1
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
2
|
Ma W, Ye S, Tian L, Liu M, Wang R, Yang X, Wang M, Fu F, Ren W, Dang L, Wang T, Wang W, Wang S, Sun Y, Li Y. Association of LHCGR rs2293275 genotype with ovarian aging in Chinese women: a multicenter population-based study. Reprod Biol Endocrinol 2025; 23:41. [PMID: 40089715 PMCID: PMC11909885 DOI: 10.1186/s12958-025-01375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/02/2025] [Indexed: 03/17/2025] Open
Abstract
OBJECTIVE To evaluate the association between the LHCGR rs2293275 (N312S) genotype and ovarian aging phenotypes in Han Chinese women, focusing on diminished ovarian reserve (DOR) and primary ovarian insufficiency (POI). STUDY DESIGN This multicenter population-based study included 1,240 women aged 18-40 years diagnosed with DOR (n = 711) or POI (n = 529), alongside 72,846 ethnically and regionally matched controls from the Han Chinese Genomes Database (PGG.Han). Genotyping of rs2293275 was performed, and clinical data (menstrual history, hormonal profiles, maternal menopause age, and ART outcomes) were analyzed. MAIN RESULTS The AA genotype frequency in the ovarian aging cohort (1.85%) was significantly higher than in the general Han population (0.62%, OR 3.04, 95% CI 1.99-4.64, p < 0.001). AA carriers exhibited earlier POI diagnosis (25.5 ± 6.4 vs. 32.0 ± 5.1 years in GG carriers, p < 0.001) and maternal menopause (41.6 ± 3.3 vs. 47.8 ± 4.1 years, p < 0.001). In controlled ovarian stimulation cycles, AA carriers demonstrated reduced ovarian sensitivity (OSI: 3.59 vs. 1.21 in GG, p = 0.019) despite comparable gonadotropin doses. CONCLUSIONS The LHCGR rs2293275 AA genotype is strongly associated with accelerated ovarian aging in Han Chinese women, highlighting its potential as a biomarker for early identification of high-risk individuals. While these findings underscore genetic contributions to ovarian dysfunction, further mechanistic studies are needed to establish causality and optimize clinical translation. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT05665010, registered on 2022-11-30.
Collapse
Affiliation(s)
- Wenqing Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuangmei Ye
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lifeng Tian
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, 330000, China
| | - Min Liu
- Changsha Maternal and Child Health Hospital, Changsha, 410000, China
| | - Rui Wang
- Henan Maternal and Child Health Hospital, Zhengzhou, 450000, China
| | - Xuezhou Yang
- Department of Reproductive Center, Affiliated Hospital of Hubei, Xiangyang Central Hospital, University of Arts and Science, Xiangyang, 441000, China
| | - Man Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Dang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Sun
- Fujian Maternal and Child Health Hospital, Fuzhou, 350001, China.
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Zhang C, Xiang X, Liu J, Huang Y, Xue J, Sun Q, Leng S, Liu S, He X, Hu P, Zhan X, Qiu Q, Yang S, Brosius J, Deng C. Constitutively active glucagon receptor drives high blood glucose in birds. Nature 2025:10.1038/s41586-025-08811-8. [PMID: 40031956 DOI: 10.1038/s41586-025-08811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
The maintenance of blood glucose, the body's primary source of energy, is indispensable for overall health and metabolic homeostasis. It is regulated predominantly by the glucagon receptor family which is highly conserved in vertebrates1-4. Compared with other vertebrates, avian blood glucose levels are relatively high5,6, and blood glucose regulatory mechanisms in birds have remained unclear. Here we show that high hepatic expression of the avian glucagon receptor (GCGR) in association with constitutively active Gs signalling is dependent on the interaction of different domains. In vivo experiments showed that expression of constitutively active GCGR in hepatic cells led to correspondingly high blood glucose, rapid hepatic lipid utilization and high metabolic rates via downstream signalling pathway activation in fish, reptiles, birds and mammals. Furthermore, we identified a point mutation proximal to the GCGR gene region in chicken that resulted in reduced GCGR mRNA expression and increased body weight. Overexpressing a natural human GCGR variant (HsGCGR(H339R)) with modest constitutive activity in mice demonstrated that high expression of this variant increased blood glucose concentration and reduced body weight. In sum, we find that high expression and constitutive activity of GCGR may have contributed to the evolution of flight in the ancestors of birds.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangying Xiang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yongjie Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingwen Xue
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Sun
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Song Leng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shaobo Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuefei He
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jürgen Brosius
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Deng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Hashem S, Dougha A, Tufféry P. Ligand-Induced Biased Activation of GPCRs: Recent Advances and New Directions from In Silico Approaches. Molecules 2025; 30:1047. [PMID: 40076272 PMCID: PMC11901715 DOI: 10.3390/molecules30051047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
G-protein coupled receptors (GPCRs) are the largest family of membrane proteins engaged in transducing signals from the extracellular environment into the cell. GPCR-biased signaling occurs when two different ligands, sharing the same binding site, induce distinct signaling pathways. This selective signaling offers significant potential for the design of safer and more effective drugs. Although its molecular mechanism remains elusive, big efforts are made to try to explain this mechanism using a wide range of methods. Recent advances in computational techniques and AI technology have introduced a variety of simulations and machine learning tools that facilitate the modeling of GPCR signal transmission and the analysis of ligand-induced biased signaling. In this review, we present the current state of in silico approaches to elucidate the structural mechanism of GPCR-biased signaling. This includes molecular dynamics simulations that capture the main interactions causing the bias. We also highlight the major contributions and impacts of transmembrane domains, loops, and mutations in mediating biased signaling. Moreover, we discuss the impact of machine learning models on bias prediction and diffusion-based generative AI to design biased ligands. Ultimately, this review addresses the future directions for studying the biased signaling problem through AI approaches.
Collapse
Affiliation(s)
| | | | - Pierre Tufféry
- Unité de Biologie Fonctionnelle et Adaptative, INSERM ERL 1133, CNRS UMR 8251, Université Paris Cité, F-75013 Paris, France; (S.H.); (A.D.)
| |
Collapse
|
5
|
Zhang MY, Ao JY, Liu N, Chen T, Lu SY. Exploring the constitutive activation mechanism of the class A orphan GPR20. Acta Pharmacol Sin 2025; 46:500-511. [PMID: 39256608 PMCID: PMC11747167 DOI: 10.1038/s41401-024-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.
Collapse
Affiliation(s)
- Ming-Yang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Institute of Hepatobiliary and Pancreatic Surgery, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China.
| | - Shao-Yong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Goode-Romero G, Dominguez L. Scaled and Weighted Laplacian Matrices as Functional Descriptors for GPCR Ligands. J Comput Chem 2025; 46:e70015. [PMID: 39821430 DOI: 10.1002/jcc.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/20/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality. Numerous molecular descriptors have been described, many of which successfully characterize the structural and physicochemical features of drug sets. Nonetheless, elucidating the structure-functionality relationships over extensive sets of drugs with multiple structural variations and known biological activity remains challenging in various biological systems. This work presents novel topological descriptors using Laplacian matrices, weighted, and scaled by atomic mass and partial charges. We tested these descriptors on three sets of GPCR ligands: muscarinic, β-adrenergic, and δ-opioid receptor ligands, evaluating their potential as functional descriptors of these receptors.
Collapse
Affiliation(s)
- Guillermo Goode-Romero
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico
| |
Collapse
|
7
|
Fouillen A, Couvineau P, Gaibelet G, Riché S, Orcel H, Mendre C, Kanso A, Lanotte R, Nguyen J, Dimon J, Urbach S, Sounier R, Granier S, Bonnet D, Cong X, Mouillac B, Déméné H. Biased activation of the vasopressin V2 receptor probed by molecular dynamics simulations, NMR and pharmacological studies. Comput Struct Biotechnol J 2024; 23:3784-3799. [PMID: 39525085 PMCID: PMC11550766 DOI: 10.1016/j.csbj.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) control critical cell signaling. Their response to extracellular stimuli involves conformational changes to convey signals to intracellular effectors, among which the most important are G proteins and β-arrestins (βArrs). Biased activation of one pathway is a field of intense research in GPCR pharmacology. Combining NMR, site-directed mutagenesis, molecular pharmacology, and molecular dynamics (MD) simulations, we studied the conformational diversity of the vasopressin V2 receptor (V2R) bound to different types of ligands: the antagonist Tolvaptan, the endogenous unbiased agonist arginine-vasopressin, and MCF14, a partial Gs protein-biased agonist. A double-labeling NMR scheme was developed to study the receptor conformational changes and ligand binding: V2R was subjected to lysine 13CH3 methylation for complementary NMR studies, whereas the agonists were tagged with a paramagnetic probe. Paramagnetic relaxation enhancements and site-directed mutagenesis validated the ligand binding modes in the MD simulations. We found that the bias for the Gs protein over the βArr pathway involves interactions between the conserved NPxxY motif in the transmembrane helix 7 (TM7) and TM3, compacting helix 8 (H8) toward TM1 and likely inhibiting βArr signaling. A similar mechanism was elicited for the pathogenic mutation I130N, which constitutively activates the Gs proteins without concomitant βArr recruitment. The findings suggest common patterns of biased signaling in class A GPCRs, as well as a rationale for the design of G protein-biased V2R agonists.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Pierre Couvineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Gérald Gaibelet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Stéphanie Riché
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 67412 Illkirch-Graffenstaden, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Christiane Mendre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Ali Kanso
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Romain Lanotte
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Julie Nguyen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Juliette Dimon
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Dominique Bonnet
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 67412 Illkirch-Graffenstaden, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Hélène Déméné
- Centre de Biologie Structurale (CBS), Univ Montpellier, INSERM, CNRS, 34090, Montpellier, France
| |
Collapse
|
8
|
Sajkowska JJ, Tsang CH, Kozielewicz P. Application of FRET- and BRET-based live-cell biosensors in deorphanization and ligand discovery studies on orphan G protein-coupled receptors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100174. [PMID: 39084335 DOI: 10.1016/j.slasd.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bioluminescence- and fluorescence-based resonance energy transfer assays have gained considerable attention in pharmacological research as high-throughput scalable tools applicable to drug discovery. To this end, G protein-coupled receptors represent the biggest target class for marketed drugs, and among them, orphan G protein-coupled receptors have the biggest untapped therapeutic potential. In this review, the cases where biophysical methods, BRET and FRET, were employed for deorphanization and ligand discovery studies on orphan G protein-coupled receptors are listed and discussed.
Collapse
Affiliation(s)
- Joanna J Sajkowska
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Choi Har Tsang
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden
| | - Paweł Kozielewicz
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
9
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
10
|
Ma S, Yin X, Pin JP, Rondard P, Yi P, Liu J. Absence of calcium-sensing receptor basal activity due to inter-subunit disulfide bridges. Commun Biol 2024; 7:501. [PMID: 38664468 PMCID: PMC11045811 DOI: 10.1038/s42003-024-06189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
G protein-coupled receptors naturally oscillate between inactive and active states, often resulting in receptor constitutive activity with important physiological consequences. Among the class C G protein-coupled receptors that typically sense amino-acids and their derivatives, the calcium sensing receptor (CaSR) tightly controls blood calcium levels. Its constitutive activity has not yet been studied. Here, we demonstrate the importance of the inter-subunit disulfide bridges in maintaining the inactive state of CaSR, resulting in undetectable constitutive activity, unlike the other class C receptors. Deletion of these disulfide bridges results in strong constitutive activity that is abolished by mutations preventing amino acid binding. It shows that this inter-subunit disulfide link is necessary to limit the agonist effect of amino acids on CaSR. Furthermore, human genetic mutations deleting these bridges and associated with hypocalcemia result in elevated CaSR constitutive activity. These results highlight the physiological importance of fine tuning the constitutive activity of G protein-coupled receptors.
Collapse
Affiliation(s)
- Shumin Ma
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueliang Yin
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, Cedex 5, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, Cedex 5, France.
| | - Ping Yi
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Yang Z, Wang JY, Yang F, Zhu KK, Wang GP, Guan Y, Ning SL, Lu Y, Li Y, Zhang C, Zheng Y, Zhou SH, Wang XW, Wang MW, Xiao P, Yi F, Zhang C, Zhang PJ, Xu F, Liu BH, Zhang H, Yu X, Gao N, Sun JP. Structure of GPR101-Gs enables identification of ligands with rejuvenating potential. Nat Chem Biol 2024; 20:484-492. [PMID: 37945893 DOI: 10.1038/s41589-023-01456-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14-GPR101-Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101-deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential.
Collapse
Affiliation(s)
- Zhao Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun-Yan Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Fan Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guo-Peng Wang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ying Guan
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shang-Lei Ning
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Lu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chao Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Zheng
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Shu-Hua Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin-Wen Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming-Wei Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng-Ju Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Bao-Hua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - Jin-Peng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China.
| |
Collapse
|
12
|
Calderón JC, Ibrahim P, Gobbo D, Gervasio FL, Clark T. Determinants of Neutral Antagonism and Inverse Agonism in the β 2-Adrenergic Receptor. J Chem Inf Model 2024; 64:2045-2057. [PMID: 38447156 DOI: 10.1021/acs.jcim.3c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Free-energy profiles for the activation/deactivation of the β2-adrenergic receptor (ADRB2) with neutral antagonist and inverse agonist ligands have been determined with well-tempered multiple-walker (MW) metadynamics simulations. The inverse agonists carazolol and ICI118551 clearly favor single inactive conformational minima in both the binary and ternary ligand-receptor-G-protein complexes, in accord with the inverse-agonist activity of the ligands. The behavior of neutral antagonists is more complex, as they seem also to affect the recruitment of the G-protein. The results are analyzed in terms of the conformational states of the well-known microswitches that have been proposed as indicators of receptor activity.
Collapse
Affiliation(s)
- Jacqueline C Calderón
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, 91052 Erlangen, Germany
| | - Passainte Ibrahim
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, 04107 Leipzig, Germany
| | - Dorothea Gobbo
- Pharmaceutical Sciences, University of Geneva, CH1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, CH1206 Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Pharmaceutical Sciences, University of Geneva, CH1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, CH1206 Geneva, Switzerland
- Chemistry Department, University College London, WC1H 0AJ London, United Kingdom
- Swiss Bioinformatics Institute, CH1206 Geneva, Switzerland
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, 91052 Erlangen, Germany
| |
Collapse
|
13
|
Xu B, Yao J, Song W, Yan X, Zhu M, Li J, Ma Z, Li Y, Li Y, Fu Y, Liu L, Li L, Lyu J, Zhang C. Evolutionary Identification of the Requirement of the Second Intracellular Loop for the Constitutive Activity of Melanocortin-4 Receptors. ACS Pharmacol Transl Sci 2024; 7:630-640. [PMID: 38481681 PMCID: PMC10928900 DOI: 10.1021/acsptsci.3c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2025]
Abstract
Melanocortin-4 receptor (MC4R) functions as a crucial neuroendocrine G protein-coupled receptor (GPCR) in the central nervous system of mammals, displaying agonist-independent constitutive activity that is mainly determined by its N-terminal domain. We previously reported that zebrafish MC4R exhibited a much higher basal cAMP level in comparison to mammalian MC4Rs. However, the functional evolution of constitutive activities in chordate MC4Rs remains to be elucidated. Here we cloned and compared the constitutive activities of MC4Rs from nine vertebrate species and showed that the additive action of the N-terminus with the extracellular region or transmembrane domain exhibited a combined pharmacological effect on the MC4R constitutive activity. In addition, we demonstrated that four residues of F149, Q156, V163, and K164 of the second intracellular loop played a vital role in determining MC4R constitutive activity. This study provided novel insights into functional evolution and identified a key motif essential for constitutive modulation of MC4R signaling.
Collapse
Affiliation(s)
- Bingxin Xu
- Fundamental
Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai
Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, P.R. China
| | - Jindong Yao
- Fundamental
Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai
Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, P.R. China
| | - Wenqi Song
- Fundamental
Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai
Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, P.R. China
| | - Xinyi Yan
- Fundamental
Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai
Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, P.R. China
| | - Ming Zhu
- Fundamental
Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai
Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, P.R. China
| | - Jiangtao Li
- State
Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, P.R. China
| | - Zhonglin Ma
- State
Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, P.R. China
| | - Yanchuan Li
- Hubei
Topgene Research Institute of Hubei Topgene Biotechnology Co., Ltd., East Lake High-Tech Development
Zone, Wuhan 430205, P.R. China
| | - Yihao Li
- Hubei
Topgene Research Institute of Hubei Topgene Biotechnology Co., Ltd., East Lake High-Tech Development
Zone, Wuhan 430205, P.R. China
| | - Yanbin Fu
- Shanghai
Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University
School of Medicine, Shanghai 200127, P.R. China
| | - Liu Liu
- Shanghai
Yuhui Pharmaceutical Technology (Group) Co., Ltd., and Shanghai Ruishen
Technology Development Co., Ltd., Shanghai 201203, P.R. China
| | - Lei Li
- Department
of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Jianjun Lyu
- Hubei
Topgene Research Institute of Hubei Topgene Biotechnology Co., Ltd., East Lake High-Tech Development
Zone, Wuhan 430205, P.R. China
| | - Chao Zhang
- Fundamental
Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai
Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, P.R. China
| |
Collapse
|
14
|
Colinas O, Mombaerts P, López-Barneo J, Ortega-Sáenz P. Carotid Body Function in Tyrosine Hydroxylase Conditional Olfr78 Knockout Mice. FUNCTION 2024; 5:zqae010. [PMID: 38706960 PMCID: PMC11065104 DOI: 10.1093/function/zqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 05/07/2024] Open
Abstract
The Olfr78 gene encodes a G-protein-coupled olfactory receptor that is expressed in several ectopic sites. Olfr78 is one of the most abundant mRNA species in carotid body (CB) glomus cells. These cells are the prototypical oxygen (O2) sensitive arterial chemoreceptors, which, in response to lowered O2 tension (hypoxia), activate the respiratory centers to induce hyperventilation. It has been proposed that Olfr78 is a lactate receptor and that glomus cell activation by the increase in blood lactate mediates the hypoxic ventilatory response (HVR). However, this proposal has been challenged by several groups showing that Olfr78 is not a physiologically relevant lactate receptor and that the O2-based regulation of breathing is not affected in constitutive Olfr78 knockout mice. In another study, constitutive Olfr78 knockout mice were reported to have altered systemic and CB responses to mild hypoxia. To further characterize the functional role of Olfr78 in CB glomus cells, we here generated a conditional Olfr78 knockout mouse strain and then restricted the knockout to glomus cells and other catecholaminergic cells by crossing with a tyrosine hydroxylase-specific Cre driver strain (TH-Olfr78 KO mice). We find that TH-Olfr78 KO mice have a normal HVR. Interestingly, glomus cells of TH-Olfr78 KO mice exhibit molecular and electrophysiological alterations as well as a reduced dopamine content in secretory vesicles and neurosecretory activity. These functional characteristics resemble those of CB neuroblasts in wild-type mice. We suggest that, although Olfr78 is not essential for CB O2 sensing, activation of Olfr78-dependent pathways is required for maturation of glomus cells.
Collapse
Affiliation(s)
- Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevile 41013, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevile 41013, Spain
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt 60438, Germany
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevile 41013, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevile 41013, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevile 41013, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevile 41013, Spain
| |
Collapse
|
15
|
Jardón-Valadez E, Ulloa-Aguirre A. Tracking conformational transitions of the gonadotropin hormone receptors in a bilayer of (SDPC) poly-unsaturated lipids from all-atom molecular dynamics simulations. PLoS Comput Biol 2024; 20:e1011415. [PMID: 38206994 PMCID: PMC10807830 DOI: 10.1371/journal.pcbi.1011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/24/2024] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Glycoprotein hormone receptors [thyrotropin (TSHR), luteinizing hormone/chorionic gonadotropin (LHCGR), and follicle stimulating hormone (FSHR) receptors] are rhodopsin-like G protein-coupled receptors. These receptors display common structural features including a prominent extracellular domain with leucine-rich repeats (LRR) stabilized by β-sheets and a long and flexible loop known as the hinge region (HR), and a transmembrane (TM) domain with seven α-helices interconnected by intra- and extracellular loops. Binding of the ligand to the LRR resembles a hand coupling transversally to the α- and β-subunits of the hormone, with the thumb being the HR. The structure of the FSH-FSHR complex suggests an activation mechanism in which Y335 at the HR binds into a pocket between the α- and β-chains of the hormone, leading to an adjustment of the extracellular loops. In this study, we performed molecular dynamics (MD) simulations to identify the conformational changes of the FSHR and LHCGR. We set up a FSHR structure as predicted by AlphaFold (AF-P23945); for the LHCGR structure we took the cryo-electron microscopy structure for the active state (PDB:7FII) as initial coordinates. Specifically, the flexibility of the HR domain and the correlated motions of the LRR and TM domain were analyzed. From the conformational changes of the LRR, TM domain, and HR we explored the conformational landscape by means of MD trajectories in all-atom approximation, including a membrane of polyunsaturated phospholipids. The distances and procedures here defined may be useful to propose reaction coordinates to describe diverse processes, such as the active-to-inactive transition, and to identify intermediaries suited for allosteric regulation and biased binding to cellular transducers in a selective activation strategy.
Collapse
Affiliation(s)
- Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Unidad Lerma, Universidad Autónoma Metropolitana, Lerma de Villada, Estado de México, Mexico
| | - Alfredo Ulloa-Aguirre
- Instituto Nacional de Ciencias Medicas y Nutrición “Salvador Zubiran”. Mexico City, Mexico
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México. Mexico City, Mexico
| |
Collapse
|
16
|
Buchwald P. Quantitative receptor model for responses that are left- or right-shifted versus occupancy (are more or less concentration sensitive): the SABRE approach. Front Pharmacol 2023; 14:1274065. [PMID: 38161688 PMCID: PMC10755021 DOI: 10.3389/fphar.2023.1274065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Simple one-to three-parameter models routinely used to fit typical dose-response curves and calculate EC50 values using the Hill or Clark equation cannot provide the full picture connecting measured response to receptor occupancy, which can be quite complex due to the interplay between partial agonism and (pathway-dependent) signal amplification. The recently introduced SABRE quantitative receptor model is the first one that explicitly includes a parameter for signal amplification (γ) in addition to those for binding affinity (K d), receptor-activation efficacy (ε), constitutive activity (ε R0), and steepness of response (Hill slope, n). It can provide a unified framework to fit complex cases, where fractional response and occupancy do not match, as well as simple ones, where parameters constrained to specific values can be used (e.g., ε R0 = 0, γ = 1, or n = 1). Here, it is shown for the first time that SABRE can fit not only typical cases where response curves are left-shifted compared to occupancy (κ = K d/EC50 > 1) due to signal amplification (γ > 1), but also less common ones where they are right-shifted (i.e., less concentration-sensitive; κ = K d/EC50 < 1) by modeling them as apparent signal attenuation/loss (γ < 1). Illustrations are provided with μ-opioid receptor (MOPr) data from three different experiments with one left- and one right-shifted response (G protein activation and β-arrestin2 recruitment, respectively; EC50,Gprt < K d < EC50,βArr). For such cases of diverging pathways with differently shifted responses, partial agonists can cause very weak responses in the less concentration-sensitive pathway without having to be biased ligands due to the combination of low ligand efficacy and signal attenuation/loss-an illustration with SABRE-fitted oliceridine data is included.
Collapse
Affiliation(s)
- Peter Buchwald
- Department of Molecular and Cellular Pharmacology, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
17
|
Ji RL, Liu T, Hou ZS, Wen HS, Tao YX. Divergent Pharmacology and Biased Signaling of the Four Melanocortin-4 Receptor Isoforms in Rainbow Trout ( Oncorhynchus mykiss). Biomolecules 2023; 13:1248. [PMID: 37627313 PMCID: PMC10452266 DOI: 10.3390/biom13081248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is essential for the modulation of energy balance and reproduction in both fish and mammals. Rainbow trout (Oncorhynchus mykiss) has been extensively studied in various fields and provides a unique opportunity to investigate divergent physiological roles of paralogues. Herein we identified four trout mc4r (mc4ra1, mc4ra2, mc4rb1, and mc4rb2) genes. Four trout Mc4rs (omMc4rs) were homologous to those of teleost and mammalian MC4Rs. Multiple sequence alignments, a phylogenetic tree, chromosomal synteny analyses, and pharmacological studies showed that trout mc4r genes may have undergone different evolutionary processes. All four trout Mc4rs bound to two peptide agonists and elevated intracellular cAMP levels dose-dependently. High basal cAMP levels were observed at two omMc4rs, which were decreased by Agouti-related peptide. Only omMc4rb2 was constitutively active in the ERK1/2 signaling pathway. Ipsen 5i, ML00253764, and MCL0020 were biased allosteric modulators of omMc4rb1 with selective activation upon ERK1/2 signaling. ML00253764 behaved as an allosteric agonist in Gs-cAMP signaling of omMc4rb2. This study will lay the foundation for future physiological studies of various mc4r paralogs and reveal the evolution of MC4R in vertebrates.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Ting Liu
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Hai-Shen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| |
Collapse
|
18
|
Yasuda D, Hamano F, Masuda K, Dahlström M, Kobayashi D, Sato N, Hamakubo T, Shimizu T, Ishii S. Inverse agonism of lysophospholipids with cationic head groups at Gi-coupled receptor GPR82. Eur J Pharmacol 2023; 954:175893. [PMID: 37392830 DOI: 10.1016/j.ejphar.2023.175893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
GPR82 is an orphan G protein-coupled receptor (GPCR) that has been implicated in lipid storage in mouse adipocytes. However, the intracellular signaling as well as the specific ligands of GPR82 remain unknown. GPR82 is closely related to GPR34, a GPCR for the bioactive lipid molecule lysophosphatidylserine. In this study, we screened a lipid library using GPR82-transfected cells to search for ligands that act on GPR82. By measuring cyclic adenosine monophosphate levels, we found that GPR82 is an apparently constitutively active GPCR that leads to Gi protein activation. In addition, edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine), an artificial lysophospholipid with a cationic head group that exerts antitumor activity, inhibited the Gi protein activation by GPR82. Two endogenous lysophospholipids with cationic head groups, lysophosphatidylcholine (1-oleoyl-sn-glycero-3-phosphocholine) and lysophosphatidylethanolamine (1-oleoyl-sn-glycero-3-phosphoethanolamine), also exhibited GPR82 inhibitory activity, albeit weaker than edelfosine. Förster resonance energy transfer imaging analysis consistently demonstrated that Gi protein-coupled GPR82 has an apparent constitutive activity that is edelfosine-sensitive. Consistent data were obtained from GPR82-mediated binding analysis of guanosine-5'-O-(3-thiotriphosphate) to cell membranes. Furthermore, in GPR82-transfected cells, edelfosine inhibited insulin-induced extracellular signal-regulated kinase activation, like compounds that function as inverse agonists at other GPCRs. Therefore, edelfosine is likely to act as an inverse agonist of GPR82. Finally, GPR82 expression inhibited adipocyte lipolysis, which was abrogated by edelfosine. Our findings suggested that the cationic lysophospholipids edelfosine, lysophosphatidylcholine and lysophosphatidylethanolamine are novel inverse agonists for Gi-coupled GPR82, which is apparently constitutively active, and has the potential to exert lipolytic effects through GPR82.
Collapse
Affiliation(s)
- Daisuke Yasuda
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Fumie Hamano
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Masuda
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Daiki Kobayashi
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Nana Sato
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| | - Satoshi Ishii
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan.
| |
Collapse
|
19
|
Platelet P2Y 1 receptor exhibits constitutive G protein signaling and β-arrestin 2 recruitment. BMC Biol 2023; 21:14. [PMID: 36721118 PMCID: PMC9890698 DOI: 10.1186/s12915-023-01528-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Purinergic P2Y1 and P2Y12 receptors (P2Y1-R and P2Y12-R) are G protein-coupled receptors (GPCR) activated by adenosine diphosphate (ADP) to mediate platelet activation, thereby playing a pivotal role in hemostasis and thrombosis. While P2Y12-R is the major target of antiplatelet drugs, no P2Y1-R antagonist has yet been developed for clinical use. However, accumulating data suggest that P2Y1-R inhibition would ensure efficient platelet inhibition with minimal effects on bleeding. In this context, an accurate characterization of P2Y1-R antagonists constitutes an important preliminary step. RESULTS Here, we investigated the pharmacology of P2Y1-R signaling through Gq and β-arrestin pathways in HEK293T cells and in mouse and human platelets using highly sensitive resonance energy transfer-based technologies (BRET/HTRF). We demonstrated that at basal state, in the absence of agonist ligand, P2Y1-R activates Gq protein signaling in HEK293T cells and in mouse and human platelets, indicating that P2Y1-R is constitutively active in physiological conditions. We showed that P2Y1-R also promotes constitutive recruitment of β-arrestin 2 in HEK293T cells. Moreover, the P2Y1-R antagonists MRS2179, MRS2279 and MRS2500 abolished the receptor dependent-constitutive activation, thus behaving as inverse agonists. CONCLUSIONS This study sheds new light on P2Y1-R pharmacology, highlighting for the first time the existence of a constitutively active P2Y1-R population in human platelets. Given the recent interest of P2Y12-R constitutive activity in patients with diabetes, this study suggests that modification of constitutive P2Y1-R signaling might be involved in pathological conditions, including bleeding syndrome or high susceptibility to thrombotic risk. Thus, targeting platelet P2Y1-R constitutive activation might be a promising and powerful strategy for future antiplatelet therapy.
Collapse
|
20
|
Li H, Zhang J, Yu Y, Luo F, Wu L, Liu J, Chen N, Liu Z, Hua T. Structural insight into the constitutive activity of human orphan receptor GPR12. Sci Bull (Beijing) 2023; 68:95-104. [PMID: 36593162 DOI: 10.1016/j.scib.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptor 12 (GPR12) is an orphan G protein-coupled receptor that is highly expressed in the thalamus of the brain and plays a vital role in driving thalamocortical functions in short-term memory. GPR12 performs high constitutive activity and couples with Gs, increasing the intracellular cyclic adenosine monophosphate (cAMP) level when it is expressed. However, exploitation for drug development is limited since it is unclear how GPR12 initiates self-activation and signal transduction, and whether it can be modulated by endogenous or synthetic ligands. Here, we report the cryo-electron microscopy structure of the GPR12-Gs complex in the absence of agonists. Our structure reveals the key determinants for the intrinsically high basal activity of GPR12, including extracellular loop 2 partially occupying the orthosteric binding pocket, a tight-packed TM1 and TM7, and unique activation-related residues in TM6 and TM7. Together with mutagenesis data, this study will improve our understanding of the function and self-activation of the orphan receptor GPR12, enable the identification of endogenous ligands, and guide drug discovery efforts that target GPR12.
Collapse
Affiliation(s)
- Hao Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Feng Luo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Na Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
21
|
Ji RL, Jiang SS, Tao YX. Modulation of Canine Melanocortin-3 and -4 Receptors by Melanocortin-2 Receptor Accessory Protein 1 and 2. Biomolecules 2022; 12:biom12111608. [PMID: 36358958 PMCID: PMC9687446 DOI: 10.3390/biom12111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have crucial roles in regulating energy homeostasis. The melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) have been shown to regulate neural MCRs in a species-specific manner. The potential effects of MRAP1 and MRAP2 on canine neural MCRs have not been investigated before. Herein, we cloned canine (c) MC3R and identified one canine MRAP2 splice variant, MRAP2b, with N-terminal extension of cMRAP2a. Canine MC3R showed higher maximal responses to five agonists than those of human MC3R. We further investigated the modulation of cMRAP1, cMRAP2a, and cMRAP2b, on cMC3R and cMC4R pharmacology. For the cMC3R, all MRAPs had no effect on trafficking; cMRAP1 significantly decreased Bmax whereas cMRAP2a and cMRAP2b significantly increased Bmax. Both MRAP1 and MRAP2a decreased Rmaxs in response to α-MSH and ACTH; MRAP2b only decreased α-MSH-stimulated cAMP generation. For the MC4R, MRAP1 and MRAP2a increased cell surface expression, and MRAP1 and MRAP2a increased Bmaxs. All MRAPs had increased affinities to α-MSH and ACTH. MRAP2a increased ACTH-induced cAMP levels, whereas MRAP2b decreased α-MSH- and ACTH-stimulated cAMP production. These findings may lead to a better understanding of the regulation of neural MCRs by MRAP1 and MRAP2s.
Collapse
|
22
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
23
|
Ji RL, Tao YX. Melanocortin-1 receptor mutations and pigmentation: Insights from large animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:179-213. [PMID: 35595349 DOI: 10.1016/bs.pmbts.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a G protein-coupled receptor expressed in cutaneous and hair follicle melanocytes, and plays a central role in coat color determination in vertebrates. Numerous MC1R variants have been identified in diverse species. Some of these variants have been associated with specific hair and skin color phenotypes in humans as well as coat color in animals. Gain-of-function mutations of the MC1R gene cause dominant or partially dominant black/dark coat color, and loss-of-function mutations of the MC1R gene cause recessive or partially recessive red/yellow/pale coat color phenotypes. These have been well documented in a large number of mammals, including human, dog, cattle, horse, sheep, pig, and fox. Higher similarities between large mammals and humans makes them better models to understand pathogenesis of human diseases caused by MC1R mutations. High identities in MC1Rs and similar variants identified in both humans and large mammals also provide an opportunity for receptor structure and function study. In this review, we aim to summarize the naturally occurring mutations of MC1R in humans and large animals.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
24
|
Mutations in rhodopsin, endothelin B receptor, and CC chemokine receptor 5 in large animals: Modeling human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:155-178. [PMID: 35595348 DOI: 10.1016/bs.pmbts.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors involved in modulating almost all physiological processes by transducing extracellular signals into the cytoplasm. Dysfunctions of GPCR-regulated signaling result in diverse human diseases, making GPCRs the most popular drug targets for human medicine. Large animals share higher similarities (in physiology and metabolism) with humans than rodents. Similar to findings in human genetics, diverse diseases caused by mutations in GPCR genes have also been discovered in large animals. Rhodopsin, endothelin B receptor, and CC chemokine receptor type 5 have been shown to be involved in human retinitis pigmentosa, Hirschsprung disease, and HIV infection/AIDS, respectively, and several mutations of these GPCRs have also been identified from large animals. The large animals with naturally occurring mutations of these GPCRs provide an opportunity to gain a better understanding of the pathogenesis of human diseases, and can be used for preclinical trials of therapies for human diseases. In this review, we aim to summarize the naturally occurring mutations of these three GPCRs in large animals and humans.
Collapse
|
25
|
Hamamura-Yasuno E, Matsushita J, Sato S, Shimada T, Tsuchiya Y, Fujimoto K, Mori K. Determination of key residues in MRGPRX2 to enhance pseudo-allergic reactions induced by fluoroquinolones. Sci Rep 2022; 12:6650. [PMID: 35459883 PMCID: PMC9033836 DOI: 10.1038/s41598-022-10549-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
MAS-related G protein-coupled receptor X2 (MRGPRX2), expressed in human mast cells, is associated with drug-induced pseudo-allergic reactions. Dogs are highly sensitive to the anaphylactoid reactions induced by certain drugs including fluoroquinolones. Recently, dog MRGPRX2 was identified as a functional ortholog of human MRGPRX2, with dog MRGPRX2 being particularly sensitive to fluoroquinolones. The aim of this study was to determine key residues responsible for the enhanced activity of fluoroquinolone-induced histamine release associated with MRGPRX2. Firstly, a structure model of human and dog MRGPRX2 was built by homology modeling, and docking simulations with fluoroquinolones were conducted. This model indicated that E164 and D184, conserved between human and dog, are essential for the binding to fluoroquinolones. In contrast, F78 (dog: Y) and M109 (dog: W) are unconserved residues, to which the species difference in fluoroquinolone sensitivity is attributable. Intracellular calcium mobilisation assay with human MRGPRX2 mutants, in which residues at positions 78 and 109 were substituted to those of dog MRGPRX2, revealed that M109 and F78 of human MRGPRX2 are crucial residues for enhancing the fluoroquinolone-induced histamine release. In conclusion, these key residues have important clinical implications for revealing the mechanisms and predicting the risks of fluoroquinolone-mediated pseudo-allergic reactions in humans.
Collapse
Affiliation(s)
- Eri Hamamura-Yasuno
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Junya Matsushita
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Seiji Sato
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Takashi Shimada
- Organic & Biomolecular Chemistry Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Yoshimi Tsuchiya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Kazunori Fujimoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan.
| | - Kazuhiko Mori
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| |
Collapse
|
26
|
Wang Q, Fang C, Huang X, Xue L. Research progress of the CXCR4 mechanism in Alzheimer's disease. IBRAIN 2022; 8:3-14. [PMID: 37786419 PMCID: PMC10528775 DOI: 10.1002/ibra.12026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease with complex clinical manifestations and pathogeneses such as abnormal deposition of beta-amyloid protein and inflammation caused by the excessive activation of microglia. CXC motif chemokine receptor type 4 (CXCR4) is a type of G protein-coupled receptor that binds to CXC motif ligand 12 (CXCL12) to activate downstream signaling pathways, such as the Janus kinase/signal transducer and activator of transcription and the renin-angiotensin system (Ras)/RAF proto-oncogene serine (Raf)/mitogen-activated protein kinase/extracellular-regulated protein kinase; most of these signaling pathways are involved in inflammatory responses. CXCR4 is highly expressed in the microglia and astrocytes; this might be one of the important causes of inflammation caused by microglia and astrocytes. In this review, we summarize the mechanism and therapeutics of AD, the structures of CXCR4 and the CXCL12 ligand, and the mechanisms of CXCR4/CXCL12 that are involved in the occurrence and development of AD. The possible treatment of AD through microglia and astrocytes is also discussed, with the aim of providing a new method for the treatment of AD.
Collapse
Affiliation(s)
- Qiu‐Lin Wang
- Department of Clinical MedicineChongqing Medical UniversityChongqingChina
| | - Chang‐Le Fang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Xue‐Yan Huang
- Department of AnesthesiologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lu‐Lu Xue
- State Key Laboratory of Biotherapy of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
27
|
Ji RL, Tao YX. Regulation of Melanocortin-3 and -4 Receptors by Isoforms of Melanocortin-2 Receptor Accessory Protein 1 and 2. Biomolecules 2022; 12:biom12020244. [PMID: 35204745 PMCID: PMC8961526 DOI: 10.3390/biom12020244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play essential non-redundant roles in the regulation of energy homeostasis. Interaction of neural MCRs and melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) is suggested to play pivotal roles in MC3R and MC4R signaling. In the present study, we identified two new human (h) MRAP2 splice variants, MRAP2b (465 bp open reading frame) and MRAP2c (381 bp open reading frame). Human MRAP2s are different in C-termini. We investigated the effects of five isoforms of MRAPs, hMRAP1a, hMRAP1b, hMRAP2a, hMRAP2b, and hMRAP2c, on MC3R and MC4R pharmacology. At the hMC3R, hMRAP1a and hMRAP2c increased and hMRAP1b decreased the cell surface expression. hMRAP1a increased affinity to ACTH. Four MRAPs (hMRAP1a, hMRAP1b, hMRAP2a, and hMRAP2c) decreased the maximal responses in response to α-MSH and ACTH. For hMC4R, hMRAP1a, hMRAP2a, and hMRAP2c increased the cell surface expression of hMC4R. Human MRAP1b significantly increased affinity to ACTH while MRAP2a decreased affinity to ACTH. Human MRAP1a increased ACTH potency. MRAPs also affected hMC4R basal activities, with hMRAP1s increasing and hMRAP2s decreasing the basal activities. In summary, the newly identified splicing variants, hMRAP2b and hMRAP2c, could regulate MC3R and MC4R pharmacology. The two MRAP1s and three MRAP2s had differential effects on MC3R and MC4R trafficking, binding, and signaling. These findings led to a better understanding of the regulation of neural MCRs by MRAP1s and MRAP2s.
Collapse
|
28
|
Hou ZS, Wen HS. Neuropeptide Y and melanocortin receptors in fish: regulators of energy homeostasis. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:42-51. [PMID: 37073356 PMCID: PMC10077275 DOI: 10.1007/s42995-021-00106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 04/19/2021] [Indexed: 05/03/2023]
Abstract
Energy homeostasis, which refers to the physiological processes that the energy intake is exquisitely coordinated with energy expenditure, is critical for survival. Therefore, multiple and complex mechanisms have been involved in the regulation of energy homeostasis. The central melanocortin system plays an important role in modulating energy homeostasis. This system includes the orexigenic neurons, expressing neuropeptide Y/Agouti-related protein (NPY/AgRP), and the anorexigenic neurons expressing proopiomelanocortin (POMC). The downstream receptors of NPY, AgRP and post-translational products of POMC are G protein-coupled receptors (GPCRs). This review summarizes the compelling evidence demonstrating that NPY and melanocortin receptors are involved in energy homeostasis. Subsequently, the comparative studies on physiology and pharmacology of NPY and melanocortin receptors in humans, rodents and teleosts are summarized. Also, we provide a strategy demonstrating the potential application of the new ligands and/or specific variants of melanocortin system in aquaculture.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
29
|
Activating and inactivating mutations of the human, rat, equine and eel luteinizing hormone/ chorionic gonadotropin receptors (LH/CGRs). JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
30
|
Liu T, Yi TL, Yang DQ, Tao YX. Regulation of melanocortin-5 receptor pharmacology by two isoforms of MRAP2 in ricefield eel (Monopterus albus). Gen Comp Endocrinol 2021; 314:113928. [PMID: 34653433 DOI: 10.1016/j.ygcen.2021.113928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022]
Abstract
The melanocortin-5 receptor (MC5R) has been implicated in the regulation of exocrine gland secretion, immune regulation, and muscle fatty acid oxidation in mammals. Melanocortin-2 receptor accessory protein 2 (MRAP2) can modulate trafficking, ligand binding, and signaling of melanocortin receptors. To explore potential interaction between ricefield eel (Monopterus albus) MC5R and MRAP2s (maMC5R, maMRAP2X1, and maMRAP2X2), herein we studied the pharmacological characteristics of maMC5R and its modulation by maMRAP2s expressed in the human embryonic kidney cells. Three agonists, α-melanocyte-stimulating hormone (α-MSH), ACTH (1-24), and [Nle4, D-Phe7]-α-MSH, could bind to maMC5R and induce intracellular cAMP production dose-dependently. Compared with human MC5R (hMC5R), maMC5R displayed decreased maximal binding but higher binding affinity to α-MSH or ACTH (1-24). When stimulated with α-MSH or ACTH (1-24), maMC5R showed significantly lower EC50 and maximal response than hMC5R. Two maMRAP2s had no effect on cell surface expression of maMC5R, whereas they significantly increased maximal binding. Only maMRAP2X2 significantly decreased the binding affinity of ACTH (1-24). Both maMRAP2X1 and maMRAP2X2 significantly reduced maMC5R efficacy but did not affect ligand sensitivity. The availability of maMC5R pharmacological characteristics and modulation by maMRAP2s will assist the investigation of its roles in regulating diverse physiological processes in ricefield eel.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ti-Lin Yi
- School of Animal Science, Yangtze University, Jingzhou 434020, Hubei, China
| | - Dai-Qin Yang
- School of Animal Science, Yangtze University, Jingzhou 434020, Hubei, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
31
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
32
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
33
|
Ji RL, Huang L, Wang Y, Liu T, Fan SY, Tao M, Tao YX. Topmouth culter melanocortin-3 receptor: regulation by two isoforms of melanocortin-2 receptor accessory protein 2. Endocr Connect 2021; 10:1489-1501. [PMID: 34678761 PMCID: PMC8630771 DOI: 10.1530/ec-21-0459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Melanocortin-3 receptor (MC3R) is a regulator of energy homeostasis, and interaction of MC3R and melanocortin-2 receptor accessory protein 2 (MRAP2) plays a critical role in MC3R signaling of mammals. However, the physiological roles of MC3R in teleosts are not well understood. In this study, qRT-PCR was used to measure gene expression. Radioligand binding assay was used to study the binding properties of topmouth culter MC3R (caMC3R). Intracellular cAMP generation was determined by RIA, and caMC3R expression was quantified with flow cytometry. We showed that culter mc3r had higher expression in the CNS. All agonists could bind and stimulate caMC3R to increase dose dependently intracellular cAMP accumulation. Compared to human MC3R, culter MC3R showed higher constitutive activity, higher efficacies, and Rmax to alpha-melanocyte-stimulating hormone (α-MSH), des-α-MSH, and adrenocorticotrophic hormone. Both caMRAP2a and caMRAP2b markedly decreased caMC3R basal cAMP production. However, only caMRAP2a significantly decreased cell surface expression, Bmax, and Rmax of caMC3R. Expression analysis suggested that MRAP2a and MRAP2b might be more important in regulating MC3R/MC4R signaling during larval period, and reduced mc3r, mc4r, and pomc expression might be primarily involved in modulation of MC3R/MC4R in adults. These data indicated that the cloned caMC3R was a functional receptor. MRAP2a and MRAP2b had different effects on expression and signaling of caMC3R. In addition, expression analysis suggested that MRAP2s, receptors, and hormones might play different roles in regulating culter development and growth.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Yin Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Ting Liu
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Si-Yu Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Min Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Correspondence should be addressed to M Tao or Y-X Tao: or
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- Correspondence should be addressed to M Tao or Y-X Tao: or
| |
Collapse
|
34
|
Curzon AY, Dor L, Shirak A, Meiri-Ashkenazi I, Rosenfeld H, Ron M, Seroussi E. A novel c.1759T>G variant in follicle-stimulating hormone-receptor gene is concordant with male determination in the flathead grey mullet (Mugil cephalus). G3-GENES GENOMES GENETICS 2021; 11:6046932. [PMID: 33589926 PMCID: PMC8022982 DOI: 10.1093/g3journal/jkaa044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Various master key regulators (MKRs) that control a binary switch of sex determination (SD) have been found in fish; these provide an excellent model for the study of vertebrate genetic SD. The SD region in flathead grey mullet has been previously mapped to a 1 Mbp region harboring 27 genes, of which one is follicle-stimulating hormone receptor (fshr). Although this gene is involved in gonad differentiation and function, it has not been considered as an MKR of SD. We systematically investigated polymorphism in mullet fshr using DNA shotgun sequences, and compared them between males and females. Capable of encoding nonconservative amino acid substitutions, c.1732G>A and c.1759T>G exhibited association with sex on a population level (N = 83; P ≤ 6.7 × 10-19). Hence, 1732 A and 1759 G represent a male-specific haplotype of the gene, designated as "fshry." Additional flanking SNPs showed a weaker degree of association with sex, delimiting the SD critical region to 143 nucleotides on exon 14. Lack of homozygotes for fshry, and the resulting divergence from Hardy-Weinberg equilibrium (N = 170; P ≤ 3.9 × 10-5), were compatible with a male heterogametic model (XY/XX). Capable of replacing a phenylalanine with valine, c.1759T>G alters a conserved position across the sixth transmembrane domain of vertebrate FSHRs. Amino acid substitutions in this position in vertebrates are frequently associated with constant receptor activation and consequently with FSH/FSHR signaling alteration; thus, indicating a potential role of fshr as an MKR of SD.
Collapse
Affiliation(s)
- Arie Y Curzon
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Lior Dor
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| | - Iris Meiri-Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat 88112, Israel
| | - Hana Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat 88112, Israel
| | - Micha Ron
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| | - Eyal Seroussi
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| |
Collapse
|
35
|
Alhosaini K, Azhar A, Alonazi A, Al-Zoghaibi F. GPCRs: The most promiscuous druggable receptor of the mankind. Saudi Pharm J 2021; 29:539-551. [PMID: 34194261 PMCID: PMC8233523 DOI: 10.1016/j.jsps.2021.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
All physiological events in living organisms originated as specific chemical/biochemical signals on the cell surface and transmitted into the cytoplasm. This signal is translated within milliseconds-hours to a specific and unique order required to maintain optimum performance and homeostasis of living organisms. Examples of daily biological functions include neuronal communication and neurotransmission in the process of learning and memory, secretion (hormones, sweat, and saliva), muscle contraction, cellular growth, differentiation and migration during wound healing, and immunity to fight infections. Among the different transducers for such life-dependent signals is the large family of G protein-coupled receptors (GPCRs). GPCRs constitute roughly 800 genes, corresponding to 2% of the human genome. While GPCRs control a plethora of pathophysiological disorders, only approximately one-third of GPCR families have been deorphanized and characterized. Recent drug data show that around 40% of the recommended drugs available in the market target mainly GPCRs. In this review, we presented how such system signals, either through G protein or via other players, independent of G protein, function within the biological system. We also discussed drugs in the market or clinical trials targeting mainly GPCRs in various diseases, including cancer.
Collapse
Key Words
- AC, Adenylyl Cyclase
- Arrestin
- CCR, Chemokine Receptor
- COX, Cyclooxygenase
- DAG, Diacylglycerol
- Drugs
- ERK, Extracellular signal-Regulated Kinase
- G proteins
- GIP, Gastric Inhibitory Peptide
- GLP1R, Glucagon-Like Peptide-1 Receptor
- GPCR
- GRKs
- GRKs, G protein-coupled Receptor Kinases
- Heterodimerization
- IP3, Inositol 1,4,5-triphosphate
- MAPK, Mitogen-Activated Protein Kinase
- NMDA, N-Methyl D-Aspartate
- Nbs, Nanobodies
- PAR-1, Protease Activated Receptor 1
- PIP2, Phosphatidylinositol-4,5-bisphosphate
- PKA, Protein Kinase A
- Signaling
- cAMP, cyclic AMP
Collapse
Affiliation(s)
- Khaled Alhosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Saudi Arabia
| | - Asim Azhar
- Interdisciplinary Biotechnology Unit, AMU Aligarh, UP, India
| | - Asma Alonazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Saudi Arabia
| | - F Al-Zoghaibi
- Molecular BioMedicine Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, MBC:03, Riyadh 11211, Saudi Arabia
| |
Collapse
|
36
|
Gonçalves-Monteiro S, Ribeiro-Oliveira R, Vieira-Rocha MS, Vojtek M, Sousa JB, Diniz C. Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases. Pharmaceuticals (Basel) 2021; 14:439. [PMID: 34066915 PMCID: PMC8148550 DOI: 10.3390/ph14050439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise a large protein superfamily divided into six classes, rhodopsin-like (A), secretin receptor family (B), metabotropic glutamate (C), fungal mating pheromone receptors (D), cyclic AMP receptors (E) and frizzled (F). Until recently, GPCRs signaling was thought to emanate exclusively from the plasma membrane as a response to extracellular stimuli but several studies have challenged this view demonstrating that GPCRs can be present in intracellular localizations, including in the nuclei. A renewed interest in GPCR receptors' superfamily emerged and intensive research occurred over recent decades, particularly regarding class A GPCRs, but some class B and C have also been explored. Nuclear GPCRs proved to be functional and capable of triggering identical and/or distinct signaling pathways associated with their counterparts on the cell surface bringing new insights into the relevance of nuclear GPCRs and highlighting the nucleus as an autonomous signaling organelle (triggered by GPCRs). Nuclear GPCRs are involved in physiological (namely cell proliferation, transcription, angiogenesis and survival) and disease processes (cancer, cardiovascular diseases, etc.). In this review we summarize emerging evidence on nuclear GPCRs expression/function (with some nuclear GPCRs evidencing atypical/disruptive signaling pathways) in non-communicable disease, thus, bringing nuclear GPCRs as targets to the forefront of debate.
Collapse
Affiliation(s)
- Salomé Gonçalves-Monteiro
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Ribeiro-Oliveira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Sofia Vieira-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Martin Vojtek
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana B. Sousa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
37
|
MRAP2 Interaction with Melanocortin-4 Receptor in SnakeHead ( Channa argus). Biomolecules 2021; 11:biom11030481. [PMID: 33807040 PMCID: PMC8004712 DOI: 10.3390/biom11030481] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) plays an important role in the regulation of food intake and energy expenditure. Melanocortin-2 receptor accessory protein 2 (MRAP2) modulates trafficking, ligand binding, and signaling of MC4R. The Northern snakehead (Channa argus) is an economically important freshwater fish native to East Asia. To explore potential interaction between snakehead MC4R and MRAP2, herein we cloned snakehead mc4r and mrap2. The snakehead mc4r consisted of a 984 bp open reading frame encoding a protein of 327 amino acids, while snakehead mrap2 contained a 693 bp open reading frame encoding a protein of 230 amino acids. Synteny analysis indicated that mc4r was highly conserved with similar gene arrangement, while mrap2 contained two isoforms in teleost with different gene orders. Snakehead mc4r was primarily expressed in the brain, whereas mrap2 was expressed in the brain and intestine. Snakehead mc4r and mrap2 expression was modulated by fasting and refeeding. Further pharmacological experiments showed that the cloned snakehead MC4R was functional, capable of binding to peptide agonists and increasing intracellular cAMP production in a dose-dependent manner. Snakehead MC4R exhibited high constitutive activity. MRAP2 significantly decreased basal and agonist-stimulated cAMP signaling. These findings suggest that snakehead MC4R might be involved in energy balance regulation by interacting with MRAP2. Further studies are needed to elucidate MC4R in regulating diverse physiological processes in snakehead.
Collapse
|
38
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
39
|
Stoddart LA, Kilpatrick LE, Corriden R, Kellam B, Briddon SJ, Hill SJ. Efficient G protein coupling is not required for agonist-mediated internalization and membrane reorganization of the adenosine A 3 receptor. FASEB J 2021; 35:e21211. [PMID: 33710641 PMCID: PMC9328438 DOI: 10.1096/fj.202001729rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/09/2023]
Abstract
Organization of G protein‐coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3AR) to that of the wild‐type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA‐X‐BY630) demonstrated that both wild‐type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist‐mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3AR and A3AR R108A underwent similar agonist‐induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit β‐arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild‐type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist‐stimulated β‐arrestin recruitment and membrane reorganization of the A3AR.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham, UK
| | - Ross Corriden
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
40
|
Liu F, Yang W, Hu M, Zhang Y, Sun B, Yang H, Brosius J, Deng C. Constitutive activity of GPR26 regulated by ubiquitin-dependent degradation and its antitumor role. FEBS J 2021; 288:4655-4682. [PMID: 33577134 DOI: 10.1111/febs.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 02/05/2023]
Abstract
G protein-coupled receptors (GPCRs) play important roles in many physiological functions and numerous diseases. In addition to the classic ligand-stimulated receptor activity, an increasing number of studies have established that many GPCRs function constitutively in a receptor dose-dependent manner. Previous observations showed that following gene transfection, little or no protein was detectable for certain GPCRs (designated apparent state A), such as GPR26, GPR39, GPR78, GPR133, GPR139, BRS3, and LGR5, which showed strong constitutive activities. When we lysed cells in the immediate presence of western blot loading buffer, a significant increase of protein levels was detected (actual state B), which was much closer to the true expression levels under physiological conditions. GPR26 was chosen for further functional experiments as the actual state B. We identified an important ubiquitination site, K286, as well as the ubiquitin ligase E3 homologous to the E6-associated protein carboxyl terminus domain containing 3 interacting with GPR26. The pronounced differences in the protein expression and constitutive activity of GPR26 were a consequence of the ubiquitin-mediated rapid degradation mechanism. Furthermore, we identified in vitro and in vivo antitumor activity associated with high expression levels and constitutive activity of GPR26 in liver cancer cells. Hence, GPR26 could act as an antitumor gene for hepatocellular carcinoma. This study also represents the actual state B of a batch of GPCRs that actually play potentially important roles in physiological functions by their constitutive activity, which is controlled by rapid ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Fang Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Wei Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Minghui Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Yong Zhang
- West China - Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, China
| | - Juergen Brosius
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Institute of Experimental Pathology, ZMBE, University of Münster, Germany
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
41
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2021; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
42
|
Zhang HJ, Cui ZH, Liu M, Min TQ, Xiao X, Wang ZQ, Tao YX. Pharmacological characterization of three chicken melanocortin-3 receptor mutants. Domest Anim Endocrinol 2021; 74:106507. [PMID: 32841887 DOI: 10.1016/j.domaniend.2020.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
The melanocortin-3 receptor (MC3R) is a G protein-coupled receptor and potentially important in production traits. Three naturally occurring mutations (M54L, G104S, and L151R) in chicken MC3R (cMC3R) were reported previously to be associated with production traits. Here, we inserted the full-length cMC3R coding sequence into pcDNA3.1(+) and generated the 3 mutations by site-directed mutagenesis. The total and cell surface expression of the receptors was measured by flow cytometry. We analyzed the pharmacological characteristics, including binding and cyclic adenosine monophosphate (cAMP) and mitogen-activated protein kinase (MAPK) signaling, using 6 ligands ([Nle4, D-Phe7]-α-melanocyte stimulating hormone (MSH), α-, β-, γ-, and D-Trp8-γ-MSHs, and agouti-related peptide). All mutants had similar total and cell surface expression as the wild-type (WT) cMC3R. M54L had similar pharmacological properties as the WT cMC3R. G104S did not exhibit any specific binding but had minimal response to α-, β-, γ-, and D-Trp8-γ-MSH, although it generated 24% WT response when stimulated by NDP-MSH. Although L151R had normal binding, the responses to agonists were reduced to approximately 25% of that of the WT. In MAPK signaling, all 3 mutants showed significantly increased agonist-stimulated phosphorylation of extracellular signal-regulated protein kinases 1/2, indicating the existence of biased signaling at G104S and L151R. In summary, our studies demonstrated that although all 3 mutations are significantly associated with production traits, only G104S and L151R had severe defects in receptor pharmacology. How M54L might cause production trait differences remains to be investigated.
Collapse
Affiliation(s)
- H-J Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Z-H Cui
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - M Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - T-Q Min
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - X Xiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Z-Q Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| | - Y-X Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
43
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
44
|
Zhang L, Song J, Zang Z, Tang H, Li W, Lai S, Deng C. Adaptive evolution of GPR39 in diverse directions in vertebrates. Gen Comp Endocrinol 2020; 299:113610. [PMID: 32916170 DOI: 10.1016/j.ygcen.2020.113610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) play an important role in physiology and disease and represent productive drug targets. Orphan GPCRs, which have unknown endogenous ligands, are considered drug targets and consequently have attracted great interest in identifying their endogenous cognate ligands for deorphanization. However, additional studies have shown that GPCRs, including many orphan GPCRs, can constitutively activate G protein signaling in a ligand-independent manner. GPR39 is such an orphan GPCR with constitutive activity. Here, we performed a phylogenetic and selection analysis of GPR39 in vertebrates, and we found that GPR39 underwent positive selection in different branches of vertebrates. Using luciferase reporter assays, we demonstrated that human, frog and chicken GPR39 can constitutively activate Gq and G12 signaling pathways in a ligand-independent manner. Zebrafish GPR39 can constitutively activate Gs, Gq and G12 signaling pathways in a ligand-independent manner. We further found that the zebrafish-H2967.35 site is crucial for the activity of the Gs signaling pathway. In addition, our mutagenesis studies indicated that the positive selection sites of GPR39 from different species had important effects on the constitutive activity of the receptor. Our results revealed the adaptive evolution of GPR39 in diverse directions, which led to differences in constitutive activity.
Collapse
Affiliation(s)
- Lina Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingjing Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhuqing Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Huihao Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Department of Dermatovenereology, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Street, Chengdu, Sichuan 610041, China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
45
|
Yang LK, Tao YX. Alanine Scanning Mutagenesis of the DRYxxI Motif and Intracellular Loop 2 of Human Melanocortin-4 Receptor. Int J Mol Sci 2020; 21:ijms21207611. [PMID: 33076233 PMCID: PMC7589821 DOI: 10.3390/ijms21207611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is a member of the G-protein-coupled receptor (GPCR) superfamily, which has been extensively studied in obesity pathogenesis due to its critical role in regulating energy homeostasis. Both the Gs-cAMP and ERK1/2 cascades are known as important intracellular signaling pathways initiated by the MC4R. The DRYxxI motif at the end of transmembrane domain 3 and the intracellular loop 2 (ICL2) are thought to be crucial for receptor function in several GPCRs. To study the functions of this domain in MC4R, we performed alanine-scanning mutagenesis on seventeen residues. We showed that one residue was critical for receptor cell surface expression. Eight residues were important for ligand binding. Mutations of three residues impaired Gs-cAMP signaling without changing the binding properties. Investigation on constitutive activities of all the mutants in the cAMP pathway revealed that six residues were involved in constraining the receptor in inactive states and five residues were important for receptor activation in the absence of an agonist. In addition, mutations of four residues impaired the ligand-stimulated ERK1/2 signaling pathway without affecting the binding properties. We also showed that some mutants were biased to the Gs-cAMP or ERK1/2 signaling pathway. In summary, we demonstrated that the DRYxxI motif and ICL2 were important for MC4R function.
Collapse
|
46
|
Yang Z, Liang XF, Li GL, Tao YX. Biased signaling in fish melanocortin-4 receptors (MC4Rs): Divergent pharmacology of four ligands on spotted scat (Scatophagus argus) and grass carp (Ctenopharyngodon idella) MC4Rs. Mol Cell Endocrinol 2020; 515:110929. [PMID: 32615281 DOI: 10.1016/j.mce.2020.110929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
The melanocortin-4 receptor (MC4R) plays a critical role in the regulation of energy homeostasis in both mammals and fish. Several fish MC4Rs recently characterized have high constitutive activities, potentially associated with food intake and growth rate. In the present study, we systematically investigated the effects of four human MC4R (hMC4R) antagonists, including agouti-related peptide (AgRP), Ipsen 5i, ML00253764, and MCL0020, on the cAMP and ERK1/2 signaling of two fish MC4Rs: spotted scat (Scatophagus argus) MC4R (saMC4R) and grass carp (Ctenopharyngodon idella) MC4R (ciMC4R), with hMC4R as a control. We showed that both saMC4R and ciMC4R were constitutively active with significantly increased basal cAMP levels. AgRP acted as an inverse agonist in cAMP signaling pathway in both fish MC4Rs whereas MCL0020 functioned as an inverse agonist for ciMC4R but a weak neutral antagonist for saMC4R. Ipsen 5i and MCL0020 behaved as neutral allosteric modulators in the cAMP signaling of fish MC4Rs. The saMC4R and ciMC4R had similar basal pERK1/2 levels as hMC4R and the pERK1/2 levels of the two fish MC4Rs were significantly increased upon stimulation with all four ligands. In summary, our studies demonstrated the existence of biased signaling in fish MC4R. We also showed dramatic pharmacological differences of human and fish MC4Rs with synthetic ligands. Our data provided novel insights and led to a better understanding of fish MC4R pharmacology.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, United States
| | - Xu-Fang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei, 430070, China
| | - Guang-Li Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, United States.
| |
Collapse
|
47
|
Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int J Mol Sci 2020; 21:ijms21165728. [PMID: 32785054 PMCID: PMC7460885 DOI: 10.3390/ijms21165728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.
Collapse
|
48
|
Zhang J, Li J, Wu C, Hu Z, An L, Wan Y, Fang C, Zhang X, Li J, Wang Y. The Asp298Asn polymorphism of melanocortin‐4 receptor (MC4R) in pigs: evidence for its potential effects on MC4R constitutive activity and cell surface expression. Anim Genet 2020; 51:694-706. [DOI: 10.1111/age.12986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Affiliation(s)
- J. Zhang
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| | - J. Li
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| | - C. Wu
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| | - Z. Hu
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| | - L. An
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| | - Y. Wan
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| | - C. Fang
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| | - X. Zhang
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| | - J. Li
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| | - Y. Wang
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu610065China
| |
Collapse
|
49
|
Tao YX. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol Cell Endocrinol 2020; 511:110862. [PMID: 32389798 DOI: 10.1016/j.mce.2020.110862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly conserved versatile signaling molecules located at the plasma membrane that respond to diverse extracellular signals. They regulate almost all physiological processes in the vertebrates. About 35% of current drugs target these receptors. Mutations in these genes have been identified as causes of numerous diseases. The seven transmembrane domain structure of GPCRs implies that the folding of these transmembrane proteins is extremely complicated and difficult. Indeed, many wild type GPCRs are not folded optimally. The most common defect in genetic diseases caused by GPCR mutations is misfolding and failure to reach the plasma membrane where it functions. General molecular chaperones aid the folding of all proteins, including GPCRs, by preventing aggregation, promoting folding and disaggregating small aggregates. Some GPCRs need additional receptor-specific chaperones to assist their folding. Many of these receptor-specific chaperones interact with additional receptors and alter receptor pharmacology, expanding the understanding of these chaperone proteins.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849-5519, USA.
| |
Collapse
|
50
|
Zhang Z, Gao X, Zhang Q, Li W. Constitutive activity of a spermine receptor is maintained by a single site in the C-terminal. Biochem Biophys Res Commun 2020; 526:389-395. [PMID: 32222281 DOI: 10.1016/j.bbrc.2020.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022]
Abstract
Olfactory receptors are G-protein coupled receptors (GPCRs) that enable olfactory epithelia to detect odorants. These GPCRs may also show constitutive activity, which play important roles in the development and responses of odorant receptor neurons. However, little is known about the molecular characteristics that support the constitutive activities in olfactory receptors. Here, we characterize a pair of olfactory receptor orthologs that show similar ligand-dependent activity but different levels of constitutive activity, and elucidate the molecular characteristics that maintain the constitutive activity. Previously, PmTAAR348, a sea lamprey (Petromyzon marinus) olfactory receptor that is activated by the male sex pheromone spermine has been reported. In this study, we identified LmTAAR348 of Northeast Chinese lamprey (Lethenteron morii) as an ortholog of PmTAAR348. When expressed in HEK293T cell lines, both receptors showed similar levels of activation when exposed to spermine. However, the constitutive activity of LmTAAR348 was 100-fold higher than that of PmTAAR348. Using site-directed mutagenesis, we screened all 13 amino acid residues (aa) that differed between the two orthologs and found that a switch in position 340 reversed the constitutive activity levels between LmTAAR348 and PmTAAR348. Mutating the remaining 12 aa did not affect the ligand-dependent or constitutive activation. Moreover, both the ligand-dependent and constitutive activation of TAAR348 are Golf (G protein ⍺ subunit olfactory type) independent. We conclude that a single aa in the C-terminal maintains the constitutive activity in a spermine receptor.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Weming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|