1
|
Li JS, Qi XM, Li QF, Wu WW, Zhang YL, Liu HX, Ren JH, Liu JY, Lin JH, Wang QY, Qiao YB, Li QS. Salvianolic acid B drives gluconeogenesis and peroxisomal redox remodeling in cardiac ischemia/reperfusion injury: A metabolism regulation by metabolite signal crosstalk. Free Radic Biol Med 2025; 229:399-414. [PMID: 39855316 DOI: 10.1016/j.freeradbiomed.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Cardiac metabolism relies on glycogen conversion by glycolysis. Glycolysis intersects fatty acid oxidation and often directs a signal crosstalk between redox metabolites. Myocardium with ischemia/reperfusion significantly diverts from normal metabolism. Prospectively, peroxisome lies central to metabolism and redox changes, but mechanisms underlying in ischemia/reperfusion remain undefined. This work aims at investigating the potential effects and mechanisms of Salvianolic acid B (Sal B) in cardioprotection through metabolic remodeling. Following experiments, we found that Sal B is absorbed in blood and rat hearts and its cardiac absorption prevents ischemia/reperfusion injury. Sal B cardioprotection relates to gluconeogenesis activation and peroxisomal redox remodeling. Gluconeogenesis compensates glycogen synthesis through upregulating pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase. Gluconeogenic PC activity drives peroxisomal Pex2/Pex3 expressions and promotes the proliferation of peroxisome. Peroxisome quality control is enhanced with Pex5/Pex14/Pex13/Pex2 transcriptions. Nono, a non-POU domain-containing octamer-binding protein, promotes upregulation of gluconeogenic PC and peroxisomal gene transcripts through transcriptionally splicing their pre-RNAs at octamer duplex. Nono also controls the expression of SARM1/PARP1/sirtuin1 for catalyzing nicotinamide adenine dinucleotide (NAD+) consumption, leading to endurable redox capacities of peroxisome. Peroxisomal redox remodeling alters reactive oxygen species (ROS) and NAD+ contents, following which NAD+ affects cardiac accumulation of physiologically harmful glucocorticoid. In the tests of Sal B combinational treatments, results indicate ROS upregulation whereas NAD+ downregulation with glucocorticoid, ROS scavenging and glucocorticoid elimination with NAD+ precursor, and NAD+ promotion with ROS scavenger, respectively. This metabolite signal crosstalk alternatively antagonizes/agonizes Sal B cardioprotective functions on electrocardiographic output and infarction. Taken together, we reported a cardiac metabolism regulation with Sal B, capable of preventing myocardium from ischemia/reperfusion injury. The metabolite signal crosstalk was achieved by coupling reaction cascades between gluconeogenesis and peroxisomal redox remodeling.
Collapse
Affiliation(s)
- Jin-Shan Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Xiao-Ming Qi
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Qing-Fang Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Wei-Wei Wu
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Yuan-Lin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Hai-Xin Liu
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Jin-Hong Ren
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Jun-Yan Liu
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Ji-Hui Lin
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Qi-Yan Wang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China.
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China; School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Mokhtarpour N, Sterling A, Garcia JJ, Gutierrez-Rivera L, Senevirathne P, Luisa Kadekaro A, Merino EJ. Identification of a Noxo1 inhibitor by addition of a polyethylene glycol chain. Bioorg Med Chem 2023; 85:117274. [PMID: 37031566 DOI: 10.1016/j.bmc.2023.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Reactive oxygen species (ROS) are a heterogeneous group of highly reactive ions and molecules derived from molecular oxygen (O2) which can cause DNA damage and lead to skin cancer. NADPH oxidase 1 (Nox1) is a major producer of ROS in the skin upon exposure to ultraviolet light. Functionally, Nox1 forms a holoenzyme complex that generates two superoxide molecules and reduces NADPH. The signaling activation occurs when the organizer subunit Noxo1 translocates to the plasma membrane bringing a cytochrome p450, through interaction with Cyba. We propose to design inhibitors that prevent Cyba-Noxo1 binding as a topical application to reduce UV-generated ROS in human skin cells. Design started from an apocynin backbone structure to generate a small molecule to serve as an anchor point. The initial compound was then modified by addition of a polyethylene glycol linked biotin. Both inhibitors were found to be non-toxic in human keratinocyte cells. Further in vitro experiments using isothermal calorimetric binding quantification showed the modified biotinylated compound bound Noxo1 peptide with a KD of 2 nM. Both using isothermal calorimetric binding and MALDI (TOF) MS showed that binding of a Cyba peptide to Noxo1 was blocked. In vivo experiments were performed using donated skin explants with topical application of the two inhibitors. Experiments show that ultraviolet light exposure of with the lead compound was able to reduce the amount of cyclobutene pyrimidine dimers in DNA, a molecule known to lead to carcinogenesis. Further synthesis showed that the polyethylene glycol but not the biotin was essential for inhibition.
Collapse
Affiliation(s)
- Nazanin Mokhtarpour
- Department of Chemistry and Biochemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Alyssa Sterling
- Department of Chemistry and Biochemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Joshua J Garcia
- Department of Biomedical Education, California Health Science University, Clovis, CA, United States
| | - Laura Gutierrez-Rivera
- Department of Biomedical Education, California Health Science University, Clovis, CA, United States
| | - Prasadini Senevirathne
- Department of Chemistry and Biochemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Ana Luisa Kadekaro
- Department of Dermatology, University of Cincinnati, Cincinnati, OH, United States
| | - Edward J Merino
- Department of Biomedical Education, California Health Science University, Clovis, CA, United States
| |
Collapse
|
3
|
Du J, Liu J, Zhao Z, Dai J, Li K, Lin Y. Nonmetallic N/C Nanozyme Performs Continuous Consumption of Glu for Inhibition of Colorectal Cancer Cells. ACS APPLIED BIO MATERIALS 2023; 6:267-276. [PMID: 36573905 DOI: 10.1021/acsabm.2c00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortality. 5-Fluorouracil (5-FU) is the first choice for treatment of CRC, but it cannot avoid the negative effects from local high glucose (Glu) in tumor. Recently, 5-FU therapy has been combined with other treatment modalities for CRC synergistic therapy. Although these combination therapy strategies are more effective in cancer therapy, the toxicity side effects to the liver and cause metabolic acidosis still exist. Herein, we report an emerging amorphous honeycomb-like nitrogen-doped carbon (N/C) nanozyme with nicotinamide adenine dinucleotide (NADH) oxidase and catalase (CAT) activity and cascade it with natural glucose dehydrogenase (GDH) to realize NAD+ regeneration and further hyperglycemia management. In this case, by the coupling of N/C nanozyme with natural GDH to form a N/C-GDH system, the electron transfer route can switch from Glu to a common but limited electron receptor, i.e., NAD+ to ubiquitous large amounts of oxygen, achieving the purpose of sustainable consumption of Glu under NAD+ circulation and regeneration, and importantly escaping the generation of toxic H2O2. The combination of the N/C-GDH system and 5-FU on CRC cells was investigated to assess their synergistic bioeffects. Notably, our results showed that the N/C-GDH system and 5-FU in combination significantly suppress the proliferation of human colon cancer cells (HCT-116) by reducing the sugar level and induced apoptosis compared with either material or drug used alone. This work expands the nanozymes in blood Glu management as well as the promising cancer cell inhibition and provides the possibility of nonmetallic nanomaterials in the realization of effective treatment of cancer.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jia Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jing Dai
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
4
|
Wang D, Ji Y, Wang R, Cheng K, Liu L, Wu N, Tang Q, Zheng X, Li J, Zhu Z, Wang Q, Zhang X, Li R, Pan J, Sui Z, Yuan Y. Lycopene Ameliorates Hypoxic Pulmonary Hypertension via Suppression of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9179427. [PMID: 39282152 PMCID: PMC11401662 DOI: 10.1155/2022/9179427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 09/18/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is a progressive cardiopulmonary system disease characterized by pulmonary vascular remodeling. Its occurrence and progression are closely related to oxidative stress. Lycopene, extracted from red vegetables and fruits, exhibits a particularly high antioxidant capacity that is beneficial for cardiovascular diseases. Nevertheless, the role and mechanism of lycopene in HPH remain unknown. Here, we found that lycopene reversed the elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling induced by hypoxia in rats. In vitro, lycopene caused lower proliferation and migration of PASMCs, with higher apoptosis. Consistent with the antiproliferative result of lycopene on hypoxic PASMCs, the hippo signaling pathway associated with cell growth was activated. Furthermore, lycopene reduced malondialdehyde (MDA) levels and enhanced superoxide dismutase (SOD) activity in the lungs and serum of rats under hypoxia conditions. The expression of NOX4 in the lungs was also significantly decreased. Hypoxic PASMCs subjected to lycopene showed decreased reactive oxygen species (ROS) production and NOX4 expression. Importantly, lycopene repressed HIF-1α expression both in the lungs and PASMCs in response to hypoxia in the absence of a significant change of HIF-1α mRNA. Compared with 2ME2 (a HIF-1α inhibitor) alone treatment, lycopene treatment did not significantly change PASMC proliferation, NOX4 expression, and ROS production after 2ME2 blocked HIF-1α, suggesting the inhibitory effect of lycopene on HIF-1α-NOX4-ROS axis and the targeted effect on HIF-1α. After CHX blocked protein synthesis, lycopene promoted the protein degradation of HIF-1α. MG-132, a proteasome inhibitor, notably reversed the decrease in HIF-1α protein level induced by lycopene in response to hypoxia. Therefore, lycopene suppressed hypoxia-induced oxidative stress through HIF-1α-NOX4-ROS axis, thereby alleviating HPH. Our findings will provide a new research direction for clinical HPH therapies.
Collapse
Affiliation(s)
- Dingyou Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Yuke Ji
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Rui Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Ke Cheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Na Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Qing Tang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Xu Zheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Junxia Li
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Zhilong Zhu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Qinghua Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Xueyan Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Runbo Li
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Zheng Sui
- Department of Vasculocardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
5
|
NADPH Oxidases in Aortic Aneurysms. Antioxidants (Basel) 2022; 11:antiox11091830. [PMID: 36139902 PMCID: PMC9495752 DOI: 10.3390/antiox11091830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a progressive dilation of the infrarenal aorta and are characterized by inflammatory cell infiltration, smooth muscle cell migration and proliferation, and degradation of the extracellular matrix. Oxidative stress and the production of reactive oxygen species (ROS) have been shown to play roles in inflammatory cell infiltration, and smooth muscle cell migration and apoptosis in AAAs. In this review, we discuss the principles of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase/NOX) signaling and activation. We also discuss the effects of some of the major mediators of NOX signaling in AAAs. Separately, we also discuss the influence of genetic or pharmacologic inhibitors of NADPH oxidases on experimental pre-clinical AAAs. Experimental evidence suggests that NADPH oxidases may be a promising future therapeutic target for developing pharmacologic treatment strategies for halting AAA progression or rupture prevention in the management of clinical AAAs.
Collapse
|
6
|
Prospective dietary radical scavengers: Boon in Pharmacokinetics, overcome insulin obstruction via signaling cascade for absorption during impediments in metabolic disorder like Diabetic Mellitus. J Diabetes Metab Disord 2022; 21:1149-1169. [PMID: 35673468 PMCID: PMC9167351 DOI: 10.1007/s40200-022-01038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Diabetes mellitus is a metabolic disorder which is characterized based on the blood glucose level. This can be due to the lack of efficiency of utilizing insulin or lack of production of insulin. There are numerous therapies and medications which are available for the treatment of this disease which can reduce the risk of diabetes. But there is no permanent cure found. Nutritional antioxidants show a foremost role in sustaining the homeostasis of the oxidative equilibrium. They have imparted their electron donor efficacy in preventing aging and in cancer. Vitamin C, E, β-carotene, carotenoids, polyphenols and selenium have been appraised as antioxidant constituents in the human diet nourishment. This paper emphasizes on the role of antioxidants which help in reducing or maintaining the level of glucose in the body. Antioxidants are substances that reduces the damages to the cells caused by free radicals. The available treatment and medications and how the supplementation of antioxidants is different from them is also discussed. Different type of antioxidants and their treatment in curing the disease is further focused in this paper. Graphical abstract
Collapse
|
7
|
Kendrick DJ, Mishra RC, John CM, Zhu HL, Braun AP. Effects of Pharmacological Inhibitors of NADPH Oxidase on Myogenic Contractility and Evoked Vasoactive Responses in Rat Resistance Arteries. Front Physiol 2022; 12:752366. [PMID: 35140625 PMCID: PMC8818784 DOI: 10.3389/fphys.2021.752366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS), such as superoxide anions and hydrogen peroxide, are reported to contribute to the dynamic regulation of contractility in various arterial preparations, however, the situation in pressurized, myogenically active resistance arteries is much less clear. In the present study, we have utilized established pharmacological inhibitors of NADPH oxidase activity to examine the potential contribution of ROS to intrinsic myogenic contractility in adult Sprague–Dawley rat resistance arteries and responses to vasoactive agents acting via the endothelium (i.e., acetylcholine, SKA-31) or smooth muscle (i.e., sodium nitroprusside, phenylephrine). In cannulated and pressurized cremaster skeletal muscle and middle cerebral arteries, the NOX inhibitors 2-acetylphenothiazine (2-APT) and VAS2870, selective for NOX1 and NOX2, respectively, evoked concentration-dependent inhibition of basal myogenic tone in a reversible and irreversible manner, respectively, whereas the non-selective inhibitor apocynin augmented myogenic contractility. The vasodilatory actions of 2-APT and VAS2870 occurred primarily via the vascular endothelium and smooth muscle, respectively. Functional responses to established endothelium-dependent and –independent vasoactive agents were largely unaltered in the presence of either 2-APT or apocynin. In cremaster arteries from Type 2 Diabetic (T2D) Goto-Kakizaki rats with endothelial dysfunction, treatment with either 2-APT or apocynin did not modify stimulus-evoked vasoactive responses, but did affect basal myogenic tone. These same NOX inhibitors produced robust inhibition of total NADPH oxidase activity in aortic tissue homogenates from control and T2D rats, and NOX isozymes 1, 2 and 4, along with superoxide dismutase 1, were detected by qPCR in cremaster arteries and aorta from both species. Based on the diverse effects that we observed for established, chemically distinct NOX inhibitors, the functional contribution of vascular NADPH oxidase activity to stimulus-evoked vasoactive signaling in myogenically active, small resistance arteries remains unclear.
Collapse
|
8
|
Chia TY, Murugaiyah V, Khan NA, Sattar MA, Abdulla MH, Johns EJ, Ahmad A, Hassan Z, Kaur G, Mei HY, Ahmad FU, Akhtar S. Inhibition of L-NAME-induced hypertension by combined treatment with apocynin and catalase: the role of Nox 4 expression. Physiol Res 2021; 70:13-26. [PMID: 33728924 DOI: 10.33549/physiolres.934497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) such as superoxide (O2-) generated by NAD(P)H oxidases have emerged as important molecules in blood pressure regulation. This study investigated the effect of apocynin and catalase on blood pressure and renal haemodynamic and excretory function in an L-NAME induced hypertension model. Forty Male Wistar-Kyoto (WKY) rats (n=8 per group) were treated with either: vehicle (WKY-C); L-NAME (WKY-L, 15 mg/kg/day in drinking fluid); WKY-L given apocynin to block NAD(P)H oxidase (WKY-LApo, 73 mg/kg/day in drinking water.); WKY-L given catalase to enhance ROS scavenging (WKY-LCat, 10000 U/kg/day i.p.); and WKY-L receiving apocynin plus catalase (WKY-LApoCat) daily for 14 days. L-NAME elevated systolic blood pressure (SBP), 116+/-1 to 181±4 mmHg, reduced creatinine clearance, 1.69+/-0.26 to 0.97+/-0.05 ml/min/kg and fractional sodium excretion, 0.84+/-0.09 to 0.55+/-0.09 % at day 14. Concomitantly, plasma malondialdehyde (MDA) increased six fold, while plasma total superoxide dismutase (T-SOD), plasma nitric oxide (NO) and plasma total antioxidant capacity (T-AOC) were decreased by 60-70 % and Nox 4 mRNA expression was increased 2-fold. Treatment with apocynin and catalase attenuated the increase in SBP and improved renal function, enhanced antioxidative stress capacity and reduced the magnitude of Nox4 mRNAs expression in the L-NAME treated rats. This study demonstrated that apocynin and catalase offset the development of L-NAME induced hypertension, renal dysfunction and reduced oxidative stress status, possibly contributed by a reduction in Nox4 expression during NOS inhibition. These findings would suggest that antioxidant compounds such as apocynin and catalase have potential in treating cardiovascular diseases.
Collapse
Affiliation(s)
- T Y Chia
- Cardiovascular and Renal Physiology Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia. or . Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mizrachi A, Ben-Aharon I, Li H, Bar-Joseph H, Bodden C, Hikri E, Popovtzer A, Shalgi R, Haimovitz-Friedman A. Chemotherapy-induced acute vascular injury involves intracellular generation of ROS via activation of the acid sphingomyelinase pathway. Cell Signal 2021; 82:109969. [PMID: 33647448 PMCID: PMC10402763 DOI: 10.1016/j.cellsig.2021.109969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Several categories of chemotherapy confer substantial risk for late-term vascular morbidity and mortality. In the present study, we aimed to investigate the mechanism of acute chemotherapy-induced vascular injury in normal tissues. Specifically, we looked at activation of the acid sphingomyelinase (ASMase)/ceramide pathway, which leads to generation of reactive oxygen species (ROS) and induction of oxidative stress that may result in vascular injury. In particular, we focused on two distinct drugs, doxorubicin (DOX) and cisplatin (CIS) and their effects on normal endothelial cells. In vitro, DOX resulted in increased ASMase activity, intra-cellular ROS production and induction of apoptosis. CIS treatment generated significantly reduced effects in endothelial cells. In-vivo, murine femoral arterial blood flow was measured in real-time, during and after DOX or CIS administration, using fluorescence optical imaging system. While DOX caused constriction of small vessels and disintegration of large vessels' wall, CIS induced minor vascular changes in arterial blood flow, correlating with the in vitro findings. These results demonstrate that DOX induces acute vascular injury by increased ROS production, via activation of ASMase/ceramide pathway, while CIS increases ROS production and its immediate extracellular translocation, without causing detectable acute vascular injury. Our findings may potentially lead to the development of new strategies to prevent long-term cardiovascular morbidity in cancer survivors.
Collapse
Affiliation(s)
- Aviram Mizrachi
- Head and Neck Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Otorhinolaryngology Head and Neck Surgery and Center for Translational Research in Head and Neck Cancer, Rabin Medical Center, Petah Tikva, Israel
| | - Irit Ben-Aharon
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hongyan Li
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Hadas Bar-Joseph
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chloe Bodden
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elad Hikri
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Otorhinolaryngology Head and Neck Surgery and Center for Translational Research in Head and Neck Cancer, Rabin Medical Center, Petah Tikva, Israel
| | - Aron Popovtzer
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Otorhinolaryngology Head and Neck Surgery and Center for Translational Research in Head and Neck Cancer, Rabin Medical Center, Petah Tikva, Israel
| | - Ruth Shalgi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
10
|
Wu D, Li J, Xu S, Xie Q, Pan Y, Liu X, Ma R, Zheng H, Gao M, Wang W, Li J, Cai X, Jaouen F, Li R. Engineering Fe-N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells. J Am Chem Soc 2020; 142:19602-19610. [PMID: 33108194 DOI: 10.1021/jacs.0c08360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NADPH oxidase (NOX) as a transmembrane enzyme complex controls the generation of superoxide that plays important roles in immune signaling pathway. NOX inactivation may elicit immunodeficiency and cause chronic granulomatous disease (CGD). Biocompatible synthetic materials with NOX-like activities would therefore be interesting as curative and/or preventive approaches in case of NOX deficiency. Herein, we synthesized a Fe-N doped graphene (FeNGR) nanomaterial that could mimic the activity of NOX by efficiently catalyzing the conversion of NADPH into NADP+ and triggering the generation of oxygen radicals. The resulting FeNGR nanozyme had similar cellular distribution to NOX and is able to mimic the enzyme function in NOX-deficient cells by catalyzing the generation of superoxide and retrieving the immune activity, evidenced by TNF-α, IL-1β, and IL-6 production in response to Alum exposure. Overall, our study discovered a synthetic material (FeNGR) to mimic NOX and demonstrated its biological function in immune activation of NOX-deficient cells.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingkun Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanxia Pan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jia Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou 215123, Jiangsu, China
| | | | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
11
|
Influenza A virus causes maternal and fetal pathology via innate and adaptive vascular inflammation in mice. Proc Natl Acad Sci U S A 2020; 117:24964-24973. [PMID: 32958663 PMCID: PMC7547222 DOI: 10.1073/pnas.2006905117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Influenza infection during pregnancy is associated with increased maternal and perinatal complications. Here, we show that, during pregnancy, influenza infection leads to viral dissemination into the aorta, resulting in a peripheral “vascular storm” characterized by enhanced inflammatory mediators; the influx of Ly6C monocytes, neutrophils, and T cells; and impaired vascular function. The ensuing vascular storm induced hypoxia in the placenta and fetal brain and caused an increase in circulating cell free fetal DNA and soluble Flt1 release. We demonstrate that vascular dysfunction occurs in response to viral infection during pregnancy, which may explain the high rates of morbidity and mortality in pregnant dams, as well as the downstream perinatal complications associated with influenza infection. Influenza A virus (IAV) infection during pregnancy causes severe maternal and perinatal complications, despite a lack of vertical transmission of IAV across the placenta. Here, we demonstrate a significant alteration in the maternal vascular landscape that underpins the maternal and downstream fetal pathology to IAV infection in mice. In IAV infection of nonpregnant mice, the local lung inflammatory response was contained to the lungs and was self-resolving, whereas in pregnant mice, virus dissemination to major maternal blood vessels, including the aorta, resulted in a peripheral "vascular storm," with elevated proinflammatory and antiviral mediators and the influx of Ly6Clow and Ly6Chigh monocytes, plus neutrophils and T cells. This vascular storm was associated with elevated levels of the adhesion molecules ICAM and VCAM and the pattern-recognition receptors TLR7 and TLR9 in the vascular wall, resulting in profound vascular dysfunction. The sequalae of this IAV-driven vascular storm included placental growth retardation and intrauterine growth restriction, evidence of placental and fetal brain hypoxia, and increased circulating cell free fetal DNA and soluble Flt1. In contrast, IAV infection in nonpregnant mice caused no obvious alterations in endothelial function or vascular inflammation. Therefore, IAV infection during pregnancy drives a significant systemic vascular alteration in pregnant dams, which likely suppresses critical blood flow to the placenta and fetus. This study in mice provides a fundamental mechanistic insight and a paradigm into how an immune response to a respiratory virus, such as IAV, is likely to specifically drive maternal and fetal pathologies during pregnancy.
Collapse
|
12
|
Vallés PG, Bocanegra V, Costantino VV, Gil Lorenzo AF, Benardon ME, Cacciamani V. The renal antioxidative effect of losartan involves heat shock protein 70 in proximal tubule cells. Cell Stress Chaperones 2020; 25:753-766. [PMID: 32447546 PMCID: PMC7479660 DOI: 10.1007/s12192-020-01119-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II exerts a cardinal role in the pathogenesis of hypertension and renal injury via action of angiotensin II type 1 (AT1) receptors. Local renin-angiotensin system (RAS) activity is essential for the mechanisms mediating pathophysiological functions. Proximal tubular angiotensinogen and tubular AT1 receptors are augmented by intrarenal angiotensin II. Caveolin 1 plays an important role as a regulatory molecule for the compartmentalization of redox signaling events through angiotensin II-induced NADPH oxidase activation in the kidney. A role for the renin-angiotensin system in the development and/or maintenance of hypertension has been demonstrated in spontaneously hypertensive rats (SHRs). Many effects of angiotensin II are dependent on the AT1 stimulation of reactive oxygen species (ROS) production by NADPH oxidase. Angiotensin II upregulation stimulates oxidative stress in proximal tubules from SHR. The NADPH oxidase 4 (Nox4) is abundantly expressed in kidney proximal tubule cells. Induction of the stress response includes synthesis of heat shock protein 70, a molecular chaperone that has a critical role in the recovery of cells from stress and in cytoprotection, guarding cells from subsequent insults. HSP70 chaperones function in part by driving the molecular triage decision, which determines whether proteins enter the productive folding pathway or result in client substrate ubiquitination and proteasomal degradation. This review examines regulation of losartan-mediated antioxidative stress responses by the chaperone HSP70 in proximal tubule cells of spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Patricia G Vallés
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- IMBECU CONICET (National Council of Scientific and Technical Research of Argentina), Mendoza, Argentina.
| | - Victoria Bocanegra
- IMBECU CONICET (National Council of Scientific and Technical Research of Argentina), Mendoza, Argentina
| | - Valeria V Costantino
- IMBECU CONICET (National Council of Scientific and Technical Research of Argentina), Mendoza, Argentina
| | - Andrea F Gil Lorenzo
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Eugenia Benardon
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Valeria Cacciamani
- IMBECU CONICET (National Council of Scientific and Technical Research of Argentina), Mendoza, Argentina
| |
Collapse
|
13
|
Cardiovascular Therapeutic Potential of the Redox Siblings, Nitric Oxide (NO•) and Nitroxyl (HNO), in the Setting of Reactive Oxygen Species Dysregulation. Handb Exp Pharmacol 2020; 264:311-337. [PMID: 32813078 DOI: 10.1007/164_2020_389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) dysregulation is a hallmark of cardiovascular disease, characterised by an imbalance in the synthesis and removal of ROS. ROS such as superoxide (•O2-), hydrogen peroxide (H2O2), hydroxyl (OH•) and peroxynitrite (ONOO-) have a marked impact on cardiovascular function, contributing to the vascular impairment and cardiac dysfunction associated with diseases such as angina, hypertension, diabetes and heart failure. Central to the vascular dysfunction is a reduction in bioavailability and/or physiological effects of vasoprotective nitric oxide (NO•), leading to vasoconstriction, inflammation and vascular remodelling. In a cardiac context, increased ROS generation can also lead to modification of key proteins involved in cardiac contractility. Whilst playing a key role in the pathogenesis of cardiovascular disease, ROS dysregulation also limits the clinical efficacy of current therapies, such as nitrosovasodilators. As such, alternate therapies are sought. This review will discuss the impact of ROS dysregulation on the therapeutic utility of NO• and its redox sibling, nitroxyl (HNO). Both nitric oxide (NO) and nitroxyl (HNO) donors signal through soluble guanylyl cyclase (sGC). NO binds to the Fe(II) form of sGC and nitroxyl possibly to both sGC heme and thiol groups. In the vasculature, nitroxyl can also signal through voltage-dependent (Kv) and ATP-sensitive (KATP) K+ channels as well as calcitonin gene-related peptide (CGRP). In the heart, HNO directly targets critical thiols to increase myocardial contractility, an effect not seen with NO. The qualitative effects via elevation of cGMP are similar, i.e. lusitropic in the heart and inhibitory on vasoconstriction, inflammation, aggregation and vascular remodelling. Of pathophysiological significance is the fact the efficacy of NO donors is impaired by ROS, e.g. through chemical scavenging of NO, to generate reactive nitrogen oxide species (RNOS), whilst nitroxyl is apparently not.
Collapse
|
14
|
Papanicolaou A, Wang H, Satzke C, Vlahos R, Wilson N, Bozinovski S. Novel Therapies for Pneumonia-Associated Severe Asthma Phenotypes. Trends Mol Med 2020; 26:1047-1058. [PMID: 32828703 DOI: 10.1016/j.molmed.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Distinct asthma phenotypes are emerging from well-defined cohort studies and appear to be associated with a history of pneumonia. Asthmatics are more susceptible to infections caused by Streptococcus pneumoniae; however, the mechanisms that underlie defective immunity to this pathogen are still being elucidated. Here, we discuss how alternatively activated macrophages (AAMs) in asthmatics are defective in bacterial phagocytosis and how respiratory viruses disrupt essential host immunity to cause bacterial dispersion deeper into the lungs. We also describe how respiratory pathogens instigate neutrophilic inflammation and amplify type-2 inflammation in asthmatics. Finally, we propose novel dual-acting strategies including granulocyte-colony-stimulating factor receptor (G-CSFR) antagonism and specialised pro-resolving mediators (SPMs) to suppress type-2 and neutrophilic inflammation without compromising pathogen clearance.
Collapse
Affiliation(s)
- Angelica Papanicolaou
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Hao Wang
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Steven Bozinovski
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
15
|
The Intrinsic Virtues of EGCG, an Extremely Good Cell Guardian, on Prevention and Treatment of Diabesity Complications. Molecules 2020; 25:molecules25133061. [PMID: 32635492 PMCID: PMC7411588 DOI: 10.3390/molecules25133061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
The pandemic proportion of diabesity—a combination of obesity and diabetes—sets a worldwide health issue. Experimental and clinical studies have progressively reinforced the pioneering epidemiological observation of an inverse relationship between consumption of polyphenol-rich nutraceutical agents and mortality from cardiovascular and metabolic diseases. With chemical identification of epigallocatechin-3-gallate (EGCG) as the most abundant catechin of green tea, a number of cellular and molecular mechanisms underlying the activities of this unique catechin have been proposed. Favorable effects of EGCG have been initially attributed to its scavenging effects on free radicals, inhibition of ROS-generating mechanisms and upregulation of antioxidant enzymes. Biologic actions of EGCG are concentration-dependent and under certain conditions EGCG may exert pro-oxidant activities, including generation of free radicals. The discovery of 67-kDa laminin as potential EGCG membrane target has broaden the likelihood that EGCG may function not only because of its highly reactive nature, but also via receptor-mediated activation of multiple signaling pathways involved in cell proliferation, angiogenesis and apoptosis. Finally, by acting as epigenetic modulator of DNA methylation and chromatin remodeling, EGCG may alter gene expression and modify miRNA activities. Despite unceasing research providing detailed insights, ECGC composite activities are still not completely understood. This review summarizes the most recent evidence on molecular mechanisms by which EGCG may activate signal transduction pathways, regulate transcription factors or promote epigenetic changes that may contribute to prevent pathologic processes involved in diabesity and its cardiovascular complications.
Collapse
|
16
|
Waldman M, Arad M, Abraham NG, Hochhauser E. The Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α-Heme Oxygenase 1 Axis, a Powerful Antioxidative Pathway with Potential to Attenuate Diabetic Cardiomyopathy. Antioxid Redox Signal 2020; 32:1273-1290. [PMID: 32027164 PMCID: PMC7232636 DOI: 10.1089/ars.2019.7989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Significance: From studies of diabetic animal models, the downregulation of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)-heme oxygenase 1 (HO-1) axis appears to be a crucial event in the development of obesity and diabetic cardiomyopathy (DCM). In this review, we discuss the role of metabolic and biochemical stressors in the rodent and human pathophysiology of DCM. A crucial contributor for many cardiac pathologies is excessive production of reactive oxygen species (ROS) pathologies, which lead to extensive cellular damage by impairing mitochondrial function and directly oxidizing DNA, proteins, and lipid membranes. We discuss the role of ROS production and inflammatory pathways with multiple contributing and confounding factors leading to DCM. Recent Advances: The relevant biochemical pathways that are critical to a therapeutic approach to treat DCM, specifically caloric restriction and its relation to the PGC-1α-HO-1 axis in the attenuation of DCM, are elucidated. Critical Issues: The increased prevalence of diabetes mellitus type 2, a major contributor to unique cardiomyopathy characterized by cardiomyocyte hypertrophy with no effective clinical treatment. This review highlights the role of mitochondrial dysfunction in the development of DCM and potential oxidative targets to attenuate oxidative stress and attenuate DCM. Future Directions: Targeting the PGC-1α-HO-1 axis is a promising approach to ameliorate DCM through improvement in mitochondrial function and antioxidant defenses. A pharmacological inducer to activate PGC-1α and HO-1 described in this review may be a promising therapeutic approach in the clinical setting.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Michael Arad
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Seimetz M, Sommer N, Bednorz M, Pak O, Veith C, Hadzic S, Gredic M, Parajuli N, Kojonazarov B, Kraut S, Wilhelm J, Knoepp F, Henneke I, Pichl A, Kanbagli ZI, Scheibe S, Fysikopoulos A, Wu CY, Klepetko W, Jaksch P, Eichstaedt C, Grünig E, Hinderhofer K, Geiszt M, Müller N, Rezende F, Buchmann G, Wittig I, Hecker M, Hecker A, Padberg W, Dorfmüller P, Gattenlöhner S, Vogelmeier CF, Günther A, Karnati S, Baumgart-Vogt E, Schermuly RT, Ghofrani HA, Seeger W, Schröder K, Grimminger F, Brandes RP, Weissmann N. NADPH oxidase subunit NOXO1 is a target for emphysema treatment in COPD. Nat Metab 2020; 2:532-546. [PMID: 32694733 DOI: 10.1038/s42255-020-0215-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and death worldwide. Peroxynitrite, formed from nitric oxide, which is derived from inducible nitric oxide synthase, and superoxide, has been implicated in the development of emphysema, but the source of the superoxide was hitherto not characterized. Here, we identify the non-phagocytic NADPH oxidase organizer 1 (NOXO1) as the superoxide source and an essential driver of smoke-induced emphysema and pulmonary hypertension development in mice. NOXO1 is consistently upregulated in two models of lung emphysema, Cybb (also known as NADPH oxidase 2, Nox2)-knockout mice and wild-type mice with tobacco-smoke-induced emphysema, and in human COPD. Noxo1-knockout mice are protected against tobacco-smoke-induced pulmonary hypertension and emphysema. Quantification of superoxide, nitrotyrosine and multiple NOXO1-dependent signalling pathways confirm that peroxynitrite formation from nitric oxide and superoxide is a driver of lung emphysema. Our results suggest that NOXO1 may have potential as a therapeutic target in emphysema.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/drug effects
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/drug effects
- Emphysema/drug therapy
- Emphysema/etiology
- Emphysema/genetics
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Peroxynitrous Acid/metabolism
- Pulmonary Disease, Chronic Obstructive/complications
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- Signal Transduction/genetics
- Superoxides/metabolism
- Tobacco Smoke Pollution/adverse effects
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Michael Seimetz
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Natascha Sommer
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Mariola Bednorz
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Oleg Pak
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christine Veith
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Marija Gredic
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Nirmal Parajuli
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Division of Basic Biomedical Science, University of South Dakota, Sanford School of Medicine, Vermillion, SD, USA
| | - Baktybek Kojonazarov
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Justus-Liebig University, Institute for Lung Health, Giessen, Germany
| | - Simone Kraut
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jochen Wilhelm
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Justus-Liebig University, Institute for Lung Health, Giessen, Germany
| | - Fenja Knoepp
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ingrid Henneke
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Justus-Liebig University, Institute for Lung Health, Giessen, Germany
| | - Alexandra Pichl
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Zeki I Kanbagli
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Susan Scheibe
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Athanasios Fysikopoulos
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Cheng-Yu Wu
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Walter Klepetko
- Department of Cardiothoracic Surgery, University Hospital of Vienna, Vienna, Austria
| | - Peter Jaksch
- Department of Cardiothoracic Surgery, University Hospital of Vienna, Vienna, Austria
| | - Christina Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Katrin Hinderhofer
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Miklós Geiszt
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Niklas Müller
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Flavia Rezende
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Giulia Buchmann
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics Group, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Matthias Hecker
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Andreas Hecker
- Department of Surgery, Justus-Liebig University, Giessen, Germany
| | - Winfried Padberg
- Department of Surgery, Justus-Liebig University, Giessen, Germany
| | - Peter Dorfmüller
- Department of Pathology, Justus-Liebig University, Giessen, Germany
| | | | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, German Center for Lung Research, University of Marburg, Marburg, Germany
| | - Andreas Günther
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus-Liebig University Giessen, Giessen, Germany
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein A Ghofrani
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Department of Medicine, Imperial College London, London, UK
| | - Werner Seeger
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Friedrich Grimminger
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Norbert Weissmann
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
18
|
Erlich JR, To EE, Liong S, Brooks R, Vlahos R, O'Leary JJ, Brooks DA, Selemidis S. Targeting Evolutionary Conserved Oxidative Stress and Immunometabolic Pathways for the Treatment of Respiratory Infectious Diseases. Antioxid Redox Signal 2020; 32:993-1013. [PMID: 32008371 PMCID: PMC7426980 DOI: 10.1089/ars.2020.8028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Up until recently, metabolism has scarcely been referenced in terms of immunology. However, emerging evidence has shown that immune cells undergo an adaptation of metabolic processes, known as the metabolic switch. This switch is key to the activation, and sustained inflammatory phenotype in immune cells, which includes the production of cytokines and reactive oxygen species (ROS) that underpin infectious diseases, respiratory and cardiovascular disease, neurodegenerative disease, as well as cancer. Recent Advances: There is a burgeoning body of evidence that immunometabolism and redox biology drive infectious diseases. For example, influenza A virus (IAV) utilizes endogenous ROS production via NADPH oxidase (NOX)2-containing NOXs and mitochondria to circumvent antiviral responses. These evolutionary conserved processes are promoted by glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle that drive inflammation. Such metabolic products involve succinate, which stimulates inflammation through ROS-dependent stabilization of hypoxia-inducible factor-1α, promoting interleukin-1β production by the inflammasome. In addition, itaconate has recently gained significant attention for its role as an anti-inflammatory and antioxidant metabolite of the TCA cycle. Critical Issues: The molecular mechanisms by which immunometabolism and ROS promote viral and bacterial pathology are largely unknown. This review will provide an overview of the current paradigms with an emphasis on the roles of immunometabolism and ROS in the context of IAV infection and secondary complications due to bacterial infection such as Streptococcus pneumoniae. Future Directions: Molecular targets based on metabolic cell processes and ROS generation may provide novel and effective therapeutic strategies for IAV and associated bacterial superinfections.
Collapse
Affiliation(s)
- Jonathan R. Erlich
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Eunice E. To
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Stella Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Robert Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - John J. O'Leary
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin, Ireland
| | - Doug A. Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
- Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
- Address correspondence to: Prof. Stavros Selemidis, Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
19
|
To EE, O'Leary JJ, O'Neill LAJ, Vlahos R, Bozinovski S, Porter CJH, Brooks RD, Brooks DA, Selemidis S. Spatial Properties of Reactive Oxygen Species Govern Pathogen-Specific Immune System Responses. Antioxid Redox Signal 2020; 32:982-992. [PMID: 32008365 PMCID: PMC7426979 DOI: 10.1089/ars.2020.8027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) are often considered to be undesirable toxic molecules that are generated under conditions of cellular stress, which can cause damage to critical macromolecules such as DNA. However, ROS can also contribute to the pathogenesis of cancer and many other chronic inflammatory disease conditions, including atherosclerosis, metabolic disease, chronic obstructive pulmonary disease, neurodegenerative disease, and autoimmune disease. Recent Advances: The field of ROS biology is expanding, with an emerging paradigm that these reactive species are not generated haphazardly, but instead produced in localized regions or in specific subcellular compartments, and this has important consequences for immune system function. Currently, there is evidence for ROS generation in extracellular spaces, in endosomal compartments, and within mitochondria. Intriguingly, the specific location of ROS production appears to be influenced by the type of invading pathogen (i.e., bacteria, virus, or fungus), the size of the invading pathogen, as well as the expression/subcellular action of pattern recognition receptors and their downstream signaling networks, which sense the presence of these invading pathogens. Critical Issues: ROS are deliberately generated by the immune system, using specific NADPH oxidases that are critically important for pathogen clearance. Professional phagocytic cells can sense a foreign bacterium, initiate phagocytosis, and then within the confines of the phagosome, deliver bursts of ROS to these pathogens. The importance of confining ROS to this specific location is the impetus for this perspective. Future Directions: There are specific knowledge gaps on the fate of the ROS generated by NADPH oxidases/mitochondria, how these ROS are confined to specific locations, as well as the identity of ROS-sensitive targets and how they regulate cellular signaling.
Collapse
Affiliation(s)
- Eunice E To
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia.,Infection and Immunity Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - John J O'Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.,Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin, Ireland.,Emer Casey Research Laboratory, Molecular Pathology Laboratory, The Coombe Women and Infants University Hospital, Dublin, Ireland.,CERVIVA Research Consortium, Trinity College Dublin, Dublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Steven Bozinovski
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Christopher J H Porter
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.,Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Robert D Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Doug A Brooks
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia.,Infection and Immunity Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
20
|
Reis J, Massari M, Marchese S, Ceccon M, Aalbers FS, Corana F, Valente S, Mai A, Magnani F, Mattevi A. A closer look into NADPH oxidase inhibitors: Validation and insight into their mechanism of action. Redox Biol 2020; 32:101466. [PMID: 32105983 PMCID: PMC7042484 DOI: 10.1016/j.redox.2020.101466] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
NADPH-oxidases (NOXs) purposefully produce reactive-oxygen-species (ROS) and are found in most kingdoms of life. The seven human NOXs are each characterized by a specific expression profile and a fine regulation to spatio-temporally tune ROS concentration in cells and tissues. One of the best known roles for NOXs is in host protection against pathogens but ROS themselves are important second messengers involved in tissue regeneration and the modulation of pathways that induce and sustain cell proliferation. As such, NOXs are attractive pharmacological targets in immunomodulation, fibrosis and cancer. We have studied an extensive number of available NOX inhibitors, with the specific aim to identify bona fide ligands versus ROS-scavenging molecules. Accordingly, we have established a comprehensive platform of biochemical and biophysical assays. Most of the investigated small molecules revealed ROS-scavenging and/or assay-interfering properties to various degrees. A few compounds, however, were also demonstrated to directly engage one or more NOX enzymes. Diphenylene iodonium was found to react with the NOXs' flavin and heme prosthetic groups to form stable adducts. We also discovered that two compounds, VAS2870 and VAS3947, inhibit NOXs through the covalent alkylation of a cysteine residue. Importantly, the amino acid involved in covalent binding was found to reside in the dehydrogenase domain, where the nicotinamide ring of NADPH is bound. This work can serve as a springboard to guide further development of bona fide ligands with either agonistic or antagonistic properties toward NOXs.
Collapse
Affiliation(s)
- Joana Reis
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marta Massari
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Sara Marchese
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marta Ceccon
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Friso S Aalbers
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Federica Corana
- Centro Grandi Strumenti, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca Magnani
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
21
|
Muñoz M, López-Oliva ME, Rodríguez C, Martínez MP, Sáenz-Medina J, Sánchez A, Climent B, Benedito S, García-Sacristán A, Rivera L, Hernández M, Prieto D. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biol 2019; 28:101330. [PMID: 31563085 PMCID: PMC6812001 DOI: 10.1016/j.redox.2019.101330] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 01/16/2023] Open
Abstract
Oxidative stress-associated endothelial dysfunction is a key pathogenic factor underlying the microvascular complications of metabolic disease. NADPH oxidase (Nox) is a major source of oxidative stress in diabetic nephropathy and chronic kidney disease, despite Nox4 and Nox2 have been identified as relevant sources of vasodilator endothelial H2O2.The present study was sought to investigate the role of Nox enzymes in renal vascular oxidative stress and endothelial dysfunction in a rat model of genetic obesity. Endothelial function was assessed in intrarenal arteries of obese Zucker rats (OZR) and their counterparts lean Zucker rats (LZR) mounted in microvascular myographs, and superoxide (O2.-) and H2O2 production were measured. Impaired endothelium-dependent relaxations to acetylcholine (ACh) were associated to augmented O2.- generation, but neither ROS scavengers nor the Nox inhibitor apocynin significantly improved these relaxant responses in renal arteries of OZR. Whereas NO contribution to endothelial relaxations was blunted, catalase-sensitive non-NO non-prostanoid relaxations were enhanced in obese rats. Interestingly, NADPH-dependent O2.- production was augmented while NADPH-dependent H2O2 generation was reduced, and cytosolic and mitochondrial SOD were up-regulated in kidney of obese rats. Nox4 was down-regulated in renal arteries and Nox4-dependent H2O2 generation and endothelial relaxation were reduced in OZR. Up-regulation of both Nox2 and Nox1 was associated with augmented O2.- production but reduced H2O2 generation and blunted endothelial Nox2-derived H2O2-mediated in obese rats. Moreover, increased Nox1-derived O2.- contributed to renal endothelial dysfunction in OZR. In summary, the current data support a main role for Nox1-derived O2.- in kidney vascular oxidative stress and renal endothelial dysfunction in obesity, while reduced endothelial Nox4 expression associated to decreased H2O2 generation and H2O2-mediated vasodilatation might hinder Nox4 protective renal effects thus contributing to kidney injury. This suggests that effective therapies to counteract oxidative stress and prevent microvascular complications must identify the specific Nox subunits involved in metabolic disease.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | - Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
22
|
Marrazzo P, Angeloni C, Hrelia S. Combined Treatment with Three Natural Antioxidants Enhances Neuroprotection in a SH-SY5Y 3D Culture Model. Antioxidants (Basel) 2019; 8:antiox8100420. [PMID: 31547034 PMCID: PMC6827135 DOI: 10.3390/antiox8100420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, the majority of cell-based studies on neurodegeneration are carried out on two-dimensional cultured cells that do not represent the cells residing in the complex microenvironment of the brain. Recent evidence has suggested that three-dimensional (3D) in vitro microenvironments may better model key features of brain tissues in order to study molecular mechanisms at the base of neurodegeneration. So far, no drugs have been discovered to prevent or halt the progression of neurodegenerative disorders. New therapeutic interventions can come from phytochemicals that have a broad spectrum of biological activities. On this basis, we evaluated the neuroprotective effect of three phytochemicals (sulforaphane, epigallocatechin gallate, and plumbagin) alone or in combination, focusing on their ability to counteract oxidative stress. The combined treatment was found to be more effective than the single treatments. In particular, the combined treatment increased cell viability and reduced glutathione (GSH) levels, upregulated antioxidant enzymes and insulin-degrading enzymes, and downregulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 and 2 in respect to peroxide-treated cells. Our data suggest that a combination of different phytochemicals could be more effective than a single compound in counteracting neurodegeneration, probably thanks to a pleiotropic mechanism of action.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy.
| | | | - Silvana Hrelia
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
23
|
Yang J, Xiong Y, Zhou L, Huang Y, Chen W, Wang B. Soluble E-cadherin is associated with oxidative stress in patients with chronic HBV infection. J Med Virol 2019; 92:34-44. [PMID: 31429942 DOI: 10.1002/jmv.25571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022]
Abstract
Mounting evidence indicates that serum soluble E-cadherin (sE-cadherin) serves as an important player in various physiological and pathological processes. However, the crosstalk between serum sE-cadherin and oxidative stress in chronic hepatitis B (CHB) remains to be illustrated. The main purpose of this study is to explore the molecular mechanisms underlying the function of sE-cadherin in CHB virus infection. Levels of serum sE-cadherin, total antioxidant capacity (TAC), glutathione (GSH), superoxide dismutase (SOD), total oxidant activity (TOA), NADPH oxidase 2 (NOX2), and malondialdehyde (MDA), from 51 patients with hepatitis B envelope antigen (HBeAg)-negative CHB, 54 patients with HBeAg-positive CHB, and 109 healthy individuals were detected by enzyme-linked immunosorbent assay. In our study, patients with CHB showed significantly higher serum sE-cadherin levels than healthy individuals (P < .01). Furthermore, we also found that the serum sE-cadherin levels were significantly negatively correlated with TAC, antioxidant enzymes (GSH and SOD) in patients with CHB, and that serum sE-cadherin concentrations were significantly positively correlated with liver enzyme markers (alanine transaminase and aspartate aminotransferase) and oxidative markers (TOA, NOX2, and MDA) in patients with CHB. Therefore, serum sE-cadherin may act as a new candidate biomarker for reflecting inflammation and oxidative stress status in the development and progression of hepatitis B virus infection.
Collapse
Affiliation(s)
- Jun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Xiong
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Lijing Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yong Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Bubb KJ, Drummond GR, Figtree GA. New opportunities for targeting redox dysregulation in cardiovascular disease. Cardiovasc Res 2019; 116:532-544. [DOI: 10.1093/cvr/cvz183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/02/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Despite substantial promise, the use of antioxidant therapy to improve cardiovascular outcomes has been disappointing. Whilst the fundamental biology supporting their use continues to build, the challenge now is to differentially target dysregulated redox signalling domains and to identify new ways to deliver antioxidant substances. Looking further afield to other disciplines, there is an emerging ‘tool-kit’ containing sophisticated molecular and drug delivery applications. Applying these to the cardiovascular redox field could prove a successful strategy to combat the increasing disease burden. Excessive reactive oxygen species production and protein modifications in the mitochondria has been the target of successful drug development with several positive outcomes emerging in the cardiovascular space, harnessing both improved delivery mechanisms and enhanced understanding of the biological abnormalities. Using this as a blueprint, similar strategies could be applied and expanded upon in other redox-hot-spots, such as the caveolae sub-cellular region, which houses many of the key cardiovascular redox proteins such as NADPH oxidase, endothelial nitric oxide synthase, angiotensin II receptors, and beta adrenoceptors. The expanded tool kit of drug development, including gene and miRNA therapies, nanoparticle technology and micropeptide targeting, can be applied to target dysregulated redox signalling in subcellular compartments of cardiovascular cells. In this review, we consider the opportunities for improving cardiovascular outcomes by utilizing new technology platforms to target subcellular ‘bonfires’ generated by dysregulated redox pathways, to improve clinical outcomes.
Collapse
Affiliation(s)
- Kristen J Bubb
- Cardiothoracic and Vascular Health, Kolling Institute and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Gemma A Figtree
- Cardiothoracic and Vascular Health, Kolling Institute and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
25
|
Brassington K, Selemidis S, Bozinovski S, Vlahos R. New frontiers in the treatment of comorbid cardiovascular disease in chronic obstructive pulmonary disease. Clin Sci (Lond) 2019; 133:885-904. [PMID: 30979844 PMCID: PMC6465303 DOI: 10.1042/cs20180316] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterised by persistent airflow limitation that is not fully reversible and is currently the fourth leading cause of death globally. It is now well established that cardiovascular-related comorbidities contribute to morbidity and mortality in COPD, with approximately 50% of deaths in COPD patients attributed to a cardiovascular event (e.g. myocardial infarction). Cardiovascular disease (CVD) and COPD share various risk factors including hypertension, sedentarism, smoking and poor diet but the underlying mechanisms have not been fully established. However, there is emerging and compelling experimental and clinical evidence to show that increased oxidative stress causes pulmonary inflammation and that the spill over of pro-inflammatory mediators from the lungs into the systemic circulation drives a persistent systemic inflammatory response that alters blood vessel structure, through vascular remodelling and arterial stiffness resulting in atherosclerosis. In addition, regulation of endothelial-derived vasoactive substances (e.g. nitric oxide (NO)), which control blood vessel tone are altered by oxidative damage of vascular endothelial cells, thus promoting vascular dysfunction, a key driver of CVD. In this review, the detrimental role of oxidative stress in COPD and comorbid CVD are discussed and we propose that targeting oxidant-dependent mechanisms represents a novel strategy in the treatment of COPD-associated CVD.
Collapse
Affiliation(s)
- Kurt Brassington
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
26
|
Graton ME, Potje SR, Troiano JA, Vale GT, Perassa LA, Nakamune ACMS, Tirapelli CR, Bendhack LM, Antoniali C. Apocynin alters redox signaling in conductance and resistance vessels of spontaneously hypertensive rats. Free Radic Biol Med 2019; 134:53-63. [PMID: 30586635 DOI: 10.1016/j.freeradbiomed.2018.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/28/2023]
Abstract
Chronic treatment with apocynin reduces blood pressure and prevents endothelial dysfunction development in spontaneously hypertensive rats (SHR). Mechanisms underlying apocynin effects on SHR remain unclear. Compared to diapocynin and other drugs, apocynin is a weak antioxidant, which suggests that its effects on SHR are associated with other mechanisms besides its antioxidant capacity. Angiotensin (Ang) II regulates NOX, the major reactive oxygen species (ROS) source in the cardiovascular system. We hypothesized that, by inhibiting NOX, apocynin could alter Ang II pressor and vasoconstrictor effects on SHR. We analyzed how Ang II affects blood pressure and vascular reactivity in aorta and mesenteric resistance arteries and evaluated plasma antioxidant capacity, NOX isoforms and subunits, NOS isoforms, AT1 and AT2 receptors expression, ROS production, and NOS activity in apocynin-treated SHR blood vessels (30 mg/Kg/day, p.o.). In SHR, apocynin reduced Ang II pressor effects, increased plasmatic antioxidant capacity, and blunted aortic and mesenteric NOX-dependent oxidants production and NOX2 and p47phox overexpression, which demonstrated that apocynin inhibits NOX in SHR blood vessels. Moreover, apocynin raised plasmatic and aortic nitrate/nitrite levels, maintained NOS activity and eNOS, p-eNOS, nNOS, iNOS, sGC-α, and sGC-β expression in mesenteric bed, diminished AT1 expression in aorta and mesenteric bed, and elevated AT2 expression in SHR aorta. Apocynin increased Ang II vasoconstriction endothelial modulation in SHR resistance arteries. All these results showed that in vivo treatment with apocynin alters several mechanisms that reduce Ang II pressor and vasoconstrictor effects on SHR. Such apocynin effects involve other mechanisms besides vascular ROS modulation, which improves NO availability in SHR vascular cells. These integrated data could help us to understand the promising apocynin activity as an antihypertensive drug that acts differently from the drugs that are currently being used in the clinical setting.
Collapse
Affiliation(s)
- Murilo E Graton
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil
| | - Simone R Potje
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Jéssica A Troiano
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil
| | - Gabriel T Vale
- University of São Paulo (USP), College of Nursing of Ribeirão Preto, Department of Psychiatry Nursing and Human Sciences, Ribeirão Preto, São Paulo 14040-902, Brazil
| | - Ligia A Perassa
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil
| | - Ana Cláudia M S Nakamune
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil
| | - Carlos R Tirapelli
- University of São Paulo (USP), College of Nursing of Ribeirão Preto, Department of Psychiatry Nursing and Human Sciences, Ribeirão Preto, São Paulo 14040-902, Brazil
| | - Lusiane M Bendhack
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Cristina Antoniali
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Basic Sciences, Araçatuba, São Paulo 16015-050, Brazil.
| |
Collapse
|
27
|
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111:1478-1498. [DOI: 10.1016/j.biopha.2018.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
28
|
Nox1/Ref-1-mediated activation of CREB promotes Gremlin1-driven endothelial cell proliferation and migration. Redox Biol 2019; 22:101138. [PMID: 30802716 PMCID: PMC6395885 DOI: 10.1016/j.redox.2019.101138] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex degenerative disorder marked by aberrant vascular remodeling associated with hyperproliferation and migration of endothelial cells (ECs). Previous reports implicated bone morphogenetic protein antagonist Gremlin 1 in this process; however, little is known of the molecular mechanisms involved. The current study was designed to test whether redox signaling initiated by NADPH oxidase 1 (Nox1) could promote transcription factor CREB activation by redox factor 1 (Ref-1), transactivation of Gremlin1 transcription, EC migration, and proliferation. Human pulmonary arterial EC (HPAECs) exposed in vitro to hypoxia to recapitulate PAH signaling displayed induced Nox1 expression, reactive oxygen species (ROS) production, PKA activity, CREB phosphorylation, and CREB:CRE motif binding. These responses were abrogated by selective Nox1 inhibitor NoxA1ds and/or siRNA Nox1. Nox1-activated CREB migrated to the nucleus and bound to Ref-1 leading to CREB:CRE binding and Gremlin1 transcription. CHiP assay and CREB gene-silencing illustrated that CREB is pivotal for hypoxia-induced Gremlin1, which, in turn, stimulates EC proliferation and migration. In vivo, participation of Nox1, CREB, and Gremlin1, as well as CREB:CRE binding was corroborated in a rat PAH model. Activation of a previously unidentified Nox1-PKA-CREB/Ref-1 signaling pathway in pulmonary endothelial cells leads to Gremlin1 transactivation, proliferation and migration. These findings reveal a new signaling pathway by which Nox1 via induction of CREB and Gremlin1 signaling contributes to vascular remodeling and provide preclinical indication of its significance in PAH.
Collapse
|
29
|
Mavrommatis A, Chronopoulou EG, Sotirakoglou K, Labrou NE, Zervas G, Tsiplakou E. The impact of the dietary supplementation level with schizochytrium sp, on the oxidative capacity of both goats’ organism and milk. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Harrison IP, Vinh A, Johnson IR, Luong R, Drummond GR, Sobey CG, Tiganis T, Williams ED, O’ Leary JJ, Brooks DA, Selemidis S. NOX2 oxidase expressed in endosomes promotes cell proliferation and prostate tumour development. Oncotarget 2018; 9:35378-35393. [PMID: 30459931 PMCID: PMC6226044 DOI: 10.18632/oncotarget.26237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/06/2018] [Indexed: 01/20/2023] Open
Abstract
Reactive oxygen species (ROS) promote growth factor signalling including for VEGF-A and have potent angiogenic and tumourigenic properties. However, the precise enzymatic source of ROS generation, the subcellular localization of ROS production and cellular targets in vivo that influence tumour-promoting processes, are largely undefined. Here, using mRNA microarrays, we show increased gene expression for NOX2, the catalytic subunit of the ROS-generating NADPH oxidase enzyme, in human primary prostate cancer compared to non-malignant tissue. In addition, NOX4 gene expression was markedly elevated in human metastatic prostate cancers, but not in primary prostate tumours. Using a syngeneic, orthotopic mouse model of prostate cancer the genetic deletion of NOX2 (i.e. NOX2 -/y mouse) resulted in reduced angiogenesis and an almost complete failure in tumour development. Furthermore, pharmacological inhibition of NOX2 oxidase suppressed established prostate tumours in mice. In isolated endothelial cells, and in human normal and prostate cancer cells, NOX2 co-located to varying degrees with early endosome markers including EEA1, Appl1 and Rab5A and the late endosome marker Rab7A, and this correlated with significant VEGF-A-dependent ROS production within acidified endosomal compartments and endothelial cell proliferation that was NOX2 oxidase- and hydrogen peroxide dependent. We concluded that NOX2 oxidase expression and endosomal ROS production were important for prostate cancer growth and that this was required to positively regulate the VEGF pathway. The research provides a paradigm for limiting tumour growth through a better understanding of NOX2 oxidase's effect on VEGF signalling and how controlling the development of tumour vasculature can limit prostate tumour development and metastasis.
Collapse
Affiliation(s)
- Ian P. Harrison
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ian R.D. Johnson
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Raymond Luong
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia
| | - Grant R. Drummond
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Christopher G. Sobey
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tony Tiganis
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Elizabeth D. Williams
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Resea rch Institute, Brisbane, Queensland 4000, Australia
| | - John J. O’ Leary
- Histopathology, School of Medicine Trinity College Dublin, Ireland, Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, Dublin 8, Ireland
- Emer Casey Research Laboratory, Molecular Pathology Laboratory, The Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Doug A. Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Stavros Selemidis
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
31
|
Fontana J, Zima M, Vetvicka V. Biological Markers of Oxidative Stress in Cardiovascular Diseases: After so Many Studies, What do We Know? Immunol Invest 2018; 47:823-843. [DOI: 10.1080/08820139.2018.1523925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Josef Fontana
- Center for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Michal Zima
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY USA
| |
Collapse
|
32
|
Alkan I, Yüksel M, Özveri H, Atalay A, Canat HL, Culha MG, Arabacı Ç, Bozkurt M, Başar M. Semen reactive oxygen species levels are correlated with erectile function among chronic prostatitis/chronic pelvic pain syndrome patients. Int J Impot Res 2018; 30:335-341. [PMID: 30068978 DOI: 10.1038/s41443-018-0047-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is often associated with erectile dysfunction (ED). However, the underlying pathophysiological mechanisms of ED occurrence are still unclear in patients with CP/CPPS. The aim of the study was to investigate superoxide anion (O2•-) and total reactive oxygen species (ROS) production in semen of men with category IIIA CP/CPPS and their association with ED. This prospective study included 33 men with category IIIA CP/CPPS. Control group consisted of 13 healthy men. Total ROS and O2•- production were assayed by luminol and lucigenin-dependent chemiluminescence (CL) methods, respectively. ED was evaluated using the IIEF-5 questionnaire. Patients with CP/CPPS had significantly higher seminal total ROS and O2•- levels than healthy control subjects (2.9 ± 0.5 relative light unit (RLU) vs. 2.4 ± 0.2 RLU, p < 0.001; luminol-dependent CL and 2.5 ± 0.4 RLU vs. 2.3 ± 0.2 RLU, p = 0.02; lucigenin-dependent CL, respectively). Seminal O2•- and ROS levels were negatively correlated with IIEF-5 scores (r = -0.556, r = -0.536; p < 0.001, respectively). These results may suggest O2•-/ROS overproduction could be one of the important mechanisms in the etiology of ED development in CP/CPPS patients.
Collapse
Affiliation(s)
- Ilter Alkan
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey.
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Services, Marmara University, Istanbul, Turkey
| | - Hakan Özveri
- Department of Urology and Andrology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Anıl Atalay
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Halil Lütfi Canat
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Gokhan Culha
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Çiğdem Arabacı
- Department of Microbiology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Muammer Bozkurt
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Murad Başar
- Department of Urology and Andrology, Memorial Şişli Hospital, Istanbul, Turkey
| |
Collapse
|
33
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
34
|
Tabata S, Yamamoto M, Goto H, Hirayama A, Ohishi M, Kuramoto T, Mitsuhashi A, Ikeda R, Haraguchi M, Kawahara K, Shinsato Y, Minami K, Saijo A, Toyoda Y, Hanibuchi M, Nishioka Y, Sone S, Esumi H, Tomita M, Soga T, Furukawa T, Akiyama SI. Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells. Sci Rep 2018; 8:6760. [PMID: 29713062 PMCID: PMC5928239 DOI: 10.1038/s41598-018-25189-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/16/2018] [Indexed: 12/29/2022] Open
Abstract
Thymidine phosphorylase (TP) is a rate-limiting enzyme in the thymidine catabolic pathway. TP is identical to platelet-derived endothelial cell growth factor and contributes to tumour angiogenesis. TP induces the generation of reactive oxygen species (ROS) and enhances the expression of oxidative stress-responsive genes, such as interleukin (IL)-8. However, the mechanism underlying ROS induction by TP remains unclear. In the present study, we demonstrated that TP promotes NADPH oxidase-derived ROS signalling in cancer cells. NADPH oxidase inhibition using apocynin or small interfering RNAs (siRNAs) abrogated the induction of IL-8 and ROS in TP-expressing cancer cells. Meanwhile, thymidine catabolism induced by TP increased the levels of NADPH and intermediates of the pentose phosphate pathway (PPP). Both siRNA knockdown of glucose 6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme in PPP, and a G6PD inhibitor, dihydroepiandrosterone, reduced TP-induced ROS production. siRNA downregulation of 2-deoxy-D-ribose 5-phosphate (DR5P) aldolase, which is needed for DR5P to enter glycolysis, also suppressed the induction of NADPH and IL-8 in TP-expressing cells. These results suggested that TP-mediated thymidine catabolism increases the intracellular NADPH level via the PPP, which enhances the production of ROS by NADPH oxidase and activates its downstream signalling.
Collapse
Affiliation(s)
- Sho Tabata
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hisatsugu Goto
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Maki Ohishi
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Takuya Kuramoto
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ryuji Ikeda
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Misako Haraguchi
- Department of Biochemistry and Molecular Biology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kohichi Kawahara
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshinari Shinsato
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kentaro Minami
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atsuro Saijo
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuko Toyoda
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masaki Hanibuchi
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Saburo Sone
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroyasu Esumi
- Clinical Research, Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-0022, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Shin-Ichi Akiyama
- Clinical Research Center, National Kyushu Cancer Center, 3-1-1 Notame Minami-ku, Fukuoka, 811-1395, Japan
| |
Collapse
|
35
|
Guerra-Vargas MA, Rosales-Hernández MC, Martínez-Fonseca N, Padilla-Martínez I, Fonseca-Sabater Y, Martínez-Ramos F. 2-Acetyl-4-aminoresorcinol derivatives: synthesis, antioxidant activity and molecular docking studies. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2139-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
You B, Liu Y, Chen J, Huang X, Peng H, Liu Z, Tang Y, Zhang K, Xu Q, Li X, Cheng G, Shi R, Zhang G. Vascular peroxidase 1 mediates hypoxia-induced pulmonary artery smooth muscle cell proliferation, apoptosis resistance and migration. Cardiovasc Res 2017; 114:188-199. [PMID: 29186367 DOI: 10.1093/cvr/cvx234] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/25/2017] [Indexed: 11/13/2022] Open
Abstract
Abstract
Aims
Reactive oxygen species (ROS) play essential roles in the pulmonary vascular remodelling associated with hypoxia-induced pulmonary hypertension (PH). Vascular peroxidase 1 (VPO1) is a newly identified haeme-containing peroxidase that accelerates oxidative stress development in the vasculature. This study aimed to determine the potential role of VPO1 in hypoxia-induced PH-related vascular remodelling.
Methods and results
The vascular morphology and VPO1 expression were assessed in the pulmonary arteries of Sprague–Dawley (SD) rats. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) and VPO1 expression and HOCl production were significantly increased in hypoxic rats, which also exhibited obvious vascular remodelling. Furthermore, a hypoxia-induced PH model was generated by exposing primary rat pulmonary artery smooth muscle cells (PASMCs) to hypoxic conditions (3% O2, 48 h), which significantly increased the expression of NOX4 and VPO1 and the production of HOCl. These hypoxic changes were accompanied by enhanced proliferation, apoptosis resistance, and migration. In PASMCs, hypoxia-induced changes, including effects on the expression of cell cycle regulators (cyclin B1 and cyclin D1), apoptosis-related proteins (bax, bcl-2, and cleaved caspase-3), migration promoters (matrix metalloproteinases 2 and 9), and NF-κB expression, as well as the production of HOCl, were all inhibited by silencing VPO1 with small interfering RNAs. Moreover, treatment with HOCl under hypoxic conditions upregulated NF-κB expression and enhanced proliferation, apoptosis resistance, and migration in PASMCs, whereas BAY 11-7082 (an inhibitor of NF-κB) significantly inhibited these effects.
Conclusion
Collectively, these results demonstrate that VPO1 promotes hypoxia-induced proliferation, apoptosis resistance, and migration in PASMCs via the NOX4/VPO1/HOCl/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Baiyang You
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yanbo Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Chen
- Department of Humanistic Nursing, Xiangya Nursing School, Central South University, Changsha, China
| | - Xiao Huang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Huihui Peng
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoya Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yixin Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Kai Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangjie Cheng
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants (Basel) 2017; 6:antiox6040090. [PMID: 29135921 PMCID: PMC5745500 DOI: 10.3390/antiox6040090] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/21/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023] Open
Abstract
The generation of reactive oxygen species (ROS) and an imbalance of antioxidant defence mechanisms can result in oxidative stress. Several pro-atherogenic stimuli that promote intimal-medial thickening (IMT) and early arteriosclerotic disease progression share oxidative stress as a common regulatory pathway dictating vascular cell fate. The major source of ROS generated within the vascular system is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (Nox), of which seven members have been characterized. The Nox family are critical determinants of the redox state within the vessel wall that dictate, in part the pathophysiology of several vascular phenotypes. This review highlights the putative role of ROS in controlling vascular fate by promoting endothelial dysfunction, altering vascular smooth muscle phenotype and dictating resident vascular stem cell fate, all of which contribute to intimal medial thickening and vascular disease progression.
Collapse
|
38
|
Mahmoud AM. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:207-230. [PMID: 29022265 DOI: 10.1007/978-981-10-4307-9_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series. J Am Coll Cardiol 2017; 70:212-229. [PMID: 28683969 DOI: 10.1016/j.jacc.2017.05.035] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
Vascular disease and heart failure impart an enormous burden in terms of global morbidity and mortality. Although there are many different causes of cardiac and vascular disease, most causes share an important pathological mechanism: oxidative stress. In the failing heart, oxidative stress occurs in the myocardium and correlates with left ventricular dysfunction. Reactive oxygen species (ROS) negatively affect myocardial calcium handling, cause arrhythmia, and contribute to cardiac remodeling by inducing hypertrophic signaling, apoptosis, and necrosis. Similarly, oxidative balance in the vasculature is tightly regulated by a wealth of pro- and antioxidant systems that orchestrate region-specific ROS production and removal. Reactive oxygen species also regulate multiple vascular cell functions, including endothelial and smooth muscle cell growth, proliferation, and migration; angiogenesis; apoptosis; vascular tone; host defenses; and genomic stability. However, excessive levels of ROS promote vascular disease through direct and irreversible oxidative damage to macromolecules, as well as disruption of redox-dependent vascular wall signaling processes.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology Mainz, Cardiology I, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany.
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Nicole R Bonetti
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
40
|
Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy. Nat Commun 2017; 8:69. [PMID: 28701733 PMCID: PMC5507984 DOI: 10.1038/s41467-017-00057-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 04/12/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
The imminent threat of viral epidemics and pandemics dictates a need for therapeutic approaches that target viral pathology irrespective of the infecting strain. Reactive oxygen species are ancient processes that protect plants, fungi and animals against invading pathogens including bacteria. However, in mammals reactive oxygen species production paradoxically promotes virus pathogenicity by mechanisms not yet defined. Here we identify that the primary enzymatic source of reactive oxygen species, NOX2 oxidase, is activated by single stranded RNA and DNA viruses in endocytic compartments resulting in endosomal hydrogen peroxide generation, which suppresses antiviral and humoral signaling networks via modification of a unique, highly conserved cysteine residue (Cys98) on Toll-like receptor-7. Accordingly, targeted inhibition of endosomal reactive oxygen species production abrogates influenza A virus pathogenicity. We conclude that endosomal reactive oxygen species promote fundamental molecular mechanisms of viral pathogenicity, and the specific targeting of this pathogenic process with endosomal-targeted reactive oxygen species inhibitors has implications for the treatment of viral disease. Production of reactive oxygen species is an ancient antimicrobial mechanism, but its role in antiviral defense in mammals is unclear. Here, To et al. show that virus infection activates endosomal NOX2 oxidase and restricts TLR7 signaling, and that an endosomal NOX2 inhibitor decreases viral pathogenicity.
Collapse
|
41
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
42
|
Lu W, Kang J, Hu K, Tang S, Zhou X, Xu L, Li Y, Yu S. The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia. Sleep Breath 2017; 21:667-677. [PMID: 28078487 DOI: 10.1007/s11325-016-1449-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Obstructive sleep apnea syndrome, which is a risk factor for resistant hypertension, is characterized by chronic intermittent hypoxia (CIH) and is associated with many cardiovascular diseases. CIH elicits systemic oxidative stress and sympathetic hyperactivity, which lead to hypertension. Rho kinases (ROCKs) are considered to be major effectors of the small GTPase RhoA and have been extensively studied in the cardiovascular field. Upregulation of the RhoA/ROCK signaling cascade is observed in various cardiovascular disorders, such as atherosclerosis, pulmonary hypertension, and stroke. However, the exact molecular function of RhoA/ROCK in CIH remains unclear and requires further study. OBJECTIVE This study aimed to investigate the role of the NADPH oxidase 4 (Nox4)-induced ROS/RhoA/ROCK pathway in CIH-induced hypertension in rats. METHODS Male Sprague-Dawley rats were exposed to CIH for 21 days (intermittent hypoxia of 21% O2 for 60 s and 5% O2 for 30 s, cyclically repeated for 8 h/day). We randomly assigned 56 male rats to groups of normoxia (RA) or vertically implemented CIH together with vehicle (CIH-V), GKT137831 (CIH-G), N-acetyl cysteine (NAC) (CIH-N), or Y27632 (CIH-Y). The rats in the RA group were continuously exposed to room air, whereas the rats in the other groups were exposed to CIH. Systolic blood pressure (BP) was monitored at the beginning of each week. After the experiment, renal sympathetic nerve activity (RSNA) was recorded, and serum and renal tissues were subjected to molecular biological and biochemical analyses. RESULTS Compared with the BP of RA rats, the BP of CIH-V rats started to increase 2 weeks after the beginning of the experiment, subsequently stabilizing at a high level at the end of the third week. CIH increased both RSNA and oxidative stress. This response was attenuated by treatment of the rats with GKT137831 or NAC. Inhibiting Nox4 activity or ROS production reduced RhoA/ROCK expression. Treatment with Y27632 reduced both BP and RSNA in rats exposed to CIH. CONCLUSION Hypertension can be induced by CIH in SD rats. The CIH-induced elevation of BP is at least partially mediated via the Nox4-induced ROS/RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Wen Lu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Jing Kang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Si Tang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Xiufang Zhou
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Lifang Xu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yuanyuan Li
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Shuhui Yu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| |
Collapse
|
43
|
|
44
|
The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res 2016; 116:57-69. [PMID: 27988384 DOI: 10.1016/j.phrs.2016.12.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) plays a pivotal role in the maintenance of cardiovascular homeostasis. A reduction in the bioavailability of endogenous NO, manifest as a decrease in the production and/or impaired signaling, is associated with many cardiovascular diseases including hypertension, atherosclerosis, stroke and heart failure. There is substantial evidence that reactive oxygen species (ROS), generated predominantly from NADPH oxidases (Nox), are responsible for the reduced NO bioavailability in vascular and cardiac pathologies. ROS can compromise NO function via a direct inactivation of NO, together with a reduction in NO synthesis and oxidation of its receptor, soluble guanylyl cyclase. Whilst nitrovasodilators are administered to compensate for the ROS-mediated loss in NO bioactivity, their clinical utility is limited due to the development of tolerance and resistance and systemic hypotension. Moreover, efforts to directly scavenge ROS with antioxidants has had limited clinical efficacy. This review outlines the therapeutic utility of NO-based therapeutics in cardiovascular diseases and describes the source and impact of ROS in these pathologies, with particular focus on the interaction with NO. Future therapeutic approaches in the treatment of cardiovascular diseases are highlighted with a focus on nitroxyl (HNO) donors as an alternative to traditional NO donors and the development of novel Nox inhibitors.
Collapse
|
45
|
Zholobenko A, Mouithys-Mickalad A, Modriansky M, Serteyn D, Franck T. Polyphenols from Silybum marianum inhibit in vitro the oxidant response of equine neutrophils and myeloperoxidase activity. J Vet Pharmacol Ther 2016; 39:592-601. [PMID: 27213823 DOI: 10.1111/jvp.12319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/05/2016] [Indexed: 11/30/2022]
Abstract
A recent study showed that silymarin, a standardized extract of S. marianum might be used in the prevention of equine laminitis. We investigated the effects of quercetin and some compounds found in silymarin (silybin, taxifolin and dehydrosilybin) on reactive oxygen species (ROS) production and myeloperoxidase (MPO) release by stimulated equine neutrophils (PMNs) and on MPO activity. All compounds (tested between 100 nm and 100 μm) inhibited superoxide anion production by stimulated PMNs in a dose-dependent manner. Dehydrosilybin and quercetin inhibited superoxide production and MPO release from 10 μm. Classical MPO assay showed quercetin as the most potent inhibitor, followed by taxifolin, dehydrosilybin and silybin. SIEFED MPO assay highlighting the binding of tested compounds to MPO showed that only quercetin and taxifolin maintained an efficient inhibition above 90% at 10 μm. Altogether, our results showed a strong inhibition of PMN activation by planar compounds such as quercetin and dehydrosilybin and a strong inhibition of MPO activity by the smallest molecules, quercetin and taxifolin. In conclusion, the compounds from silymarin may be useful for modulating the oxidative response of PMNs, involved in the pathogenesis of laminitis, but further in vivo studies are needed.
Collapse
Affiliation(s)
- A Zholobenko
- Department of Medical Chemistry & Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - A Mouithys-Mickalad
- Centre for Oxygen, R&D (CORD), Institut de Chimie, Université de Liège, Liège, Belgium
| | - M Modriansky
- Department of Medical Chemistry & Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - D Serteyn
- Centre for Oxygen, R&D (CORD), Institut de Chimie, Université de Liège, Liège, Belgium
- Faculty of Veterinary Medicine, Université de Liège, Liège, Belgium
| | - T Franck
- Centre for Oxygen, R&D (CORD), Institut de Chimie, Université de Liège, Liège, Belgium.
- Faculty of Veterinary Medicine, Université de Liège, Liège, Belgium.
| |
Collapse
|
46
|
Shanmugasundaram K, Block K. Renal Carcinogenesis, Tumor Heterogeneity, and Reactive Oxygen Species: Tactics Evolved. Antioxid Redox Signal 2016; 25:685-701. [PMID: 27287984 PMCID: PMC5069729 DOI: 10.1089/ars.2015.6569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The number of kidney cancers is growing 3-5% each year due to unknown etiologies. Intra- and inter-tumor mediators increase oxidative stress and drive tumor heterogeneity. Recent Advances: Technology advancement in state-of-the-art instrumentation and methodologies allows researchers to detect and characterize global landscaping modifications in genes, proteins, and pathophysiology patterns at the single-cell level. CRITICAL ISSUES We postulate that the sources of reactive oxygen species (ROS) and their activation within subcellular compartments will change over a timeline of tumor evolvement and contribute to tumor heterogeneity. Therefore, the complexity of intracellular changes within a tumor and ROS-induced tumor heterogeneity coupled to the advancement of detecting these events globally are limited at the level of data collection, organization, and interpretation using software algorithms and bioinformatics. FUTURE DIRECTIONS Integrative and collaborative research, combining the power of numbers with careful experimental design, protocol development, and data interpretation, will translate cancer biology and therapeutics to a heightened level or leave the abundant raw data as stagnant and underutilized. Antioxid. Redox Signal. 25, 685-701.
Collapse
Affiliation(s)
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
- South Texas Veterans Health Care System, Audie L. Murphy Memorial Hospital Division, San Antonio, Texas
| |
Collapse
|
47
|
Pereira TMC, Pimenta FS, Porto ML, Baldo MP, Campagnaro BP, Gava AL, Meyrelles SS, Vasquez EC. Coadjuvants in the Diabetic Complications: Nutraceuticals and Drugs with Pleiotropic Effects. Int J Mol Sci 2016; 17:ijms17081273. [PMID: 27527163 PMCID: PMC5000671 DOI: 10.3390/ijms17081273] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022] Open
Abstract
Because diabetes mellitus (DM) is a multifactorial metabolic disease, its prevention and treatment has been a constant challenge for basic and clinical investigators focused on translating their discoveries into clinical treatment of this complex disorder. In this review, we highlight recent experimental and clinical evidences of potential coadjuvants in the management of DM, such as polyphenols (quercetin, resveratrol and silymarin), cultured probiotic microorganisms and drugs acting through direct/indirect or pleiotropic effects on glycemic control in DM. Among several options, we highlight new promising therapeutic coadjuvants, including chemical scavengers, the probiotic kefir and the phosphodiesterase 5 inhibitors, which besides the reduction of hyperglycemia and ameliorate insulin resistance, they reduce oxidative stress and improve endothelial dysfunction in the systemic vascular circulation. In the near future, experimental studies are expected to clear the intracellular pathways involving coadjuvants. The design of clinical trials may also contribute to new strategies with coadjuvants against the harmful effects of diabetic complications.
Collapse
Affiliation(s)
- Thiago Melo Costa Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Av. Comissario Jose Dantas Melo 21, Boa Vista, 29102-920 Vila Velha, Brazil.
- Federal Institute of Education, Science and Technology (IFES), 29106-010 Vila Velha, Brazil.
| | - Fabio Silva Pimenta
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Av. Comissario Jose Dantas Melo 21, Boa Vista, 29102-920 Vila Velha, Brazil.
- Burn Treatment Center, Children State Hospital, 29056-030 Vitoria, Brazil.
| | - Marcella Lima Porto
- Federal Institute of Education, Science and Technology (IFES), 29106-010 Vila Velha, Brazil.
| | - Marcelo Perim Baldo
- Department of Pathophysiology, Montes Claros State University, 39401-089, Montes Claros, Brazil.
| | - Bianca Prandi Campagnaro
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Av. Comissario Jose Dantas Melo 21, Boa Vista, 29102-920 Vila Velha, Brazil.
| | - Agata Lages Gava
- Laboratory of Translational Physiology, Federal University of Espirito Santo (Ufes), 29047-100 Vitoria, Brazil.
- Division of Nephrology, McMaster University, Hamilton, ON L8N 4A6, Canada.
| | - Silvana Santos Meyrelles
- Laboratory of Translational Physiology, Federal University of Espirito Santo (Ufes), 29047-100 Vitoria, Brazil.
| | - Elisardo Corral Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Av. Comissario Jose Dantas Melo 21, Boa Vista, 29102-920 Vila Velha, Brazil.
- Laboratory of Translational Physiology, Federal University of Espirito Santo (Ufes), 29047-100 Vitoria, Brazil.
| |
Collapse
|
48
|
Dal S, Sigrist S. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases 2016; 4:E24. [PMID: 28933404 PMCID: PMC5456287 DOI: 10.3390/diseases4030024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas), vitamins (ascorbate, tocopherol), minerals (selenium, magnesium), and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Stéphanie Dal
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| | - Séverine Sigrist
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| |
Collapse
|
49
|
Barboza LN, Lívero FADR, Prando TBL, Ribeiro RDCL, Lourenço ELB, Budel JM, de Souza LM, Acco A, Dalsenter PR, Gasparotto A. Atheroprotective effects of Cuphea carthagenensis (Jacq.) J. F. Macbr. in New Zealand rabbits fed with cholesterol-rich diet. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:134-145. [PMID: 27125593 DOI: 10.1016/j.jep.2016.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although Cuphea carthagenensis (Jacq.) J. F. Macbr. is used in Brazilian folk medicine in the treatment of atherosclerosis and circulatory disorders, no study evaluating these effects has been conducted. The aim of this study was to evaluate the possible hypolipemiant and antiatherogenic activity of the ethanol soluble fraction obtained from C. carthagenensis (ES-CC) in an experimental atherosclerosis model using New Zealand (NZ) rabbits undergoing cholesterol-rich diet (CRD). MATERIAL AND METHODS Dyslipidemia and atherogenesis were induced by administration of standard commercial diet increased of 1% cholesterol (CRD) for 8 weeks. ES-CC was orally administered at doses of 10, 30 and 100mg/kg, once daily for four weeks, starting from the 4th week of CRD diet. Body weight measurements were weekly carried out from the beginning of experiments for 8 weeks. Serum levels of triglyceride (TG), total cholesterol (TC) and their fractions (LDL-C, VLDL-C and HDL-C) were measured at the beginning of experiments and at weeks four and eight. After euthanasia of rabbits, aorta segments (aortic arc, thoracic, abdominal and iliac segments) were macroscopically and microscopically evaluated and the intima and media layers of the arteries were measured. Additionally, the antioxidant activity of ES-CC and its influence on the functioning of hepatic antioxidant enzymes were also determined. RESULTS CRD induced dyslipidemia and major structural changes in the aortic wall. In addition, an increase in lipid peroxidation and a reduction of hepatic glutathione and serum nitrite levels were observed. Treatment with ES-CC was able to prevent the increase in TC, LDL-C, VLDL-C levels and triglycerides and promoted an increase in HDL-C levels in NZ rabbits. These effects were accompanied by a significant reduction in oxidative stress and modulation of the catalase and superoxide dismutase function. Moreover, the intima and media layers of the arterial segments were significantly reduced by ES-CC treatment. CONCLUSIONS This study demonstrated that ES-CC reduces serum lipids and hepatic oxidative stress when orally administered to NZ rabbits. In addition, it was able to prevent the development of CRD-induced atherosclerosis.
Collapse
Affiliation(s)
- Lorena Neris Barboza
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Thiago Bruno Lima Prando
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Universidade Paranaense, PR, Brazil
| | | | | | - Jane Manfron Budel
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Lauro Mera de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Alexandra Acco
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Arquimedes Gasparotto
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12, P.O. Box 533, 79804-970 Dourados, MS, Brazil.
| |
Collapse
|
50
|
Perassa LA, Graton ME, Potje SR, Troiano JA, Lima MS, Vale GT, Pereira AAF, Nakamune ACMS, Sumida DH, Tirapelli CR, Bendhack LM, Antoniali C. Apocynin reduces blood pressure and restores the proper function of vascular endothelium in SHR. Vascul Pharmacol 2016; 87:38-48. [PMID: 27353052 DOI: 10.1016/j.vph.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/06/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
Abstract
This study has evaluated how the vascular endothelium of hypertensive rats chronically treated with apocynin affects acetylcholine (ACh), sodium nitroprusside (SNP), and phenylephrine (PE) action on the nitric oxide (NO) signal transduction pathway in endothelial (EC) and vascular smooth muscle cells. Treatment with apocynin significantly reduced the mean arterial pressure in spontaneously hypertensive rats (SHR). In addition, apocynin improved the impaired ACh hypotensive effect on SHR. Although systemic oxidative stress was high in SHR, SHR treated with apocynin and normotensive rats presented similar systemic oxidative stress levels. Endothelium significantly blunted PE contractions in intact aortas of treated SHR. The ACh effect was impaired in resistance arteries and aortas of SHR, but this same effect was improved in treated SHR. The SNP potency was higher in intact resistance arteries of treated SHR than in intact resistance arteries of untreated SHR. NO and calcium concentrations increased, whereas reactive oxygen species levels decreased in EC of treated SHR. Aortas of untreated and treated SHR did not differ in terms of sGC alpha or beta units expression. Aorta of treated SHR expressed higher eNOS levels as compared to aorta of untreated SHR. The study groups did not differ with respect to NOX1, NOXO1, or NOX4 expression. However, treatment with apocynin normalized overexpression of NOX2 and its subunit p47phox in aortas of SHR. Based on all the results presented in this study, we suggest apocynin increases NO biovailability by different mechanisms, restoring the proper function of vascular endothelium in SHR.
Collapse
Affiliation(s)
- Ligia A Perassa
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Murilo E Graton
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Simone R Potje
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Jéssica A Troiano
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Mariana S Lima
- Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Gabriel T Vale
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ariana A F Pereira
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Ana Claúdia M S Nakamune
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Doris H Sumida
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Carlos R Tirapelli
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lusiane M Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina Antoniali
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil.
| |
Collapse
|