1
|
Alotaibi G, Khan A, Rahman S. Glutamate transporter activator LDN-212320 prevents chronic pain-induced cognitive impairment and anxiety-like behaviors in a mouse model. Behav Brain Res 2025; 482:115440. [PMID: 39848593 DOI: 10.1016/j.bbr.2025.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
The astroglial glutamate transporter in the hippocampus and anterior cingulate cortex (ACC) is critically involved in chronic pain-induced cognitive and psychiatric abnormalities. We have previously reported that LDN-212320, a glutamate transporter-1 (GLT-1) activator, attenuates complete Freund's adjuvant (CFA)-induced acute and chronic nociceptive pain. However, the cellular and molecular mechanisms underlying GLT-1 modulation in the hippocampus and ACC during chronic pain-induced cognitive deficit-like and anxiety-like behaviors remain unknown. Here, we have investigated the effects of LDN-212320 on CFA-induced chronic pain associated with cognitive deficit-like and anxiety-like behaviors in mice. We have evaluated the effects of LDN-212320 on CFA-induced impaired spatial, working, and recognition memory using Y-maze and object-place recognition tests. In addition, we have determined the effects of LDN-21230 on chronic pain-induced anxiety-like behaviors using elevated plus maze and marble burying test. We have also examined the effects of LDN-212320 on cAMP response element-binding protein (pCREB), brain-derived neurotrophic factor (BDNF), protein kinase A (PKA), and Ca2 +/calmodulin-dependent protein kinase II (CaMKII) expression in the hippocampus and ACC during CFA-induced cognitive deficit-like and anxiety-like behaviors using the Western blot analysis and immunofluorescence assay. Pretreatment with LDN-212320 (20 mg/kg) significantly attenuated CFA-induced impaired spatial, working, and recognition memory. Furthermore, LDN-212320 (20 mg/kg) significantly reduced CFA-induced anxiety-like behaviors. Additionally, LDN-212320 (20 mg/kg) significantly reversed CFA-induced decreased pCREB, BDNF, PKA and CaMKII expression in the hippocampus and ACC. Overall, these results suggest that the LDN-212320 prevents CFA-induced cognitive deficit-like and anxiety-like behaviors by activating CaMKII/CREB/BDNF signaling pathway in the hippocampus and ACC. Therefore, LDN-212320 could be a potential treatment for chronic pain associated with cognitive impairment and anxiety-like behaviors.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Amna Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
2
|
Hasan-Kareem N, Alijanpour S, Zarrindast MR, Khakpai F. Synergistic anxiolytic-like effect of CPPG and harmaline in non-stressed and acute restraint stress (ARS) mice. Neurosci Lett 2025; 850:138157. [PMID: 39938675 DOI: 10.1016/j.neulet.2025.138157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Many studies revealed the role of metabotropic glutamate receptors (mGluRs) and harmaline in the modulation of anxiety-related behaviors. This study aimed to determine a possible interaction between harmaline and group III mGluR on the modulation of anxiety-correlated behaviors. The left lateral ventricle of male mice was unilaterally cannulated. Acute restraint stress (ARS) was induced by movement restraint for 4 h. Anxiety-like behaviors were measured using an elevated plus maze. The results showed that induction of ARS during 4 h reduced the percentage of time spent in open arms (%OAT) and percentage of entries to open arms (%OAE) without changing locomotor activity, indicating anxiogenic-like responses. Intraperitoneal (i.p.) administration of harmaline (2 mg/kg) increased %OAT in non-stressed and ARS mice, presenting anxiolytic-like responses. Intracerebroventricular (i.c.v.) infusion of CPPG (potent group III mGlu antagonist, 70 µg/mouse) induced anxiolytic-like behavior due to the augmentation of %OAT in non-stressed and ARS mice. Co-treatment of CPPG (70 µg/mouse, i.c.v.) along with harmaline (1 mg/kg, i.p) induced an anxiolytic-like effect. I.c.v. infusion of L-AP4 (selective group III mGlu agonist) or co-administration of it along harmaline had no significant effect on anxiety-like behaviors both in non-stressed and ARS mice. When harmaline and CPPG were co-administrated, CPPG potentiated the anxiolytic-like behavior induced by harmaline in non-stressed and ARS mice. The results revealed a synergistic effect between CPPG and harmaline on the induction of anxiolytic-like effect in non-stressed and ARS mice. Our results indicated an interaction between harmaline and group III mGluR on the modulation of anxiety-like responses in non-stressed and ARS mice.
Collapse
Affiliation(s)
- Nazahnin Hasan-Kareem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sci 2024; 355:122988. [PMID: 39153595 DOI: 10.1016/j.lfs.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
4
|
Malyshev AV, Pavshintcev VV, Mitkin NA, Sukhanova IA, Gedzun VR, Zlobin AS, Doronin II, Babkin GA, Sawyer TK. The novel peptide LCGM-10 attenuates metabotropic glutamate receptor 5 activity and demonstrates behavioral effects in animal models. Front Behav Neurosci 2024; 18:1333258. [PMID: 38385004 PMCID: PMC10879279 DOI: 10.3389/fnbeh.2024.1333258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
We employed a structural bioinformatics approach to develop novel peptides with predicted affinity to the binding site for negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGluR5). Primary screening in zebrafish (Danio rerio) revealed a stimulatory effect of two peptides, LCGM-10 and LCGM-15. Target validation studies using calcium ion flux imaging and a luciferase reporter assay confirmed mGluR5 as the target. LCGM-10 showed greater potency than LCGM-15; it was comparable to that of the mGluR5 NAM 2-methyl-6-(phenylethynyl) pyridine (MPEP). Rodent behavioral screening in the open field and elevated plus maze revealed increased locomotor activity in both tests after acute LCGM-10 treatment, supported by further analysis of home cage spontaneous locomotor activity (SLA). The stimulating effect of a single LCGM-10 administration on SLA was evident up to 60 min after administration and was not accompanied by hypokinetic rebound observed for caffeine. According to our results, LCGM-10 has therapeutic potential to treat hypo- and dyskinesias of various etiologies. Further investigation of LCGM-10 effects in the delay discounting model of impulsive choice in rats revealed reduced trait impulsivity after single and chronic administrations, suggesting potential implication for attention deficit hyperactivity disorder, obsessive compulsive disorder, and addictions.
Collapse
|
5
|
Canbolat F, Kantarci-Carsibasi N, Isik S, Shamshir SRM, Girgin M. Identification of the Candidate mGlu2 Allosteric Modulator THRX-195518 through In Silico Method and Evaluation of Its Neuroprotective Potential against Glutamate-Induced Neurotoxicity in SH-SY5Y Cell Line. Curr Issues Mol Biol 2024; 46:788-807. [PMID: 38248353 PMCID: PMC10814480 DOI: 10.3390/cimb46010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
Glutamate (Glu) toxicity has been an important research topic in toxicology and neuroscience studies. In vitro and in vivo studies have shown that Group II metabotropic Glu2 (mGlu2) activators have cell viability effects. This study aims to determine a candidate ligand with high mGlu2 allosteric region activity among cytotoxicity-safe molecules using the in silico positioning method and to evaluate its cell viability effect in vitro. We investigated the candidate molecule's cell viability effect on the SH-SY5Y human neuroblastoma cell line by MTT analysis. In the study, LY 379268 (agonist) and JNJ-46281222 (positive allosteric modulator; PAM) were used as control reference molecules. Drug bank screening yielded THRX-195518 (docking score being -12.4 kcal/mol) as a potential novel drug candidate that has a high docking score and has not been mentioned in the literature so far. The orthosteric agonist LY 379268 exhibited a robust protective effect in our study. Additionally, our findings demonstrate that JNJ-46281222 and THRX-195518, identified as activating the mGlu2 allosteric region through in silico methods, preserve cell viability against Glu toxicity. Therefore, our study not only emphasizes the positive effects of this compound on cell viability against Glu toxicity but also sheds light on the potential of THRX-195518, acting as a mGlu2 PAM, based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) data, as a candidate drug molecule. These findings underscore the potential utility of THRX-195518 against both neurotoxicity and Central Nervous System (CNS) disorders, providing valuable insights.
Collapse
Affiliation(s)
- Fadime Canbolat
- Department of Pharmacy Services, Vocational School of Health Services, Çanakkale Onsekiz Mart University, 17800 Çanakkale, Turkey
| | - Nigar Kantarci-Carsibasi
- Department of Chemical Engineering, Uskudar University, 34662 Istanbul, Turkey; (N.K.-C.); (M.G.)
| | - Sevim Isik
- Stem Cell Research and Application Center (USKOKMER), Department of Molecular Biology and Genetics, Uskudar University, 34662 Istanbul, Turkey;
| | | | - Münteha Girgin
- Department of Chemical Engineering, Uskudar University, 34662 Istanbul, Turkey; (N.K.-C.); (M.G.)
| |
Collapse
|
6
|
Chaki S, Watanabe M. mGlu2/3 receptor antagonists for depression: overview of underlying mechanisms and clinical development. Eur Arch Psychiatry Clin Neurosci 2023; 273:1451-1462. [PMID: 36715750 DOI: 10.1007/s00406-023-01561-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Triggered by the ground-breaking finding that ketamine exerts robust and rapid-acting antidepressant effects in patients with treatment-resistant depression, glutamatergic systems have attracted attention as targets for the development of novel antidepressants. Among glutamatergic systems, group II metabotropic glutamate (mGlu) receptors, consisting of mGlu2 and mGlu3 receptors, are of interest because of their modulatory roles in glutamatergic transmission. Accumulating evidence has indicated that mGlu2/3 receptor antagonists have antidepressant-like effects in rodent models that mirror those of ketamine and that mGlu2/3 receptor antagonists also share underlying mechanisms with ketamine that are responsible for these antidepressant-like actions. Importantly, contrary to their antidepressant-like profile, preclinical studies have revealed that mGlu2/3 receptor antagonists are devoid of ketamine-like adverse effects, such as psychotomimetic-like behavior, abuse potential and neurotoxicity. Despite some discouraging results for an mGlu2/3 receptor antagonist decoglurant (classified as a negative allosteric modulator [NAM]) in patients with major depressive disorder, clinical trials of two mGlu2/3 receptor antagonists, a phase 2 trial of TS-161 (an orthosteric antagonist) and a phase 1 trial of DSP-3456 (a NAM), are presently on-going. mGlu2/3 receptors still hold promise for the development of safer and more efficacious antidepressants.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama, 331-9530, Japan.
| | - Mai Watanabe
- Taisho Pharmaceutical R&D Inc, 350 Mt. Kemble Avenue, Morristown, NJ, 07960, USA
| |
Collapse
|
7
|
Holter KM, Pierce BE, Gould RW. Metabotropic glutamate receptor function and regulation of sleep-wake cycles. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:93-175. [PMID: 36868636 PMCID: PMC10973983 DOI: 10.1016/bs.irn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bethany E Pierce
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
8
|
Asch RH, Hillmer AT, Baldassarri SR, Esterlis I. The metabotropic glutamate receptor 5 as a biomarker for psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:265-310. [PMID: 36868631 DOI: 10.1016/bs.irn.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glutamate system in the etiology and pathophysiology of psychiatric disorders has gained considerable attention in the past two decades, including dysregulation of the metabotropic glutamatergic receptor subtype 5 (mGlu5). Thus, mGlu5 may represent a promising therapeutic target for psychiatric conditions, particularly stress-related disorders. Here, we describe mGlu5 findings in mood disorders, anxiety, and trauma disorders, as well as substance use (specifically nicotine, cannabis, and alcohol use). We highlight insights gained from positron emission tomography (PET) studies, where possible, and discuss findings from treatment trials, when available, to explore the role of mGlu5 in these psychiatric disorders. Through the research evidence reviewed in this chapter, we make the argument that, not only is dysregulation of mGlu5 evident in numerous psychiatric disorders, potentially functioning as a disease "biomarker," the normalization of glutamate neurotransmission via changes in mGlu5 expression and/or modulation of mGlu5 signaling may be a needed component in treating some psychiatric disorders or symptoms. Finally, we hope to demonstrate the utility of PET as an important tool for investigating mGlu5 in disease mechanisms and treatment response.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University, New Haven, CT, United States.
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stephen R Baldassarri
- Yale Program in Addiction Medicine, Yale University, New Haven, CT, United States; Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
9
|
Long-term cyclosporine A treatment promotes anxiety-like behavior: Possible relation with glutamate signaling in rat hippocampus. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Fabian CB, Seney ML, Joffe ME. Sex differences and hormonal regulation of metabotropic glutamate receptor synaptic plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 168:311-347. [PMID: 36868632 PMCID: PMC10392610 DOI: 10.1016/bs.irn.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Striking sex differences exist in presentation and incidence of several psychiatric disorders. For example, major depressive disorder is more prevalent in women than men, and women who develop alcohol use disorder progress through drinking milestones more rapidly than men. With regards to psychiatric treatment responses, women respond more favorably to selective serotonin reuptake inhibitors than men, whereas men have better outcomes when prescribed tricyclic antidepressants. Despite such well-documented biases in incidence, presentation, and treatment response, sex as a biological variable has long been neglected in preclinical and clinical research. An emerging family of druggable targets for psychiatric diseases, metabotropic glutamate (mGlu) receptors are G-protein coupled receptors broadly distributed throughout the central nervous system. mGlu receptors confer diverse neuromodulatory actions of glutamate at the levels of synaptic plasticity, neuronal excitability, and gene transcription. In this chapter, we summarize the current preclinical and clinical evidence for sex differences in mGlu receptor function. We first highlight basal sex differences in mGlu receptor expression and function and proceed to describe how gonadal hormones, notably estradiol, regulate mGlu receptor signaling. We then describe sex-specific mechanisms by which mGlu receptors differentially modulate synaptic plasticity and behavior in basal states and models relevant for disease. Finally, we discuss human research findings and highlight areas in need of further research. Taken together, this review emphasizes how mGlu receptor function and expression can differ across sex. Gaining a more complete understanding of how sex differences in mGlu receptor function contribute to psychiatric diseases will be critical in the development of novel therapeutics that are effective in all individuals.
Collapse
Affiliation(s)
- Carly B Fabian
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L Seney
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Max E Joffe
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Ibi D. Role of interaction of mGlu2 and 5-HT 2A receptors in antipsychotic effects. Pharmacol Biochem Behav 2022; 221:173474. [PMID: 36244526 DOI: 10.1016/j.pbb.2022.173474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The serotonergic and glutamatergic neurotransmitter systems have been implicated in the pathophysiology of schizophrenia, and increasing evidence shows that they interact functionally. Of note, the Gq/11-coupled serotonin 5-HT2A (5-HT2A) and the Gi/o-coupled metabotropic glutamate type 2 (mGlu2) receptors have been demonstrated to assemble into a functional heteromeric complex that modulates the function of each individual receptor. For conformation of the heteromeric complex, corresponding transmembrane-4 segment of 5-HT2A and mGlu2 are required. The 5-HT2A/mGlu2 heteromeric complex is necessary for the activation of Gq/11 proteins and for the subsequent increase in the levels of the intracellular messenger Ca2+. Furthermore, signaling via the heteromeric complex is dysregulated in the post-mortem brains of patients with schizophrenia, and could be linked to altered cortical function. From a behavioral perspective, this complex contributes to the hallucinatory and antipsychotic behaviors associated with 5-HT2A and mGlu2/3 agonists, respectively. Synaptic and epigenetic mechanisms have also been found to be significantly associated with the mGlu2/5-HT2A heteromeric complex. This review summarizes the role of crosstalk between mGlu2 and 5-HT2A in the mechanism of antipsychotic effects and introduces recent key advancements on this topic.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
12
|
Prenatal cyanuric acid exposure disrupts cognitive flexibility and mGluR1-mediated hippocampal long-term depression in male rats. Toxicol Lett 2022; 370:74-84. [PMID: 36152796 DOI: 10.1016/j.toxlet.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Cyanuric acid is one of the most widely used classes of industrial chemicals and is now well known as food adulterant and contaminant in pet food and infant formula. Previously, it was reported that animals prenatally exposed to cyanuric acid showed neurotoxic effects that impaired memory consolidating and suppressed long-term potentiation (LTP) in the hippocampus. However, it is not clear if prenatal exposure to cyanuric acid induces deficits in reversal learning and long-term depression (LTD), which is required for the developmental reorganization of synaptic circuits and updating learned behaviors. Here, pregnant rats were i.p. injected with cyanuric acid (20 mg/kg) during the whole of gestation, and male offspring were selected to examine the levels of hippocampal mGluR1 and mGluR2/3 in young adulthood. The LTD at the Schaffer collateral-CA1 pathway was induced by low-frequency stimulation (LFS) and recorded. Reversal learning and hippocampus-dependent learning strategy were tested in Morris-water maze (MWM) and T-maze tasks, respectively. To further confirm the potential mechanism, selective agonists of mGluR1 and mGluR2/3 and antagonists of mGluR were intra-hippocampal infused before behavioral and neuronal recording. We found the levels of alkaline phosphatase were markedly increased in the maternal placenta and fetal brain following prenatal exposure. The expression of mGluR1 but not mGluR2/3 was significantly decreased and mGluR1-mediated LTD was selectively weakened. Prenatal cyanuric acid impaired reversal learning ability, without changing place learning strategy. The mGluR1 agonist could effectively enhance LFS-induced LTD and mitigate reversal learning deficits. Meanwhile, the reductions in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-mediated spontaneous excitatory postsynaptic currents (sEPSCs) amplitude and frequency of cyanuric acid offspring were simultaneously alleviated by mGluR1 agonist infusions. Therefore, the results indicate the cognitive and synaptic impairments induced by prenatal cyanuric acid exposure are attributed to the disruption of the hippocampal mGluR1 signaling. Our findings provided the first evidence for the deteriorated effects of cyanuric acid on synaptic depression and advanced cognitive performance.
Collapse
|
13
|
Kholghi G, Eskandari M, Shokouhi Qare Saadlou MS, Zarrindast MR, Vaseghi S. Night shift hormone: How does melatonin affect depression? Physiol Behav 2022; 252:113835. [PMID: 35504318 DOI: 10.1016/j.physbeh.2022.113835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
Melatonin is the main hormone secreted by the pineal gland that modulates the circadian rhythm and mood. Previous studies have shown the therapeutic effects of melatonin, or its important analogue, agomelatine, on depression. In this review study, we aimed to discuss the potential mechanisms of melatonin involved in the treatment of depression. It was noted that disrupted circadian rhythm can lead to depressive state, and melatonin via regulating circadian rhythm shows a therapeutic effect. It was also noted that melatonin induces antidepressant effects via promoting antioxidant system and neurogenesis, and suppressing oxidative stress, neuroinflammation, and apoptosis. The interaction effect between melatonin or agomelatine and serotonergic signaling has a significant effect on depression. It was noted that the psychotropic effects of agomelatine are induced by the synergistic interaction between melatonin and 5-HT2C receptors. Agomelatine also interacts with glutamatergic signaling in brain regions involved in regulating mood and circadian rhythm. Interestingly, it was concluded that melatonin exerts both pro- and anti-inflammatory effects, depending on the grade of inflammation. It was suggested that synergistic interaction between melatonin and 5-HT2C receptors may be able to induce therapeutic effects on other psychiatric disorders. Furthermore, dualistic role of melatonin in regulating inflammation is an important point that can be examined at different levels of inflammation in animal models of depression.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
14
|
Budgett RF, Bakker G, Sergeev E, Bennett KA, Bradley SJ. Targeting the Type 5 Metabotropic Glutamate Receptor: A Potential Therapeutic Strategy for Neurodegenerative Diseases? Front Pharmacol 2022; 13:893422. [PMID: 35645791 PMCID: PMC9130574 DOI: 10.3389/fphar.2022.893422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/13/2023] Open
Abstract
The type 5 metabotropic glutamate receptor, mGlu5, has been proposed as a potential therapeutic target for the treatment of several neurodegenerative diseases. In preclinical neurodegenerative disease models, novel allosteric modulators have been shown to improve cognitive performance and reduce disease-related pathology. A common pathological hallmark of neurodegenerative diseases is a chronic neuroinflammatory response, involving glial cells such as astrocytes and microglia. Since mGlu5 is expressed in astrocytes, targeting this receptor could provide a potential mechanism by which neuroinflammatory processes in neurodegenerative disease may be modulated. This review will discuss current evidence that highlights the potential of mGlu5 allosteric modulators to treat neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, this review will explore the role of mGlu5 in neuroinflammatory responses, and the potential for this G protein-coupled receptor to modulate neuroinflammation.
Collapse
Affiliation(s)
- Rebecca F Budgett
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Sosei Heptares, Cambridge, United Kingdom
| |
Collapse
|
15
|
Khodagholi F, Maleki A, Motamedi F, Mousavi MA, Rafiei S, Moslemi M. Oxytocin Prevents the Development of 3-NP-Induced Anxiety and Depression in Male and Female Rats: Possible Interaction of OXTR and mGluR2. Cell Mol Neurobiol 2022; 42:1105-1123. [PMID: 33201416 PMCID: PMC11441245 DOI: 10.1007/s10571-020-01003-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/07/2020] [Indexed: 01/01/2023]
Abstract
Huntington disease (HD) is a progressive neurological disorder with dominant motor symptoms. It also has psychiatric manifestations, like anxiety and depression, that can emerge themselves before motor symptoms and impose a major burden on patients. Oxytocin (OXT) is a newly emerged treatment for disorders like autism and schizophrenia and recently is using to alleviate depression and anxiety. In the current study, we investigated the behavioral and molecular effects of OXT on the development of anxiety and depression in 3-nitropropionic acid (3-NP)-induced model of HD. Anxiety- and depression-like behaviors as well as the levels of oxytocin receptor (OXTR), metabotropic glutamate receptor (mGluR) 2, mGluR5, and glutathione (GSH) were measured in striatum, hippocampus, prefrontal cortex, and amygdala. Also, we questioned if sex had any modulatory effect. We found that 3-NP increased anxiety and depression compared to controls. It also reduced the levels of OXTR and mGluR2, increased mGluR5, and reduced GSH in studied brain regions. Pretreatment with OXT before the injection of 3-NP ameliorated anxiety and depression. Additionally, it protected the brain from developing low levels of OXTR, mGluR2, and GSH and high levels of mGluR5 in studied regions. The protective effects of OXT were similar between male and female animals. These data suggest that OXTR, mGluR2, mGluR5, and GSH may contribute to psychiatric manifestations of HD. In addition, pretreatment with OXT could prevent the mood changes in male and female rats.
Collapse
Affiliation(s)
- Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Rafiei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Moslemi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Stankiewicz A, Kaczorowska K, Bugno R, Kozioł A, Paluchowska MH, Burnat G, Chruścicka B, Chorobik P, Brański P, Wierońska JM, Duszyńska B, Pilc A, Bojarski AJ. New 1,2,4-oxadiazole derivatives with positive mGlu 4 receptor modulation activity and antipsychotic-like properties. J Enzyme Inhib Med Chem 2021; 37:211-225. [PMID: 34894953 PMCID: PMC8667925 DOI: 10.1080/14756366.2021.1998022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Considering the allosteric regulation of mGlu receptors for potential therapeutic applications, we developed a group of 1,2,4-oxadiazole derivatives that displayed mGlu4 receptor positive allosteric modulatory activity (EC50 = 282–656 nM). Selectivity screening revealed that they were devoid of activity at mGlu1, mGlu2 and mGlu5 receptors, but modulated mGlu7 and mGlu8 receptors, thus were classified as group III-preferring mGlu receptor agents. None of the compounds was active towards hERG channels or in the mini-AMES test. The most potent in vitro mGlu4 PAM derivative 52 (N-(3-chloro-4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)picolinamide) was readily absorbed after i.p. administration (male Albino Swiss mice) and reached a maximum brain concentration of 949.76 ng/mL. Five modulators (34, 37, 52, 60 and 62) demonstrated significant anxiolytic- and antipsychotic-like properties in the SIH and DOI-induced head twitch test, respectively. Promising data were obtained, especially for N-(4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)-3-methylphenyl)picolinamide (62), whose effects in the DOI-induced head twitch test were comparable to those of clozapine and better than those reported for the selective mGlu4 PAM ADX88178.
Collapse
Affiliation(s)
- Anna Stankiewicz
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Aneta Kozioł
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Maria H Paluchowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Burnat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Chruścicka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Paulina Chorobik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
17
|
Pan CH, Xia CY, Yan Y, Han Y, Shi R, He J, Wang ZX, Wang YM, Zhang WK, Xu JK. Loganin ameliorates depression-like behaviors of mice via modulation of serotoninergic system. Psychopharmacology (Berl) 2021; 238:3063-3070. [PMID: 34342673 DOI: 10.1007/s00213-021-05922-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE Depression is a serious neuropsychiatric disorder, which is characterized by sustaining mood disorders. Loganin, a major iridoid glycoside from Corni fructus, has a variety of pharmacological activities, including neuroprotective effect and hypnotic effect. However, little is known about the effects of loganin on stress-induced depression. OBJECTIVE To investigate the effects of loganin on behavioral despair of mice, and whether serotonin (5-HT) and/or noradrenaline (NE) are involved in this process. METHODS We tested the effectiveness of loganin using tail suspension test (TST). The possible mechanism was explored using reserpine-induced ptosis and hypothermia, and 5-HTP-induced head-twitch response in mice. The changes of 5-HT and NE in the prefrontal cortex, hippocampus, and striatum were measured through high-performance liquid chromatography (HPLC) analysis. Then, we identified the effects of depleting 5-HT and NE by PCPA (p-chlorophenylalanine) and DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride) pretreatment, respectively. RESULTS Loganin (12.5/50 mg/kg) induced antidepressant-like effects in mice submitted to TST. Loganin (12.5/50 mg/kg) ameliorated the reserpine-induced hypothermia and ptosis, as well as increased 5-HTP-induced head-twitch responses in mice. Loganin (50 mg/kg) significantly increased the levels of 5-HT in the prefrontal cortex, hippocampus, and striatum. Furthermore, only PCPA treatment could eliminate loganin-induced antidepressant-like effects in TST. CONCLUSION Loganin exerts antidepressant-like effect in the TST depending on 5-HT levels in the central nervous system, which provide a potential agent for depression therapy.
Collapse
Affiliation(s)
- Chen-Hao Pan
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yan Han
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Rui Shi
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ze-Xing Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
18
|
Tsotsokou G, Nikolakopoulou M, Kouvelas ED, Mitsacos A. Neonatal maternal separation affects metabotropic glutamate receptor 5 expression and anxiety-related behavior of adult rats. Eur J Neurosci 2021; 54:4550-4564. [PMID: 34137089 DOI: 10.1111/ejn.15358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023]
Abstract
Exposure to early life stress leads to long-term neurochemical and behavioral alterations. Stress-induced psychiatric disorders, such as depression, have recently been linked to dysregulation of glutamate signaling, mainly via its postsynaptic receptors. The role of metabotropic glutamate receptor 5 (mGluR5) in stress-induced psychopathology has been the target of several studies in humans. In rodents, blockade of mGluR5 produces antidepressant-like actions, whereas mice lacking mGluR5 exhibit altered anxiety-like behaviors and learning. In this study, we used well-known rodent models of early life stress based on mother-infant separation during the first 3 weeks of life in order to examine the effects of neonatal maternal separation on mGluR5 expression and on anxiety-related behavior in adulthood. We observed that brief (15 min) neonatal maternal separation, but not prolonged (3 h), induced increases in mGluR5 mRNA and protein expression levels in medial prefrontal cortex and mGluR5 protein levels in dorsal, but not ventral, hippocampus of adult rat brain. Behavioral testing using the open-field and the elevated-plus maze tasks showed that brief maternal separations resulted in increased exploratory and decreased anxiety-related behavior, whereas prolonged maternal separations resulted in increased anxiety-related behavior in adulthood. The data indicate that the long-lasting effects of neonatal mother-offspring separation on anxiety-like behavior and mGluR5 expression depend on the duration of maternal separation and suggest that the increased mGluR5 receptors in medial prefrontal cortex and hippocampus of adult rats exposed to brief neonatal maternal separations may underlie their heightened ability to cope with stress.
Collapse
Affiliation(s)
- Giota Tsotsokou
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| | - Maria Nikolakopoulou
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| | - Elias D Kouvelas
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| | - Ada Mitsacos
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| |
Collapse
|
19
|
Angarita GA, Hadizadeh H, Cerdena I, Potenza MN. Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother 2021; 22:1669-1683. [PMID: 34042556 DOI: 10.1080/14656566.2021.1931684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Major depressive disorder (MDD) and cocaine use disorder (CUD) are prevalent and frequently co-occur. When co-occurring, the presence of one disorder typically negatively impacts the prognosis for the other. Given the clinical relevance, we sought to examine pharmacotherapies for co-occurring CUD and MDD. While multiple treatment options have been examined in the treatment of each condition individually, studies exploring pharmacological options for their comorbidity are fewer and not conclusive.Areas Covered: For this review, the authors searched the literature in PubMed using clinical query options for therapies and keywords relating to each condition. Then, they described potentially promising pharmacologic therapeutic options based on shared mechanisms between the two conditions and/or results from individual clinical trials conducted to date.Expert opinion: Medications like stimulants, dopamine (D3) receptors partial agonists or antagonists, antagonists of kappa opioid receptors, topiramate, and ketamine could be promising as there is significant overlap relating to reward deficiency models, antireward pathways, and altered glutamatergic systems. However, the available clinical literature on any one of these types of agents is mixed. Additionally, for some agents there is possible concern related to abuse potential (e.g. ketamine and stimulants).
Collapse
Affiliation(s)
- Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Hasti Hadizadeh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ignacio Cerdena
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA.,Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University, New Haven, CT, USA.,Connecticut Council on Problem Gambling, Wethersfield, CT, USA
| |
Collapse
|
20
|
Olivero G, Vergassola M, Cisani F, Roggeri A, Pittaluga A. Presynaptic Release-regulating Metabotropic Glutamate Receptors: An Update. Curr Neuropharmacol 2021; 18:655-672. [PMID: 31775600 PMCID: PMC7457419 DOI: 10.2174/1570159x17666191127112339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors represent the largest family of glutamate receptors in mammals and act as fine tuners of the chemical transmission in central nervous system (CNS). In the last decade, results concerning the expression and the subcellular localization of mGlu receptors further clarified their role in physio-pathological conditions. Concomitantly, their pharmacological characterization largely improved thanks to the identification of new compounds (chemical ligands and antibodies recognizing epitopic sequences of the receptor proteins) that allowed to decipher the protein compositions of the naive receptors. mGlu receptors are expressed at the presynaptic site of chemical synapses. Here, they modulate intraterminal enzymatic pathways controlling the migration and the fusion of vesicles to synaptic membranes as well as the phosphorylation of colocalized receptors. Both the control of transmitter exocytosis and the phosphorylation of colocalized receptors elicited by mGlu receptors are relevant events that dictate the plasticity of nerve terminals, and account for the main role of presynaptic mGlu receptors as modulators of neuronal signalling. The role of the presynaptic mGlu receptors in the CNS has been the matter of several studies and this review aims at briefly summarizing the recent observations obtained with isolated nerve endings (we refer to as synaptosomes). We focus on the pharmacological characterization of these receptors and on their receptor-receptor interaction / oligo-dimerization in nerve endings that could be relevant to the development of new therapeutic approaches for the cure of central pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Genoa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
21
|
Qunies AM, Emmitte KA. Negative allosteric modulators of group II metabotropic glutamate receptors: A patent review (2015 - present). Expert Opin Ther Pat 2021; 31:687-708. [PMID: 33719801 DOI: 10.1080/13543776.2021.1903431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Group II metabotropic glutamate (mGlu) receptors have emerged as an attractive potential target for the development of novel CNS therapeutics in areas such as Alzheimer's disease (AD), anxiety, cognitive disorders, depression, and others. Several small molecules that act as negative allosteric modulators (NAMs) on these receptors have demonstrated efficacy and/or target engagement in animal models, and one molecule (decoglurant) has been advanced into clinical trials. AREAS COVERED This review summarizes patent applications published between January 2015 and November 2020. It is divided into three sections: (1) small molecule nonselective mGlu2/3 NAMs, (2) small molecule selective mGlu2 NAMs, and (3) small molecule selective mGlu3 NAMs. EXPERT OPINION Much progress has been made in the discovery of novel small molecule mGlu2 NAMs. Still, chemical diversity remains somewhat limited and room for expansion remains. Progress with mGlu3 NAMs has been more limited; however, some promising molecules have been disclosed. The process of elucidating the precise role of each receptor in the diseases associated with group II receptors has begun. Continued studies in animals with selective NAMs for both receptors will be critical in the coming years to inform researchers on the right compound profile and patient population for clinical development.
Collapse
Affiliation(s)
- Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
22
|
Strawn JR, Levine A. Treatment Response Biomarkers in Anxiety Disorders: From Neuroimaging to Neuronally-Derived Extracellular Vesicles and Beyond. Biomark Neuropsychiatry 2020; 3:100024. [PMID: 32974615 PMCID: PMC7508464 DOI: 10.1016/j.bionps.2020.100024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple and diverse psychotherapeutic or psychopharmacologic treatments effectively reduce symptoms for many patients with anxiety disorders, but the trajectory and magnitude of response vary considerably. This heterogeneity of treatment response has invigorated the search for biomarkers of treatment response in anxiety disorders, across the lifespan. In this review, we summarize evidence for biomarkers of treatment response in children, adolescents and adults with generalized, separation and social anxiety disorders as well as panic disorder. We then discuss the relationship between these biomarkers of treatment response and the pathophysiology of anxiety disorders. Finally, we provide context for treatment response biomarkers of the future, including neuronally-derived extracellular vesicles in anxiety disorders and discuss challenges that must be overcome prior to the debut of treatment response biomarkers in the clinic. A number of promising treatment response biomarkers have been identified, although there is an urgent need to replicate findings and to identify which biomarkers might guide clinicians in selecting from available treatments rather than just simply identifying patients who may be less likely to respond to a given intervention.
Collapse
Affiliation(s)
- Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience; Anxiety Disorders Research Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio
- Department of Pediatrics, Division of Child & Adolescent Psychiatry and Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Amir Levine
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY
| |
Collapse
|
23
|
Ebrahimi-Ghiri M, Khakpai F, Zarrindast MR. Combined treatment of scopolamine and group III mGluR antagonist, CPPG, exerts antidepressant activity without affecting anxiety-related behaviors. Physiol Behav 2020; 224:113034. [DOI: 10.1016/j.physbeh.2020.113034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
|
24
|
Zhang X, Wang D, Zhang B, Zhu J, Zhou Z, Cui L. Regulation of microglia by glutamate and its signal pathway in neurodegenerative diseases. Drug Discov Today 2020; 25:1074-1085. [PMID: 32320851 DOI: 10.1016/j.drudis.2020.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Microglia are an essential component of the central nervous system (CNS) and are involved in the primary response to microorganisms, neuroinflammation, homeostasis, and tissue regeneration, as well as contributing to the pathogenesis of neurodegenerative diseases. Research has shown that microglial diversity, multifunctionality, and their relationship with glutamate are crucial to determining their roles in these diseases. In this review, we focus on recent progress in determining microglial characteristics and the role of glutamate and its receptors in microglia regulation, which could be a novel therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Dan Wang
- Department of Ophthalmology, the First Hospital of Jilin University, Changchun, China.
| | - Bo Zhang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden; Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Zhulin Zhou
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
25
|
Nasir M, Trujillo D, Levine J, Dwyer JB, Rupp ZW, Bloch MH. Glutamate Systems in DSM-5 Anxiety Disorders: Their Role and a Review of Glutamate and GABA Psychopharmacology. Front Psychiatry 2020; 11:548505. [PMID: 33329087 PMCID: PMC7710541 DOI: 10.3389/fpsyt.2020.548505] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Serotonin reuptake inhibitors and benzodiazepines are evidence-based pharmacological treatments for Anxiety Disorders targeting serotonin and GABAergic systems, respectively. Although clearly effective, these medications fail to improve anxiety symptoms in a significant proportion of patients. New insights into the glutamate system have directed attention toward drugs that modulate glutamate as potential alternative treatments for anxiety disorders. Here we summarize the current understanding of the potential role of glutamate neurotransmission in anxiety disorders and highlight specific glutamate receptors that are potential targets for novel anxiety disorder treatments. We also review clinical trials of medications targeting the glutamate system in DSM-5 anxiety disorders. Understanding the role of the glutamate system in the pathophysiology of anxiety disorder may aid in developing novel pharmacological agents that are effective in treating anxiety disorders.
Collapse
Affiliation(s)
- Madeeha Nasir
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel Trujillo
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Jessica Levine
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Jennifer B Dwyer
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Yale Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Zachary W Rupp
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Frank H. Netter School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Michael H Bloch
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Yale Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
26
|
Gruenbaum BF, Kutz R, Zlotnik A, Boyko M. Blood glutamate scavenging as a novel glutamate-based therapeutic approach for post-stroke depression. Ther Adv Psychopharmacol 2020; 10:2045125320903951. [PMID: 32110376 PMCID: PMC7026819 DOI: 10.1177/2045125320903951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Post-stroke depression (PSD) is a major complication of stroke that significantly impacts functional recovery and quality of life. While the exact mechanism of PSD is unknown, recent attention has focused on the association of the glutamatergic system in its etiology and treatment. Minimizing secondary brain damage and neuropsychiatric consequences associated with excess glutamate concentrations is a vital part of stroke management. The blood glutamate scavengers, oxaloacetate and pyruvate, degrade glutamate in the blood to its inactive metabolite, 2-ketoglutarate, by the coenzymes glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT), respectively. This reduction in blood glutamate concentrations leads to a subsequent shift of glutamate down its concentration gradient from the blood to the brain, thereby decreasing brain glutamate levels. Although there are not yet any human trials that support blood glutamate scavengers for clinical use, there is increasing evidence from animal research of their efficacy as a promising new therapeutic approach for PSD. In this review, we present recent evidence in the literature of the potential therapeutic benefits of blood glutamate scavengers for reducing PSD and other related neuropsychiatric conditions. The evidence reviewed here should be useful in guiding future clinical trials.
Collapse
Affiliation(s)
- Benjamin F Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruslan Kutz
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Zlotnik
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matthew Boyko
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
27
|
Dal Prà I, Armato U, Chiarini A. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Front Pharmacol 2019; 10:1282. [PMID: 31719824 PMCID: PMC6826475 DOI: 10.3389/fphar.2019.01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD. This review updates the available knowledge about the roles of GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/LOAD onset and progression, taking stock of their respective mechanisms of action and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders a pathological signaling that crucially promotes the surplus synthesis and release of Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. Altogether these effects progressively kill human cortical neurons in vitro and likely also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic benefits in AD patients. Further basic and clinical investigations on these hot topics are needed taking always heed that activation of the several brain family C GPCRs may elicit divergent upshots according to the models studied.
Collapse
Affiliation(s)
- Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| |
Collapse
|
28
|
Abstract
Abnormalities of glutamatergic transmission are implicated in neuropsychiatric disorders. Among the glutamate receptors, metabotropic (mGlu) 2/3 receptors have recently gained much attention as molecular targets for the treatment of several neuropsychiatric disorders including depression and anxiety. Both orthosteric and allosteric antagonists of mGlu2/3 receptors have been synthesized, and their therapeutic potential has been examined. These research activities have demonstrated the promise of mGlu2/3 receptor antagonists as potential treatment agents for the above-mentioned neuropsychiatric disorders. In particular, it has been considered that the antidepressant effects of mGlu2/3 receptor antagonists are worthy of pursuing, since the antidepressant profiles as well as synaptic/neural mechanisms involved in the actions of mGlu2/3 receptor antagonists are similar to those of ketamine, which has been demonstrated to show potent, rapid and sustained efficacy in patients with depression, even those resistant to the conventionally prescribed antidepressants. In this chapter, the general pharmacology of mGlu2/3 receptor antagonists and their therapeutic potential are reviewed. In particular, I focus on the usefulness of mGlu2/3 receptor antagonists as novel antidepressants, in comparison with ketamine.
Collapse
|
29
|
Pharmacological evidence for the relationship between the NMDA receptor and nitric oxide pathway and the antidepressant-like effects of glucagon-like peptide-2 in the mouse forced-swim test. Behav Brain Res 2019; 364:162-166. [PMID: 30779973 DOI: 10.1016/j.bbr.2019.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that glucagon-like peptide-2 (GLP-2) exerted antidepressant-like effects in mice. The aim of the present study was to investigate the relationship between N-methyl-D-aspartate (NMDA) receptor-nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway and the antidepressant-like effects of GLP-2 in the forced-swim test (FST) in mice. Intracerebroventricularly administered GLP-2 (3 μg/mouse) decreased the immobility time in the FST. The pretreatment of mice with l-arginine (750 mg/kg, i.p.), a substrate for nitric oxide synthase, sildenafil (5 mg/kg, i.p.), a phosphodiesterase 5 inhibitor, or d-serine (300 mg/kg, i.p.), a NMDA receptor co-agonist, inhibited the antidepressant-like effects of GLP-2 (3 μg/mouse) in the FST. Meanwhile, l-nitroarginine methyl ester (10 mg/kg, i.p.), a non-specific nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (30 mg/kg, i.p.), a neuronal NOS inhibitor, methylene blue (10 mg/kg, i.p.), an inhibitor of both NOS and soluble guanylate cyclase (sGC), ODQ (30 pmol/site, i.c.v.), a sGC inhibitor, or MK-801 (0.05 mg/kg, i.p.), an NMDA receptor antagonist, in combination with a sub-effective dose of GLP-2 (1.5 μg/mouse) also decreased the immobility time in the FST. The present study provided evidence for the synergistic antidepressant-like effects of GLP-2 and inhibition of the NMDA receptor-l-arginine-NO-cGMP pathway in the FST, thereby contributing to our understanding of the mechanisms underlying the antidepressant-like effects of GLP-2.
Collapse
|
30
|
Chung G, Kim SJ, Kim SK. Metabotropic Glutamate Receptor 5 in the Medial Prefrontal Cortex as a Molecular Determinant of Pain and Ensuing Depression. Front Mol Neurosci 2018; 11:376. [PMID: 30349459 PMCID: PMC6186831 DOI: 10.3389/fnmol.2018.00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/21/2018] [Indexed: 12/27/2022] Open
Abstract
Pain and depression affect one another, and this bidirectional interaction implies the existence of common or interacting neural pathways. Among the neural circuits relevant to negative affection, the medial prefrontal cortex (mPFC) is known to be involved in both pain and depression. Persistent stress from physical pain and mental distress can evoke maladaptive changes in mPFC circuits to induce depression. Conversely, the unpleasant mood condition alters mPFC circuits to distort the appraisal of aversion and make individuals vulnerable to pain. In this article, recent findings regarding mPFC in chronic pain and/or depression are reviewed, with particular focus on the metabotropic glutamate receptor 5 (mGluR5). Although the involvement of mGluR5 within the mPFC in both pain and depressive disorders has been extensively studied, there are controversies regarding changes in the activity of the mPFC during chronic pain and depression, and the functional roles of mGluR5 on altered mPFC activity. We discuss alterations in the availability of mGluR5 in the mPFC in these disorders, its role in behavioral manifestations, and its possible influence on cellular subpopulations that mediate dysfunction in the mPFC. We also propose molecular mechanisms that may cause expressional changes in mGluR5 within the mPFC circuitry.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
31
|
Jantas D, Lech T, Gołda S, Pilc A, Lasoń W. New evidences for a role of mGluR7 in astrocyte survival: Possible implications for neuroprotection. Neuropharmacology 2018; 141:223-237. [PMID: 30170084 DOI: 10.1016/j.neuropharm.2018.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/14/2018] [Accepted: 08/26/2018] [Indexed: 01/18/2023]
Abstract
A specific activation of metabotropic glutamate receptor 7 (mGluR7) has been shown to be neuroprotective in various models of neuronal cell damage, however, its role in glia cell survival has not been studied, yet. Thus, we performed comparative experiments estimating protective effects of the mGluR7 allosteric agonist AMN082 in glia, neuronal and neuronal-glia cell cultures against various harmful stimuli. First, the transcript levels of mGluR7 and other subtypes of group II and III mGluRs in cortical neuronal, neuronal-glia and glia cell cultures have been measured by qPCR method. Next, we demonstrated that AMN082 with similar efficiency attenuated the glia cell damage evoked by staurosporine (St) and doxorubicin (Dox). The AMN082-mediated glioprotection was mGluR7-dependent and associated with decreased DNA fragmentation without involvement of caspase-3 inhibition. Moreover, the inhibitors of PI3K/Akt and MAPK/ERK1/2 pathways blocked the protective effect of AMN082. In neuronal and neuronal-glia cell cultures in the model of glutamate (Glu)- but not St-evoked cell damage, we showed a significant glia contribution to mGluR7-mediated neuroprotection. Finally, by using glia and neuronal cells derived from mGluR7+/+ and mGluR7-/- mice we demonstrated a higher cell-damaging effect of St and Dox in mGluR7-deficient glia but not in neurons (cerebellar granule cells). Our present data showed for the first time a glioprotective potential of AMN082 underlain by mechanisms involving the activation of PI3K/Akt and MAPK/ERK1/2 pathways and pro-survival role of mGluR7 in glia cells. These findings together with the confirmed neuroprotective properties of AMN082 justify further research on mGluR7-targeted therapies for various CNS disorders.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland.
| | - Tomasz Lech
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Sławomir Gołda
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| |
Collapse
|
32
|
Podkowa K, Pilc A, Podkowa A, Sałat K, Marciniak M, Pałucha-Poniewiera A. The potential antidepressant action and adverse effects profile of scopolamine co-administered with the mGlu7 receptor allosteric agonist AMN082 in mice. Neuropharmacology 2018; 141:214-222. [PMID: 30145321 DOI: 10.1016/j.neuropharm.2018.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 02/07/2023]
Abstract
Scopolamine, a muscarinic cholinergic receptor antagonist, exerts fast and prolonged antidepressant effects in the clinic. In contrast, the current treatments for major depressive disorder (MDD) require long-term drug administration. On the other hand, the sole use of scopolamine might be related to the high risk of adverse effects. Therefore, it may be preferable to reduce its therapeutic dose. A new approach might include the co-administration of low-dose scopolamine with selected ligands of metabotropic glutamate (mGlu) receptors, which are known to possess antidepressant-like activity in several rodent tests and models of depression. The aim of the present study was to evaluate the potential antidepressant activity of low-dose scopolamine combined with an allosteric agonist of mGlu7 receptors, AMN082 in C57BL/6 mice. It was found that the combination of scopolamine (0.1 mg/kg) and AMN082 (1 mg/kg) exerted significant antidepressant-like effects in the tail suspension test (TST), but these effects were not observed in the mGlu7-/- mice. Furthermore, low-dose AMN082 co-administered with low-doses scopolamine (0.03 and 0.1 mg/kg) induced antidepressant-like activity in the forced swim test (FST) in mice. The tested compounds did not affect locomotor activity and did not impair spatial memory in the Morris water maze (MWM) test or motor coordination in the rotarod test. The results strongly indicated that there is an enhanced antidepressant-like action of scopolamine by AMN082. Co-administration of scopolamine with AMN082 might be a new strategy with better efficacy and a lower risk of adverse effects compared with the sole use of scopolamine or AMN082.
Collapse
Affiliation(s)
- Karolina Podkowa
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland; Jagiellonian University Medical College, Faculty of Health Sciences, Department of Drug Management, Grzegórzecka Street 20, 31-531, Kraków, Poland
| | - Adrian Podkowa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, 30-688, Krakow, Medyczna Street 9, Poland
| | - Kinga Sałat
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, 30-688, Krakow, Medyczna Street 9, Poland
| | - Marcin Marciniak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland
| | - Agnieszka Pałucha-Poniewiera
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland.
| |
Collapse
|
33
|
Yang J, Zhang M, Ahn H, Zhang Q, Jin TB, Li I, Nemesure M, Joshi N, Jiang H, Miller JM, Ogden RT, Petkova E, Milak MS, Sublette ME, Sullivan GM, Trivedi MH, Weissman M, McGrath PJ, Fava M, Kurian BT, Pizzagalli DA, Cooper CM, McInnis M, Oquendo MA, Mann JJ, Parsey RV, DeLorenzo C. Development and evaluation of a multimodal marker of major depressive disorder. Hum Brain Mapp 2018; 39:4420-4439. [PMID: 30113112 DOI: 10.1002/hbm.24282] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
This study aimed to identify biomarkers of major depressive disorder (MDD), by relating neuroimage-derived measures to binary (MDD/control), ordinal (severe MDD/mild MDD/control), or continuous (depression severity) outcomes. To address MDD heterogeneity, factors (severity of psychic depression, motivation, anxiety, psychosis, and sleep disturbance) were also used as outcomes. A multisite, multimodal imaging (diffusion MRI [dMRI] and structural MRI [sMRI]) cohort (52 controls and 147 MDD patients) and several modeling techniques-penalized logistic regression, random forest, and support vector machine (SVM)-were used. An additional cohort (25 controls and 83 MDD patients) was used for validation. The optimally performing classifier (SVM) had a 26.0% misclassification rate (binary), 52.2 ± 1.69% accuracy (ordinal) and r = .36 correlation coefficient (p < .001, continuous). Using SVM, R2 values for prediction of any MDD factors were <10%. Binary classification in the external data set resulted in 87.95% sensitivity and 32.00% specificity. Though observed classification rates are too low for clinical utility, four image-based features contributed to accuracy across all models and analyses-two dMRI-based measures (average fractional anisotropy in the right cuneus and left insula) and two sMRI-based measures (asymmetry in the volume of the pars triangularis and the cerebellum) and may serve as a priori regions for future analyses. The poor accuracy of classification and predictive results found here reflects current equivocal findings and sheds light on challenges of using these modalities for MDD biomarker identification. Further, this study suggests a paradigm (e.g., multiple classifier evaluation with external validation) for future studies to avoid nongeneralizable results.
Collapse
Affiliation(s)
- Jie Yang
- Department of Family, Population and Preventive Medicine, Stony Brook University, New York, New York
| | - Mengru Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York
| | - Hongshik Ahn
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York
| | - Qing Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York
| | - Tony B Jin
- Department of Psychiatry, Stony Brook University, New York, New York
| | - Ien Li
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Matthew Nemesure
- Integrative Neuroscience Program, Binghamton University, Binghamton, New York
| | - Nandita Joshi
- Department of Electrical and Computer Engineering, Stony Brook University, New York, New York
| | - Haoran Jiang
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York
| | - Jeffrey M Miller
- Department of Psychiatry, Columbia University, New York, New York
| | | | - Eva Petkova
- Department of Child & Adolescent Psychiatry, Department of Population Health, New York University, New York, New York
| | - Matthew S Milak
- Department of Psychiatry, Columbia University, New York, New York
| | | | - Gregory M Sullivan
- Chief Medical Officer, Clinical Research and Development program, Tonix Pharmaceuticals, Inc., New York, New York
| | - Madhukar H Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Myrna Weissman
- Department of Psychiatry, Columbia University, New York, New York
| | | | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Benji T Kurian
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Crystal M Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melvin McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Maria A Oquendo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph John Mann
- Department of Psychiatry, Columbia University, New York, New York
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook University, New York, New York
| | | |
Collapse
|
34
|
Esterlis I, Holmes SE, Sharma P, Krystal JH, DeLorenzo C. Metabotropic Glutamatergic Receptor 5 and Stress Disorders: Knowledge Gained From Receptor Imaging Studies. Biol Psychiatry 2018; 84:95-105. [PMID: 29100629 PMCID: PMC5858955 DOI: 10.1016/j.biopsych.2017.08.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022]
Abstract
The metabotropic glutamatergic receptor subtype 5 (mGluR5) may represent a promising therapeutic target for stress-related psychiatric disorders. Here, we describe mGluR5 findings in stress disorders, particularly major depressive disorder (MDD), highlighting insights from positron emission tomography studies. Positron emission tomography studies report either no differences or lower mGluR5 in MDD, potentially reflecting MDD heterogeneity. Unlike the rapidly acting glutamatergic agent ketamine, mGluR5-specific modulation has not yet shown antidepressant efficacy in MDD and bipolar disorder. Although we recently showed that ketamine may work, in part, through significant mGluR5 modulation, the specific role of mGluR5 downregulation in ketamine's antidepressant response is unclear. In contrast to MDD, there has been much less investigation of mGluR5 in bipolar disorder, yet initial studies indicate that mGluR5-specific treatments may aid in both depressed and manic mood states. The direction of modulation needed may be state dependent, however, limiting clinical feasibility. There has been relatively little study of posttraumatic stress disorder or obsessive-compulsive disorder to date, although there is evidence for the upregulation of mGluR5 in these disorders. However, while antagonism of mGluR5 may reduce fear conditioning, it may also reduce fear extinction. Therefore, studies are needed to determine the role mGluR5 modulation might play in the treatment of these conditions. Further challenges in modulating this prevalent neurotransmitter system include potential induction of significant side effects. As such, more research is needed to identify level and type (positive/negative allosteric modulation or full antagonism) of mGluR5 modulation required to translate existing knowledge into improved therapies.
Collapse
Affiliation(s)
- Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, Connecticut; US Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veteran's Affairs Connecticut Healthcare System, West Haven, Connecticut.
| | | | - Priya Sharma
- Department of Psychiatry, Schulich School of Medicine and Dentistry; Western University- London, Ontario, Canada; London Health Sciences Centre- Victoria Hospital
| | - John H. Krystal
- Yale University, Department of Psychiatry,Yale University, Department of Neuroscience,U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Christine DeLorenzo
- Stony Brook University, Department of Psychiatry,Stony Brook University, Department of Biomedical Engineering
| |
Collapse
|
35
|
Wang CC, Kuo JR, Huang SK, Wang SJ. Metabotropic glutamate 7 receptor agonist AMN082 inhibits glutamate release in rat cerebral cortex nerve terminal. Eur J Pharmacol 2018; 823:11-18. [PMID: 29378190 DOI: 10.1016/j.ejphar.2018.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
AMN082 is a selective metabotropic glutamate mGlu7 receptor agonist reported to exhibit antidepressant activity. Considering that excessive glutamate release is involved in the pathogenesis of depression, the effect of N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082) on glutamate release in rat cerebrocortical nerve terminals and the possible underlying mechanism were investigated. In this study, we observed here that AMN082 inhibited 4-aminopyridine-evoked glutamate release and this phenomenon was blocked by the metabotropic glutamate mGlu7 receptor antagonist MMPIP. Moreover, western blot analysis and immunocytochemistry confirmed the presence of presynaptic metabotropic glutamate mGlu7 receptor proteins. The effect of AMN082 on the 4-aminopyridine-evoked release of glutamate was prevented by chelating the extracellular Ca2+ ions and the vesicular transporter inhibitor; however, the effect of AMN082 was unaffected by the glutamate transporter inhibitor. AMN082 reduced the elevation of 4-aminopyridine-evoked intrasynaptosomal Ca2+ concentration, but did not alter the synaptosomal membrane potential. In the presence of the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker, the adenylate cyclase inhibitor, and the protein kinase A inhibitor, the action of AMN082 on the 4-aminopyridine-evoked glutamate release was markedly reduced. These results suggest that the activation of the metabotropic glutamate mGlu7 receptors by AMN082 reduces adenylate cyclase/protein kinase A activation, which subsequently reduces the entry of Ca2+ through voltage-dependent Ca2+ channels and decreases evoked glutamate release. Additionally, fluoxetine, a clinically effective antidepressant, completely occluded the inhibitory effect of AMN082 on glutamate release, thus indicating the existence of a common intracellular mechanism for these two compounds to inhibit glutamate release from the cerebrocortical nerve terminals.
Collapse
Affiliation(s)
- Che Chuan Wang
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan, ROC; Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan, ROC
| | - Jinn Rung Kuo
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan, ROC; Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan, ROC
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan, ROC
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, No. 510, Chung-Cheng Rd., Hsin-Chuang, New Taipei 24205, Taiwan, ROC; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, ROC.
| |
Collapse
|
36
|
Perrot-Minnot MJ, Banchetry L, Cézilly F. Anxiety-like behaviour increases safety from fish predation in an amphipod crustacea. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171558. [PMID: 29308271 PMCID: PMC5750038 DOI: 10.1098/rsos.171558] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Anxiety is an emotional state generally expressed as sustained apprehension of the environment and elevated vigilance. It has been widely reported in vertebrates and, more recently, in a few invertebrate species. However, its fitness value remains elusive. We investigated anxiety-like behaviour and its consequences in an amphipod crustacean, using electric shock as aversive stimuli, and pharmacological assays. An anxiety-like state induced by electric shocks in Gammarus fossarum was expressed through increased sheltering behaviour in the absence of predation risk, thereby showing the pervasive nature of such behavioural response. Increasing the number of electric shocks both increased refuge use and delayed behavioural recovery. The behavioural effect of electric shock was mitigated by pre-treatment with LY354740, a metabotropic glutamate receptor group II/III agonist. Importantly, we found that this modulation of decision-making under an anxiety-like state resulted in an increased survival to predation in microcosm experiments. This study confirms the interest in taking an evolutionary view to the study of anxiety and calls for further investigation on the costs counterbalancing the survival benefit of an elevated anxiety level evidenced here.
Collapse
|
37
|
Engers JL, Bollinger KA, Weiner RL, Rodriguez AL, Long MF, Breiner MM, Chang S, Bollinger SR, Bubser M, Jones CK, Morrison RD, Bridges TM, Blobaum AL, Niswender CM, Conn PJ, Emmitte KA, Lindsley CW. Design and Synthesis of N-Aryl Phenoxyethoxy Pyridinones as Highly Selective and CNS Penetrant mGlu 3 NAMs. ACS Med Chem Lett 2017; 8:925-930. [PMID: 28947938 DOI: 10.1021/acsmedchemlett.7b00249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/15/2017] [Indexed: 01/17/2023] Open
Abstract
Herein, we detail the optimization of the mGlu3 NAM, VU0650786, via a reductionist approach to afford a novel, simplified mGlu3 NAM scaffold that engenders potent and selective mGlu3 inhibition (mGlu3 IC50 = 245 nM, mGlu2 IC50 > 30 μM) with excellent central nervous system penetration (rat brain/plasma Kp = 1.2, Kp,uu = 0.40). Moreover, this new chemotype, exemplified by VU6010572, requires only four synthetic steps and displays improved physiochemical properties and in vivo efficacy in a mouse tail suspension test (MED = 3 mg/kg i.p.).
Collapse
Affiliation(s)
- Julie L. Engers
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Katrina A. Bollinger
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Rebecca L. Weiner
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Madeline F. Long
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Megan M. Breiner
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sean R. Bollinger
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael Bubser
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Ryan D. Morrison
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
38
|
Chung G, Kim CY, Yun YC, Yoon SH, Kim MH, Kim YK, Kim SJ. Upregulation of prefrontal metabotropic glutamate receptor 5 mediates neuropathic pain and negative mood symptoms after spinal nerve injury in rats. Sci Rep 2017; 7:9743. [PMID: 28851991 PMCID: PMC5575341 DOI: 10.1038/s41598-017-09991-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022] Open
Abstract
Patients with chronic pain easily accompany the negative mood symptoms such as depression and anxiety, and these disturbances in turn affect the aversive perception of pain. However, the underlying mechanisms are largely unknown. We hypothesized that the alteration of metabotropic glutamate receptor 5 (mGluR5) in the brain region underlies such a comorbidity of aversive states. We scanned the brain of chronic neuropathic pain model rats using positron emission tomography (PET) technique with an mGluR5-selective radiotracer [11C] ABP688 and found various brain regions with higher or lower level of mGluR5 compared to control rats. Among the brain areas, a prominent upregulation of mGluR5 was shown in the prelimbic region (PrL) of the medial prefrontal cortex (mPFC) of chronic neuropathic pain animals. A pharmacological blockade of upregulated mGluR5 in the PrL ameliorated the negative symptoms including tactile hypersensitivity and depressive-like behavior, which relieved the subjects from the unpleasant state of chronic neuropathic pain condition. Conversely, lentiviral overexpression of the mGluR5 in the PrL of naïve rats successfully induced comorbid pain and negative moods. Our data provide deeper insight into the shared mechanism of pain perception and negative emotions, identifying a therapeutic target for the treatment of chronic pain and mood disorders.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chae Young Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yeong-Chan Yun
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Ho Yoon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Myoung-Hwan Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Reduced Vesicular Acetylcholine Transporter favors antidepressant behaviors and modulates serotonin and dopamine in female mouse brain. Behav Brain Res 2017; 330:127-132. [DOI: 10.1016/j.bbr.2017.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/07/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022]
|
40
|
Lee KM, Coelho MA, Sern KR, Class MA, Bocz MD, Szumlinski KK. Anxiolytic effects of buspirone and MTEP in the Porsolt Forced Swim Test. CHRONIC STRESS 2017; 1. [PMID: 28884167 PMCID: PMC5584874 DOI: 10.1177/2470547017712985] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditionally, a reduction in floating behavior or immobility in the Porsolt forced swim
test is employed as a predictor of anti-depressant efficacy. However, over the past
several years, our studies of alcohol withdrawal-induced negative affect consistently
indicate the coincidence of increased anxiety-related behaviors on various behavioral
tests with reduced immobility in the forced swim test. Further, this
behavioral profile correlates with increased mGlu5 protein expression within limbic brain
regions. As the role for mGlu5 in anxiety is well established, we hypothesized that the
reduced immobility exhibited by alcohol-withdrawn mice when tested in the forced swim test
might reflect anxiety, possibly a hyper-reactivity to the acute swim stressor. Herein, we
evaluated whether or not the decreased forced swim test immobility during alcohol
withdrawal responds to systemic treatment with a behaviorally effective dose of the
prototypical anxiolytic, buspirone (5 mg/kg). We also determined the functional relevance
of the withdrawal-induced increase in mGlu5 expression for forced swim test behavior by
comparing the effects of buspirone to a behaviorally effective dose of the mGlu5 negative
allosteric modulator MTEP (3 mg/kg). Adult male C57BL/6J mice were subjected to a 14-day,
multi-bottle, binge-drinking protocol that elicits hyper-anxiety and increases
glutamate-related protein expression during early withdrawal. Control animals received
only water. At 24-h withdrawal, animals from each drinking condition were subdivided into
groups and treated with an intraperitoneal injection of buspirone, MTEP, or vehicle,
30 min prior to the forced swim test. Drug effects on general locomotor activity were also
assessed. As we reported previously, alcohol-withdrawn animals exhibited significantly
reduced immobility in the forced swim test compared to water controls. Both buspirone and
MTEP significantly increased immobility in alcohol-withdrawn animals, with a modest
increase also seen in water controls. No significant group differences were observed for
locomotor activity, indicating that neither anxiolytic was sedating. These results provide
predictive validity for increased swimming/reduced immobility in the forced swim test as a
model of anxiety and provide novel evidence in favor of mGlu5 inhibition as an effective
therapeutic strategy for treating hyper-anxiety during alcohol withdrawal.
Collapse
Affiliation(s)
- Kaziya M Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Kimberly R Sern
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - MacKayla A Class
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Mark D Bocz
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9625
| |
Collapse
|
41
|
Metabotropic Glutamate Receptor 5 and Glutamate Involvement in Major Depressive Disorder: A Multimodal Imaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:449-456. [PMID: 28993818 DOI: 10.1016/j.bpsc.2017.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Preclinical and postmortem studies have implicated the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of major depressive disorder (MDD). The goal of the present study was to determine the role of mGluR5 in a large group of individuals with MDD compared to healthy controls (HC) in vivo with [18F]FPEB and positron emission tomography (PET). Furthermore, we sought to determine the role glutamate plays on mGluR5 availability in MDD. METHODS Sixty-five participants (30 MDD and 35 HC) completed [18F]FPEB PET to estimate the primary outcome measure - mGluR5 volume of distribution (VT), and the secondary outcome measure - mGluR5 distribution volume ratio (DVR). A subgroup of 39 participants (16 MDD and 23 HC) completed proton magnetic resonance spectroscopy (1H MRS) to estimate anterior cingulate (ACC) glutamate, glutamine, and Glx (glutamate + glutamine) levels relative to creatine (Cr). RESULTS No significant between-group differences were observed in mGluR5 VT or DVR. Compared to HC, individuals with MDD had higher ACC glutamate, glutamine, and Glx levels. Importantly, the ACC mGluR5 DVR negatively correlated with glutamate/Cr and Glx/Cr levels. CONCLUSIONS In this novel in vivo examination, we show an inverse relationship between mGluR5 availability and glutamate levels. These data highlight the need to further investigate the role of glutamatergic system in depression.
Collapse
|
42
|
Nutsch VL, Bell MR, Will RG, Yin W, Wolfe A, Gillette R, Dominguez JM, Gore AC. Aging and estradiol effects on gene expression in the medial preoptic area, bed nucleus of the stria terminalis, and posterodorsal medial amygdala of male rats. Mol Cell Endocrinol 2017; 442:153-164. [PMID: 28007657 PMCID: PMC5276730 DOI: 10.1016/j.mce.2016.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
Studies on the role of hormones in male reproductive aging have traditionally focused on testosterone, but estradiol (E2) also plays important roles in the control of masculine physiology and behavior. Our goal was to examine the effects of E2 on the expression of genes selected for E2-sensitivity, involvement in behavioral neuroendocrine functions, and impairments with aging. Mature adult (MAT, 5 mo) and aged (AG, 18 mo) Sprague-Dawley male rats were castrated, implanted with either vehicle or E2 subcutaneous capsules, and euthanized one month later. Bilateral punches were taken from the bed nucleus of the stria terminalis (BnST), posterodorsal medial amygdala (MePD) and the preoptic area (POA). RNA was extracted, and expression of 48 genes analyzed by qPCR using Taqman low-density arrays. Results showed that effects of age and E2 were age- and region-specific. In the POA, 5 genes were increased with E2 compared to vehicle, and there were no age effects. By contrast the BnST showed primarily age-related changes, with 6 genes decreasing with age. The MePD had 5 genes that were higher in aged than mature males, and 17 genes with significant interactions between age and E2. Gene families identified in the MePD included nuclear hormone receptors, neurotransmitters and neuropeptides and their receptors. Ten serum hormones were assayed in these same males, with results revealing both age- and E2-effects, in several cases quite profound. These results support the idea that the male brain continues to be highly sensitive to estradiol even with aging, but the nature of the response can be substantially different in mature and aging animals.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Margaret R Bell
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Wolfe
- Johns Hopkins University School of Medicine, Baltimore, MD, 21298, USA
| | - Ross Gillette
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
43
|
Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Metabotropic Glutamate Receptor 7: From Synaptic Function to Therapeutic Implications. Curr Neuropharmacol 2017; 14:504-13. [PMID: 27306064 PMCID: PMC4983754 DOI: 10.2174/1570159x13666150716165323] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 11/22/2022] Open
Abstract
Metabotropic glutamate receptor 7 (mGluR7) is localized presynaptically at the active zone of neurotransmitter release. Unlike mGluR4 and mGluR8, which share mGluR7's presynaptic location, mGluR7 shows low affinity for glutamate and is activated only by high glutamate concentrations. Its wide distribution in the central nervous system (CNS) and evolutionary conservation across species suggest that mGluR7 plays a primary role in controlling excitatory synapse function. High mGluR7 expression has been observed in several brain regions that are critical for CNS functioning and are involved in neurological and psychiatric disorder development. Until the recent discovery of selective ligands for mGluR7, techniques to elucidate its role in neural function were limited to the use of knockout mice and gene silencing. Studies using these two techniques have revealed that mGluR7 modulates emotionality, stress and fear responses. N,N`-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) was reported as the first selective mGluR7 allosteric agonist. Pharmacological effects of AMN082 have not completely confirmed the mGluR7-knockout mouse phenotype; this has been attributed to rapid receptor internalization after drug treatment and to the drug's apparent lack of in vivo selectivity. Therefore, the more recently developed mGluR7 negative allosteric modulators (NAMs) are crucial for understanding mGluR7 function and for exploiting its potential as a target for therapeutic interventions. This review presents the main findings regarding mGluR7's effect on modulation of synaptic function and its role in normal CNS function and in models of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
44
|
Reis AS, Pinz M, Duarte LFB, Roehrs JA, Alves D, Luchese C, Wilhelm EA. 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: Contribution of the glutamatergic system. J Psychiatr Res 2017; 84:191-199. [PMID: 27756019 DOI: 10.1016/j.jpsychires.2016.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023]
Abstract
A growing body of evidence demonstrates that quinoline compounds have attracted much attention in the field of drug development. Accordingly, 4-phenylselenyl-7-chloroquinoline (4-PSQ) is a new quinoline derivative containing selenium, which showed a potential antioxidant, antinociceptive and anti-inflammatory effect. The present study was undertaken to evaluate the anxiolytic-like properties of 4-PSQ. Mice were orally pretreated with 4-PSQ (5-50 mg/kg) or vehicle, 30 min prior to the elevated plus-maze (EPM), light-dark (LDT) or open field (OFT) tests. A time-response curve was carried out by administration of 4-PSQ (50 mg/kg) at different times before the EPM test. The involvement of glutamate uptake/release and Na+, K+-ATPase activity in the anxiolytic-like effect was investigated in cerebral cortices. In addition, the effectiveness of acute treatment with 4-PSQ was evaluated in a model of kainate (KA)-induced anxiety-related behavior. Finally, acute toxicity of this compound was investigated. 4-PSQ produced an anxiolytic-like action, both in EPM and LDT. In OFT, 4-PSQ did not affect locomotor and exploratory activities. 4-PSQ anxiolytic-like effect started at 0.5 h and remained significant up to 72 h after administration. Treatment with 4-PSQ reduced [3H] glutamate uptake, but the [3H] glutamate release and Na+, K+-ATPase activity were not altered. KA-induced anxiety-related behavior was protected by 4-PSQ pretreatment. Additionally, 4-PSQ exposure did not alter urea levels, aspartate (AST) and alanine aminotrasferase (ALT) activities in plasma. Parameters of oxidative stress in brain and liver of mice were not modified by 4-PSQ. Taken together these data demonstrated that the anxiolytic-like effect caused by 4-PSQ seems to be mediated by involvement of the glutamatergic system.
Collapse
Affiliation(s)
- Angélica S Reis
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Mikaela Pinz
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Luis Fernando B Duarte
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Juliano A Roehrs
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil.
| | - Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil.
| |
Collapse
|
45
|
Peterlik D, Stangl C, Bauer A, Bludau A, Keller J, Grabski D, Killian T, Schmidt D, Zajicek F, Jaeschke G, Lindemann L, Reber SO, Flor PJ, Uschold-Schmidt N. Blocking metabotropic glutamate receptor subtype 5 relieves maladaptive chronic stress consequences. Brain Behav Immun 2017; 59:79-92. [PMID: 27524668 DOI: 10.1016/j.bbi.2016.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Etiology and pharmacotherapy of stress-related psychiatric conditions and somatoform disorders are areas of high unmet medical need. Stressors holding chronic plus psychosocial components thereby bear the highest health risk. Although the metabotropic glutamate receptor subtype 5 (mGlu5) is well studied in the context of acute stress-induced behaviors and physiology, virtually nothing is known about its potential involvement in chronic psychosocial stress. Using the mGlu5 negative allosteric modulator CTEP (2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4yl]ethynyl]pyridine), a close analogue of the clinically active drug basimglurant - but optimized for rodent studies, as well as mGlu5-deficient mice in combination with a mouse model of male subordination (termed CSC, chronic subordinate colony housing), we demonstrate that mGlu5 mediates multiple physiological, immunological, and behavioral consequences of chronic psychosocial stressor exposure. For instance, CTEP dose-dependently relieved hypothalamo-pituitary-adrenal axis dysfunctions, colonic inflammation as well as the CSC-induced increase in innate anxiety; genetic ablation of mGlu5 in mice largely reproduced the stress-protective effects of CTEP and additionally ameliorated CSC-induced physiological anxiety. Interestingly, CSC also induced an upregulation of mGlu5 in the hippocampus, a stress-regulating brain area. Taken together, our findings provide evidence that mGlu5 is an important mediator for a wide range of chronic psychosocial stress-induced alterations and a potentially valuable drug target for the treatment of chronic stress-related pathologies in man.
Collapse
Affiliation(s)
- Daniel Peterlik
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Christina Stangl
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Amelie Bauer
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Anna Bludau
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Jana Keller
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Dominik Grabski
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Tobias Killian
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Dominic Schmidt
- Institute of Immunology, University of Regensburg, D-93042 Regensburg, Germany
| | - Franziska Zajicek
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Georg Jaeschke
- Roche Pharmaceutical Research and Early Development, Discovery Chemistry, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, D-89081 Ulm, Germany
| | - Peter J Flor
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany.
| | - Nicole Uschold-Schmidt
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
46
|
Xia B, Zhang H, Xue W, Tao W, Chen C, Wu R, Ren L, Tang J, Wu H, Cai B, Doronc R, Chen G. Instant and Lasting Down-Regulation of NR1 Expression in the Hippocampus is Associated Temporally with Antidepressant Activity After Acute Yueju. Cell Mol Neurobiol 2016; 36:1189-96. [PMID: 26825573 PMCID: PMC11482436 DOI: 10.1007/s10571-015-0316-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/07/2015] [Indexed: 11/25/2022]
Abstract
Accumulating evidence indicated that N-methyl-D-aspartate (NMDA) receptors are involved in the pathophysiology of depression and implicated in therapeutic targets. NMDA antagonists, such as ketamine, displayed fast-onset and long-lasting antidepressant activity in preclinical and clinical studies. Previous studies showed that Yueju pill exerts antidepressant effects similar to ketamine. Here, we focused on investigating the association of acute and lasting antidepressant responses of Yueju with time course changes of NMDA receptor subunits NR1, NR2A, and NR2B expressions in the hippocampus, a key region regulating depression response. As a result, Yueju reduced immobility time in the forced swimming test from 30 min to 5 days post a single administration. Yueju acutely decreased NR1 and NR2B protein expression in the hippocampus, with NR2A expression unaltered. NR1 expression remained down-regulated 5 days post Yueju administration, whereas NR2B returned to normal level in 24 h. Yueju and ketamine similarly ameliorated the depression-like symptoms at least for 72 h in learned helplessness test. They both reversed the up-regulated expression of NR1 in the learned helpless mice 1 or 3 days post administration. Different from ketamine, the antidepressant effects of Yueju were not influenced by blockade of amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor. These findings served as preclinical evidence that Yueju may confer acute and long-lasting antidepressant effects by favorably modulating NMDA function in the hippocampus.
Collapse
Affiliation(s)
- Baomei Xia
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hailou Zhang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenda Xue
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chang Chen
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruyan Wu
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Ren
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juanjuan Tang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Physiology Research Section, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoxin Wu
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Baochang Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ravid Doronc
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Tel-Aviv, 61083, Israel
| | - Gang Chen
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
47
|
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Int 2016; 101:1-14. [PMID: 27620813 DOI: 10.1016/j.neuint.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Faculty of Exact Sciences and Nature and Life Sciences, Department of Biology, Larbi Ben M'hidi University, Oum El Bouaghi 04000, Algeria
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
48
|
Pałucha-Poniewiera A, Pilc A. Glutamate-Based Drug Discovery for Novel Antidepressants. Expert Opin Drug Discov 2016; 11:873-83. [DOI: 10.1080/17460441.2016.1213234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
50
|
MMPIP, an mGluR7-selective negative allosteric modulator, alleviates pain and normalizes affective and cognitive behavior in neuropathic mice. Pain 2016; 156:1060-1073. [PMID: 25760470 DOI: 10.1097/j.pain.0000000000000150] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study investigated the effects of a single administration of 6-(4-methoxyphenyl)-5-methyl-3-pyridinyl-4-isoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), a negative allosteric modulator (NAM) of metabotropic glutamate receptor 7 (mGluR7), on pain and on affective and cognitive behavior in neuropathic mice. The activity of pyramidal neurons in the prelimbic cortex (PLC), which respond to stimulation of the basolateral amygdala (BLA) with either excitation or inhibition, was also investigated. The spared nerve injury (SNI) of the sciatic nerve induced, 14 days after surgery, thermal hyperalgesia and mechanical allodynia, reduced open-arm choice in the elevated plus-maze, increased time of immobility in the tail suspension, and increased digging and burying in the marble burying test. Cognitive performance was also significantly compromised in the SNI mice. Spared nerve injury induced phenotypic changes on pyramidal neurons of the PLC; excitatory responses increased, whereas inhibitory responses decreased after BLA stimulation. mGluR7 expression, mainly associated with vesicular glutamate transporter, increased in the hippocampus and decreased in the BLA, PLC, and dorsal raphe in SNI mice. MMPIP increased thermal and mechanical thresholds and open-arm choice. It reduced the immobility in the tail suspension test and the number of marbles buried and of digging events in the marble burying test. MMPIP also improved cognitive performance and restored the balance between excitatory and inhibitory responses of PLC neurons in SNI mice. 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one, XAP044, another selective mGluR7 NAM, reproduced the effects of MMPIP on thermal hyperalgesia, mechanical allodynia, tail suspension, and marble burying test. Altogether, these findings show that mGluR7 NAMs reduce pain responses and affective/cognitive impairments in neuropathic pain conditions.
Collapse
|