1
|
Harris M, Sreekumar S, Paul B, Ramanarayanan V, Nayar S, Subash P, Mathew A. Biomarkers in orofacial pain conditions: A narrative review. J Oral Biol Craniofac Res 2025; 15:365-382. [PMID: 40034372 PMCID: PMC11875180 DOI: 10.1016/j.jobcr.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Orofacial pain conditions, including temporomandibular disorder, migraine, dental pain, and trigeminal neuralgia, are complex, multifactorial disorders with significant impacts on patients' quality of life. As understanding of the pathophysiology of these conditions has deepened, the role of molecular and genetic biomarkers in diagnosing, monitoring, and potentially treating orofacial pain has garnered increasing interest. This scoping review provides a comprehensive overview of the current state of research on biomarkers associated with orofacial pain conditions. By analyzing existing literature, we identify key biomarkers linked to inflammation, neural activity, and tissue degradation that are common across multiple conditions, as well as those specific to particular disorders. Our findings underscore the potential of these biomarkers to guide the development of personalized therapeutic strategies. However, the review also highlights the challenges faced by current biomarker research, including heterogeneity in study designs, small sample sizes, and a lack of longitudinal data. Addressing these challenges is critical for translating biomarker research into clinical practice and improving outcomes for patients with orofacial pain.
Collapse
Affiliation(s)
- Mervin Harris
- Department of Prosthodontics, Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
| | - Saranya Sreekumar
- Department of Prosthodontics, Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
- Core Staff Member – Amrita Center for Evidence-based Oral Health, India
| | - Bindhu Paul
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
| | - Venkitachalam Ramanarayanan
- Core Staff Member – Amrita Center for Evidence-based Oral Health, India
- Department of Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, India
| | - Suresh Nayar
- University of Alberta – Division of Otolaryngology-Head and Neck Surgery, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Pramod Subash
- Department of Cleft & Craniomaxillofacial Surgery, Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
| | - Anil Mathew
- Department of Prosthodontics, Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
- Core Staff Member – Amrita Center for Evidence-based Oral Health, India
| |
Collapse
|
2
|
Prazeres J, Lima A, Ribeiro G. Effects of Carbon Dioxide Therapy on Skin Wound Healing. Biomedicines 2025; 13:228. [PMID: 39857811 PMCID: PMC11763298 DOI: 10.3390/biomedicines13010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Promoting rapid healing is a concern in skin wound treatment, as the increased pain and the loss of functional ability when wounds become chronic create a complex problem to manage. This scoping review aimed to explore the literature and synthesize existing knowledge on the therapeutic use of CO2 in treating cutaneous wounds. The literature was selected using previously defined inclusion and exclusion criteria, and 22 articles were selected for data extraction. The most researched type of injury was chronic wounds located on the extremities of the limbs. Carboxytherapy was performed in five different ways: subcutaneous, intradermal, or intralesional injections; in hot water baths with temperatures ranging from 30 to 42 °C; transcutaneous application; intra-abdominal insufflation; and a paste for transcutaneous local application. The main effects of CO2 therapy described were as follows: improved blood flow and local oxygenation, reduction of the inflammatory process, increased collagen production, and improved clinical aspects of wounds, with faster healing. Carboxytherapy can be considered a good alternative for treating skin wounds, although further studies should be pursued to elucidate its molecular mechanisms and enhance its efficacy.
Collapse
Affiliation(s)
- José Prazeres
- I-MVET Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, 1749-024 Lisbon, Portugal; (J.P.); (A.L.)
| | - Ana Lima
- I-MVET Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, 1749-024 Lisbon, Portugal; (J.P.); (A.L.)
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Gesiane Ribeiro
- I-MVET Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, 1749-024 Lisbon, Portugal; (J.P.); (A.L.)
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
3
|
Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Heintz OK, Jain A, Sun L, Seshan ML, Peterse D, Lindholm AE, Anchan RM, Verri WA, Rogers MS. Nociceptor-to-macrophage communication through CGRP/RAMP1 signaling drives endometriosis-associated pain and lesion growth in mice. Sci Transl Med 2024; 16:eadk8230. [PMID: 39504351 DOI: 10.1126/scitranslmed.adk8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Endometriosis is a debilitating and painful gynecological inflammatory disease affecting up to 15% of women and transgender men. Current treatments are ineffective for a substantial proportion of patients, underscoring the need for additional therapies with long-term benefits. Nociceptors release neuropeptides, such as calcitonin gene-related peptide (CGRP), which are known to shape immunity through neuroimmune communication. Given the comorbidity between endometriosis and migraine and the integral role of immune cells and inflammation in endometriosis, we investigated the role of CGRP-mediated neuroimmune communication in endometriosis. Using samples from eight patients with endometriosis and a nonsurgical mouse model of the disease, we found that mouse and human endometriosis lesions contain both CGRP and its coreceptor, receptor activity modifying protein 1 (RAMP1). In mice, nociceptor ablation reduced pain, monocyte recruitment, and lesion size, suggesting that nociceptor activation and neuropeptide release contribute to endometriosis lesion growth and pain. Mechanistically, CGRP changed the phenotype of macrophages to a pro-endometriosis phenotype. CGRP-stimulated macrophages demonstrated impaired efferocytosis and supported increased endometrial cell growth in a RAMP1-dependent manner. Treatment of lesion-bearing mice with US Food and Drug Administration-approved drugs that block CGRP-RAMP1 signaling reduced mechanical hyperalgesia, spontaneous pain, and lesion size. Together, our data demonstrated the effectiveness and underlying cellular mechanisms of nonhormonal and nonopioid CGRP/RAMP1 blockade in a mouse model of endometriosis, suggesting that targeting this axis may lead to clinical benefit for patients with endometriosis.
Collapse
Affiliation(s)
- Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Tiago H Zaninelli
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Fernanda S Rasquel-Oliveira
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Olivia K Heintz
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Jain
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maya L Seshan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniëlle Peterse
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anne E Lindholm
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond M Anchan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Michael S Rogers
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Wijesinghe SN, Ditchfield C, Flynn S, Agrawal J, Davis ET, Dajas-Bailador F, Chapman V, Jones SW. Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: Unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthritis Cartilage 2024; 32:1358-1370. [PMID: 38960140 DOI: 10.1016/j.joca.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Synovitis is a widely accepted sign of osteoarthritis (OA), characterised by tissue hyperplasia, where increased infiltration of immune cells and proliferation of resident fibroblasts adopt a pro-inflammatory phenotype, and increased the production of pro-inflammatory mediators that are capable of sensitising and activating sensory nociceptors, which innervate the joint tissues. As such, it is important to understand the cellular composition of synovium and their involvement in pain sensitisation to better inform the development of effective analgesics. METHODS Studies investigating pain sensitisation in OA with a focus on immune cells and fibroblasts were identified using PubMed, Web of Science and SCOPUS. RESULTS In this review, we comprehensively assess the evidence that cellular crosstalk between resident immune cells or synovial fibroblasts with joint nociceptors in inflamed OA synovium contributes to peripheral pain sensitisation. Moreover, we explore whether the elucidation of common mechanisms identified in similar joint conditions may inform the development of more effective analgesics specifically targeting OA joint pain. CONCLUSION The concept of local environment and cellular crosstalk within the inflammatory synovium as a driver of nociceptive joint pain presents a compelling opportunity for future research and therapeutic advancements.
Collapse
Affiliation(s)
- Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Caitlin Ditchfield
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Sariah Flynn
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jyoti Agrawal
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | - Victoria Chapman
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Park KT, Jo H, Jeon SH, Jeong K, Im M, Kim JW, Jung JP, Jung HC, Lee JH, Kim W. Analgesic Effect of Human Placenta Hydrolysate on CFA-Induced Inflammatory Pain in Mice. Pharmaceuticals (Basel) 2024; 17:1179. [PMID: 39338341 PMCID: PMC11435073 DOI: 10.3390/ph17091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
To evaluate the efficacy of human placenta hydrolysate (HPH) in a mice model of CFA-induced inflammatory pain. TNF-α, IL-1β, and IL-6 are key pro-inflammatory cytokine factors for relieving inflammatory pain. Therefore, this study investigates whether HPH suppresses CFA-induced pain and attenuates the inflammatory process by regulating cytokines. In addition, the relationship between neuropathic pain and HPH was established by staining GFAP and Iba-1 in mice spinal cord tissues. This study was conducted for a total of day 28, and inflammatory pain was induced in mice by injecting CFA into the right paw at day 0 and day 14, respectively. 100 μL of 20% glucose and polydeoxyribonucleotide (PDRN) and 100, 200, and 300 μL of HPH were administered intraperitoneally twice a week. In the CFA-induced group, cold and mechanical allodynia and pro-inflammatory cytokine factors in the spinal cord and plantar tissue were significantly increased. The five groups of drugs evenly reduced pain and gene expression of inflammatory factors, and particularly excellent effects were confirmed in the HPH 200 and 300 groups. Meanwhile, the expression of GFAP and Iba-1 in the spinal cord was increased by CFA administration but decreased by HPH administration, which was confirmed to suppress damage to peripheral ganglia. The present study suggests that HPH attenuates CFA-induced inflammatory pain through inhibition of pro-inflammatory cytokine factors and protection of peripheral nerves.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - So-Hyun Jeon
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Kyeongsoo Jeong
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Minju Im
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Jae-Won Kim
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Jong-Pil Jung
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Hoe Chang Jung
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Jae Hun Lee
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
6
|
Ruivo J, Tavares I, Pozza DH. Molecular targets in bone cancer pain: a systematic review of inflammatory cytokines. J Mol Med (Berl) 2024; 102:1063-1088. [PMID: 38940936 PMCID: PMC11358194 DOI: 10.1007/s00109-024-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Bone cancer pain (BCP) profoundly impacts patient's quality of life, demanding more effective pain management strategies. The aim of this systematic review was to investigate the role of inflammatory cytokines as potential molecular targets in BCP. A systematic search for animal rodent models of bone cancer pain studies was conducted in PubMed, Scopus, and Web of Science. Methodological quality and risk of bias were assessed using the SYRCLE RoB tool. Twenty-five articles met the inclusion criteria, comprising animal studies investigating molecular targets related to inflammatory cytokines in BCP. A low to moderate risk of bias was reported. Key findings in 23 manuscripts revealed upregulated classic pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, IL-18, IL-33) and chemokines in the spinal cord, periaqueductal gray, and dorsal root ganglia. Interventions targeting these cytokines consistently mitigated pain behaviors. Additionally, it was demonstrated that glial cells, due to their involvement in the release of inflammatory cytokines, emerged as significant contributors to BCP. This systematic review underscores the significance of inflammatory cytokines as potential molecular targets for alleviating BCP. It emphasizes the promise of targeted interventions and advocates for further research to translate these findings into effective therapeutic strategies. Ultimately, this approach holds the potential to enhance the patient's quality of life.
Collapse
Affiliation(s)
- Jacinta Ruivo
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal
| | - Isaura Tavares
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal
- Institute for Research and Innovation in Health and IBMC, University of Porto, 4200-135, Porto, Portugal
| | - Daniel H Pozza
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal.
- Institute for Research and Innovation in Health and IBMC, University of Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
7
|
Saito P, Pinto IC, Rodrigues CCA, de Matos RLN, Vale DL, Melo CPB, Fattori V, Saraiva-Santos T, Mendes-Pierotti S, Bertozzi MM, Bracarense APFRL, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Resolvin D5 Protects Female Hairless Mouse Skin from Pathological Alterations Caused by UVB Irradiation. Antioxidants (Basel) 2024; 13:1008. [PMID: 39199252 PMCID: PMC11351481 DOI: 10.3390/antiox13081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Resolvin D5 (RvD5) is a lipid mediator that has been reported to present anti-inflammatory and pro-resolution properties. Evidence also supports its capability to enhance reactive oxygen species (ROS) production during bacterial infections, which would be detrimental in diseases driven by ROS. The biological activity of RvD5 and mechanisms against UVB irradiation skin pathology have not been investigated so far. Female hairless mice were treated intraperitoneally with RvD5 before UVB stimulus. RvD5 reduced skin edema in a dose-dependent manner as well as oxidative stress by increasing antioxidants (endogenous tissue antioxidant scavenging of cationic radical, iron reduction, catalase activity and reduced glutathione levels) and decreasing pro-oxidants (superoxide anion and lipid peroxidation). RvD5 antioxidant activity was accompanied by enhancement of Nrf2, HO-1 and NQO1 mRNA expression. RvD5 reduced the production of IL-1β, TNF-α, TGF-β, and IL-10. RvD5 also reduced the inflammatory cell counts, including mast cells and neutrophils/macrophages. The reduction of oxidative stress and inflammation resulted in diminished matrix metalloproteinase 9 activity, collagen degradation, epidermal thickening and sunburn cell development. Therefore, this study demonstrates, to our knowledge, the first body of evidence that RvD5 can be used to treat UVB skin pathology and unveils, at least in part, its mechanisms of action.
Collapse
Affiliation(s)
- Priscila Saito
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Ingrid C. Pinto
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Camilla C. A. Rodrigues
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Ricardo L. N. de Matos
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - David L. Vale
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Cristina P. B. Melo
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Victor Fattori
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Telma Saraiva-Santos
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Soraia Mendes-Pierotti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Mariana M. Bertozzi
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Ana P. F. R. L. Bracarense
- Laboratório de Patologia Animal, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina 86057-970, Paraná, Brazil;
| | - Josiane A. Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina 86057-970, Paraná, Brazil;
| | - Marcela M. Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Sandra R. Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Waldiceu A. Verri
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| |
Collapse
|
8
|
Wang YY, Li YF, Zhou ZF. Solanesol alleviates CFA-induced chronic inflammatory pain via inhibition of proinflammatory cytokines in spinal glial cells. Heliyon 2024; 10:e34870. [PMID: 39157324 PMCID: PMC11327503 DOI: 10.1016/j.heliyon.2024.e34870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Solanesol, an aliphatic terpene alcohol predominantly found in solanaceous plants, has gained recognition for its anti-inflammatory, antibacterial, and neuroprotective properties. This study investigates the potential efficacy of solanesol in alleviating chronic inflammatory pain induced by injection of complete Freund's adjuvant (CFA) into the left hind paw. Behavioral assessments revealed a significant reduction in mechanical and thermal hypersensitivity following solanesol administration, accompanied by a partial alleviation of concomitant anxiety-like behaviors. Mechanistically, Western blot analysis demonstrated a substantial decrease in the levels of TNF-α and IL-1β after solanesol administration. Immunohistochemical staining further revealed a notable suppression of microglial and astrocytic activation induced by CFA injection. These findings collectively suggest that solanesol holds promise as a latent therapeutic agent for the treatment of chronic inflammatory pain.
Collapse
Affiliation(s)
- Yuan-yuan Wang
- Department of Endocrinology, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Yi-fan Li
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhen-feng Zhou
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, The Affiliated Women's Hospital of Hangzhou Normal University), Hangzhou, China
| |
Collapse
|
9
|
da Silva MDV, Martelossi-Cebinelli G, Yaekashi KM, Carvalho TT, Borghi SM, Casagrande R, Verri WA. A Narrative Review of the Dorsal Root Ganglia and Spinal Cord Mechanisms of Action of Neuromodulation Therapies in Neuropathic Pain. Brain Sci 2024; 14:589. [PMID: 38928589 PMCID: PMC11202229 DOI: 10.3390/brainsci14060589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Neuropathic pain arises from injuries to the nervous system in diseases such as diabetes, infections, toxicity, and traumas. The underlying mechanism of neuropathic pain involves peripheral and central pathological modifications. Peripheral mechanisms entail nerve damage, leading to neuronal hypersensitivity and ectopic action potentials. Central sensitization involves a neuropathological process with increased responsiveness of the nociceptive neurons in the central nervous system (CNS) to their normal or subthreshold input due to persistent stimuli, leading to sustained electrical discharge, synaptic plasticity, and aberrant processing in the CNS. Current treatments, both pharmacological and non-pharmacological, aim to alleviate symptoms but often face challenges due to the complexity of neuropathic pain. Neuromodulation is emerging as an important therapeutic approach for the treatment of neuropathic pain in patients unresponsive to common therapies, by promoting the normalization of neuronal and/or glial activity and by targeting cerebral cortical regions, spinal cord, dorsal root ganglia, and nerve endings. Having a better understanding of the efficacy, adverse events and applicability of neuromodulation through pre-clinical studies is of great importance. Unveiling the mechanisms and characteristics of neuromodulation to manage neuropathic pain is essential to understand how to use it. In the present article, we review the current understanding supporting dorsal root ganglia and spinal cord neuromodulation as a therapeutic approach for neuropathic pain.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Kelly Megumi Yaekashi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Thacyana T. Carvalho
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
- Center for Research in Health Sciences, University of Northern Paraná, Londrina 86041-140, PR, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil;
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
- Biological Sciences Center, State University of Londrina, Rod. Celso Garcia Cid Pr 445, KM 380, P.O. Box 10.011, Londrina 86057-970, PR, Brazil
| |
Collapse
|
10
|
Abbaszadeh M, Ghotbeddin Z, Tabandeh MR, Rahimi K. The impact of Dimethyl itaconate on c-Fos expression in the spinal cord in experimental pain models. Neurosci Lett 2024; 828:137741. [PMID: 38521401 DOI: 10.1016/j.neulet.2024.137741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Itaconate has been found to have potent anti-inflammatory effects and is being explored as a potential treatment for inflammatory diseases. However, its ability to relieve nociception and the mechanisms behind it are not yet understood. Our research aims to investigate the nociception-relieving properties of dimethyl itaconate (DMI) in the formalin test and writhing test. In male Wistar rats, Itaconic acid was injected intraperitoneally (i.p.). The formalin test and writhing test were conducted to determine the nociceptive behaviors. The spinal cords were removed from the rats and analyzed for c-fos protein expression. The study found that administering DMI 10 and 20 mg/kg reduced nociception in formalin and writhing tests. Injection of formalin into the periphery of the body led to an increase in the expression of c-fos in the spinal cord, which was alleviated by DMI 20 mg/kg. Similarly, acetic acid injection into the peritoneal cavity caused an increase in c-fos expression in the spinal cord, which was then reduced by 20 mg/kg. According to our findings, DMI reduced nociception in rats during the formalin and writhing tests. One possible explanation for this outcome is that the decrease in c-fos protein expression may be attributed to the presence of DMI.
Collapse
Affiliation(s)
- Mohammad Abbaszadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
11
|
Haddadi R, Cheraghi-Poor M. Peroxisome proliferator activated receptor-gamma (PPAR-γ) ligand, pioglitazone, increases analgesic and anti-inflammatory effects of naproxen. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1633-1646. [PMID: 37698622 DOI: 10.1007/s00210-023-02715-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The aim of this study was the investigation of analgesic and anti-inflammatory activity of naproxen and pioglitazone following intra-plantar injection of carrageenan and assessment of the PPAR-γ receptor involvement in these effects. Rats were intra-plantarly injected with carrageenan (1%, 100 μl) to induce thermal hyperalgesia and paw inflammation. Different groups of rats were pre-treated intraperitoneally with naproxen (1 and 10 mg/kg) or pioglitazone (3 and 10 mg/kg) or GW9662 (a selective PPAR-γ antagonist, 100 μl/paw). The volume of the paw was evaluated using a plethysmometer, and the hot plate test was employed to assess the pain threshold in the animals. Finally, TNF-α, IL-1ß, IL-6, and myeloperoxidase (MPO) activity status were evaluated in the hind paw tissue. Naproxen and pioglitazone demonstrated analgesic and anti-inflammatory activity. Concurrent injection of an ineffective dose of naproxen (1 mg/kg) with an ineffective dose of pioglitazone (3 mg/kg) caused augmented analgesic and anti-inflammatory activity, significantly (p≤0.001 and p≤0.01, respectively). Additionally, intra-plantar injection of GW-9662 before naproxen or pioglitazone significantly suppressed their analgesic (p≤0.001) and anti-inflammatory activity (p≤0.01). Also, naproxen and pioglitazone (10 mg/kg) significantly (p≤0.001) reduced carrageenan-induced MPO activity and TNF-α, IL-6, and IL-1ß releasing. Furthermore, PPAR-γ blockade significantly prevented suppressive effects of naproxen and pioglitazone on the MPO activity and inflammatory cytokines. Pioglitazone significantly increased analgesic and anti-inflammatory effects of naproxen. This study proposes that concurrent treatment with naproxen and pioglitazone may be a substitute for overcome pain and inflammation clinically, in the future, particularly in patients with cardiovascular disorders and diabetes.
Collapse
Affiliation(s)
- Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran.
- Medicinal plant and natural products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Cheraghi-Poor
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| |
Collapse
|
12
|
Yu N, Cui H, Jin S, Liu P, Fang Y, Sun F, Cao Y, Yuan B, Xie Y, Duan W, Ma C. IL-6 from cerebrospinal fluid causes widespread pain via STAT3-mediated astrocytosis in chronic constriction injury of the infraorbital nerve. J Neuroinflammation 2024; 21:60. [PMID: 38419042 PMCID: PMC10900663 DOI: 10.1186/s12974-024-03049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The spinal inflammatory signal often spreads to distant segments, accompanied by widespread pain symptom under neuropathological conditions. Multiple cytokines are released into the cerebrospinal fluid (CSF), potentially inducing the activation of an inflammatory cascade at remote segments through CSF flow. However, the detailed alteration of CSF in neuropathic pain and its specific role in widespread pain remain obscure. METHODS A chronic constriction injury of the infraorbital nerve (CCI-ION) model was constructed, and pain-related behavior was observed on the 7th, 14th, 21st, and 28th days post surgery, in both vibrissa pads and hind paws. CSF from CCI-ION rats was transplanted to naïve rats through intracisternal injection, and thermal and mechanical allodynia were measured in hind paws. The alteration of inflammatory cytokines in CCI-ION's CSF was detected using an antibody array and bioinformatic analysis. Pharmacological intervention targeting the changed cytokine in the CSF and downstream signaling was performed to evaluate its role in widespread pain. RESULTS CCI-ION induced local pain in vibrissa pads together with widespread pain in hind paws. CCI-ION's CSF transplantation, compared with sham CSF, contributed to vibrissa pad pain and hind paw pain in recipient rats. Among the measured cytokines, interleukin-6 (IL-6) and leptin were increased in CCI-ION's CSF, while interleukin-13 (IL-13) was significantly reduced. Furthermore, the concentration of CSF IL-6 was correlated with nerve injury extent, which gated the occurrence of widespread pain. Both astrocytes and microglia were increased in remote segments of the CCI-ION model, while the inhibition of astrocytes in remote segments, but not microglia, significantly alleviated widespread pain. Mechanically, astroglial signal transducer and activator of transcription 3 (STAT3) in remote segments were activated by CSF IL-6, the inhibition of which significantly mitigated widespread pain in CCI-ION. CONCLUSION IL-6 was induced in the CSF of the CCI-ION model, triggering widespread pain via activating astrocyte STAT3 signal in remote segments. Therapies targeting IL-6/STAT3 signaling might serve as a promising strategy for the widespread pain symptom under neuropathological conditions.
Collapse
Affiliation(s)
- Ning Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Huan Cui
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Sixuan Jin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Penghao Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, 100053, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengrun Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Yan Cao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Bo Yuan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Yikuan Xie
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, 100053, China.
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China.
| | - Chao Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China.
- National Human Brain Bank for Development and Function, Beijing, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
13
|
Castro GNDS, de Souza RDN, da Silva ACM, Laureano-Melo R, da Silva Côrtes W, Capim SL, de Almeida Vasconcellos MLA, Marinho BG. Analgesic and Anti-inflammatory Potential of the New Tetrahydropyran Derivative (2s,6s)-6-ethyl-tetrahydro-2h-pyran-2-yl) Methanol. Antiinflamm Antiallergy Agents Med Chem 2024; 23:105-117. [PMID: 38409717 DOI: 10.2174/0118715230282982240202052127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND The development of analgesic and anti-inflammatory drugs plays a crucial role in modern medicine, aiming to alleviate pain and reduce inflammation in patients. Opioids and nonsteroidal anti-inflammatory drugs are groups of drugs conventionally used to treat pain and inflammation, but a wide range of adverse effects and ineffectiveness in some pathological conditions leads us to search for new drugs with analgesic and anti-inflammatory properties. OBJECTIVES In this regard, the authors intend to investigate the ((2s,6s)-6-ethyl-tetrahydro-2h-pyran- 2-yl) methanol compound (LS20) on pain and acute inflammation. METHODS Male Swiss mice were evaluated using acetic acid-induced abdominal writhing, formalin, and tail-flick as models of nociceptive evaluation and edema paw, air pouch and cell culture as models of inflammatory evaluation besides the rotarod test for assessment of motor impairment. RESULTS The compound showed an effect on the acetic acid-induced abdominal writhing, formalin and tail-flick tests. Studying the mechanism of action, reversion of the antinociceptive effect of the compound was observed from previous intraperitoneal administration of selective and non-selective opioid antagonists on the tail flick test. In addition, the compound induced an antiedematogenic effect and reduced leukocyte migration and the production of pro-inflammatory cytokines in the air pouch model. LS20 was able to maintain cell viability, in addition to reducing cell production of TNF-α and IL-6. CONCLUSION In summary, the LS20 compound presented an antinociceptive effect, demonstrating the participation of the opioid system and an anti-inflammatory effect related to the inhibition of pro-inflammatory cytokine production. The compound also demonstrated safety at the cellular level.
Collapse
Affiliation(s)
- Gustavo Nunes de Santana Castro
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Medicina Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Raquel do Nascimento de Souza
- Laboratório de Cultura de Células, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Alba Cenélia Matos da Silva
- Laboratório de Cultura de Células, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Roberto Laureano-Melo
- Laboratório de Fisiofarmacologia Comportamental, Centro Universitário de Barra Mansa, Barra Mansa, RJ, Brasil
| | - Wellington da Silva Côrtes
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Saulo Luis Capim
- Instituto Federal de Educação, Ciência e Tecnologia Baiano, Federal Institute Baiano, Campus Catu, BA, Brasil
| | | | - Bruno Guimarães Marinho
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Medicina Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
- Laboratório de Cultura de Células, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| |
Collapse
|
14
|
Yu YQ, Wang H. Imbalance of Th1 and Th2 Cytokines and Stem Cell Therapy in Pathological Pain. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:88-101. [PMID: 36573059 DOI: 10.2174/1871527322666221226145828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 12/28/2022]
Abstract
The pathophysiological importance of T helper 1 (Th1) and Th2 cell cytokines in pathological pain has been highly debated in recent decades. However, the analgesic strategy targeting individual cytokines still has a long way to go for clinical application. In this review, we focus on the contributions of Th1 cytokines (TNF-α, IFN-γ, and IL-2) and Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in rodent pain models and human pain-related diseases. A large number of studies have shown that Th1 and Th2 cytokines have opposing effects on pain modulation. The imbalance of Th1 and Th2 cytokines might determine the final effect of pain generation or inhibition. However, increasing evidence indicates that targeting the individual cytokine is not sufficient for the treatment of pathological pain. It is practical to suggest a promising therapeutic strategy against the combined effects of Th1 and Th2 cytokines. We summarize the current advances in stem cell therapy for pain-related diseases. Preclinical and clinical studies show that stem cells inhibit proinflammatory cytokines and release enormous Th2 cytokines that exhibit a strong analgesic effect. Therefore, a shift of the imbalance of Th1 and Th2 cytokines induced by stem cells will provide a novel therapeutic strategy against intractable pain. It is extremely important to reveal the cellular and molecular mechanisms of stem cell-mediated analgesia. The efficiency and safety of stem cell therapy should be carefully evaluated in animal models and patients with pathological pain.
Collapse
Affiliation(s)
- Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Huan Wang
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
15
|
Felipe JL, Bonfá IS, Lossavaro PKMB, Lencina JS, B Carvalho D, Candeloro L, Ferreira GIS, das Neves AR, Souza MIL, Silva-Filho SE, Baroni ACM, Toffoli-Kadri MC. 1,4-Diaryl-1,2,3-triazole neolignan-celecoxib hybrids inhibit experimental arthritis induced by zymosan. Inflammopharmacology 2023; 31:3227-3241. [PMID: 37806984 DOI: 10.1007/s10787-023-01345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes cartilage damage. Anti-inflammatories are widely used in the management of RA, but they can have side effects such as gastrointestinal and/or cardiovascular disorders. Studies published by our group showed that the synthesis of hybrid triazole analogs neolignan-celecoxib containing the substituent groups sulfonamide (L15) or carboxylic acid (L18) exhibited anti-inflammatory activity in an acute model of inflammation, inhibited expression of P-selectin related to platelet activation and did not induce gastric ulcer, minimizing the related side effects. In continuation, the present study evaluated the anti-inflammatory effects of these analogs in an experimental model of arthritis and on the functions of one of the important cells in this process, macrophages. Mechanical hyperalgesia, joint edema, leukocyte recruitment to the joint and damage to cartilage in experimental arthritis and cytotoxicity, spread of disease, phagocytic activity and nitric oxide (NO) and hydrogen peroxide production by macrophages were evaluated. Pre-treatment with L15 and L18 reduced mechanical hyperalgesia, joint edema and the influx of leukocytes into the joint cavity after different periods of the stimulus. The histological evaluation of the joint showed that L15 and L18 reduced cartilage damage and there was no formation of rheumatoid pannus. Furthermore, L15 and L18 were non-cytotoxic. The analogs inhibited the spreading, the production of NO and hydrogen peroxide. L15 decreased the phagocytosis. Therefore, L15 and L18 may be potential therapeutic prototypes to treat chronic inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Josyelen L Felipe
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, UFMS, Campo Grande, MS, 79070-900, Brazil
| | - Iluska S Bonfá
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, UFMS, Campo Grande, MS, 79070-900, Brazil
| | - Paloma K M B Lossavaro
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, UFMS, Campo Grande, MS, 79070-900, Brazil
| | - Joyce S Lencina
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, UFMS, Campo Grande, MS, 79070-900, Brazil
| | - Diego B Carvalho
- Laboratory of Synthesis and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, UFMS, Campo Grande, MS, Brazil
| | - Luciane Candeloro
- Laboratory of Hystology, Institute of Biosciences, Federal University of Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Giovanni I S Ferreira
- Laboratory of Hystology, Institute of Biosciences, Federal University of Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Amarith R das Neves
- Laboratory of Synthesis and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, UFMS, Campo Grande, MS, Brazil
| | - Maria Inês L Souza
- Department of Biophysiopharmacology, Institute of Biosciences, Federal University of Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Saulo E Silva-Filho
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, UFMS, Campo Grande, MS, 79070-900, Brazil
| | - Adriano C M Baroni
- Laboratory of Synthesis and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, UFMS, Campo Grande, MS, Brazil.
| | - Mônica C Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, UFMS, Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
16
|
Khajah MA, Hawai S, Barakat A, Albaloushi A, Alkharji M, Masocha W. Minocycline synergizes with corticosteroids in reducing colitis severity in mice via the modulation of pro-inflammatory molecules. Front Pharmacol 2023; 14:1252174. [PMID: 38034999 PMCID: PMC10687282 DOI: 10.3389/fphar.2023.1252174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background: A few studies have highlighted the anti-inflammatory properties of minocycline in reducing colitis severity in mice, but its molecular mechanism is not fully understood. The aim of this study was to determine the anti-inflammatory properties of minocycline and the expression/activity profiles of molecules involved in pro-inflammatory signaling cascades, cytokines, and molecules involved in the apoptotic machinery. The synergistic effect between minocycline and corticosteroids was also evaluated. Methods: The effects of various treatment approaches were determined in mice using the dextran sulfate sodium (DSS) colitis model at gross and microscopic levels. The expression/activity profiles of various pro- or anti-inflammatory molecules were determined using Western blotting and polymerase chain reaction (PCR). Results: Minocycline treatment significantly reduced colitis severity using prophylactic and treatment approaches and produced a synergistic effect with budesonide and methylprednisolone in reducing the active state of colitis. This was mediated in part through reduced colonic expression/activity of pro-inflammatory molecules, cytokines, proteins involved in the apoptotic machinery, and increased expression of the anti-inflammatory cytokine IL-10. Conclusion: Minocycline synergizes with corticosteroids to reduce colitis severity, which could reduce their dose-dependent side effects and treatment cost. The reduction in colitis severity was achieved by modulating the expression/activity profiles of various pro- and anti-inflammatory signaling molecules, cytokines, and molecules involved in the apoptotic machinery.
Collapse
|
17
|
Zhu C, Yang Y, Song Y, Guo J, Yu G, Tang J, Tang Z. Mechanisms involved in the antinociceptive and anti-inflammatory effects of xanthotoxin. Eur J Neurosci 2023; 58:3605-3617. [PMID: 37671643 DOI: 10.1111/ejn.16119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
Xanthotoxin (XAT) is a natural furanocoumarin clinically used in the treatment of skin diseases such as vitiligo and psoriasis. Recent studies have also investigated its effects on anti-inflammatory, anti-cognitive dysfunction, and anti-amnesia as a guideline for clinic application. However, little is known about its effects on pain relief. Here, we tested the analgesic effects of XAT in serious acute pain and chronic pain models. For acute pain, we used hot-, capsaicin- and formalin-induced paw licking. Nociceptive threshold was measured by mechanical stimuli with von Frey filaments. For chronic pain, we injected complete Freund's adjuvant (CFA) into the mice's plantar surface of the hind paw to induce inflammatory pain. Heat and mechanical hyperalgesia were evaluated by radiant heat and von Frey filament tests, respectively. To investigate the mechanisms underlying the analgesic effect of XAT, we used calcium imaging and western blot to assess transient receptor potential vanilloid 1 (TRPV1) activity and expression in isolated L4-L6 dorsal root ganglion (DRG) neurons. Haematoxylin and eosin (HE) staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine immune cell recruitment and proinflammatory factor release from skin tissue from paw injection sites. Our results demonstrated that XAT not only reduced acute pain behaviors generated by hot, capsaicin, and formalin but also attenuated CFA-induced heat and mechanical hyperalgesia. The analgesic activity of XAT may be achieved by controlling peripheral inflammation, lowering immune cell infiltration at the site of inflammatory tissue, reducing inflammatory factor production, and therefore inhibiting TRPV1 channel sensitization and expression.
Collapse
Affiliation(s)
- Chan Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yizhi Song
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guang Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Juanjuan Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zongxiang Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Wen B, Pan Y, Cheng J, Xu L, Xu J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J Pain Res 2023; 16:3061-3073. [PMID: 37701560 PMCID: PMC10493102 DOI: 10.2147/jpr.s423733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Complex Regional Pain Syndrome (CRPS) is an excess and/or prolonged pain and inflammation condition that follows an injury to a limb. The pathogenesis of CRPS is multifaceted that remains incompletely understood. Neuroinflammation is an inflammatory response in the peripheral and central nervous systems. Dysregulated neuroinflammation plays a crucial role in the initiation and maintenance of pain and nociceptive neuronal sensitization, which may contribute to the transition from acute to chronic pain and the perpetuation of chronic pain in CRPS. The key features of neuroinflammation encompass infiltration and activation of inflammatory cells and the production of inflammatory mediators in both the central and peripheral nervous systems. This article reviews the role of neuroinflammation in the onset and progression of CRPS from six perspectives: neurogenic inflammation, neuropeptides, glial cells, immune cells, cytokines, and keratinocytes. The objective is to provide insights that can inform future research and development of therapeutic targets for CRPS.
Collapse
Affiliation(s)
- Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Neuroscience, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Inflammation and Immunity; Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
19
|
Luque MZ, Aguiar AF, da Silva-Araújo AK, Zaninelli TH, Heintz OK, Saraiva-Santos T, Bertozzi MM, Souza NA, Júnior EO, Verri WA, Borghi SM. Evaluation of a preemptive intervention regimen with hesperidin methyl chalcone in delayed-onset muscle soreness in young adults: a randomized, double-blinded, and placebo-controlled trial study. Eur J Appl Physiol 2023; 123:1949-1964. [PMID: 37119360 DOI: 10.1007/s00421-023-05207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE Delayed-onset muscle soreness (DOMS) describes an entity characterized by ultrastructural muscle damage. Hesperidin methyl chalcone (HMC) is a synthetic flavonoid presenting analgesic, anti-inflammatory, and antioxidant properties. We evaluated the effects of HMC upon DOMS. METHOD In a preventive paradigm, 31 sedentary young men were submitted to a randomized, double-blinded parallel trial and received HMC 500 mg or one placebo capsule × 3 days before an intense dynamic exercise protocol (concentric/eccentric actions) applied for lower limbs for inducing muscle damage. Assessments were conducted at baseline, and 24 and 48 h after, comprising physical performance, and post-muscle soreness and damage, inflammation, recovery of muscle strength, and postural balance associated with DOMS. HMC safety was also evaluated. Thirty participants completed the study. RESULTS HMC improved the performance of participants during exercise (40.3 vs 51.3 repetitions to failure, p = 0.0187) and inhibited CPK levels (90.5 vs 57.9 U/L, p = 0.0391) and muscle soreness during passive quadriceps palpation (2.6 vs 1.4 VAS cm, p = 0.0439), but not during active actions, nor did it inhibit IL-1β or IL-10 levels. HMC improved muscle strength recovery, and satisfactorily refined postural balance, without inducing injury to kidneys or liver. CONCLUSIONS Preemptive HMC supplementation may be beneficial for boosting physical performance and for the amelioration of clinical parameters related to DOMS, including pain on muscle palpation, increased blood CPK levels, and muscle strength and proprioceptive deficits, without causing adverse effects. These data advance the understanding of the benefits provided by HMC for DOMS treatment, which supports its usefulness for such purpose.
Collapse
Affiliation(s)
- Mônica Z Luque
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil
| | - Andreo F Aguiar
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil
| | - Amanda K da Silva-Araújo
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil
| | - Tiago H Zaninelli
- Department of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná State, 86057-970, Brazil
| | - Olivia K Heintz
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Telma Saraiva-Santos
- Department of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná State, 86057-970, Brazil
| | - Mariana M Bertozzi
- Department of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná State, 86057-970, Brazil
| | - Natália A Souza
- Ribeirão Preto College of Nursing, São Paulo University, Ribeirão Preto, São Paulo State, 1404-902, Brazil
| | - Eros O Júnior
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná State, 86057-970, Brazil
| | - Sergio M Borghi
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil.
| |
Collapse
|
20
|
Guazelli CFS, Fattori V, Colombo BB, Ludwig IS, Vicente LG, Martinez RM, Georgetti SR, Urbano A, Casagrande R, Baracat MM, Verri WA. Development of trans-Chalcone loaded pectin/casein biodegradable microcapsules: Efficacy improvement in the management of experimental colitis. Int J Pharm 2023; 642:123206. [PMID: 37419432 DOI: 10.1016/j.ijpharm.2023.123206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Improved therapies for inflammatory bowel diseases are sorely needed. Novel therapeutic agents and the development of controlled release systems for targeted tissue delivery are interesting approaches to overcome these barriers. We investigated the activity of trans-chalcone (T) in acetic acid-induced colitis in mice and developed, characterized, and determined the therapeutic effect of pectin/casein polymer microcapsules containing T (MT) in a colitis mouse model. In vitro, compound release was achieved in simulated intestinal fluid but not in the simulated gastric fluid. In vivo, since T at the dose of 3 mg/kg but not 0.3 mg/kg ameliorated colitis, we next tested the effects of MT at 0.3 mg/kg (non-effective dose). MT, but not free T at 0.3 mg/kg, significantly improved colitis outcomes such as neutrophil recruitment, antioxidant capacity, cytokine production, and NF-kB activation. This translated into reduced macro and microscopic damage in the colon. T release from the microcapsules is mediated by a pH-dependent and pectinase-regulated mechanism that provide controlled and prolonged release of T. Moreover, MT lowered the required dose for T therapeutic effect, indicating that could be a suitable pharmaceutical approach to colitis treatment. This is the first demonstration that T or MT is effective at reducing the signs of colitis.
Collapse
Affiliation(s)
- Carla F S Guazelli
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Barbara B Colombo
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Isabela S Ludwig
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Laisa G Vicente
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Renata M Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Alexandre Urbano
- Departamento de Física, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
21
|
Saraiva-Santos T, Zaninelli TH, Manchope MF, Andrade KC, Ferraz CR, Bertozzi MM, Artero NA, Franciosi A, Badaro-Garcia S, Staurengo-Ferrari L, Borghi SM, Ceravolo GS, Andrello AC, Zanoveli JM, Rogers MS, Casagrande R, Pinho-Ribeiro FA, Verri WA. Therapeutic activity of lipoxin A 4 in TiO 2-induced arthritis in mice: NF-κB and Nrf2 in synovial fluid leukocytes and neuronal TRPV1 mechanisms. Front Immunol 2023; 14:949407. [PMID: 37388729 PMCID: PMC10304281 DOI: 10.3389/fimmu.2023.949407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Background Lipoxin A4 (LXA4) has anti-inflammatory and pro-resolutive roles in inflammation. We evaluated the effects and mechanisms of action of LXA4 in titanium dioxide (TiO2) arthritis, a model of prosthesis-induced joint inflammation and pain. Methods Mice were stimulated with TiO2 (3mg) in the knee joint followed by LXA4 (0.1, 1, or 10ng/animal) or vehicle (ethanol 3.2% in saline) administration. Pain-like behavior, inflammation, and dosages were performed to assess the effects of LXA4 in vivo. Results LXA4 reduced mechanical and thermal hyperalgesia, histopathological damage, edema, and recruitment of leukocytes without liver, kidney, or stomach toxicity. LXA4 reduced leukocyte migration and modulated cytokine production. These effects were explained by reduced nuclear factor kappa B (NFκB) activation in recruited macrophages. LXA4 improved antioxidant parameters [reduced glutathione (GSH) and 2,2-azino-bis 3-ethylbenzothiazoline-6-sulfonate (ABTS) levels, nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and Nrf2 protein expression], reducing reactive oxygen species (ROS) fluorescent detection induced by TiO2 in synovial fluid leukocytes. We observed an increase of lipoxin receptor (ALX/FPR2) in transient receptor potential cation channel subfamily V member 1 (TRPV1)+ DRG nociceptive neurons upon TiO2 inflammation. LXA4 reduced TiO2-induced TRPV1 mRNA expression and protein detection, as well TRPV1 co-staining with p-NFκB, indicating reduction of neuronal activation. LXA4 down-modulated neuronal activation and response to capsaicin (a TRPV1 agonist) and AITC [a transient receptor potential ankyrin 1 (TRPA1) agonist] of DRG neurons. Conclusion LXA4 might target recruited leukocytes and primary afferent nociceptive neurons to exert analgesic and anti-inflammatory activities in a model resembling what is observed in patients with prosthesis inflammation.
Collapse
Affiliation(s)
- Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Boston, MA, United States
| | - Marília F. Manchope
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Ketlem C. Andrade
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Nayara A. Artero
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Stephanie Badaro-Garcia
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Graziela S. Ceravolo
- Department of Physiological Sciences, Center for Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | | | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Michael S. Rogers
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Boston, MA, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Felipe A. Pinho-Ribeiro
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| |
Collapse
|
22
|
Tonc E, Omwanda GK, Tovar KA, Golden XME, Chatterjea D. Immune mechanisms in vulvodynia: key roles for mast cells and fibroblasts. Front Cell Infect Microbiol 2023; 13:1215380. [PMID: 37360527 PMCID: PMC10285386 DOI: 10.3389/fcimb.2023.1215380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Vulvodynia is a debilitating condition characterized by painful sensitivity to touch and pressure in the vestibular tissue surrounding the vaginal opening. It is often a "diagnosis of exclusion" of idiopathic pain made in the absence of visible inflammation or injury. However, the association between increased vulvodynia risk and a history of yeast infections and skin allergies has led researchers to explore whether immune mechanisms of dysregulated inflammation might underlie the pathophysiology of this chronic pain condition. Here we synthesize epidemiological investigations, clinical biopsies and primary cell culture studies, and mechanistic insights from several pre-clinical models of vulvar pain. Taken together, these findings suggest that altered inflammatory responses of tissue fibroblasts, and other immune changes in the genital tissues, potentially driven by the accumulation of mast cells may be key to the development of chronic vulvar pain. The association of increased numbers and function of mast cells with a wide variety of chronic pain conditions lends credence to their involvement in vulvodynia pathology and underscores their potential as an immune biomarker for chronic pain. Alongside mast cells, neutrophils, macrophages, and numerous inflammatory cytokines and mediators are associated with chronic pain suggesting immune-targeted approaches including the therapeutic administration of endogenous anti-inflammatory compounds could provide much needed new ways to treat, manage, and control the growing global pandemic of chronic pain.
Collapse
|
23
|
Mitsui K, Hishiyama S, Jain A, Kotoda Y, Abe M, Matsukawa T, Kotoda M. Role of macrophage autophagy in postoperative pain and inflammation in mice. J Neuroinflammation 2023; 20:102. [PMID: 37131209 PMCID: PMC10152627 DOI: 10.1186/s12974-023-02795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Postoperative pain and inflammation are significant complications following surgery. Strategies that aim to prevent excessive inflammation without hampering natural wound-healing are required for the management of postoperative pain and inflammation. However, the knowledge of the mechanisms and target pathways involved in these processes is lacking. Recent studies have revealed that autophagy in macrophages sequesters pro-inflammatory mediators, and it is therefore being recognized as a crucial process involved in regulating inflammation. In this study, we tested the hypothesis that autophagy in macrophages plays protective roles against postoperative pain and inflammation and investigated the underlying mechanisms. METHODS Postoperative pain was induced by plantar incision under isoflurane anesthesia in mice lacking macrophage autophagy (Atg5flox/flox LysMCre +) and their control littermates (Atg5flox/flox). Mechanical and thermal pain sensitivity, changes in weight distribution, spontaneous locomotor activity, tissue inflammation, and body weight were assessed at baseline and 1, 3, and 7 days after surgery. Monocyte/macrophage infiltration at the surgical site and inflammatory mediator expression levels were evaluated. RESULTS Atg5flox/flox LysMCre + mice compared with the control mice exhibited lower mechanical and thermal pain thresholds and surgical/non-surgical hindlimb weight-bearing ratios. The augmented neurobehavioral symptoms observed in the Atg5flox/flox LysMCre + mice were associated with more severe paw inflammation, higher pro-inflammatory mediator mRNA expression, and more monocytes/macrophages at the surgical site. CONCLUSION The lack of macrophage autophagy augmented postoperative pain and inflammation, which were accompanied by enhanced pro-inflammatory cytokine secretion and surgical-site monocyte/macrophage infiltration. Macrophage autophagy plays a protective role in postoperative pain and inflammation and can be a novel therapeutic target.
Collapse
Affiliation(s)
- Kazuha Mitsui
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Sohei Hishiyama
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Yumi Kotoda
- Department of Ophthalmology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masako Abe
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masakazu Kotoda
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
24
|
Salm DC, Horewicz VV, Tanaka F, Ferreira JK, de Oliveira BH, Maio JMB, Donatello NN, Ludtke DD, Mazzardo-Martins L, Dutra AR, Mack JM, de C H Kunzler D, Cargnin-Ferreira E, Salgado ASI, Bittencourt EB, Bianco G, Piovezan AP, Bobinski F, Moré AOO, Martins DF. Electrical Stimulation of the Auricular Branch Vagus Nerve Using Random and Alternating Frequencies Triggers a Rapid Onset and Pronounced Antihyperalgesia via Peripheral Annexin A1-Formyl Peptide Receptor 2/ALX Pathway in a Mouse Model of Persistent Inflammatory Pain. Mol Neurobiol 2023; 60:2889-2909. [PMID: 36745336 DOI: 10.1007/s12035-023-03237-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) by comparing the effects of alternating and random frequencies in an animal model of persistent inflammatory hyperalgesia. The model was induced by Freund's complete adjuvant (CFA) intraplantar (i.pl.) injection. Mice were treated with different protocols of time (10, 20, or 30 min), ear laterality (right, left or both), and frequency (alternating or random). Mechanical hyperalgesia was evaluated, and some groups received i.pl. WRW4 (FPR2/ALX antagonist) to determine the involvement. Edema, paw surface temperature, and spontaneous locomotor activity were evaluated. Interleukin-1β, IL-6, IL-10, and IL4 levels were verified by enzyme-linked immunosorbent assay. AnxA1, FPR2/ALX, neutrophil, M1 and M2 phenotype macrophage, and apoptotic cells markers were identified using western blotting. The antihyperalgesic effect pVNS with alternating and random frequency effect is depending on the type of frequency, time, and ear treated. The pVNS random frequency in the left ear for 10 min had a longer lasting antihyperalgesic effect, superior to classical stimulation using alternating frequency and the FPR2/ALX receptor was involved in this effect. There was a reduction in the levels of pro-inflammatory cytokines and an increase in the immunocontent of AnxA1 and CD86 in mice paw. pVNS with a random frequency in the left ear for 10 min showed to be optimal for inducing an antihyperalgesic effect. Thus, the random frequency was more effective than the alternating frequency. Therefore, pVNS may be an important adjunctive treatment for persistent inflammatory pain.
Collapse
Affiliation(s)
- Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fernanda Tanaka
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Júlia K Ferreira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Julia Maria Batista Maio
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aline R Dutra
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Josiel M Mack
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Deborah de C H Kunzler
- Department of Physiotherapy, State University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Rome, Italy
- Istituto Di Formazione in Agopuntura E Neuromodulazione IFAN, Rome, Italy
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Ari O O Moré
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Integrative Medicine and Acupuncture Division, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
25
|
Liu S, Lan XB, Tian MM, Zhu CH, Ma L, Yang JM, Du J, Zheng P, Yu JQ, Liu N. Targeting the chemokine ligand 2-chemokine receptor 2 axis provides the possibility of immunotherapy in chronic pain. Eur J Pharmacol 2023; 947:175646. [PMID: 36907261 DOI: 10.1016/j.ejphar.2023.175646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Chronic pain affects patients' physical and psychological health and quality of life, entailing a tremendous public health challenge. Currently, drugs for chronic pain are usually associated with a large number of side effects and poor efficacy. Chemokines in the neuroimmune interface combine with their receptors to regulate inflammation or mediate neuroinflammation in the peripheral and central nervous system. Targeting chemokines and their receptor-mediated neuroinflammation is an effective means to treat chronic pain. In recent years, growing evidence has shown that the expression of chemokine ligand 2 (CCL2) and its main chemokine receptor 2 (CCR2) is involved in its occurrence, development and maintenance of chronic pain. This paper summarises the relationship between the chemokine system, CCL2/CCR2 axis, and chronic pain, and the CCL2/CCR2 axis changes under different chronic pain conditions. Targeting chemokine CCL2 and its chemokine receptor CCR2 through siRNA, blocking antibodies, or small molecule antagonists may provide new therapeutic possibilities for managing chronic pain.
Collapse
Affiliation(s)
- Shan Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chun-Hao Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ping Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
26
|
Chemistry and Pharmacology of Bergenin or Its Derivatives: A Promising Molecule. Biomolecules 2023; 13:biom13030403. [PMID: 36979338 PMCID: PMC10046151 DOI: 10.3390/biom13030403] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Bergenin is a glycosidic derivative of trihydroxybenzoic acid that was discovered in 1880 by Garreau and Machelart from the rhizomes of the medicinal plant Bergenia crassifolia (currently: Saxifraga crassifolia—Saxifragaceae), though was later isolated from several other plant sources. Since its first report, it has aroused interest because it has several pharmacological activities, mainly antioxidant and anti-inflammatory. In addition to this, bergenin has shown potential antimalarial, antileishmanial, trypanocidal, antiviral, antibacterial, antifungal, antinociceptive, antiarthritic, antiulcerogenic, antidiabetic/antiobesity, antiarrhythmic, anticancer, hepatoprotective, neuroprotective and cardioprotective activities. Thus, this review aimed to describe the sources of isolation of bergenin and its in vitro and in vivo biological and pharmacological activities. Bergenin is distributed in many plant species (at least 112 species belonging to 34 families). Both its derivatives (natural and semisynthetic) and extracts with phytochemical proof of its highest concentration are well studied, and none of the studies showed cytotoxicity for healthy cells.
Collapse
|
27
|
Di Maio G, Villano I, Ilardi CR, Messina A, Monda V, Iodice AC, Porro C, Panaro MA, Chieffi S, Messina G, Monda M, La Marra M. Mechanisms of Transmission and Processing of Pain: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3064. [PMID: 36833753 PMCID: PMC9964506 DOI: 10.3390/ijerph20043064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Knowledge about the mechanisms of transmission and the processing of nociceptive information, both in healthy and pathological states, has greatly expanded in recent years. This rapid progress is due to a multidisciplinary approach involving the simultaneous use of different branches of study, such as systems neurobiology, behavioral analysis, genetics, and cell and molecular techniques. This narrative review aims to clarify the mechanisms of transmission and the processing of pain while also taking into account the characteristics and properties of nociceptors and how the immune system influences pain perception. Moreover, several important aspects of this crucial theme of human life will be discussed. Nociceptor neurons and the immune system play a key role in pain and inflammation. The interactions between the immune system and nociceptors occur within peripheral sites of injury and the central nervous system. The modulation of nociceptor activity or chemical mediators may provide promising novel approaches to the treatment of pain and chronic inflammatory disease. The sensory nervous system is fundamental in the modulation of the host's protective response, and understanding its interactions is pivotal in the process of revealing new strategies for the treatment of pain.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ciro Rosario Ilardi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Psychology, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Ashlei Clara Iodice
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
28
|
Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1. Cells 2023; 12:cells12040556. [PMID: 36831223 PMCID: PMC9954636 DOI: 10.3390/cells12040556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.
Collapse
|
29
|
Zhang T, Zhang M, Cui S, Liang W, Jia Z, Guo F, Ou W, Wu Y, Zhang S. The core of maintaining neuropathic pain: Crosstalk between glial cells and neurons (neural cell crosstalk at spinal cord). Brain Behav 2023; 13:e2868. [PMID: 36602945 PMCID: PMC9927860 DOI: 10.1002/brb3.2868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Neuropathic pain (NP) caused by the injury or dysfunction of the nervous system is a chronic pain state accompanied by hyperalgesia, and the available clinical treatment is relatively scarce. Hyperalgesia mediated by pro-inflammatory factors and chemokines plays an important role in the occurrence and maintenance of NP. DATA TREATMENT Therefore, we conducted a systematic literature review of experimental NP (PubMed Medline), in order to find the mechanism of inducing central sensitization and explore the intervention methods of hyperalgesia caused by real or simulated injury. RESULT In this review, we sorted out the activation pathways of microglia, astrocytes and neurons, and the process of crosstalk among them. It was found that in NP, the microglia P2X4 receptor is the key target, which can activate the mitogen-activated protein kinase pathway inward and then activate astrocytes and outwardly activate neuronal tropomyosin receptor kinase B receptor to activate neurons. At the same time, activated neurons continue to maintain the activation of astrocytes and microglia through chemokines on CXCL13/CXCR5 and CX3CL1/CX3CR1. This crosstalk process is the key to maintaining NP. CONCLUSION We summarize the further research on crosstalk among neurons, microglia, and astrocytes in the central nervous system, elaborate the ways and connections of relevant crosstalk, and find potential crosstalk targets, which provides a reference for drug development and preclinical research.
Collapse
Affiliation(s)
- Tianrui Zhang
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingqian Zhang
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Cui
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wulin Liang
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhanhong Jia
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fanfan Guo
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Ou
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Wu
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Borghi SM, Zaninelli TH, Saraiva-Santos T, Bertozzi MM, Cardoso RDR, Carvalho TT, Ferraz CR, Camilios-Neto D, Cunha FQ, Cunha TM, Pinho-Ribeiro FA, Casagrande R, Verri WA. Brief research report: Repurposing pentoxifylline to treat intense acute swimming-Induced delayed-onset muscle soreness in mice: Targeting peripheral and spinal cord nociceptive mechanisms. Front Pharmacol 2023; 13:950314. [PMID: 36703752 PMCID: PMC9871252 DOI: 10.3389/fphar.2022.950314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
In this study, we pursue determining the effect of pentoxifylline (Ptx) in delayed-onset muscle soreness (DOMS) triggered by exposing untrained mice to intense acute swimming exercise (120 min), which, to our knowledge, has not been investigated. Ptx treatment (1.5, 4.5, and 13.5 mg/kg; i.p., 30 min before and 12 h after the session) reduced intense acute swimming-induced mechanical hyperalgesia in a dose-dependent manner. The selected dose of Ptx (4.5 mg/kg) inhibited recruitment of neutrophils to the muscle tissue, oxidative stress, and both pro- and anti-inflammatory cytokine production in the soleus muscle and spinal cord. Furthermore, Ptx treatment also reduced spinal cord glial cell activation. In conclusion, Ptx reduces pain by targeting peripheral and spinal cord mechanisms of DOMS.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil,Center for Research in Health Science, University of Northern Paraná, Londrina, Brazil,*Correspondence: Sergio M. Borghi, ; Waldiceu A. Verri Jr,
| | - Tiago H. Zaninelli
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Telma Saraiva-Santos
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Mariana M. Bertozzi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renato D. R. Cardoso
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Thacyana T. Carvalho
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Camila R. Ferraz
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, State University of Londrina, Londrina, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe A. Pinho-Ribeiro
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Sciences, State University of Londrina, Londrina, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil,*Correspondence: Sergio M. Borghi, ; Waldiceu A. Verri Jr,
| |
Collapse
|
31
|
Macrophages and Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:ijms24021367. [PMID: 36674887 PMCID: PMC9863885 DOI: 10.3390/ijms24021367] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.
Collapse
|
32
|
Parkia platycephala Lectin (PPL) Inhibits Orofacial Nociception Responses via TRPV1 Modulation. Molecules 2022; 27:molecules27217506. [DOI: 10.3390/molecules27217506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Lectins are a heterogeneous group of proteins that reversibly bind to simple sugars or complex carbohydrates. The plant lectin purified from the seed of Parkia platycephala (PPL) was studied. This study aimed to investigate the possible orofacial antinociceptive of PPL lectin in adult zebrafish and rodents. Acute nociception was induced by cinnamaldehyde (0.66 μg/mL), 0.1% acidified saline, glutamate (12.5 µM) or hypertonic saline (5 M NaCl) applied into the upper lip (5.0 µL) of adult wild zebrafish. Zebrafish were pretreated by intraperitoneal injection (20 µL) with vehicle (Control) or PPL (0.025; 0.05 or 0.1 mg/mL) 30 min before induction. The effect of PPL on zebrafish locomotor behaviour was evaluated in the open field test. Naive groups were included in all tests. In one experiment, animals were pre-treated with capsazepine to investigate the mechanism of antinociception. The involvement of central afferent C-fibres was also investigated. In another experiment, rats pre-treated with PPL or saline were submitted to the temporomandibular joint formalin test. Other groups of rats were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of mechanical sensitivity using von Frey. PPL reduced nociceptive behaviour in adult zebrafish, and this is related to the activation of the TRPV1 channels since antinociception was effectively inhibited by capsazepine and by capsaicin-induced desensitization. PPL reduced nociceptive behaviour associated with temporomandibular joint and neuropathic pain. The results confirm the potential pharmacological relevance of PPL as an inhibitor of orofacial nociception in acute and chronic pain.
Collapse
|
33
|
Zhang R, Peng S, Zhu G. The role of secreted osteoclastogenic factor of activated T cells in bone remodeling. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:227-232. [PMID: 35898473 PMCID: PMC9309401 DOI: 10.1016/j.jdsr.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/05/2022] [Accepted: 07/10/2022] [Indexed: 12/23/2022] Open
Abstract
The process of bone remodeling is connected with the regulated balance between bone cell populations (including bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte). And the mechanism of bone remodeling activity is related to the major pathway, receptor activator of nuclear factor kappaB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) signaling axis. Recently, researchers have found a novel cytokine secreted by activated T cells, which is related to osteoclastogenesis in the absence of osteoblasts or RANKL, leading to bone destruction. They name it the secreted osteoclastogenic factor of activated T cells (SOFAT). SOFAT has been proven to play an essential role in bone remodeling, like mediating the bone resorption in rheumatoid arthritis (RA) and periodontitis. In this review, we outline the latest research concerning SOFAT and discuss the characteristics, location, and regulation of SOFAT. We also summarize the clinical progress of SOFAT and assume the future therapeutic target in some diseases related to bone remodeling.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Peng
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Gheorghe RO, Grosu AV, Bica-Popi M, Ristoiu V. The Yin/Yang Balance of Communication between Sensory Neurons and Macrophages in Traumatic Peripheral Neuropathic Pain. Int J Mol Sci 2022; 23:ijms232012389. [PMID: 36293246 PMCID: PMC9603877 DOI: 10.3390/ijms232012389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Traumatic peripheral neuropathic pain is a complex syndrome caused by a primary lesion or dysfunction of the peripheral nervous system. Secondary to the lesion, resident or infiltrating macrophages proliferate and initiate a cross-talk with the sensory neurons, at the level of peripheral nerves and sensory ganglia. The neuron–macrophage interaction, which starts very early after the lesion, is very important for promoting pain development and for initiating changes that will facilitate the chronicization of pain, but it also has the potential to facilitate the resolution of injury-induced changes and, consequently, promote the reduction of pain. This review is an overview of the unique characteristics of nerve-associated macrophages in the peripheral nerves and sensory ganglia and of the molecules and signaling pathways involved in the neuro-immune cross-talk after a traumatic lesion, with the final aim of better understanding how the balance between pro- and anti-nociceptive dialogue between neurons and macrophages may be modulated for new therapeutic approaches.
Collapse
|
35
|
Vieira WF, Malange KF, de Magalhães SF, Lemes JBP, Dos Santos GG, Nishijima CM, de Oliveira ALR, da Cruz-Höfling MA, Tambeli CH, Parada CA. Anti-hyperalgesic effects of photobiomodulation therapy (904 nm) on streptozotocin-induced diabetic neuropathy imply MAPK pathway and calcium dynamics modulation. Sci Rep 2022; 12:16730. [PMID: 36202956 PMCID: PMC9537322 DOI: 10.1038/s41598-022-19947-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Several recent studies have established the efficacy of photobiomodulation therapy (PBMT) in painful clinical conditions. Diabetic neuropathy (DN) can be related to activating mitogen-activated protein kinases (MAPK), such as p38, in the peripheral nerve. MAPK pathway is activated in response to extracellular stimuli, including interleukins TNF-α and IL-1β. We verified the pain relief potential of PBMT in streptozotocin (STZ)-induced diabetic neuropathic rats and its influence on the MAPK pathway regulation and calcium (Ca2+) dynamics. We then observed that PBMT applied to the L4-L5 dorsal root ganglion (DRG) region reduced the intensity of hyperalgesia, decreased TNF-α and IL-1β levels, and p38-MAPK mRNA expression in DRG of diabetic neuropathic rats. DN induced the activation of phosphorylated p38 (p-38) MAPK co-localized with TRPV1+ neurons; PBMT partially prevented p-38 activation. DN was related to an increase of p38-MAPK expression due to proinflammatory interleukins, and the PBMT (904 nm) treatment counteracted this condition. Also, the sensitization of DRG neurons by the hyperglycemic condition demonstrated during the Ca2+ dynamics was reduced by PBMT, contributing to its anti-hyperalgesic effects.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Kauê Franco Malange
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Silviane Fernandes de Magalhães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Júlia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Gilson Gonçalves Dos Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil.
| |
Collapse
|
36
|
Bertozzi MM, Saraiva-Santos T, Zaninelli TH, Pinho-Ribeiro FA, Fattori V, Staurengo-Ferrari L, Ferraz CR, Domiciano TP, Calixto-Campos C, Borghi SM, Zarpelon AC, Cunha TM, Casagrande R, Verri WA. Ehrlich Tumor Induces TRPV1-Dependent Evoked and Non-Evoked Pain-like Behavior in Mice. Brain Sci 2022; 12:brainsci12091247. [PMID: 36138983 PMCID: PMC9496717 DOI: 10.3390/brainsci12091247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p < 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p < 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p < 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain.
Collapse
Affiliation(s)
- Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Felipe A. Pinho-Ribeiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Talita P. Domiciano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Cassia Calixto-Campos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Center for Research in Health Sciences, University of Northern Londrina, Londrina 86041-120, PR, Brazil
| | - Ana C. Zarpelon
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto 14049-900, SP, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: or ; Tel.: +55-43-3371-4979; Fax: +55-43-3371-4387
| |
Collapse
|
37
|
Maresin 2 is an analgesic specialized pro-resolution lipid mediator in mice by inhibiting neutrophil and monocyte recruitment, nociceptor neuron TRPV1 and TRPA1 activation, and CGRP release. Neuropharmacology 2022; 216:109189. [PMID: 35820471 DOI: 10.1016/j.neuropharm.2022.109189] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Maresin-2 (MaR2) is a specialized pro-resolution lipid mediator (SPM) that reduces neutrophil recruitment in zymosan peritonitis. Here, we investigated the analgesic effect of MaR2 and its mechanisms in different mouse models of pain. For that, we used the lipopolysaccharide (LPS)-induced mechanical hyperalgesia (electronic version of the von Frey filaments), thermal hyperalgesia (hot plate test) and weight distribution (static weight bearing), as well as the spontaneous pain models induced by capsaicin (TRPV1 agonist) or AITC (TRPA1 agonist). Immune cell recruitment was determined by immunofluorescence and flow cytometry while changes in the pro-inflammatory mediator landscape were determined using a proteome profiler kit and ELISA after LPS injection. MaR2 treatment was also performed in cultured DRG neurons stimulated with capsaicin or AITC in the presence or absence of LPS. The effect of MaR2 on TRVP1- and TRPA1-dependent CGRP release by cultured DRG neurons was determined by EIA. MaR2 inhibited LPS-induced inflammatory pain and changes in the cytokine landscape as per cytokine array assay. MaR2 also inhibited TRPV1 and TRPA1 activation as observed by a reduction in calcium influx in cultured DRG neurons, and the number of flinches and time spent licking the paw induced by capsaicin or AITC. In corroboration, MaR2 reduced capsaicin- and AITC-induced CGRP release by cultured DRG neurons and immune cell recruitment to the paw skin close the CGRP+ fibers. In conclusion, we show that MaR2 is an analgesic SPM that acts by targeting leukocyte recruitment, nociceptor TRPV1 and TRPA1 activation, and CGRP release in mice.
Collapse
|
38
|
Spera MC, Cesta MC, Zippoli M, Varrassi G, Allegretti M. Emerging Approaches for the Management of Chemotherapy-Induced Peripheral Neuropathy (CIPN): Therapeutic Potential of the C5a/C5aR Axis. Pain Ther 2022; 11:1113-1136. [PMID: 36098939 PMCID: PMC9469051 DOI: 10.1007/s40122-022-00431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common neurologic complication of chemotherapy, resulting in symptoms like pain, sensory loss, and numbness in the hands and feet that cause lots of uneasiness in patients with cancer. They often suffer from pain so severe that it interrupts the treatment, thus invalidating the entire chemotherapy-based healing process, and significantly reducing their quality of life. In this paper, we underline the role of the complement system in CIPN, highlighting the relevance of the C5a fragment and its receptor C5aR1, whose activation is thought to be involved in triggering a cascade of events that can lead to CIPN onset. Recent experimental data showed the ability of docetaxel and paclitaxel to specifically bind and activate C5aR1, thus shining light on one of the molecular mechanisms by which taxanes may activate a cascade of events leading to neuropathy. According to these new evidence, it was possible to suggest new mechanisms underlying the pathophysiology of CIPN. Hence, the C5a/C5aR1 axis may represent a new target for CIPN treatment, and the use of C5aR1 inhibitors can be proposed as a potential new therapeutic option to manage this high unmet medical need.
Collapse
Affiliation(s)
- Maria C Spera
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy
| | - Maria C Cesta
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy.
| | - Mara Zippoli
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, Naples, Italy
| | | | | |
Collapse
|
39
|
The Welfare of Fighting Dogs: Wounds, Neurobiology of Pain, Legal Aspects and the Potential Role of the Veterinary Profession. Animals (Basel) 2022; 12:ani12172257. [PMID: 36077977 PMCID: PMC9454875 DOI: 10.3390/ani12172257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Dog fights are cruel and harmful events which have a clear impact on animal welfare. For this reason, many countries have banned these events via statute. However, in some regions of the world they are still legal. Moreover, the enforcement of legal bans can be problematic in countries where they are illegal, and they may still occur. This article provides background information on dog fighting and the welfare implications of it. This includes consideration for the pain inflicted, and its mechanisms of perception and recognition. It also analyzes the injuries and emotions experienced by the animals and considers the profile of the breeders and handlers involved in the activity. Since welfare concerns often extend beyond the animals’ fighting lives, a discussion around the possibilities of reintroduction into suitable environments for these animals is also made. Finally, attention is turned to the role that veterinarians can and should play in dealing with these issues of welfare. Abstract Throughout history it has been common to practice activities which significantly impact on animal welfare. Animal fighting, including dogfighting, is a prime example where animals often require veterinary care, either to treat wounds and fractures or to manage pain associated with tissue and where death may even result. Amongst the detrimental health effects arising are the sensory alterations that these injuries cause, which not only include acute or chronic pain but can also trigger a greater sensitivity to other harmful (hyperalgesia) or even innocuous stimuli (allodynia). These neurobiological aspects are often ignored and the erroneous assumption made that the breeds engaged in organized fighting have a high pain threshold or, at least, they present reduced or delayed responses to painful stimuli. However, it is now widely recognized that the damage these dogs suffer is not only physical but psychological, emotional, and sensory. Due to the impact fighting has on canine welfare, it is necessary to propose solution strategies, especially educational ones, i.e., educating people and training veterinarians, the latter potentially playing a key role in alerting people to all dog welfare issues. Therefore, the aim of this review is to describe the risk factors associated with dogfighting generally (dog temperament, age, sex, nutrition, testosterone levels, environment, isolation conditions, socialization, education, or training). A neurobiological approach to this topic is taken to discuss the impact on dog pain and emotion. Finally, a general discussion of the format of guidelines and laws that seek to sanction them is presented. The role that veterinarians can play in advancing dog welfare, rehabilitating dogs, and educating the public is also considered.
Collapse
|
40
|
Joglekar AV, Dehari D, Anjum MM, Dulla N, Chaudhuri A, Singh S, Agrawal AK. Therapeutic potential of venom peptides: insights in the nanoparticle-mediated venom formulations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00415-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Venoms are the secretions produced by animals, generally for the purpose of self-defense or catching a prey. Biochemically venoms are mainly composed of proteins, lipids, carbohydrates, ions, etc., and classified into three major classes, viz. neurotoxic, hemotoxic and cytotoxic based upon their mode of action. Venoms are composed of different specific peptides/toxins which are responsible for their unique biological actions. Though venoms are generally seen as a source of death, scientifically venom is a complex biochemical substance having a specific pharmacologic action which can be used as agents to diagnose and cure a variety of diseases in humans.
Main body
Many of these venoms have been used since centuries, and their specified therapies can also be found in ancient texts such as Charka Samhita. The modern-day example of such venom therapeutic is captopril, an antihypertensive drug developed from venom of Bothrops jararaca. Nanotechnology is a modern-day science of building materials on a nanoscale with advantages like target specificity, increased therapeutic response and diminished side effects. In the present review we have introduced the venom, sources and related constituents in brief, by highlighting the therapeutic potential of venom peptides and focusing more on the nanoformulations-based approaches. This review is an effort to compile all such report to have an idea about the future direction about the nanoplatforms which should be focused to have more clinically relevant formulations for difficult to treat diseases.
Conclusion
Venom peptides which are fatal in nature if used cautiously and effectively can save life. Several research findings suggested that many of the fatal diseases can be effectively treated with venom peptides. Nanotechnology has emerged as novel strategy in diagnosis, treatment and mitigation of diseases in more effective ways. A variety of nanoformulation approaches have been explored to enhance the therapeutic efficacy and reduce the toxicity and targeted delivery of the venom peptide conjugated with it. We concluded that venom peptides along with nanoparticles can evolve as the new era for potential treatments of ongoing and untreatable diseases.
Graphical Abstract
Collapse
|
41
|
Maixner D, Christy D, Kong L, Viatchenko-Karpinski V, Horner A, Hooks S, Weng HR. Phytohormone abscisic acid ameliorates neuropathic pain via regulating LANCL2 protein abundance and glial activation at the spinal cord. Mol Pain 2022; 18:17448069221107781. [PMID: 35647699 PMCID: PMC9248043 DOI: 10.1177/17448069221107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal neuroinflammation plays a critical role in the genesis of neuropathic
pain. Accumulating data suggest that abscisic acid (ABA), a phytohormone,
regulates inflammatory processes in mammals. In this study, we found that
reduction of the LANCL2 receptor protein but not the agonist ABA in the spinal
cord is associated with the genesis of neuropathic pain. Systemic or intrathecal
administration of ABA ameliorates the development and pre-existence of
mechanical allodynia and heat hyperalgesia in animals with partial sciatic nerve
ligation (pSNL). LANCL2 is expressed only in microglia in the spinal dorsal
horn. Pre-emptive treatment with ABA attenuates activation of microglia and
astrocytes, ERK activity, and TNFα protein abundance in the dorsal horn in rats
with pSNL. These are accompanied by restoration of spinal LANCL2 protein
abundance. Spinal knockdown of LANCL2 gene with siRNA recapitulates the
behavioral and spinal molecular changes induced by pSNL. Activation of spinal
toll-like receptor 4 (TLR4) with lipopolysaccharide leads to activation of
microglia, and over production of TNFα, which are concurrently accompanied by
suppression of protein levels of LANCL2 and peroxisome proliferator
activated-receptor γ. These changes are ameliorated when ABA is added with LPS.
The anti-inflammatory effects induced by ABA do not requires Gi
protein activity. Our study reveals that the ABA/LANCL2 system is a powerful
endogenous system regulating spinal neuroinflammation and nociceptive
processing, suggesting the potential utility of ABA as the management of
neuropathic pain.
Collapse
Affiliation(s)
- Dylan Maixner
- Pharmaceutical and Biomedical Sciences15506University of Georgia College of Pharmacy
| | | | | | | | | | | | - Han-Rong Weng
- Basic Sciences436933California Northstate University
| |
Collapse
|
42
|
Brandolini L, Aramini A, Bianchini G, Ruocco A, Bertini R, Novelli R, Angelico P, Valsecchi AE, Russo R, Castelli V, Cimini A, Allegretti M. Inflammation-Independent Antinociceptive Effects of DF2755A, a CXCR1/2 Selective Inhibitor: A New Potential Therapeutic Treatment for Peripheral Neuropathy Associated to Non-Ulcerative Interstitial Cystitis/Bladder Pain Syndrome. Front Pharmacol 2022; 13:854238. [PMID: 35571079 PMCID: PMC9096165 DOI: 10.3389/fphar.2022.854238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Interstitial cystitis (IC)/bladder pain syndrome (BPS) is a chronic bladder disease of unknown etiology characterized by urinary frequency and episodic and chronic pain. Analgesic treatments for IC/BPS are limited, especially for patients with non-Hunner (non-ulcerative) type IC who usually have poor overall outcomes. Here, we demonstrate that oral treatment with DF2755A, a potent and selective inhibitor of chemokine receptors CXCR1/2, can prevent and reverse peripheral neuropathy associated to non-Hunner IC/BPS by directly inhibiting chemokine-induced excitation of sensory neurons. We tested DF2755A antinociceptive effects in a cyclophosphamide (CYP)-induced non-ulcerative IC rat model characterized by severe peripheral neuropathy in the absence of bladder inflammatory infiltrate, urothelial hyperplasia, and hemorrhage. Treatment with DF2755A prevented the onset of peripheral neuropathy and reversed its development in CYP-induced IC rats, showing a strong and long-lasting anti-hyperalgesic effect. Ex vivo and in vitro studies showed that DF2755A treatment strongly inhibited the expression of CXCR2 agonists, CXCL1/KC, and CXCL5 and of transient receptor potential vanilloid 1 (TRPV1) compared to vehicle, suggesting that its effects can be due to the inhibition of the nociceptive signaling passing through the CXCL1/CXCR1-2 axis and TRPV1. In conclusion, our results highlight the key pathophysiological role played by the CXCL1/CXCR1-2 axis and TRPV1 in the onset and development of peripheral neuropathy in non-Hunner IC and propose DF2755A as a potential therapeutic approach for the treatment of not only inflammatory painful conditions but also neuropathic ones and in particular non-Hunner IC/BPS.
Collapse
Affiliation(s)
- Laura Brandolini
- Research and Early Development, Dompé Farmaceutici S.p.A., L’Aquila, Italy
| | - Andrea Aramini
- Research and Early Development, Dompé Farmaceutici S.p.A., L’Aquila, Italy
| | - Gianluca Bianchini
- Research and Early Development, Dompé Farmaceutici S.p.A., L’Aquila, Italy
| | - Anna Ruocco
- Research and Early Development, Dompé Farmaceutici S.p.A., Naples, Italy
| | | | - Rubina Novelli
- Research and Early Development, Dompé Farmaceutici S.p.A., Milan, Italy
| | | | | | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marcello Allegretti
- Research and Early Development, Dompé Farmaceutici S.p.A., L’Aquila, Italy
- *Correspondence: Marcello Allegretti,
| |
Collapse
|
43
|
Abdalla HB, Napimoga MH, Teixeira JM, Trindade-da-Silva CA, Pieroni VL, Dos Santos Araújo FSM, Hammock BD, Clemente-Napimoga JT. Soluble epoxide hydrolase inhibition avoid formalin-induced inflammatory hyperalgesia in the temporomandibular joint. Inflammopharmacology 2022; 30:981-990. [PMID: 35303234 DOI: 10.1007/s10787-022-00965-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are endogenous molecules that exerts effective antinociceptive and resolutive actions. However, because of their rapid metabolism by the soluble epoxide hydrolase (sEH), EETs are unable to remain bioavailable. Therefore, the aim of this study was to investigate whether local sEH inhibition could prevent inflammatory hyperalgesia in the temporomandibular joint (TMJ) of rats. For that, rats were pre-treated with an intra-TMJ injection of TPPU, followed by the noxious stimulus (1.5% of formalin intra-articular) to evaluate nociceptive behavior. Histological analysis was conducted to explore the inflammatory exudate and mast cell degranulation. Periarticular tissue over the TMJ was used to measure inflammatory lipids and cytokines/chemokine by Enzyme-Linked Immunosorbent Assay (ELISA). We demonstrated that peripheral pretreatment with TPPU prevents formalin-induced inflammatory hyperalgesia in the TMJ, and this effect is strictly local. Moreover, TPPU mitigates the leukocyte exudate in the TMJ, as well as inflammatory lipids mediators. Mast cell number and degranulation were abrogated by TPPU, and the inflammatory cytokine levels were decreased by TPPU. On the other hand, TPPU up-regulated the release of interleukin 10 (IL-10), an anti-inflammatory cytokine. We provide evidence that locally sEH by intra-TMJ injection of TPPU produces an antinociceptive and anti-inflammatory effect on rats' TMJ.
Collapse
Affiliation(s)
- Henrique Ballassini Abdalla
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Marcelo Henrique Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Juliana Maia Teixeira
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Carlos Antônio Trindade-da-Silva
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Victor Luís Pieroni
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Fernanda Souto Maior Dos Santos Araújo
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Juliana Trindade Clemente-Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil.
| |
Collapse
|
44
|
Ye F, Lyu F, Wang H, Zheng Z. The involvement of immune system in intervertebral disc herniation and degeneration. JOR Spine 2022; 5:e1196. [PMID: 35386754 PMCID: PMC8966871 DOI: 10.1002/jsp2.1196] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) herniation and degeneration contributes significantly to low back pain (LBP), of which the molecular pathogenesis is not fully understood. Disc herniation may cause LBP and radicular pain, but not all LBP patients have disc herniation. Degenerated discs could be the source of pain, but not all degenerated discs are symptomatic. We previously found that disc degeneration and herniation accompanied by inflammation. We further found that anti-inflammatory molecules blocked immune responses, alleviated IVD degeneration and pain. Based on our recent findings and the work of others, we hypothesize that immune system may play a prominent role in the production of disc herniation or disc degeneration associated pain. While the nucleus pulposus (NP) is an immune-privileged organ, the damage of the physical barrier between NP and systemic circulation, or the innervation and vascularization of the degenerated NP, on one hand exposes NP as a foreign antigen to immune system, and on the other hand presents compression on the nerve root or dorsal root ganglion (DRG), which both elicit immune responses induced by immune cells and their mediators. The inflammation can remain for a long time at remote distance, with various types of cytokines and immune cells involved in this pain-inducing process. In this review, we aim to revisit the autoimmunity of the NP, immune cell infiltration after break of physical barrier, the inflammatory activities in the DRG and the generation of pain. We also summarize the involvement of immune system, including immune cells and cytokines, in degenerated or herniated IVDs and affected DRG.
Collapse
Affiliation(s)
- Fubiao Ye
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Orthopaedics, Fujian Provincial HospitalProvincial Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Feng‐Juan Lyu
- Joint Center for Regenerative Medicine Research of South China University of Technology and The University of Western Australia, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Pain Research CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
45
|
Gonçalves GM, Oliveira JMD, Fernandes TFDC, de Carvalho Cid G, Laureano-Melo R, Côrtes WDS, Carvalho VDAN, Capim SL, Vasconcellos MLADA, Marinho BG. Evaluation of the systemic and spinal antinociceptive effect of a new hybrid NSAID tetrahydropyran derivative. Clin Exp Pharmacol Physiol 2022; 49:419-431. [PMID: 34862806 DOI: 10.1111/1440-1681.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022]
Abstract
Pain is responsible for inducing physical and mental stress, interfering negatively in patients' quality of life. Classic analgesic drugs, such as opioids and non-steroidal anti-inflammatory drugs, are known for their wide range of adverse effects, making it important to develop new drugs. Thus, this study aimed to analyse the action of the hybrid compound cis- (±) -acetate of 4-chloro-6- (naphthalene-1-yl) -tetrahydro-2h-pyran -2-yl) methyl2- (2- [2,6-dichlorophenylamine] phenyl (LS19) under acute nociceptive conditions, and deepened the understanding of the responsible mechanisms. Male Swiss mice were evaluated in the acetic acid-induced abdominal writhing, formalin, tail flick, capsaicin- and glutamate-induced nociception, thermal stimulation in animals injected with capsaicin and rotarod tests besides the acute and subchronic toxicological evaluation. The compound showed effect on the acetic acid-induced abdominal writhing, formalin (both phases), tail flick, thermal stimulation in animals injected with capsaicin and capsaicin-induced nociception tests. In the study of the mechanism of action was observed reversion of the antihyperalgesic effect of the compound from the previous intraperitoneal and intrathecal administration of naloxone, nor-binaltorphimine, naltrindole, methylnaltrexone, 7-nitroindazole, L-NAME, ODQ, glibenclamide on the tail flick test. In the thermal stimulation in animals injected with capsaicin, the compound showed antinociceptive effect by oral and intraplantar routes, besides to reducing the levels of TNF-α, IL-1β and PGE2 in the paws previously administered with capsaicin. There were no signs of acute and subchronic intoxication with the compound. In summary, the compound LS19 presented spinal and local antihyperalgesic effect, demonstrating participation of the opioid/NO/cGMP/K+ ATP pathway and TRPV1 receptors and it demonstrated safety in its use in mice.
Collapse
Affiliation(s)
- Gabriela Mastrangelo Gonçalves
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| | - Joyce Mattos de Oliveira
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| | | | - Gabriela de Carvalho Cid
- Programa de Pós-Graduação em Medicina Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| | - Roberto Laureano-Melo
- Laboratório de Fisiofarmacologia Comportamental, Centro Universitário de Barra Mansa, Barra Mansa, Brasil
| | - Wellington da Silva Côrtes
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| | | | - Saulo Luis Capim
- Federal Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Catu, Catu, Brasil
| | | | - Bruno Guimarães Marinho
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
- Programa de Pós-Graduação em Medicina Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| |
Collapse
|
46
|
Inflammation-related molecules in tears of patients with chronic ocular pain and dry eye disease. Exp Eye Res 2022; 219:109057. [DOI: 10.1016/j.exer.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/28/2022]
|
47
|
Matosinhos RC, Bezerra JP, Barros CH, Fernandes Pereira Ferreira Bernardes AC, Coelho GB, Carolina de Paula Michel Araújo M, Dian de Oliveira Aguiar Soares R, Sachs D, Saúde-Guimarães DA. Coffea arabica extracts and their chemical constituents in a murine model of gouty arthritis: How they modulate pain and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114778. [PMID: 34715299 DOI: 10.1016/j.jep.2021.114778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coffea arabica is commonly known for its cardiotonic and neurotonic activities, but in some places' folk medicine, like in Arabia and Africa, C. arabica is used to treat headache, migraine, the flu, anemia, oedema, asthenia, asthma, inflammation and wounds. AIMS OF THE STUDY The aims were to evaluate if the aqueous extracts of Coffea arabica, prepared from beans with different degrees of roasting, and their main chemical constituents could exert an in vivo anti-gouty effect. MATERIALS AND METHODS Coffea extracts were obtained from the beans of not roasted, light, medium and dark roasted coffee and from decaffeinated and traditional coffees and were prepared with water at 25°C and at 98°C. C57BL/6 mice were induced to gout by an injection of monosodium urate crystals and treated with coffee extracts at doses of 25, 75 and 225 mg/kg and their chemical constituents at a dose of 10 mg/kg. The antinociceptive and anti-inflammatory effects were evaluated. RESULTS Treatments with Coffea extracts prepared with water at 98°C were more effective to exert antinociceptive and anti-inflammatory activities than the ones prepared with water at 25°C. Caffeic and chlorogenic acids reduced hypernociception in animals when compared with negative control group (7.79 and 5.69 vs 18.53; P < 0.05 and P < 0.001, respectively), inhibited neutrophil migration (1.59 × 104 and 0.38 × 104 vs 9.47 × 104; P < 0.0001 both) and decreased pro-inflammatory cytokines concentration (IL-1β, IL-6 and TNF-α). CONCLUSIONS We have demonstrated that our treatments attenuated gout, and this effect could be attributed to a reducement in hypernociception, neutrophil migration and cytokines concentration. These results suggest coffee as a potential candidate for studies in acute gout therapy.
Collapse
Affiliation(s)
- Rafaela Cunha Matosinhos
- Laboratório de Plantas Medicinais LAPLAMED, Programa de Pós-Graduação em Ciências Farmacêuticas CiPharma, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Juliana Pantaleão Bezerra
- Laboratório de Plantas Medicinais LAPLAMED, Programa de Pós-Graduação em Ciências Farmacêuticas CiPharma, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Camila Helena Barros
- Laboratório de Plantas Medicinais LAPLAMED, Programa de Pós-Graduação em Ciências Farmacêuticas CiPharma, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Ana Catharina Fernandes Pereira Ferreira Bernardes
- Laboratório de Plantas Medicinais LAPLAMED, Programa de Pós-Graduação em Ciências Farmacêuticas CiPharma, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Grazielle Brandão Coelho
- Laboratório de Plantas Medicinais LAPLAMED, Programa de Pós-Graduação em Ciências Farmacêuticas CiPharma, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Marcela Carolina de Paula Michel Araújo
- Laboratório de Plantas Medicinais LAPLAMED, Programa de Pós-Graduação em Ciências Farmacêuticas CiPharma, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rodrigo Dian de Oliveira Aguiar Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Daniela Sachs
- Instituto de Física e Química, Universidade Federal de Itajubá, Itajubá, Minas Gerais, 37500-903, Brazil
| | - Dênia Antunes Saúde-Guimarães
- Laboratório de Plantas Medicinais LAPLAMED, Programa de Pós-Graduação em Ciências Farmacêuticas CiPharma, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|
48
|
Bussmann AJC, Ferraz CR, Lima AVA, Castro JGS, Ritter PD, Zaninelli TH, Saraiva‐Santos T, Verri WA, Borghi SM. Association between IL‐10 systemic low level and pain during symptomatic SARS‐CoV‐2 infection. Pain Pract 2022; 22:453-462. [DOI: 10.1111/papr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Allan J. C. Bussmann
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Camila R. Ferraz
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Aline V. A. Lima
- Universitary Hospital Londrina State University 86038‐350 Londrina, Paraná Brazil
| | - João G. S. Castro
- Universitary Hospital Londrina State University 86038‐350 Londrina, Paraná Brazil
| | - Patrícia D. Ritter
- Departament of Pharmaceutical Sciences Health Sciences Center Londrina State University 86038‐350 Londrina, Paraná Brazil
| | - Tiago H. Zaninelli
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Telma Saraiva‐Santos
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Waldiceu A. Verri
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Sergio M. Borghi
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
- Center for Research in Health Sciences University of Northern Paraná 86041‐140 Londrina, Paraná Brazil
| |
Collapse
|
49
|
Parthasarathy G, Gadila SKG. Neuropathogenicity of non-viable Borrelia burgdorferi ex vivo. Sci Rep 2022; 12:688. [PMID: 35027599 PMCID: PMC8758786 DOI: 10.1038/s41598-021-03837-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Even after appropriate treatment, a proportion of Lyme disease patients suffer from a constellation of symptoms, collectively called Post-Treatment Lyme Disease Syndrome (PTLDS). Brain PET scan of patients with PTLDS have demonstrated likely glial activation indicating persistent neuroinflammatory processes. It is possible that unresolved bacterial remnants can continue to cause neuroinflammation. In previous studies, we have shown that non-viable Borrelia burgdorferi can induce neuroinflammation and apoptosis in an oligodendrocyte cell line. In this follow-up study, we analyze the effect of sonicated remnants of B. burgdorferi on primary rhesus frontal cortex (FC) and dorsal root ganglion (DRG) explants. Five FC and three DRG tissue fragments from rhesus macaques were exposed to sonicated B. burgdorferi and analyzed for 26 inflammatory mediators. Live bacteria and medium alone served as positive and negative control, respectively. Tissues were also analyzed for cell types mediating inflammation and overall apoptotic changes. Non-viable B. burgdorferi induced significant levels of several inflammatory mediators in both FC and DRG, similar to live bacteria. However, the levels induced by non-viable B. burgdorferi was often (several fold) higher than those induced by live ones, especially for IL-6, CXCL8 and CCL2. This effect was also more profound in the FC than in the DRG. Although the levels often differed, both live and dead fragments induced the same mediators, with significant overlap between FC and DRG. In the FC, immunohistochemical staining for several inflammatory mediators showed the presence of multiple mediators in astrocytes, followed by microglia and oligodendrocytes, in response to bacterial remnants. Staining was also seen in endothelial cells. In the DRG, chemokine/cytokine staining was predominantly seen in S100 positive (glial) cells. B. burgdorferi remnants also induced significant levels of apoptosis in both the FC and DRG. Apoptosis was confined to S100 + cells in the DRG while distinct neuronal apoptosis was also detected in most FC tissues in response to sonicated bacteria. Non-viable B. burgdorferi can continue to be neuropathogenic to both CNS and PNS tissues with effects likely more profound in the former. Persistence of remnant-induced neuroinflammatory processes can lead to long term health consequences.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA. .,Tulane National Primate Research Center, 18703, Three rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
50
|
Chrysin-Loaded Microemulsion: Formulation Design, Evaluation and Antihyperalgesic Activity in Mice. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Chrysin is a bioactive flavonoid found in pollens, passion flowers, honey, royal jelly, and propolis, which is commonly used as an ingredient in natural food supplements and is primarily responsible for their pharmacological properties. A transparent chrysin-loaded microemulsion (CS-ME) prepared through a ternary phase diagram was evaluated for use as an antihyperalgesic formulation. It was formulated with 40% Labrasol® (surfactant), 5% isopropyl myristate (oil phase) and 55% water (aqueous phase) and classified as an oil-in-water (O/W) microsized system (74.4 ± 15.8 nm). Its negative Zeta potential (−16.1 ± 1.9 mV) was confirmed by polarized light microscopy and dynamic light scattering analysis. In vitro studies in Franz-type static diffusion cells showed that chrysin release from CS-ME followed zero-order kinetics. Oral administration of CS-ME in mice resulted in a statistically significantly reduction (p < 0.05) in carrageenan-induced mechanical hyperalgesia compared to the control group. Treatment with CS-ME also showed anti-inflammatory activity by significantly decreasing the TNF-α level (p < 0.01) and increasing that of IL-10 (p < 0.05) compared to the control group. These results suggest that the proposed microsystem is a promising vector for the release of chrysin, being able to improve its capacity to modulate inflammatory and nociceptive responses.
Collapse
|