturation of the NCG group showed an upward trend (p = 0.09). For indexes associated with altitude stress, the contents of thyroxine, transferrin, and endothelin both decreased significantly (p < 0.05) in the NCG group. Meanwhile, heat shock protein (p = 0.07) and aldosterone (p = 0.06) also showed a downward trend. A total of 114 different metabolites were identified from feces and plasma, 42 metabolites were derived from plasma that mainly included 5 kinds of Super Class, and 72 metabolites were derived from feces that mainly included 9 kinds of Super Class. The significantly increased plasma differential metabolites were 2,5-dihydroxybenzoate and salicyluric acid, and the significantly increased fecal differential metabolites were Butenafine (fold change > 2). Pathway analysis showed that after applying NCG as a feed additive, the changes of the Jersey dairy cows mainly focused on amino acid metabolism and lipid metabolism. These results indicated that adding NCG to the diet can prevent the hypoxic stress state of lactating Jersey cows in high-altitude areas and has a tendency to improve milk quality.
Collapse
Affiliation(s)
- Zixin Liu
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fuyong Yan
- Hunan Jiuding Technology (Group) Co., Ltd, Changsha, China
| | - Hui Mi
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaokang Lv
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bin Li
- Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Tao Jin
- Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Liang Chen
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ximei Huang
- Changsha Green Top Biotech Co., Ltd, Changsha, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Animal Science and Technology, Guangxi University, Nanning, China.,Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.,School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
10
|
Sun X, Zhang H, Qin Q, Zhang X, Hou Y, Chen D, Su X, Jia M, Chen Y. Inhibitors of the MAPK/ NF-κB pathway attenuate the upregulation of the ET B receptor mediated by high glucose in vascular smooth muscle cells. Peptides 2022; 150:170732. [PMID: 34971676 DOI: 10.1016/j.peptides.2021.170732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Increased vascular smooth muscle cell (VSMC) endothelin type B (ETB) receptor expression is involved in cardiovascular diseases. High glucose (HG) in diabetes is closely related to cardiovascular complications. Although diabetes upregulates VSMC endothelin subtype B (ETB) receptors, its mechanism is still unclear. Our aim is to investigate the mechanism of HG-induced ETB receptors in VSMCs. METHODS Rat superior mesenteric arteries (SMAs) without endothelium were cultured in medium without serum for 24 h. HG with or without mitogen-activated protein kinase (MAPK) signaling pathway inhibitors and downstream nuclear factor-kappaB (NF-κB) inhibitors was coincubated with SMAs. A sensitive myograph detected the contractile responses to sarafotoxin 6c. Western blotting and immunofluorescence staining were used to determine protein expression. RESULTS HG promoted the expression of VSMC ETB receptors in rat SMAs and enhanced the ETB receptor-induced contractile response. The results showed that HG increased vascular smooth muscle cell (VSMC) ETB receptor expression and ETB receptor-induced contractile responses in rat SMAs. Both extracellular signal-related kinase 1 and 2 (ERK1/2) inhibitors (U0126) and P38 inhibitors (SB203580) significantly inhibited HG-increased VSMC ETB receptors. However, a C-jun terminal kinase (p-JNK) inhibitor (SP600125) did not affect HG- upregulated VSMC ETB receptors. Further study showed that NF-κB using an IκB kinase inhibitor (wedelolactone) also significantly inhibited HG-increased VSMC ETB receptors. CONCLUSION In conclusion, HG upregulated the VSMC ETB receptor by activating the ERK1/2- or P38- NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xingli Su
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
11
|
LAZUROVA Z, HABALOVA V, MITRO P. Association of Polymorphisms in Endothelin-1 and Endothelin Receptor A Genes With Vasovagal Syncope. Physiol Res 2022; 71:93-101. [DOI: 10.33549/physiolres.934689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The endothelin system may play a role in the pathogenesis of vasovagal syncope (VVS) because it is implicated in blood pressure regulation. We hypothesized that endothelin-related genetic polymorphisms might modulate susceptibility to VVS. This study aimed to evaluate the possible influence of endothelin-1 (EDN1) and endothelin receptor A (EDNRA) gene variants on the occurrence of tilt-induced VVS and autonomic nervous system activity during the head-up tilt test (HUT). Results were expressed as mean ± SEM. In 254 patients with recurrent syncope (age 45.33±1.22 years, 94 males, 160 females), heart rate variability (HRV) was measured during HUT. EDN1 rs5370 G>T and EDNRA rs5333 T>C gene polymorphisms were assessed using high-resolution melting analysis. There was no statistically significant association between polymorphisms EDN1 rs5370 and EDNRA rs5333 and positivity of HUT or hemodynamic types of VVS. Patients with GT or TT genotypes at the rs5370 locus of the EDN1 had significantly higher values of high-frequency (HF) and the standard deviation of the average NN intervals at the time of the syncope, and they tended to have lower low-frequency (LF) and LF/HF ratio when compared to homozygotes (GG). No statistically significant differences were found in HRV parameters concerning the EDNRA rs5333 genotypes. Our findings suggest the potential role of EDN1 rs5370 variants in regulating autonomic nervous activity and pathogenesis of VVS.
Collapse
Affiliation(s)
- Z LAZUROVA
- Fourth Department of Internal Medicine, Medical Faculty of University of P.J. Safarik, Kosice, Slovak, Republic
| | - V HABALOVA
- Department of Medical Biology, Medical Faculty of University of P.J. Safarik, Kosice, Slovak Republic
| | - P MITRO
- First Department of Cardiology, Medical Faculty of University of P.J. Safarik, Kosice, Slovak Republic
| |
Collapse
|
12
|
Wei W, Xuan X, Zhu J, Chen T, Fang Y, Ding J, Ji D, Zhou G, Tang B, He X. EDNRA Gene rs1878406 Polymorphism is Associated With Susceptibility to Large Artery Atherosclerotic Stroke. Front Genet 2022; 12:783074. [PMID: 35047010 PMCID: PMC8763384 DOI: 10.3389/fgene.2021.783074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We performed this study to investigate whether the EDNRA gene rs1878406 C > T polymorphism is associated with risk of large artery atherosclerosis (LAA) stroke in the Chinese Han population. Methods: Genotyping of rs1878406 was performed in 1,112 LAA stroke patients and 1,192 healthy controls. Multivariate logistic regression analyses were applied to assess the effect of the rs1878406 C > T polymorphism on susceptibility to LAA stroke. Results: A significant increase of LAA stroke risk was found in the recessive model (TT vs. CC/TC, OR = 1.74, 95% CI = 1.23-2.48, p = 0.002) and co-dominant model (TC vs. CC, OR = 1.06, 95% CI = 0.89-1.27, TT vs. CC, OR = 1.79, 95% CI = 1.25-2.55, p = 0.006). However, the interaction between age and genotypes of rs1878406 was not statistically significant, and no significant interactive effect was observed between the rs1878406 C > T polymorphism and sex (p > 0.05). Conclusion: The rs1878406 C > T polymorphism is associated with increased risk of LAA stroke in the Chinese Han population.
Collapse
Affiliation(s)
- Wan Wei
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjun Xuan
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiahui Zhu
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianwen Chen
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Yudan Fang
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiao Ding
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Danfei Ji
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyi Zhou
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Tang
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Xudong He
- Sir Run Xuedong Shaw Hospital, Hangzhou, China
| |
Collapse
|
13
|
Huang F, Yang R, Xiao Z, Xie Y, Lin X, Zhu P, Zhou P, Lu J, Zheng S. Targeting Ferroptosis to Treat Cardiovascular Diseases: A New Continent to Be Explored. Front Cell Dev Biol 2021; 9:737971. [PMID: 34527678 PMCID: PMC8435746 DOI: 10.3389/fcell.2021.737971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, including cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, vascular injury, stroke, and arrhythmia, are correlated with cardiac and vascular cell death. Ferroptosis is a novel form of non-apoptotic regulated cell death which is characterized by an iron-driven accumulation of lethal lipid hydroperoxides. The initiation and execution of ferroptosis are under the control of several mechanisms, including iron metabolism, glutamine metabolism, and lipid peroxidation. Recently, emerging evidence has demonstrated that ferroptosis can play an essential role in the development of various cardiovascular diseases. Recent researches have shown the ferroptosis inhibitors, iron chelators, genetic manipulations, and antioxidants can alleviate myocardial injury by blocking ferroptosis pathway. In this review, we systematically described the mechanisms of ferroptosis and discussed the role of ferroptosis as a novel therapeutic strategy in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Fangze Huang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Xie
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefeng Lin
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Târtea GC, Florescu DR, Mihailovici AR, Donoiu I, Istrătoaie O. Alpha-lipoic acid and vitamin B complex slow down the changes in mice diabetic cardiomyopathy. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:521-528. [PMID: 33544804 PMCID: PMC7864294 DOI: 10.47162/rjme.61.2.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aim: The aim of our study was to assess histologically and by cardiac ultrasound the effects of alpha-lipoic acid (ALA) and vitamin B complex, as pathogenic therapies, in diabetic cardiomyopathy (DCM) in mice. Materials and Methods: We performed an experimental animal study, in which we analyzed from a structural and functional point of view the changes produced in DCM. To produce DCM, we induced diabetes mellitus (DM) in C57BL/6 mice by intraperitoneal injection of a single 150 mg/kg body weight dose of streptozotocin (STZ). We formed a sham group (animals without DM), a control group (animals with DM but without treatment, DM_Control) and a group of animals with DM that were treated with ALA and vitamin B complex (DM_Treated). Results: At six weeks after STZ administration, there was no decrease in left ventricular ejection fraction (LVEF) in the sham group, while in the control group there was a significant decrease in LVEF, about 43.75±3.37%, compared to the group that received treatment with ALA and vitamin B complex, in which LVEF decreased to 49.6±5.02% (p=0.0432). Also, the degree of interstitial myocardial fibrosis was higher in animals with DM compared to animals without DM, but the applied therapeutic protocol considerably improved the accumulation of interstitial collagen. The same observation was maintained regarding the evaluation of polysaccharide deposits. Conclusions: We can say that the administration of ALA and vitamin B complex in mice with STZ-induced DM, improves the degree of myocardial fibrosis, the accumulation of polysaccharides, and prevents severe deterioration of systolic and diastolic function of the heart.
Collapse
|
15
|
Abstract
Cardiovascular diseases (CVD) constitute the major cause of death worldwide and show a higher prevalence in the adult population. The human umbilical cord consistsof two arteries and one vein, both composed of three tunics. The tunica intima, lined with endothelial cells, regulates vascular tone through the production/release of vasoregulatory substances. These substances can be vasoactive factors released by endothelial cells (ECs) that cause vasodilation (NO, PGI2, EDHF, and Bradykinin) or vasoconstriction (ET1, TXA2, and Ang II) depending on the cell type (ECs or SMC) that reacts to the stimulus. Vascular studies using ECs are important for the analysis of cardiovascular diseases since endothelial dysfunction is an important CVD risk factor. In this paper, we will address the morphological characteristics of the human umbilical cord and its component vessels. the constitution of the vascular endothelium, and the evolution of human umbilical cord-derived endothelial cells when isolated. Moreover, the role played by the endothelium in the vasomotor tone regulation, and how it may be associated with the existence of CVD, were discussed.
Collapse
|
16
|
Rocca C, Grande F, Granieri MC, Colombo B, De Bartolo A, Giordano F, Rago V, Amodio N, Tota B, Cerra MC, Rizzuti B, Corti A, Angelone T, Pasqua T. The chromogranin A 1-373 fragment reveals how a single change in the protein sequence exerts strong cardioregulatory effects by engaging neuropilin-1. Acta Physiol (Oxf) 2021; 231:e13570. [PMID: 33073482 DOI: 10.1111/apha.13570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
AIM Chromogranin A (CgA), a 439-residue long protein, is an important cardiovascular regulator and a precursor of various bioactive fragments. Under stressful/pathological conditions, CgA cleavage generates the CgA1-373 proangiogenic fragment. The present work investigated the possibility that human CgA1-373 influences the mammalian cardiac performance, evaluating the role of its C-terminal sequence. METHODS Haemodynamic assessment was performed on an ex vivo Langendorff rat heart model, while mechanistic studies were performed using perfused hearts, H9c2 cardiomyocytes and in silico. RESULTS On the ex vivo heart, CgA1-373 elicited direct dose-dependent negative inotropism and vasodilation, while CgA1-372 , a fragment lacking the C-terminal R373 residue, was ineffective. Antibodies against the PGPQLR373 C-terminal sequence abrogated the CgA1-373 -dependent cardiac and coronary modulation. Ex vivo studies showed that CgA1-373 -dependent effects were mediated by endothelium, neuropilin-1 (NRP1) receptor, Akt/NO/Erk1,2 pathways, nitric oxide (NO) production and S-nitrosylation. In vitro experiments on H9c2 cardiomyocytes indicated that CgA1-373 also induced eNOS activation directly on the cardiomyocyte component by NRP1 targeting and NO involvement and provided beneficial action against isoproterenol-induced hypertrophy, by reducing the increase in cell surface area and brain natriuretic peptide (BNP) release. Molecular docking and all-atom molecular dynamics simulations strongly supported the hypothesis that the C-terminal R373 residue of CgA1-373 directly interacts with NRP1. CONCLUSION These results suggest that CgA1-373 is a new cardioregulatory hormone and that the removal of R373 represents a critical switch for turning "off" its cardioregulatory activity.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Fedora Grande
- Laboratory of Medicinal and Analytical Chemistry Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Barbara Colombo
- Division of Experimental Oncology Vita‐Salute San Raffaele University–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute Milan Italy
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine Magna Graecia University of Catanzaro Catanzaro Italy
| | - Bruno Tota
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- Laboratory of Organ and System Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Maria Carmela Cerra
- Laboratory of Organ and System Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Bruno Rizzuti
- CNR‐NANOTEC Licryl‐UOS Cosenza and CEMIF.Cal Department of Physics University of Calabria Rende Italy
| | - Angelo Corti
- Division of Experimental Oncology Vita‐Salute San Raffaele University–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute Milan Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- National Institute of Cardiovascular Research (INRC) Bologna Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- "Fondazione Umberto Veronesi" Milan Italy
| |
Collapse
|
17
|
Shabab S, Gholamnezhad Z, Mahmoudabady M. Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113328. [PMID: 32871233 DOI: 10.1016/j.jep.2020.113328] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Nowadays, there is an increase in global tendency to use medicinal plants as preventive and therapeutic agents to manage diabetes and its long-term complications such as cardiovascular disorders owing to their availability and valuable traditional background. AIM OF STUDY This review aims to introduce common medicinal plants, which have been demonstrated to have cardioprotective effects on diabetes and their mechanisms of action. MATERIALS AND METHODS Online literature databases, including Web of Sciences, PubMed, Science Direct, Scopus and Google Scholar were searched without date limitation by May 2020. The following keywords (natural products or medicinal plants or herbal medicine or herb or extract) and (diabetes or antidiabetic or hyperglycemic) and (cardiomyopathy or heart or cardioprotective or cardiac or cardio) were used, and after excluding non-relevant articles, 81 original English articles were selected. RESULTS The surveyed medicinal plants induced cardioprotective effects mostly through increasing antioxidant effects leading to attenuating ROS production as well as by inhibiting inflammatory signaling pathways and related cytokines. Moreover, they ameliorated the Na+/K + ATPase pump, the L-type Ca2+ channel current, and the intracellular ATP. They also reduced cardiac remodeling and myocardial cell apoptosis through degradation of caspase-3, Bax, P53 protein, enhancement of Bcl-2 protein expression as well as downregulation of TGFβ1 and TNFα expression. In addition, the extracts improved cardiac function through increasing EF% and FS% as well as restoring hemodynamic parameters. CONCLUSIONS The reviewed medicinal plants demonstrated cardioprotective manifestations in diabetes through intervention with mechanisms involved in the diabetic heart to restore cardiovascular complications.
Collapse
Affiliation(s)
- Sadegh Shabab
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Kingma JG, Laher I. Effect of endothelin on sex-dependent regulation of tone in coronary resistance vessels. Biochem Biophys Res Commun 2021; 540:56-60. [PMID: 33445111 DOI: 10.1016/j.bbrc.2020.12.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND/AIMS Sex dependent differences in coronary artery vasoregulation may be due to variations in responses to endogenous vasoactive compounds including endothelin (ET-1) and nitric oxide (NO). METHODS Septal coronary arteries (<200 μm) from healthy, sexually mature male, female and ovariectomized (i.e. surgical menopause) Sprague-Dawley rats were used. Myogenic tone, measured by pressure myography, was initially determined for all vessel segments studied before and after exposure to the nonselective ETA/ETB receptor blocker, bosentan (1 μM). Vasoconstrictor responses (vascular endothelium intact) to cumulative ET-1 (10-12 - 10-9 M) were assessed in a separate set of septal coronary vessels. Additional studies, examined the vasoconstrictor effects of ET-1 after NO blockade with L-NAME (200 μM). RESULTS Myogenic tone was 26 ± 7% in male, 20 ± 7% in female (p = 0.04 versus male) and 24 ± 3% in ovariectomized (p = NS versus male/female) vessels. Antagonism of ET-1 receptors produced a greater reduction in myogenic tone in male, compared to female rats over a similar range of intraluminal pressure (20-80 mmHg). Robust constrictor responses to cumulative concentrations of ET-1 were observed in all vessels; however, male rats exhibited greater sensitivity to vasoconstrictor effects of ET-1. After exposure to L-NAME vessel responses to ET-1 were normalized in male and female (not studied in ovariectomized) groups. CONCLUSIONS These findings confirm marked sex differences for myogenic tone and vessel constrictor responses to ET-1 in coronary resistance vessels. Results also suggest greater sensitivity to vasoconstrictor effects of ET-1 in male coronary resistance vessels.
Collapse
Affiliation(s)
- John G Kingma
- Department of Medicine, Faculty of Medicine, Pavillon Ferdinand-Vandry, 1050, Ave de la Médecine, Université Laval, Québec, Qc G1V 0A6, Canada.
| | - Ismail Laher
- Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, 217 - 2176 Health, Sciences Mall, University of British Columbia, Vancouver, BC. V6T 1Z3, Canada
| |
Collapse
|
19
|
Central endothelin ET B receptor activation reduces blood pressure and catecholaminergic activity in the olfactory bulb of deoxycorticosterone acetate-salt hypertensive rats. Eur J Pharmacol 2020; 885:173543. [PMID: 32896551 DOI: 10.1016/j.ejphar.2020.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022]
Abstract
Endothelins regulate catecholaminergic activity in the olfactory bulb (OB) in normotensive and hypertensive animals. Administration of an endothelin ETA receptor antagonist decreases blood pressure in deoxycorticosterone acetate-salt (DOCA-salt) rats along with a reduction in tyrosine hydroxylase (TH) activity and expression. In the present work, we sought to establish the role of brain endothelin ETB receptor on blood pressure regulation and its relationship with the catecholaminergic system within the OB of DOCA-Salt rats. Sprague-Dawley male rats were divided into control and DOCA-Salt groups. Blood pressure, heart rate and TH activity as well as neuronal nitric oxide synthase (nNOS) expression were assessed following IRL-1620 (selective endothelin ETB receptor agonist) applied to be brain. IRL-1620 significantly reduced systolic, diastolic, and mean arterial pressure in DOCA-Salt hypertensive rats. It also decreased TH activity, TH total and phosphorylated forms expression as well as its mRNA in the OB of hypertensive animals. The expression of phospho-Ser1417-nNOS, which reflects nNOS activation, was significantly decreased in the of OB of DOCA-salt rats, but it was enhanced by IRL-1620. These findings suggest that DOCA-Salt hypertension depends on endogenous central endothelin ETA receptor activity, rather than on ETB, and that low endothelin ETB stimulation is essential for blood pressure elevation in this animal model. The effect of endothelin ETA receptor antagonism may also result from endothelin ETB receptor overstimulation. The present study shows that endothelin receptors are involved in the regulation of TH in the OB and that such changes are likely implicated in the hemodynamic control and sympathetic outflow.
Collapse
|
20
|
Chen YL, Rosa RH, Kuo L, Hein TW. Hyperglycemia Augments Endothelin-1-Induced Constriction of Human Retinal Venules. Transl Vis Sci Technol 2020; 9:1. [PMID: 32879758 PMCID: PMC7442874 DOI: 10.1167/tvst.9.9.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Endothelin-1 (ET-1) is a potent vasoactive factor implicated in development of diabetic retinopathy, which is commonly associated with retinal edema and hyperglycemia. Although the vasomotor activity of venules contributes to the regulation of tissue fluid homeostasis, responses of human retinal venules to ET-1 under euglycemia and hyperglycemia remain unknown and the ET-1 receptor subtype corresponding to vasomotor function has not been determined. Herein, we addressed these issues by examining the reactivity of isolated human retinal venules to ET-1, and results from porcine retinal venules were compared. Methods Retinal tissues were obtained from patients undergoing enucleation. Human and porcine retinal venules were isolated and pressurized to assess diameter changes in response to ET-1 after exposure to 5 mM control glucose or 25 mM high glucose for 2 hours. Results Both human and porcine retinal venules exposed to control glucose developed similar basal tone and constricted comparably to ET-1 in a concentration-dependent manner. ET-1–induced constrictions of human and porcine retinal venules were abolished by ETA receptor antagonist BQ123. During high glucose exposure, basal tone of human and porcine retinal venules was unaltered but ET-1–induced vasoconstrictions were enhanced. Conclusions ET-1 elicits comparable constriction of human and porcine retinal venules by activation of ETA receptors. In vitro hyperglycemia augments human and porcine retinal venular responses to ET-1. Translational Relevance Similarities in vasoconstriction to ET-1 between human and porcine retinal venules support the latter as an effective model of the human retinal microcirculation to help identify vascular targets for the treatment of retinal complications in patients with diabetes.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Robert H Rosa
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.,Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
21
|
Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail Rev 2020; 24:279-299. [PMID: 30349977 DOI: 10.1007/s10741-018-9749-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTARCT Diabetic complications are among the largely exigent health problems currently. Cardiovascular complications, including diabetic cardiomyopathy (DCM), account for more than 80% of diabetic deaths. Investigators are exploring new therapeutic targets to slow or abate diabetes because of the growing occurrence and augmented risk of deaths due to its complications. Research on rodent models of type 1 and type 2 diabetes mellitus, and the use of genetic engineering techniques in mice and rats have significantly sophisticated for our understanding of the molecular mechanisms in human DCM. DCM is featured by pathophysiological mechanisms that are hyperglycemia, insulin resistance, oxidative stress, left ventricular hypertrophy, damaged left ventricular systolic and diastolic functions, myocardial fibrosis, endothelial dysfunction, myocyte cell death, autophagy, and endoplasmic reticulum stress. A number of molecular and cellular pathways, such as cardiac ubiquitin proteasome system, FoxO transcription factors, hexosamine biosynthetic pathway, polyol pathway, protein kinase C signaling, NF-κB signaling, peroxisome proliferator-activated receptor signaling, Nrf2 pathway, mitogen-activated protein kinase pathway, and micro RNAs, play a major role in DCM. Currently, there are a few drugs for the management of DCM and some of them have considerable adverse effects. So, researchers are focusing on the natural products to ameliorate it. Hence, in this review, we discuss the pathogical, molecular, and cellular mechanisms of DCM; the current diagnostic methods and treatments; adverse effects of conventional treatment; and beneficial effects of natural product-based therapeutics, which may pave the way to new treatment strategies. Graphical Abstract.
Collapse
|
22
|
Zhang W, Zhao W, Ge C, Li X, Yang X, Xiang Y, Sun Z. Genetic Relationship Between Endothelin-1 Gene Polymorphisms and Intracerebral Hemorrhage Among Chinese Han People. Med Sci Monit 2020; 26:e919110. [PMID: 32168316 PMCID: PMC7092658 DOI: 10.12659/msm.919110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background The goal of the present study was to determine whether endothelin-1 (EDN1) variants are associated with intracerebral hemorrhage (ICH) risk among Chinese Han people. Material/Methods The genotyping of EDN1 rs5370 and rs6458155 polymorphisms were conducted in 154 ICH patients and 168 healthy controls using polymerase chain reaction (PCR) and sequencing. Deviation for genotype frequencies in controls from Hardy-Weinberg equilibrium (HWE) was assessed. The genotype and allele distribution of EDN1 polymorphisms was checked via χ2 test between 2 groups. Strength of the association between EDN1 polymorphisms and ICH risk is presented by odds ratio (OR) and 95% confidence interval (95% CI). Results Genotype distribution for rs5370 and rs6458155 polymorphisms in the control group both conformed to HWE (P>0.05). Only CC genotype and C allele frequencies of rs6458155 between ICH patients and healthy individuals were significantly different (P=0.025; P=0.043), indicating rs64581255 is associated with increased ICH onset (OR=2.214, 95% CI=1.009–4.461; OR=1.389, 95% CI=1.010–1.910). When adjusted by confounding factors, the significant correlations still existed between 2 groups (P=0.028, adjusted OR=2.217, 95% CI=1.092–4.500; P=0.046, adjusted OR=1.386, 95% CI=1.005–1.910). Conclusions EDN1 rs6458155 polymorphism may be a risk factor of ICH among Chinese Han people.
Collapse
Affiliation(s)
- Wanzeng Zhang
- Department of Neurosurgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Wangmiao Zhao
- Department of Neurosurgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Chunyan Ge
- Department of Neurosurgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Xiaowei Li
- Department of Neurosurgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Xuehui Yang
- Department of Neurosurgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Yi Xiang
- Department of Neurosurgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Zhaosheng Sun
- Department of Neurosurgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| |
Collapse
|
23
|
Abstract
GPCRs (G-protein [guanine nucleotide-binding protein]-coupled receptors) play a central physiological role in the regulation of cardiac function in both health and disease and thus represent one of the largest class of surface receptors targeted by drugs. Several antagonists of GPCRs, such as βARs (β-adrenergic receptors) and Ang II (angiotensin II) receptors, are now considered standard of therapy for a wide range of cardiovascular disease, such as hypertension, coronary artery disease, and heart failure. Although the mechanism of action for GPCRs was thought to be largely worked out in the 80s and 90s, recent discoveries have brought to the fore new and previously unappreciated mechanisms for GPCR activation and subsequent downstream signaling. In this review, we focus on GPCRs most relevant to the cardiovascular system and discuss traditional components of GPCR signaling and highlight evolving concepts in the field, such as ligand bias, β-arrestin-mediated signaling, and conformational heterogeneity.
Collapse
Affiliation(s)
- Jialu Wang
- From the Department of Medicine (J.W., C.G., H.A.R.)
| | | | - Howard A Rockman
- From the Department of Medicine (J.W., C.G., H.A.R.).,Department of Cell Biology (H.A.R.).,Department of Molecular Genetics and Microbiology (H.A.R.), Duke University Medical Center, Durham, NC
| |
Collapse
|
24
|
Gumanova NG, Klimushina MV, Smetnev SA, Kiseleva AV, Skirko OP, Meshkov AN, Shanoyan AS, Kots AY, Metelskaya VA. Levels of nitric oxide metabolites, adiponectin and endothelin are associated with SNPs of the adiponectin and endothelin genes. Biomed Rep 2019; 11:154-164. [PMID: 31565221 PMCID: PMC6759535 DOI: 10.3892/br.2019.1238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Adiponectin, endothelin and nitric oxide (NO) are major regulators of vascular function. An imbalance of vasoactive factors contributes to the onset and progression of atherosclerosis. Various single nucleotide polymorphisms (SNPs) are considered to be risk factors for coronary heart disease. However, the molecular mechanisms of their associations with the components of endothelial dysfunction are poorly understood. In the present study, rs17366743, rs17300539, rs266729, rs182052 and rs2241766 SNPs of the adiponectin (ADIPOQ) gene and rs2070699, rs1800542 and rs1800543 SNPs of the endothelin-1 (EDN1) gene were genotyped in 477 patients with coronary heart disease who were subjected to coronary angiography, in order to determine the presence or absence of coronary atherosclerosis. The serum levels of adiponectin, endothelin and stable metabolites of NO, (nitrate and nitrite NOx), were assayed and their associations with the SNP genotypes and coronary lesions were calculated. The results indicated that rs17366743 of the ADIPOQ gene and rs2070699 and rs1800543 of the EDN1 gene were associated with the levels of NOx in women, which in turn was associated with cardiovascular mortality. In men, rs182052 and rs266729 of the ADIPOQ gene were associated with adiponectin levels, whereas rs17366743 of the ADIPOQ gene was associated with endothelin levels. Additionally, these SNPs were indirectly associated with the prevalence of coronary lesions in men. Therefore, the tested SNPs can be considered potential risk factors that lead to imbalance of vasoactive mediators in a gender-specific manner and contribute to the development of clinical manifestations of atherosclerosis.
Collapse
Affiliation(s)
- Nadezhda G Gumanova
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of The Russian Federation, Moscow 101990, Russia
| | - Marina V Klimushina
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of The Russian Federation, Moscow 101990, Russia
| | - Stepan A Smetnev
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of The Russian Federation, Moscow 101990, Russia
| | - Anna V Kiseleva
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of The Russian Federation, Moscow 101990, Russia
| | - Olga P Skirko
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of The Russian Federation, Moscow 101990, Russia
| | - Alexey N Meshkov
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of The Russian Federation, Moscow 101990, Russia
| | - Artem S Shanoyan
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of The Russian Federation, Moscow 101990, Russia
| | - Alexander Y Kots
- Department of Clinical Pharmacology, Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Victoria A Metelskaya
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of The Russian Federation, Moscow 101990, Russia
| |
Collapse
|
25
|
Mayourian J, Ceholski DK, Gonzalez DM, Cashman TJ, Sahoo S, Hajjar RJ, Costa KD. Physiologic, Pathologic, and Therapeutic Paracrine Modulation of Cardiac Excitation-Contraction Coupling. Circ Res 2019; 122:167-183. [PMID: 29301848 DOI: 10.1161/circresaha.117.311589] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac excitation-contraction coupling (ECC) is the orchestrated process of initial myocyte electrical excitation, which leads to calcium entry, intracellular trafficking, and subsequent sarcomere shortening and myofibrillar contraction. Neurohumoral β-adrenergic signaling is a well-established mediator of ECC; other signaling mechanisms, such as paracrine signaling, have also demonstrated significant impact on ECC but are less well understood. For example, resident heart endothelial cells are well-known physiological paracrine modulators of cardiac myocyte ECC mainly via NO and endothelin-1. Moreover, recent studies have demonstrated other resident noncardiomyocyte heart cells (eg, physiological fibroblasts and pathological myofibroblasts), and even experimental cardiotherapeutic cells (eg, mesenchymal stem cells) are also capable of altering cardiomyocyte ECC through paracrine mechanisms. In this review, we first focus on the paracrine-mediated effects of resident and therapeutic noncardiomyocytes on cardiomyocyte hypertrophy, electrophysiology, and calcium handling, each of which can modulate ECC, and then discuss the current knowledge about key paracrine factors and their underlying mechanisms of action. Next, we provide a case example demonstrating the promise of tissue-engineering approaches to study paracrine effects on tissue-level contractility. More specifically, we present new functional and molecular data on the effects of human adult cardiac fibroblast conditioned media on human engineered cardiac tissue contractility and ion channel gene expression that generally agrees with previous murine studies but also suggests possible species-specific differences. By contrast, paracrine secretions by human dermal fibroblasts had no discernible effect on human engineered cardiac tissue contractile function and gene expression. Finally, we discuss systems biology approaches to help identify key stem cell paracrine mediators of ECC and their associated mechanistic pathways. Such integration of tissue-engineering and systems biology methods shows promise to reveal novel insights into paracrine mediators of ECC and their underlying mechanisms of action, ultimately leading to improved cell-based therapies for patients with heart disease.
Collapse
Affiliation(s)
- Joshua Mayourian
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Delaine K Ceholski
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David M Gonzalez
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Timothy J Cashman
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Susmita Sahoo
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kevin D Costa
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
26
|
Modulation of the coronary tone in the expanding scenario of Chromogranin-A and its derived peptides. Future Med Chem 2019; 11:1501-1511. [DOI: 10.4155/fmc-2018-0585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cardiac function critically depends on an adequate myocardial oxygenation and on a correct coronary blood flow. Endothelial, hormonal and extravascular factors work together generating a fine balance between oxygen supply and oxygen utilization through the coronary circulation. Among the regulatory factors that contribute to the coronary tone, increasing attention is paid to the cardiac endocrines, such as chromogranin A, a prohormone for many biologically active peptides, including vasostatin and catestatin. In this review, we will summarize the available evidences about the coronary effects of these molecules, and their putative mechanism of action. Laboratory and clinical data on chromogranin A and its derived fragments will be analyzed in relation to the scenario of the endocrine heart, and of its putative clinical perspectives.
Collapse
|
27
|
Chen YL, Ren Y, Xu W, Rosa RH, Kuo L, Hein TW. Constriction of Retinal Venules to Endothelin-1: Obligatory Roles of ETA Receptors, Extracellular Calcium Entry, and Rho Kinase. Invest Ophthalmol Vis Sci 2019; 59:5167-5175. [PMID: 30372743 PMCID: PMC6203175 DOI: 10.1167/iovs.18-25369] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Endothelin-1 (ET-1) is a potent vasoconstrictor peptide implicated in retinal venous pathologies such as diabetic retinopathy and retinal vein occlusion. However, underlying mechanisms contributing to venular constriction remain unknown. Thus, we examined the roles of ET-1 receptors, extracellular calcium (Ca2+), L-type voltage-operated calcium channels (L-VOCCs), Rho kinase (ROCK), and protein kinase C (PKC) in ET-1-induced constriction of retinal venules. Methods Porcine retinal venules were isolated and pressurized for vasoreactivity study using videomicroscopic techniques. Protein and mRNA were analyzed using molecular tools. Results Retinal venules developed basal tone and constricted concentration-dependently to ET-1. The ETA receptor (ETAR) antagonist BQ123 abolished venular constriction to ET-1, but ETB receptor (ETBR) antagonist BQ788 had no effect on vasoconstriction. The ETBR agonist sarafotoxin S6c did not elicit vasomotor activity. In the absence of extracellular Ca2+, venules lost basal tone and ET-1–induced constriction was nearly abolished. Although L-VOCC inhibitor nifedipine also reduced basal tone and blocked vasoconstriction to L-VOCC activator Bay K8644, constriction of venules to ET-1 remained. The ROCK inhibitor H-1152 but not PKC inhibitor Gö 6983 prevented ET-1-induced vasoconstriction. Protein and mRNA expressions of ETARs and ETBRs, along with ROCK1 and ROCK2 isoforms, were detected in retinal venules. Conclusions Extracellular Ca2+ entry via L-VOCCs is essential for developing and maintaining basal tone of porcine retinal venules. ET-1 causes significant constriction of retinal venules by activating ETARs and extracellular Ca2+ entry independent of L-VOCCs. Activation of ROCK signaling, without involvement of PKC, appears to mediate venular constriction to ET-1 in the porcine retina.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States
| | - Yi Ren
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States
| | - Wenjuan Xu
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States
| | - Robert H Rosa
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States.,Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Baylor Scott & White Health, Temple, Texas, United States
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States.,Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Baylor Scott & White Health, Temple, Texas, United States
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States.,Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Baylor Scott & White Health, Temple, Texas, United States
| |
Collapse
|
28
|
Chen Y, Zhang H, Liu H, Li K, Su X. Homocysteine up-regulates ET B receptors via suppression of autophagy in vascular smooth muscle cells. Microvasc Res 2018; 119:13-21. [PMID: 29601873 DOI: 10.1016/j.mvr.2018.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/21/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
The change of autophagy is implicated in cardiovascular diseases (CVDs). Homocysteine (Hcy) up-regulates endothelin type B (ETB) receptors in vascular smooth muscle cells (VSMCs). However, it is unclear whether autophagy is involved in Hcy-induced-up-regulation of ETB receptors in VSMCs. The present study was designed to examine the hypothesis that Hcy up-regulates ETB receptors by inhibiting autophagy in VSMCs. Hcy treated the rat superior mesenteric artery (SMA) without endothelium in the presence and absence of AICAR, rapamycin or MHY1485 for 24 h. The contractile responses to sarafotoxin 6c (S6c) (an ETB receptor agonist) were studied using a sensitive myograph. Levels of protein expression were determined using Western blot analysis. Punctate staining of LC3B was exanimated by immunofluorescence using confocal microscopy. The results showed that Hcy inhibited AMPK, and activated mTOR, followed by impairing autophagy, and increased the levels of ETB receptor protein expression and the ETB receptor-mediated contractile responses to S6c in SMA without endothelium. However, these effects were reversed by AICAR or rapamycin. Additionally, MHY1485 up-regulated the AICAR-inhibited ETB receptor-mediated contractile response and the levels of ETB receptor protein expression in presence of Hcy. In conclusion, this suggested that Hcy up-regulated ETB receptors by inhibiting autophagy in VSMCs via AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yulong Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ke Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xingli Su
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
29
|
Wang JW, Li AY, Guo QH, Guo YJ, Weiss JW, Ji ES. Endothelin-1 and ET receptors impair left ventricular function by mediated coronary arteries dysfunction in chronic intermittent hypoxia rats. Physiol Rep 2017; 5:5/1/e13050. [PMID: 28057852 PMCID: PMC5256153 DOI: 10.14814/phy2.13050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) results in cardiac dysfunction and vascular endothelium injury. Chronic intermittent hypoxia (CIH), the main characteristic of OSAS, is considered to be mainly responsible for cardiovascular system impairment. This study is aimed to evaluate the role of endothelin‐1(ET‐1) system in coronary injury and cardiac dysfunction in CIH rats. In our study, Sprague–Dawley rats were exposed to CIH (FiO2 9% for 1.5 min, repeated every 3 min for 8 h/d, 7 days/week for 3 weeks). After 3 weeks, the left ventricular developed pressure (LVDP) and coronary resistance (CR) were measured with the langendorff mode in isolated hearts. Meanwhile, expressions of ET‐1 and ET receptors were detected by immunohistochemical and western blot, histological changes were also observed to determine effects of CIH on coronary endothelial cells. Results suggested that decreased LVDP level combined with augmented coronary resistance was exist in CIH rats. CIH could induce endothelial injury and endothelium‐dependent vasodilatation dysfunction in the coronary arteries. Furthermore, ET‐1 and ETA receptor expressions in coronary vessels were increased after CIH exposure, whereas ETB receptors expression was decreased. Coronary contractile response to ET‐1 in both normoxia and CIH rats was inhibited by ETA receptor antagonist BQ123. However, ETB receptor antagonist BQ788 enhanced ET‐1‐induced contractile in normoxia group, but had no significant effects on CIH group. These results indicate that CIH‐induced cardiac dysfunction may be associated with coronary injury. ET‐1 plays an important role in coronary pathogenesis of CIH through ETA receptor by mediating a potent vasoconstrictor response. Moreover, decreased ETB receptor expression that leads to endothelium‐dependent vasodilatation decline, might be also participated in coronary and cardiac dysfunction.
Collapse
Affiliation(s)
- Jin-Wei Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ai-Ying Li
- Department of Biochemistry, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qiu-Hong Guo
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ya-Jing Guo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - James W Weiss
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
30
|
Pan DS, Feng SZ, Cao P, Li JJ. Endothelin B receptor promotes the proliferation and immune escape of malignant gliomas. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1230-1235. [PMID: 28841806 DOI: 10.1080/21691401.2017.1366336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE As a kind of difficult to cure tumour, malignant gliomas have attracted widespread attention. The proliferation and immune escape of tumour cells were closely related to the development of malignant gliomas. The aim of this study was to investigate the role of endothelin B receptor (NTBR) in gliomas. METHODS RT-PCR was used to detect the expression of NTBR mRNA in glioma tissue and glioma cell lines. The expression of NTBR in glioma tissues was detected by immunohistochemistry. MTT assay was used to detect the viability of U87 cells after adding NTBR. Cell cloning assay was used to detect the cell proliferation ability. Western blot was used to detect the expression of TGF-β and the expression of Treg after adding NTBR to U87. RESULT The expression of NTBR in glioma tissues and cells was significantly higher than that in the control group by RT-PCR. After adding NTBR, cell proliferation of U87 was significantly enhanced and TGF-β and Treg were significantly expressed. It was suggested that NTBR could contribute to tumour immune escape in glioma, and it was found that there was a positive correlation between NTBR expression and different stages in malignant gliomas. CONCLUSION Endothelin B receptor can increase the proliferation of glioma cells and tumour immune escape. The expression of endothelin B is closely related to the clinical stage of glioma.
Collapse
Affiliation(s)
- Dong-Sheng Pan
- a Department of Neurosurgery , The General Hospital of Shenyang Military , Shenyang , Liaoning , China
| | - Si-Zhe Feng
- a Department of Neurosurgery , The General Hospital of Shenyang Military , Shenyang , Liaoning , China
| | - Peng Cao
- a Department of Neurosurgery , The General Hospital of Shenyang Military , Shenyang , Liaoning , China
| | - Jin-Jiang Li
- a Department of Neurosurgery , The General Hospital of Shenyang Military , Shenyang , Liaoning , China
| |
Collapse
|
31
|
Wang Y, Zhang Y, Zhu CG, Guo YL, Huang QJ, Wu NQ, Gao Y, Qing P, Liu G, Dong Q, Li JJ. Big endothelin-1 level is a useful marker for predicting the presence of isolated coronary artery ectasia. Biomarkers 2017; 22:331-336. [PMID: 27885846 DOI: 10.1080/1354750x.2016.1265001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 01/23/2023]
Abstract
CONTEXT Endothelin-1(ET-1) has been implicated in coronary artery disease (CAD) and may be associated with coronary artery ectasia (CAE). OBJECTIVE To clarify the relationship between big ET-1 and isolated CAE. METHODS We measured big ET-1 with ELISA in 216 patients (CAE, n = 72; CAD, n = 72; normal, n = 72) and evaluated the link with isolated CAE. RESULTS The level of plasma big ET-1 was significantly higher in patients with isolated CAE (p < 0.001). Big ET-1 was strongly and independently associated with CAE by multivariate analysis (OR 95%CI: 1.026 (1.018-1.034), p = 0.000). CONCLUSIONS Big ET-1 may be a useful predictor for the presence of isolated CAE.
Collapse
Affiliation(s)
- Yao Wang
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Yan Zhang
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Cheng-Gang Zhu
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Yuan-Lin Guo
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Qiao-Juan Huang
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Na-Qiong Wu
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Ying Gao
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Ping Qing
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Geng Liu
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Qian Dong
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Jian-Jun Li
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|
32
|
Abstract
Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.
Collapse
|
33
|
Gheinani AH, Kiss B, Moltzahn F, Keller I, Bruggmann R, Rehrauer H, Fournier CA, Burkhard FC, Monastyrskaya K. Characterization of miRNA-regulated networks, hubs of signaling, and biomarkers in obstruction-induced bladder dysfunction. JCI Insight 2017; 2:e89560. [PMID: 28138557 DOI: 10.1172/jci.insight.89560] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bladder outlet obstruction (BOO) induces significant organ remodeling, leading to lower urinary tract symptoms accompanied by urodynamic changes in bladder function. Here, we report mRNA and miRNA transcriptome sequencing of bladder samples from human patients with different urodynamically defined states of BOO. Patients' miRNA and mRNA expression profiles correlated with urodynamic findings. Validation of RNA sequencing results in an independent patient cohort identified combinations of 3 mRNAs (NRXN3, BMP7, UPK1A) and 3 miRNAs (miR-103a-3p, miR-10a-5p, miR-199a-3p) sufficient to discriminate between bladder functional states. All BOO patients shared cytokine and immune response pathways, TGF-β and NO signaling pathways, and hypertrophic PI3K/AKT signaling pathways. AP-1 and NFkB were dominant transcription factors, and TNF-α was the top upstream regulator. Integrated miRNA-mRNA expression analysis identified pathways and molecules targeted by differentially expressed miRNAs. Molecular changes in BOO suggest an increasing involvement of miRNAs in the control of bladder function from the overactive to underactive/acontractile states.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Urology Research Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Bernhard Kiss
- Department of Urology, University Hospital, Bern, Switzerland
| | - Felix Moltzahn
- Department of Urology, University Hospital, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | | | | | | | - Katia Monastyrskaya
- Urology Research Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Urology, University Hospital, Bern, Switzerland
| |
Collapse
|
34
|
Gergei I, Krämer BK, Scharnagl H, Stojakovic T, März W, Mondorf U. Propeptide big-endothelin, N-terminal-pro brain natriuretic peptide and mortality. The Ludwigshafen risk and cardiovascular health (LURIC) study. Biomarkers 2016; 22:315-320. [DOI: 10.1080/1354750x.2016.1252969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ingrid Gergei
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bernhard K. Krämer
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim and Augsburg, Germany
| | - Ulrich Mondorf
- Department of Medicine, Division of Nephrology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- UMHealthcare, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Xiao X, Cao L, Wang R, Shen ZX, Cao YX. Airborne fine particulate matter alters the expression of endothelin receptors in rat coronary arteries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:487-496. [PMID: 27461751 DOI: 10.1016/j.envpol.2016.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/12/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Exposure to airborne fine particulate matter (PM2.5) is associated with cardiovascular diseases. However, a comprehensive understanding of the underlying mechanisms by which PM2.5 induces or aggravates these diseases is still insufficiently clear. The present study investigated whether PM2.5 alters the expression of the endothelin subtype B (ETB) and endothelin subtype A (ETA) receptors in the coronary artery and examined the underlying mechanisms. Rat coronary artery segments were cultured with PM2.5 in the presence or absence of MEK/ERK1/2, JNK, and p38 pathway inhibitors. Contractile reactivity was measured by myography. ETB and ETA receptor expression was evaluated using RT-PCR, western blot and immunohistochemistry. Compared with fresh arteries, the cultured coronary arteries showed a significantly enhanced contraction mediated by the ETB receptor and an unaltered contraction mediated by the ETA receptor. Culture with PM2.5 significantly enhanced the contraction and the mRNA and protein expression levels of the ETB and ETA receptors in the coronary arteries, suggesting that PM2.5 induces an upregulation of ETA and ETB receptors. In addition, the PM2.5-induced increases in ETB- and ETA-mediated vasoconstriction and receptor expressions could be notably decreased by MEK1/2 inhibitor, U0126 and Raf inhibitor, SB386023, suggesting that the upregulation of ETB and ETA receptors is related with MEK/ERK1/2 pathway. In conclusion, PM2.5 induces the ETB and ETA receptor upregulation in rat coronary arteries, and the MEK/ERK1/2 pathway may be involved in this process.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, 76 Yanta West Road, Xi'an, 710061, China
| | - Lei Cao
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, 76 Yanta West Road, Xi'an, 710061, China
| | - Rong Wang
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, 76 Yanta West Road, Xi'an, 710061, China
| | - Zhen-Xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Yong-Xiao Cao
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, 76 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
36
|
Hu HJ, Jiang ZS, Zhou SH, Liu QM. Hydrogen sulfide suppresses angiotensin II-stimulated endothelin-1 generation and subsequent cytotoxicity-induced endoplasmic reticulum stress in endothelial cells via NF-κB. Mol Med Rep 2016; 14:4729-4740. [DOI: 10.3892/mmr.2016.5827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
|
37
|
Coelho M, Oliveira L, Muzzi R, Oberlender G, Varaschin M, Costa R, Muzzi L. Deformação miocárdica radial por meio do speckle tracking bidimensional em suínos com hipertensão pulmonar induzida e tratados com angiotensina-(1-7). ARQ BRAS MED VET ZOO 2016. [DOI: 10.1590/1678-4162-8159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO A hipertensão arterial pulmonar (HAP) é uma doença complexa, caracterizada por disfunção endotelial, que resulta em remodelamento vascular pulmonar e elevação da pressão arterial pulmonar, com consequente insuficiência cardíaca direita. O speckle tracking bidimensional (2D-STE) é uma das mais recentes ferramentas da ecocardiografia, o qual tem sido empregado para avaliação mais precoce da função ventricular e do efeito da HAP sobre a função dos ventrículos esquerdo e direito. O objetivo deste estudo foi avaliar a deformação (St e StR) miocárdica radial do VE em modelo experimental de suínos com HAP induzida e tratados com angiotensina-(1-7), a fim de verificar as possibilidades desse novo fármaco nas respostas clínica e hemodinâmica, pois apresenta efeitos anti-inflamatório e vasodilatador, bem como ações antiproliferativas no sistema cardiovascular. Neste estudo, foi possível observar que os animais tratados com Ang-(1-7) apresentaram St e StR radiais maiores que o grupo placebo aos 60 dias de experimento, demonstrando uma melhora na função sistólica do miocárdio pelo aumento da deformação miocárdica (16,06±7,50 - placebo; 25,14±14,91 - Ang-(1-7)) e StR (1,28±0,51 - placebo; 1,51±0,58 - Ang-(1-7)). Essa melhora na função sistólica pode ser atribuída aos efeitos do fármaco, que reduziram também o desenvolvimento da hipertensão pulmonar. Diante dos resultados, acredita-se que a Ang-(1-7) possa ser um medicamento promissor para tratamento da HAP.
Collapse
|
38
|
EDN1 Gene Variant is Associated with Neonatal Persistent Pulmonary Hypertension. Sci Rep 2016; 6:29877. [PMID: 27425626 PMCID: PMC4947908 DOI: 10.1038/srep29877] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023] Open
Abstract
Recent studies have suggested associations between certain genetic variants and susceptibility to persistent pulmonary hypertension of the newborn (PPHN). The aim of the study was to evaluate the association of EDN1, NOS3, ACE and VEGFA genes with PPHN. Neonates with respiratory distress were enrolled in the study, whose gestational age ≥34 weeks, age ≤3 days. They were divided into PPHN and non-PPHN group. The EDN1, NOS3, ACE and VEGFA genes were detected by next-generation sequencing, and the results were validated by Sanger sequencing. Serum endothelin-1 (ET-1) levels were quantified by ELISA. A total of 112 neonates were enrolled (n = 55 in PPHN group; n = 57 in non-PPHN group). There is a significantly difference in the genotype distribution of EDN1 rs2070699 between the PPHN and non-PPHN group (P = 0). A higher frequency of the rs2070699 T allele was observed in the PPHN group (54.5% vs 27.2%; OR = 3.89; 95%CI 1.96-7.72). The rs2070699 T allele was associated with higher ET-1 levels (3.333 ± 2.517 pg/mL vs 1.223 ± 0.856 pg/mL; P = 0.002) and a longer ventilation period (5.8 ± 2.6 days vs 3.6 ± 3.3 days; P = 0). The results suggest there is an association between EDN1 and PPHN. The presence of the rs2070699 T allele increased the risk of PPHN in neonates with respiratory distress.
Collapse
|
39
|
Abdel-Samad D, Bkaily G, Magder S, Jacques D. ETA and ETB receptors contribute to neuropeptide Y-induced secretion of endothelin-1 in right but not left human ventricular endocardial endothelial cells. Neuropeptides 2016; 55:145-53. [PMID: 26803555 DOI: 10.1016/j.npep.2016.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022]
Abstract
Our recent work showed that neuropeptide Y-induced secretion of endothelin-1 (ET-1) in left and right human ventricular endocardial endothelial cells (hLEECs or hREECs respectively) via the activation of neuropeptide Y2 or Y5 receptors depending on the cell type. The aim of this study was to verify whether hLEECs or hREECs secretion of ET-1 induced by NPY is due, in part, to the activation of ETA and/or ETB receptors by the secreted ET-1. Using the technique of indirect immunofluorescence coupled to real 3-D confocal microscopy, as well as ELISA, our results show that in hREECs, the NPY-induced release of ET-1 seems to be due, in part, to the activation of both ETA and ETB receptors. On the other hand, in hLEECs, ETA and ETB receptors do not contribute to the ET-1 released by NPY. Therefore, our results suggest that the NPY-induced release of ET-1 in EECRs is due to NPY receptor activation and the subsequent activation of the ETA and ETB receptors by the released ET-1. However, the release of ET-1 by NPY in hLEECs is mainly due to NPY receptor activation. Furthermore, this secretory process of ET-1 is different between the right and left ventricular cells and highlights the important tuning roles that right and left ventricular EECs possess as well as their contribution to the physiological and pathophysiological states of the underlying heart muscle.
Collapse
Affiliation(s)
- Dima Abdel-Samad
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sheldon Magder
- McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
40
|
Neves JS, Leite-Moreira AM, Neiva-Sousa M, Almeida-Coelho J, Castro-Ferreira R, Leite-Moreira AF. Acute Myocardial Response to Stretch: What We (don't) Know. Front Physiol 2016; 6:408. [PMID: 26779036 PMCID: PMC4700209 DOI: 10.3389/fphys.2015.00408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
Myocardial stretch, as result of acute hemodynamic overload, is one of the most frequent challenges to the heart and the ability of the heart to intrinsically adapt to it is essential to prevent circulatory congestion. In this review, we highlight the historical background, the currently known mechanisms, as well as the gaps in the understanding of this physiological response. The systolic adaptation to stretch is well-known for over 100 years, being dependent on an immediate increase in contractility—known as the Frank-Starling mechanism—and a further progressive increase—the slow force response. On the other hand, its diastolic counterpart remains largely unstudied. Mechanosensors are structures capable of perceiving mechanical signals and activating pathways that allow their transduction into biochemical responses. Although the connection between these structures and stretch activated pathways remains elusive, we emphasize those most likely responsible for the initiation of the acute response. Calcium-dependent pathways, including angiotensin- and endothelin-related pathways; and cGMP-dependent pathways, comprising the effects of nitric oxide and cardiac natriuretic hormones, embody downstream signaling. The ischemic setting, a paradigmatic situation of acute hemodynamic overload, is also touched upon. Despite the relevant knowledge accumulated, there is much that we still do not know. The quest for further understanding the myocardial response to acute stretch may provide new insights, not only in its physiological importance, but also in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- João S Neves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - André M Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Manuel Neiva-Sousa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - João Almeida-Coelho
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Ricardo Castro-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| |
Collapse
|
41
|
Xiao X, Wang R, Cao L, Shen ZX, Cao YX. The Role of MAPK Pathways in Airborne Fine Particulate Matter-Induced Upregulation of Endothelin Receptors in Rat Basilar Arteries. Toxicol Sci 2015; 149:213-26. [PMID: 26496744 DOI: 10.1093/toxsci/kfv229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Airborne fine particulate matter (PM(2.5)) increases the risk of cerebrovascular diseases. However, existing experimental data do not sufficiently explain how PM(2.5) affects cerebral vessels. This study sought to examine whether PM(2.5) alters endothelin (ET) receptor expression on rat cerebral arteries and the potential underlying mechanisms. Isolated rat basilar arteries were cultured with PM(2.5) aqueous suspension in the presence of mitogen-activated protein kinase (MAPK) pathway inhibitors. ET receptor-mediated vasomotor functions were recorded by a sensitive myograph. ET(A) and ET(B) receptor mRNA and protein expressions were assessed using quantitative real-time PCR, Western blotting, and immunohistochemistry, respectively. Compared with fresh and culture alone arteries, PM(2.5) significantly enhanced ET(A) and ET(B) receptor-mediated contractions and increased receptor mRNA and protein expressions in basilar arteries, indicating PM(2.5) upregulates ET(A) and ET(B) receptors. Culturing with SB386023 (MEK/ERK1/2 inhibitor), U0126 (ERK1/2 inhibitor), SP600125 [c-Jun N-terminal kinase (JNK) inhibitor], or SB203580 (p38 inhibitor) attenuated PM(2.5)-induced ETB receptor upregulation. PM(2.5)-induced enhancement of ET(A) receptor-mediated contraction and receptor expression was notably inhibited by SB386023 or U0126. However, neither SP600125 nor SB203580 had an effect on PM(2.5)-induced ET(A) receptor upregulation. In conclusion, PM(2.5) upregulates ET(A) and ET(B) receptors in rat basilar arteries. ET(B) receptor upregulation is involved in MEK/ERK1/2, JNK, and p38 MAPK pathways, and ET(A) receptors upregulation is associated with MEK/ERK1/2 pathway.
Collapse
Affiliation(s)
- Xue Xiao
- *Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Rong Wang
- *Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lei Cao
- *Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China;
| | - Zhen-xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yong-xiao Cao
- *Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
42
|
Szewieczek J, Francuz T, Dulawa J, Legierska K, Hornik B, Włodarczyk I, Janusz-Jenczeń M, Batko-Szwaczka A. Functional measures, inflammatory markers and endothelin-1 as predictors of 360-day survival in centenarians. AGE (DORDRECHT, NETHERLANDS) 2015; 37:85. [PMID: 26289439 PMCID: PMC5005827 DOI: 10.1007/s11357-015-9822-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/28/2015] [Indexed: 05/16/2023]
Abstract
Centenarians represent a rapidly growing population. To better characterize this specific age group, we have performed a cross-sectional study to observe associations between functional measures and a range of biochemical markers, including inflammatory markers and their significance as predictors of 360-day survival. Medical history and physical and functional assessment (Mini-Mental State Examination (MMSE), Katz Index (activities of daily living, ADL) and Barthel Index (Barthel Index) of Activities of Daily Living, and Lawton Instrumental Activities of Daily Living Scale (Lawton IADL)) were conducted on 86 101.9 ± 1.2-year-old (mean ± SD) subjects (70 women, 16 men). Blood tests were performed on 84 subjects of whom 43 also had extended biomarker assessment. As a reference group 30 51.8 ± 5.0-year old healthy subjects (20 women, 10 men) were recruited. The centenarians received follow-up phone calls. Fifty-two centenarians (60 %) survived ≥360 days. Longer survival was associated with higher MMSE (hazard ratio, HR = 0.934, 95 % confidence interval (CI) 0.896-0.975, P = .002), ADL (HR = 0.840, 95 % CI 0.716-0.985, P = .032), Barthel Index (HR = 0.988, 95 % CI 0.977-0.999, P = .026), and albumin level (HR .926, 95 % CI 0.870-0.986, P .016) and with lower white blood cell (WBC) (HR = 1.161, 95 % CI 1.059-1.273, P = .001), C-reactive protein (CRP) (HR = 1.032, 95 % CI 1.014-1.050, P < .001), IL-6 (HR = 1.182, 95 % CI 1.047-1.335, P = .007), and endothelin-1 (ET-1) level (HR = 3.711, 95 % CI 1.233-11.169, P = .020). Centenarians had higher 360-day survival probability with MMSE ≥13 (P < .001), ADL ≥1 (P < .001), Barthel Index ≥15 (P < .001), Lawton IADL ≥10 points (P = .009), WBC <8.3 G/L (P = .039), CRP <10 mg/L (P < .001), IL-6 <6 pg/mL (P .002), and ET-1 <1.1 pg/mL (P .007). Our results indicate that functional measures, inflammatory markers, and endothelin-1 are predictors of 360-day survival in centenarians.
Collapse
Affiliation(s)
- Jan Szewieczek
- Department of Geriatrics, School of Health Sciences in Katowice, SUM, SPSK NR 7 SUM GCM, ul. Ziolowa 45/47, 40-635, Katowice, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Koeck I, Burkhard FC, Monastyrskaya K. Activation of common signaling pathways during remodeling of the heart and the bladder. Biochem Pharmacol 2015; 102:7-19. [PMID: 26390804 DOI: 10.1016/j.bcp.2015.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.
Collapse
Affiliation(s)
- Ivonne Koeck
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | | | - Katia Monastyrskaya
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Department of Urology, University Hospital, Bern, Switzerland.
| |
Collapse
|
44
|
Li TC, Li CI, Liao LN, Liu CS, Yang CW, Lin CH, Hsiao JH, Hsiao CY, Lin WY, Wu FY, Lin CC. Associations of EDNRA and EDN1 polymorphisms with carotid intima media thickness through interactions with gender, regular exercise, and obesity in subjects in Taiwan: Taichung Community Health Study (TCHS). Biomedicine (Taipei) 2015; 5:8. [PMID: 26040574 PMCID: PMC4502041 DOI: 10.7603/s40681-015-0008-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to evaluate the interacted association between EDNRA and EDN1 polymorphisms and gender, regular exercise, and obesity status on carotid intima media thickness (IMT) in community- dwelling subjects of the Taichung Community Health Study. Five single-nucleotide polymorphisms (SNPs rs1395821, rs1878406, rs5333, rs1800541, and rs5370) of the EDNRA and EDN1 gene were examined in 480 participants from 160 families. The IMT protocol involves scanning the common carotid arteries (CCAs), the carotid bifurcations (bulb), and the origins (first 1 cm) of the internal carotid arteries (ICAs). Generalized linear models with a generalized estimating equation were employed to consider the dependence among family members. After multivariate adjustment, the effects of interactions between EDNRA and EDN1 gene with gender, obesity, and exercise were observed. For gene-gender interaction on CCA IMT, the adjusted mean for men carrying the GA/GG genotype of EDNRASNP rs1878406 was 1.18 times higher than that for men carrying the AA genotype (95% CI: 1.01, 1.37). As for bulb and ICA IMT, the adjusted mean values for women carrying the AC/AA genotype of EDN1 rs5370 was lower than those carrying the CC genotype: 0.89, [0.82, 0.98]; and 0.90 [0.83, 0.99], respectively. We did observe significant effects of EDNRA SNPs rs1395821 and rs5333 in individuals who regularly exercised. A significantly lower adjusted mean in CCA IMT for non-obese individuals carrying EDNRA SNP rs5333 was observed (0.92 [0.86, 0.99]) compared with non-obese individuals carrying the AA genotype. This study first reported significant interactions of EDNRA and EDN1 polymorphisms with gender, regular exercise, and obesity on carotid IMT in Han Chinese participants.
Collapse
Affiliation(s)
- Tsai-Chung Li
- Graduate Institute of Biostatistics, College of Public Health, China Medical University, 404, Taichung, Taiwan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sidharta PN, Treiber A, Dingemanse J. Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan. Clin Pharmacokinet 2015; 54:457-71. [PMID: 25860376 PMCID: PMC4412377 DOI: 10.1007/s40262-015-0255-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vascular system, which leads to right-sided heart failure and ultimately death if untreated. Treatments to regulate the pulmonary vascular pressure target the prostacyclin, nitric oxide, and endothelin (ET) pathways. Macitentan, an oral, once-daily, dual ETA and ETB receptor antagonist with high affinity and sustained receptor binding is the first ET receptor antagonist to show significant reduction of the risk of morbidity and mortality in PAH patients in a large-scale phase III study with a long-term outcome. Here we present a review of the available clinical pharmacokinetic, pharmacodynamic, pharmacokinetic/pharmacodynamic relationship, and drug-drug interaction data of macitentan in healthy subjects, patients with PAH, and in special populations.
Collapse
Affiliation(s)
- P N Sidharta
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123, Allschwil, Switzerland,
| | | | | |
Collapse
|
46
|
Lim SL, Lam CSP, Segers VFM, Brutsaert DL, De Keulenaer GW. Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J 2015; 36:2050-2060. [PMID: 25911648 DOI: 10.1093/eurheartj/ehv132] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/01/2015] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) is an important global health problem with great socioeconomic burden. Outcomes remain sub-optimal. Endothelium-cardiomyocyte interactions play essential roles in cardiovascular homeostasis, and deranged endothelium-related signalling pathways have been implicated in the pathophysiology of HF. In particular, disturbances in nitric oxide (NO)-mediated pathway and neuregulin-mediated pathway have been shown to contribute to the development of HF. These signalling pathways hold the potential as pathophysiological targets for new HF therapies, and may aid in patient selection for future HF trials.
Collapse
Affiliation(s)
| | | | - Vincent F M Segers
- Laboratory of Physiopharmacology (Building T2), University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Dirk L Brutsaert
- Laboratory of Physiopharmacology (Building T2), University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology (Building T2), University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| |
Collapse
|
47
|
Martínez-Barquero V, de Marco G, Martínez-Hervas S, Rentero P, Galan-Chilet I, Blesa S, Morchon D, Morcillo S, Rojo G, Ascaso JF, Real JT, Martín-Escudero JC, Chaves FJ. Polymorphisms in endothelin system genes, arsenic levels and obesity risk. PLoS One 2015; 10:e0118471. [PMID: 25799405 PMCID: PMC4370725 DOI: 10.1371/journal.pone.0118471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/18/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/OBJECTIVES Obesity has been linked to morbidity and mortality through increased risk for many chronic diseases. Endothelin (EDN) system has been related to endothelial function but it can be involved in lipid metabolism regulation: Receptor type A (EDNRA) activates lipolysis in adipocytes, the two endothelin receptors mediate arsenic-stimulated adipocyte dysfunction, and endothelin system can regulate adiposity by modulating adiponectin activity in different situations and, therefore, influence obesity development. The aim of the present study was to analyze if single nucleotide polymorphisms (SNPs) in the EDN system could be associated with human obesity. SUBJECTS/METHODS We analyzed two samples of general-population-based studies from two different regions of Spain: the VALCAR Study, 468 subjects from the area of Valencia, and the Hortega Study, 1502 subjects from the area of Valladolid. Eighteen SNPs throughout five genes were analyzed using SNPlex. RESULTS We found associations for two polymorphisms of the EDNRB gene which codifies for EDN receptor type B. Genotypes AG and AA of the rs5351 were associated with a lower risk for obesity in the VALCAR sample (p=0.048, OR=0.63) and in the Hortega sample (p=0.001, OR=0.62). Moreover, in the rs3759475 polymorphism, genotypes CT and TT were also associated with lower risk for obesity in the Hortega sample (p=0.0037, OR=0.66) and in the VALCAR sample we found the same tendency (p=0.12, OR=0.70). Furthermore, upon studying the pooled population, we found a stronger association with obesity (p=0.0001, OR=0.61 and p=0.0008, OR=0.66 for rs5351 and rs3759475, respectively). Regarding plasma arsenic levels, we have found a positive association for the two SNPs studied with obesity risk in individuals with higher arsenic levels in plasma: rs5351 (p=0.0054, OR=0.51) and rs3759475 (p=0.009, OR=0.53). CONCLUSIONS Our results support the hypothesis that polymorphisms of the EDNRB gene may influence the susceptibility to obesity and can interact with plasma arsenic levels.
Collapse
Affiliation(s)
- Vanesa Martínez-Barquero
- Department of Medicine, University of Valencia, Valencia, Spain
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Griselda de Marco
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Sergio Martínez-Hervas
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pilar Rentero
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Inmaculada Galan-Chilet
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Sebastian Blesa
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - David Morchon
- Internal Medicine, Rio Hortega Hospital, University of Valladolid, Valladolid, Spain
| | - Sonsoles Morcillo
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Regional Universitario, Málaga, Spain, Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Gemma Rojo
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Regional Universitario, Málaga, Spain, Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Juan Francisco Ascaso
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - José Tomás Real
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Felipe Javier Chaves
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- * E-mail:
| |
Collapse
|
48
|
Protective effects of endothelin receptor A and B inhibitors against doxorubicin-induced cardiomyopathy. Biochem Pharmacol 2015; 94:109-29. [PMID: 25660617 DOI: 10.1016/j.bcp.2015.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/21/2022]
Abstract
The clinical efficiency of the highly potent antitumor agent doxorubicin is limited by cardiotoxic effects. In a murine doxorubicin cardiotoxicity model, increased endothelin-1 (ET-1) expression and cardioprotective effects of the dual ET-1 blocker bosentan were demonstrated. To date it is unclear if combined blocking of endothelin A/B receptors is necessary or whether selective inhibition of one of the ET-1 receptors is sufficient for the observed cardioprotection. Therefore, we investigated the impact of dual (bosentan) and single endothelin receptor antagonism through sitaxentan (receptor A blocker) or BQ788 (receptor B blocker) in a murine doxorubicin cardiotoxicity model (C57BL/6N). Simultaneous administration of each endothelin receptor antagonist (ERA) with doxorubicin resulted in a significantly improved hemodynamic performance in comparison to the impaired cardiac function in control mice with bosentan being most effective but closely followed by sitaxentan and also BQ788. This cardioprotection was not caused by diminished doxorubicin levels in heart since the doxorubicin content in cardiac tissue was not altered by ERAs significantly. However, whole transcript expression profiling showed partly different effects of the ERAs on doxorubicin-modulated cardiac gene expression of genes involved in signal transduction (e.g. Stat3, Pim1, Akt1, Plcb2), fibrosis (e.g. Myl4), energy production (e.g. Ant1) or oxidative stress (e.g. Aox1). Furthermore, doxorubicin-mediated gene regulations were verified in the murine cardiomyocyte model HL-1 showing partly reversed expression patterns after co-administration of the ERAs. In summary, our results demonstrate strong cardioprotective effects of blocking ET-1 receptors against the doxorubicin-related cardiomyopathy and provide evidence to potential underlying signaling pathways.
Collapse
|
49
|
Sidharta PN, Krähenbühl S, Dingemanse J. Pharmacokinetic and pharmacodynamic evaluation of macitentan , a novel endothelin receptor antagonist for the treatment of pulmonary arterial hypertension. Expert Opin Drug Metab Toxicol 2015; 11:437-49. [PMID: 25604973 DOI: 10.1517/17425255.2015.1000859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a chronic disorder of the pulmonary vasculature characterized by elevated mean pulmonary arterial pressure eventually leading to right-sided heart failure and premature death. Macitentan is an oral, once-daily, dual endothelin (ET)A and ETB receptor antagonist with high affinity and sustained receptor binding that was approved in the USA, Europe, Canada, and Switzerland for the treatment of PAH. AREAS COVERED This review discusses the pharmacokinetics (PK) and pharmacodynamics (PD) of macitentan and its drug interaction potential based on preclinical and clinical data. EXPERT OPINION Up to date, macitentan is the only registered treatment for PAH that significantly reduced morbidity and mortality as a combined endpoint in a long-term event-driven study. The safety profile of macitentan is favorable with respect to hepatic safety and edema/fluid retention and may be better than that of other ET receptor antagonists such as bosentan and ambrisentan. The PK profile supports a once-a-day dosing regimen. Macitentan has limited interactions with other drugs. Based on these characteristics macitentan is an important new addition to the treatment of PAH.
Collapse
Affiliation(s)
- Patricia N Sidharta
- Actelion Pharmaceuticals Ltd., Department of Clinical Pharmacology , Gewerbestrasse 16, CH-4123 Allschwil , Switzerland +41 61 656686 ; +41 61 5656200 ;
| | | | | |
Collapse
|
50
|
The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias. Pflugers Arch 2014; 467:1055-67. [PMID: 25404566 DOI: 10.1007/s00424-014-1637-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The current kinetics of two-pore domain potassium (K2P) channels resemble those of the steady-state K(+) currents being active during the plateau phase of cardiac action potentials. Recent studies support that K2P channels contribute to these cardiac currents and thereby influence action potential duration in the heart. Ten of the 15 K2P channels present in the human genome are sensitive to variations of the extracellular and/or intracellular pH value. This review focuses on a set of K2P channels which are inhibited by extracellular protons, including the subgroup of tandem of P domains in a weak inward-rectifying K(+) (TWIK)-related acid-sensitive potassium (TASK) and TWIK-related alkaline-activated K(+) (TALK) channels. The role of TWIK-1 in the heart is also discussed since, after successful expression, an extracellular pH dependence, similar to that of TASK-1, was described as a hallmark of TWIK-1. The expression profile in cardiac tissue of different species and the functional data in the heart are summarized. The distinct role of the different acid-sensitive K2P channels in cardiac electrophysiology, inherited forms of arrhythmias and pharmacology, and their role as drug targets is currently emerging and is the subject of this review.
Collapse
|