1
|
Kang CM, Zhao JJ, Xie XX, Yu KW, Lai BC, Wang YX, Li TT, Ke PF, Huang XZ. Unveiling the role of GATA4 in endothelial cell senescence and atherosclerosis development. Atherosclerosis 2025; 404:119183. [PMID: 40209341 DOI: 10.1016/j.atherosclerosis.2025.119183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND AND AIMS Cellular senescence is intimately linked to atherosclerosis development and progression. However, the mechanism is not well known. GATA4 is a classical regulator in human fibroblast senescence. This study aimed to determine the role of GATA4 in endothelial cell (EC) senescence and atherosclerosis development and the mechanisms by which it acts. METHODS Senescence ECs were induced using H2O2 by isolating human primary umbilical vein ECs from umbilical veins. The level of GATA4 was examined in endothelial progenitor cells (EPCs), ECs of arterial tissue from older individuals (>65 years), and aged mice (>24 months). Adeno-associated virus with EC-selective Tie1 promoter, an EC-specific gene transduction system, was used to explore the role of GATA4 in EC senescence and atherosclerosis development in ApoE-/- mice. RT-qPCR, Western blot, ChIP-PCR, and ELISA were conducted to further explore the mechanism of GATA4 in EC senescence and atherosclerosis development. RESULTS GATA4 protein levels are elevated in EC senescence induced by H2O2 and EPCs in older individuals. Additionally, GATA4 protein levels are increased in the ECs of arterial tissue from older individuals and aged mice and are strongly correlated with the progression of atherosclerosis plaques. Knockdown of GATA4 decreased EC senescence, dysfunction, and monocyte adhesion. Mechanistically, we found that GATA4 activates NFκB2 transcription and induces senescence-associated secretory phenotype (SASP) expression (IL-6, IL-8, CXCL1, CXCL3, ICAM-1). In vivo experiments on ApoE-/- mice demonstrated that GATA4 overexpression in ECs contributes to higher SASP expression, vascular senescence, atherosclerotic plaque formation, and impaired cardiac function. CONCLUSIONS Taken together, our findings indicate that elevated EC GATA4 levels contribute to the progression of atherosclerosis through the GATA4-NFκB2-SASP pathway, suggesting potential therapeutic targets for atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Chun-Min Kang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Jing-Jing Zhao
- Department of Laboratory Medicine, Nanfang Hospital Affiliated to Southern Medical University, Guangdong, 510515, China
| | - Xi-Xi Xie
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Ke-Wei Yu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Bai-Cong Lai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Yun-Xiu Wang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Ting Ting Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Pei-Feng Ke
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xian-Zhang Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
2
|
Liao YL, Fang YF, Sun JX, Dou GR. Senescent endothelial cells: a potential target for diabetic retinopathy. Angiogenesis 2024; 27:663-679. [PMID: 39215875 PMCID: PMC11564237 DOI: 10.1007/s10456-024-09943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.
Collapse
Affiliation(s)
- Ying-Lu Liao
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of the Cadet Team 6 of the School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Fang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Campagna R, Mazzanti L, Pompei V, Alia S, Vignini A, Emanuelli M. The Multifaceted Role of Endothelial Sirt1 in Vascular Aging: An Update. Cells 2024; 13:1469. [PMID: 39273039 PMCID: PMC11394039 DOI: 10.3390/cells13171469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAD+-dependent deacetylase sirtuin-1 (Sirt1) belongs to the sirtuins family, known to be longevity regulators, and exerts a key role in the prevention of vascular aging. By aging, the expression levels of Sirt1 decline with a severe impact on vascular function, such as the rise of endothelial dysfunction, which in turn promotes the development of cardiovascular diseases. In this context, the impact of Sirt1 activity in preventing endothelial senescence is particularly important. Given the key role of Sirt1 in counteracting endothelial senescence, great efforts have been made to deepen the knowledge about the intricate cross-talks and interactions of Sirt1 with other molecules, in order to set up possible strategies to boost Sirt1 activity to prevent or treat vascular aging. The aim of this review is to provide a proper background on the regulation and function of Sirt1 in the vascular endothelium and to discuss the recent advances regarding the therapeutic strategies of targeting Sirt1 to counteract vascular aging.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Laura Mazzanti
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Fondazione Salesi, Ospedale G. Salesi, 60100 Ancona, Italy
| | - Veronica Pompei
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Sonila Alia
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| |
Collapse
|
4
|
Feng Y, Huang Z, Ma X, Zong X, Tesic V, Ding B, Wu CYC, Lee RHC, Zhang Q. Photobiomodulation Inhibits Ischemia-Induced Brain Endothelial Senescence via Endothelial Nitric Oxide Synthase. Antioxidants (Basel) 2024; 13:633. [PMID: 38929072 PMCID: PMC11200452 DOI: 10.3390/antiox13060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent research suggests that photobiomodulation therapy (PBMT) positively impacts the vascular function associated with various cerebrovascular diseases. Nevertheless, the specific mechanisms by which PBMT improves vascular function remain ambiguous. Since endothelial nitric oxide synthase (eNOS) is crucial in regulating vascular function following cerebral ischemia, we investigated whether eNOS is a key element controlling cerebrovascular function and the senescence of vascular endothelial cells following PBMT treatment. Both rat photothrombotic (PT) stroke and in vitro oxygen-glucose deprivation (OGD)-induced vascular endothelial injury models were utilized. We demonstrated that treatment with PBMT (808 nm, 350 mW/cm2, 2 min/day) for 7 days significantly reduced PT-stroke-induced vascular permeability. Additionally, PBMT inhibited the levels of endothelial senescence markers (senescence green and p21) and antiangiogenic factor (endostatin), while increasing the phospho-eNOS (Ser1177) in the peri-infarct region following PT stroke. In vitro study further indicated that OGD increased p21, endostatin, and DNA damage (γH2AX) levels in the brain endothelial cell line, but they were reversed by PBMT. Intriguingly, the beneficial effects of PBMT were attenuated by a NOS inhibitor. In summary, these findings provide novel insights into the role of eNOS in PBMT-mediated protection against cerebrovascular senescence and endothelial dysfunction following ischemia. The use of PBMT as a therapeutic is a promising strategy to improve endothelial function in cerebrovascular disease.
Collapse
Affiliation(s)
- Yu Feng
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Zhihai Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Xuemei Zong
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Baojin Ding
- Department of Biochemistry & Molecular Biology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Quanguang Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| |
Collapse
|
5
|
Mahoney SA, Venkatasubramanian R, Darrah MA, Ludwig KR, VanDongen NS, Greenberg NT, Longtine AG, Hutton DA, Brunt VE, Campisi J, Melov S, Seals DR, Rossman MJ, Clayton ZS. Intermittent supplementation with fisetin improves arterial function in old mice by decreasing cellular senescence. Aging Cell 2024; 23:e14060. [PMID: 38062873 PMCID: PMC10928570 DOI: 10.1111/acel.14060] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to age-related arterial dysfunction, in part, by promoting oxidative stress and inflammation, which reduce the bioavailability of the vasodilatory molecule nitric oxide (NO). In the present study, we assessed the efficacy of fisetin, a natural compound, as a senolytic to reduce vascular cell senescence and SASP factors and improve arterial function in old mice. We found that fisetin decreased cellular senescence in human endothelial cell culture. In old mice, vascular cell senescence and SASP-related inflammation were lower 1 week after the final dose of oral intermittent (1 week on-2 weeks off-1 weeks on dosing) fisetin supplementation. Old fisetin-supplemented mice had higher endothelial function. Leveraging old p16-3MR mice, a transgenic model allowing genetic clearance of p16INK4A -positive senescent cells, we found that ex vivo removal of senescent cells from arteries isolated from vehicle- but not fisetin-treated mice increased endothelium-dependent dilation, demonstrating that fisetin improved endothelial function through senolysis. Enhanced endothelial function with fisetin was mediated by increased NO bioavailability and reduced cellular- and mitochondrial-related oxidative stress. Arterial stiffness was lower in fisetin-treated mice. Ex vivo genetic senolysis in aorta rings from p16-3MR mice did not further reduce mechanical wall stiffness in fisetin-treated mice, demonstrating lower arterial stiffness after fisetin was due to senolysis. Lower arterial stiffness with fisetin was accompanied by favorable arterial wall remodeling. The findings from this study identify fisetin as promising therapy for clinical translation to target excess cell senescence to treat age-related arterial dysfunction.
Collapse
Affiliation(s)
- Sophia A. Mahoney
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | | | - Mary A. Darrah
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Katelyn R. Ludwig
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nicholas S. VanDongen
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nathan T. Greenberg
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Abigail G. Longtine
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - David A. Hutton
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Vienna E. Brunt
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Judith Campisi
- Buck Institute for Research on AgingNovatoCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Simon Melov
- Buck Institute for Research on AgingNovatoCaliforniaUSA
| | - Douglas R. Seals
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Matthew J. Rossman
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Zachary S. Clayton
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
6
|
Lui KO, Ma Z, Dimmeler S. SARS-CoV-2 induced vascular endothelial dysfunction: direct or indirect effects? Cardiovasc Res 2024; 120:34-43. [PMID: 38159046 DOI: 10.1093/cvr/cvad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024] Open
Abstract
Clinical evidence reveals that manifestations of endothelial dysfunction are widely observed in COVID-19 and long-COVID patients. However, whether these detrimental effects are caused by direct infection of the endothelium or are indirectly mediated by systemic inflammation has been a matter of debate. It has been well acknowledged that endothelial cells (ECs) of the cardiovascular system ubiquitously express the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), yet accumulating evidence suggests that it is more predominantly expressed by pericytes and vascular smooth muscle cells of the mammalian blood vessel. Besides, replicative infection of ECs by SARS-CoV-2 has yet to be demonstrated both in vitro and in vivo. In this study, we review latest research on endothelial ACE2 expression in different vascular beds, and the heterogeneity in various EC subsets with differential ACE2 expression in response to SARS-CoV-2. We also discuss ACE2-independent alternative mechanisms underlying endothelial activation in COVID-19, and the clinical manifestations of SARS-CoV-2-induced endothelial dysfunction. Altogether, understanding ACE2-dependent and ACE2-independent mechanisms driving SARS-CoV-2-induced vascular dysfunction would shed light on strategies of more effective therapies targeting cardiovascular complications associated with COVID-19.
Collapse
Affiliation(s)
- Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, and Faculty of Biological Sciences, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
7
|
Lv Y, Huang Y, Fan H, Zhao Y, Ma L, Lan Y, Li C, Chen P, Lou Z, Zhou J. 17β-Estradiol inhibits hydrogen peroxide-induced senescence and apoptosis in human umbilical vein endothelial cells by regulating the THBS1/TGF-β/Smad axis. Mol Cell Endocrinol 2024; 580:112111. [PMID: 37979907 DOI: 10.1016/j.mce.2023.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Before menopause, females exhibit a lower incidence of cardiovascular disease than age-matched males, possibly owing to the protective effects of sex hormones. 17β-estradiol (17β-E2) protects against oxidative stress-induced injury by suppressing thrombospondin-1 (THBS1) expression in endothelial cells. Here, we examined the role of 17β-E2-mediated THBS1 suppression in preventing cell senescence and apoptosis. Human umbilical vein endothelial cells (HUVECs) were cultivated and treated with siRNA or overexpression plasmids to regulate THBS1. H2O2, estrogen-activity modulating drugs, and LY2109761 (a TGF-β kinase inhibitor) treatments were applied. THBS1 knockdown repressed, and its overexpression aggravated, H2O2-induced cell injury, affecting cell death, proliferation, senescence, and apoptosis. 17β-E2 inhibited THBS1 mRNA and protein expression time- and dose-dependently, by targeting ERβ. THBS1 overexpression blocked 17β-E2 from preventing H2O2-induced injury, significantly activating the TGF-β/Smad pathway. 17β-E2 inhibited H2O2-induced oxidative stress by downregulating THBS1 expression and TGF-β/Smad signaling in HUVECs. The THBS1/TGF-β/Smad axis could thus be a therapeutic target.
Collapse
Affiliation(s)
- Yifei Lv
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
| | - Huiyu Fan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
| | - Yunxiu Zhao
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
| | - Linjuan Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
| | - Yibing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
| | - Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
| | - Peiqiong Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
| | - Zheng Lou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China.
| |
Collapse
|
8
|
Engin AB, Engin A. Obesity-Senescence-Breast Cancer: Clinical Presentation of a Common Unfortunate Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:821-850. [PMID: 39287873 DOI: 10.1007/978-3-031-63657-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are few convincing studies establishing the relationship between endogenous factors that cause obesity, cellular aging, and telomere shortening. Without a functional telomerase, a cell undergoing cell division has progressive telomere shortening. While obesity influences health and longevity as well as telomere dynamics, cellular senescence is one of the major drivers of the aging process and of age-related disorders. Oxidative stress induces telomere shortening, while decreasing telomerase activity. When progressive shortening of telomere length reaches a critical point, it triggers cell cycle arrest leading to senescence or apoptotic cell death. Telomerase activity cannot be detected in normal breast tissue. By contrast, maintenance of telomere length as a function of human telomerase is crucial for the survival of breast cancer cells and invasion. Approximately three-quarters of breast cancers in the general population are hormone-dependent and overexpression of estrogen receptors is crucial for their continued growth. In obesity, increasing leptin levels enhance aromatase messenger ribonucleic acid (mRNA) expression, aromatase content, and its enzymatic activity on breast cancer cells, simultaneously activating telomerase in a dose-dependent manner. Meanwhile, applied anti-estrogen therapy increases serum leptin levels and thus enhances leptin resistance in obese postmenopausal breast cancer patients. Many studies revealed that shorter telomeres of postmenopausal breast cancer have higher local recurrence rates and higher tumor grade. In this review, interlinked molecular mechanisms are looked over between the telomere length, lipotoxicity/glycolipotoxicity, and cellular senescence in the context of estrogen receptor alpha-positive (ERα+) postmenopausal breast cancers in obese women. Furthermore, the effect of the potential drugs, which are used for direct inhibition of telomerase and the inhibition of human telomerase reverse transcriptase (hTERT) or human telomerase RNA promoters as well as approved adjuvant endocrine therapies, the selective estrogen receptor modulator and selective estrogen receptor down-regulators are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
9
|
Lee GH, Lee HY, Lim YJ, Kim JH, Jung SJ, Jung ES, Chae SW, Lee J, Lim J, Rashid MMU, Min KH, Chae HJ. Angelica gigas extract inhibits acetylation of eNOS via IRE1α sulfonation/RIDD-SIRT1-mediated posttranslational modification in vascular dysfunction. Aging (Albany NY) 2023; 15:13608-13627. [PMID: 38095615 PMCID: PMC10756119 DOI: 10.18632/aging.205343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Angelica gigas NAKAI (AG) is a popular traditional medicinal herb widely used to treat dyslipidemia owing to its antioxidant activity. Vascular disease is intimately linked to obesity-induced metabolic syndrome, and AG extract (AGE) shows beneficial effects on obesity-associated vascular dysfunction. However, the effectiveness of AGE against obesity and its underlying mechanisms have not yet been extensively investigated. In this study, 40 high fat diet (HFD) rats were supplemented with 100-300 mg/kg/day of AGE to determine its efficacy in regulating vascular dysfunction. The vascular relaxation responses to acetylcholine were impaired in HFD rats, while the administration of AGE restored the diminished relaxation pattern. Endothelial dysfunction, including increased plaque area, accumulated reactive oxygen species, and decreased nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) Ser1177 phosphorylation, were observed in HFD rats, whereas AGE reversed endothelial dysfunction and its associated biochemical signaling. Furthermore, AGE regulated endoplasmic reticulum (ER) stress and IRE1α sulfonation and its subsequent sirt1 RNA decay through controlling regulated IRE1α-dependent decay (RIDD) signaling, ultimately promoting NO bioavailability via the SIRT1-eNOS axis in aorta and endothelial cells. Independently, AGE enhanced AMPK phosphorylation, additionally stimulating SIRT1 and eNOS deacetylation and its associated NO bioavailability. Decursin, a prominent constituent of AGE, exhibited a similar effect in alleviating endothelial dysfunctions. These data suggest that AGE regulates dyslipidemia-associated vascular dysfunction by controlling ROS-associated ER stress responses, especially IRE1α-RIDD/sirt1 decay and the AMPK-SIRT1 axis.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Hwa-Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Young-Je Lim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ji-Hyun Kim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Su-Jin Jung
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Eun-Soo Jung
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Juwon Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Junghyun Lim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mohammad Mamun Ur Rashid
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kyung Hyun Min
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Han-Jung Chae
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
10
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
11
|
Mahoney SA, Dey AK, Basisty N, Herman AB. Identification and functional analysis of senescent cells in the cardiovascular system using omics approaches. Am J Physiol Heart Circ Physiol 2023; 325:H1039-H1058. [PMID: 37656130 PMCID: PMC10908411 DOI: 10.1152/ajpheart.00352.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and senescent cells have emerged as key contributors to its pathogenesis. Senescent cells exhibit cell cycle arrest and secrete a range of proinflammatory factors, termed the senescence-associated secretory phenotype (SASP), which promotes tissue dysfunction and exacerbates CVD progression. Omics technologies, specifically transcriptomics and proteomics, offer powerful tools to uncover and define the molecular signatures of senescent cells in cardiovascular tissue. By analyzing the comprehensive molecular profiles of senescent cells, omics approaches can identify specific genetic alterations, gene expression patterns, protein abundances, and metabolite levels associated with senescence in CVD. These omics-based discoveries provide insights into the mechanisms underlying senescence-induced cardiovascular damage, facilitating the development of novel diagnostic biomarkers and therapeutic targets. Furthermore, integration of multiple omics data sets enables a systems-level understanding of senescence in CVD, paving the way for precision medicine approaches to prevent or treat cardiovascular aging and its associated complications.
Collapse
Affiliation(s)
- Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States
| | - Amit K Dey
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Nathan Basisty
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Allison B Herman
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Tai S, Zhou Y, Fu L, Ding H, Zhou Y, Yin Z, Yang R, Liu Z, Zhou S. Dapagliflozin impedes endothelial cell senescence by activating the SIRT1 signaling pathway in type 2 diabetes. Heliyon 2023; 9:e19152. [PMID: 37664712 PMCID: PMC10469571 DOI: 10.1016/j.heliyon.2023.e19152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) clinically reduce atherosclerosis and lower blood pressure. However, their impact on endothelial dysfunction in type 2 diabetes (T2D) remains unclear. In this study, we investigated the protective effect and underlying mechanism of the SGLT2 inhibitor dapagliflozin in diabetes. Methods Vascular reactivity was measured to assess the vasoprotective effect of dapagliflozin in a mouse model of high glucose (HG)-induced T2D. Pulse wave velocity was measured to quantify arterial stiffness. Protein expression was assessed by western blotting and immunofluorescence, oxidative stress was evaluated using dihydroethidium, nitric oxide was evaluated using the Griess reaction, and cellular senescence was assessed based on senescence-associated beta-galactosidase (SA-β-gal) activity and the expression of senescence markers. Furthermore, the endothelial nitric oxide synthase (eNOS) acetylation status was determined and eNOS interactions with SIRT1 were evaluated by coimmunoprecipitation assays. Results Dapagliflozin protected against impaired endothelium-dependent vasorelaxation and improved arterial stiffness in the mouse model of T2D; mouse aortas had significantly reduced levels of senescence activity and senescence-associated inflammatory factors. HG-induced increases in senescence activity, protein marker levels, and oxidative stress in vitro were all ameliorated by dapagliflozin. The decreases in eNOS phosphorylation and nitric oxide (NO) production in senescent endothelial cells were restored by dapagliflozin. SIRT1 expression was reduced in HG-induced senescent endothelial cells, and dapagliflozin restored SIRT1 expression. SIRT1 inhibition diminished the antisenescence effects of dapagliflozin. Coimmunoprecipitation showed that SIRT1 was physically associated with eNOS, suggesting that the effects of dapagliflozin are dependent on SIRT1 activation. Conclusion These findings indicate that dapagliflozin protects against endothelial cell senescence by regulating SIRT1 signaling in diabetic mice.
Collapse
Affiliation(s)
- Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ying Zhou
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyao Fu
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiqing Ding
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yuying Zhou
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Zhiyi Yin
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rukai Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhenjiang Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| |
Collapse
|
13
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
14
|
Seara FAC, Maciel L, Kasai-Brunswick TH, Nascimento JHM, Campos-de-Carvalho AC. Extracellular Vesicles and Cardiac Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:33-56. [PMID: 37603271 DOI: 10.1007/978-981-99-1443-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Global population aging is a major challenge to health and socioeconomic policies. The prevalence of diseases progressively increases with aging, with cardiovascular disease being the major cause of mortality among elderly people. The allostatic overload imposed by the accumulation of cardiac senescent cells has been suggested to play a pivotal role in the aging-related deterioration of cardiovascular function. Senescent cells exhibit intrinsic disorders and release a senescence-associated secretory phenotype (SASP). Most of these SASP compounds and damaged molecules are released from senescent cells by extracellular vesicles (EVs). Once secreted, these EVs can be readily incorporated by recipient neighboring cells and elicit cellular damage or otherwise can promote extracellular matrix remodeling. This has been associated with the development of cardiac dysfunction, fibrosis, and vascular calcification, among others. The molecular signature of these EVs is highly variable and might provide important information for the development of aging-related biomarkers. Conversely, EVs released by the stem and progenitor cells can exert a rejuvenating effect, raising the possibility of future anti-aging therapies.
Collapse
Affiliation(s)
- Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Institute of Health and Biological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Leonardo Maciel
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Campus Professor Geraldo, Duque de Caxias, Brazil
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose H M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Health Sciences Centre, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Antonio C Campos-de-Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol 2023; 20:38-51. [PMID: 35853997 PMCID: PMC10026597 DOI: 10.1038/s41569-022-00739-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Endothelial cells are located at the crucial interface between circulating blood and semi-solid tissues and have many important roles in maintaining systemic physiological function. The vascular endothelium is particularly susceptible to pathogenic stimuli that activate tumour suppressor pathways leading to cellular senescence. We now understand that senescent endothelial cells are highly active, secretory and pro-inflammatory, and have an aberrant morphological phenotype. Moreover, endothelial senescence has been identified as an important contributor to various cardiovascular and metabolic diseases. In this Review, we discuss the consequences of endothelial cell exposure to damaging stimuli (haemodynamic forces and circulating and endothelial-derived factors) and the cellular and molecular mechanisms that induce endothelial cell senescence. We also discuss how endothelial cell senescence causes arterial dysfunction and contributes to clinical cardiovascular diseases and metabolic disorders. Finally, we summarize the latest evidence on the effect of eliminating senescent endothelial cells (senolysis) and identify important remaining questions to be addressed in future studies.
Collapse
Affiliation(s)
- Samuel I Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Md Torikul Islam
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
- Veterans Affairs Medical Center-Salt Lake City, Geriatric Research Education and Clinical Center, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.
- Veterans Affairs Medical Center-Salt Lake City, Geriatric Research Education and Clinical Center, Salt Lake City, UT, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Xu S, Jin T, Weng J. Endothelial Cells as a Key Cell Type for Innate Immunity: A Focused Review on RIG-I Signaling Pathway. Front Immunol 2022; 13:951614. [PMID: 35865527 PMCID: PMC9294349 DOI: 10.3389/fimmu.2022.951614] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
The vascular endothelium consists of a highly heterogeneous monolayer of endothelial cells (ECs) which are the primary target for bacterial and viral infections due to EC’s constant and close contact with the bloodstream. Emerging evidence has shown that ECs are a key cell type for innate immunity. Like macrophages, ECs serve as sentinels when sensing invading pathogens or microbial infection caused by viruses and bacteria. It remains elusive how ECs senses danger signals, transduce the signal and fulfil immune functions. Retinoic acid-inducible gene-I (RIG-I, gene name also known as DDX58) is an important member of RIG-I-like receptor (RLR) family that functions as an important pathogen recognition receptor (PRR) to execute immune surveillance and confer host antiviral response. Recent studies have demonstrated that virus infection, dsRNA, dsDNA, interferons, LPS, and 25-hydroxycholesterol (25-HC) can increase RIG-1 expression in ECs and propagate anti-viral response. Of translational significance, RIG-I activation can be inhibited by Panax notoginseng saponins, endogenous PPARγ ligand 15-PGJ2, tryptanthrin and 2-animopurine. Considering the pivotal role of inflammation and innate immunity in regulating endothelial dysfunction and atherosclerosis, here we provided a concise review of the role of RIG-I in endothelial cell function and highlight future direction to elucidate the potential role of RIG-I in regulating cardiovascular diseases as well as virus infectious disease, including COVID-19. Furthered understanding of RIG-I-mediated signaling pathways is important to control disorders associated with altered immunity and inflammation in ECs.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
- Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province , University of Science and Technology of China, Hefei, China
- *Correspondence: Suowen Xu, ; Jianping Weng,
| | - Tengchuan Jin
- Laboratory of Structural Immunology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
- Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province , University of Science and Technology of China, Hefei, China
- *Correspondence: Suowen Xu, ; Jianping Weng,
| |
Collapse
|
17
|
Jiang D, Sun W, Wu T, Zou M, Vasamsetti SB, Zhang X, Zhao Y, Phillippi JA, Sawalha AH, Tavakoli S, Dutta P, Florentin J, Chan SY, Tollison TS, Di Wu, Cui J, Huntress I, Peng X, Finkel T, Li G. Post-GWAS functional analysis identifies CUX1 as a regulator of p16 INK4a and cellular senescence. NATURE AGING 2022; 2:140-154. [PMID: 37117763 PMCID: PMC10154215 DOI: 10.1038/s43587-022-00177-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/21/2021] [Indexed: 04/30/2023]
Abstract
Accumulation of senescent cells with age is an important driver of aging and age-related diseases. However, the mechanisms and signaling pathways that regulate senescence remain elusive. In this report, we performed post-genome-wide association studies (GWAS) functional studies on the CDKN2A/B locus, a locus known to be associated with multiple age-related diseases and overall human lifespan. We demonstrate that transcription factor CUX1 (Cut-Like Homeobox 1) specifically binds to an atherosclerosis-associated functional single-nucleotide polymorphism (fSNP) (rs1537371) within the locus and regulates the CDKN2A/B-encoded proteins p14ARF, p15INK4b and p16INK4a and the antisense noncoding RNA in the CDK4 (INK4) locus (ANRIL) in endothelial cells (ECs). Endothelial CUX1 expression correlates with telomeric length and is induced by both DNA-damaging agents and oxidative stress. Moreover, induction of CUX1 expression triggers both replicative and stress-induced senescence via activation of p16INK4a expression. Thus, our studies identify CUX1 as a regulator of p16INK4a-dependent endothelial senescence and a potential therapeutic target for atherosclerosis and other age-related diseases.
Collapse
Affiliation(s)
- Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Meijuan Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Sathish Babu Vasamsetti
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amr H Sawalha
- Departments of Pediatrics Medicine, and Immunology & Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Departments of Radiology and Medicine, University of Pittsburgh, UPMC Presbyterian Hospital, Pittsburg, PA, USA
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tammy S Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oral and Craniofacial Health Sciences, Adam School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Cui
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
El Hadri K, Smith R, Duplus E, El Amri C. Inflammation, Oxidative Stress, Senescence in Atherosclerosis: Thioredoxine-1 as an Emerging Therapeutic Target. Int J Mol Sci 2021; 23:ijms23010077. [PMID: 35008500 PMCID: PMC8744732 DOI: 10.3390/ijms23010077] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases (CVD) worldwide and intimately linked to aging. This pathology is characterized by chronic inflammation, oxidative stress, gradual accumulation of low-density lipoproteins (LDL) particles and fibrous elements in focal areas of large and medium arteries. These fibrofatty lesions in the artery wall become progressively unstable and thrombogenic leading to heart attack, stroke or other severe heart ischemic syndromes. Elevated blood levels of LDL are major triggering events for atherosclerosis. A cascade of molecular and cellular events results in the atherosclerotic plaque formation, evolution, and rupture. Moreover, the senescence of multiple cell types present in the vasculature were reported to contribute to atherosclerotic plaque progression and destabilization. Classical therapeutic interventions consist of lipid-lowering drugs, anti-inflammatory and life style dispositions. Moreover, targeting oxidative stress by developing innovative antioxidant agents or boosting antioxidant systems is also a well-established strategy. Accumulation of senescent cells (SC) is also another important feature of atherosclerosis and was detected in various models. Hence, targeting SCs appears as an emerging therapeutic option, since senolytic agents favorably disturb atherosclerotic plaques. In this review, we propose a survey of the impact of inflammation, oxidative stress, and senescence in atherosclerosis; and the emerging therapeutic options, including thioredoxin-based approaches such as anti-oxidant, anti-inflammatory, and anti-atherogenic strategy with promising potential of senomodulation.
Collapse
|
19
|
Man AWC, Zhou Y, Lam UDP, Reifenberg G, Werner A, Habermeier A, Closs EI, Daiber A, Münzel T, Xia N, Li H. L-citrulline ameliorates pathophysiology in a rat model of superimposed preeclampsia. Br J Pharmacol 2021; 179:3007-3023. [PMID: 34935131 DOI: 10.1111/bph.15783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Preeclampsia, characterized by hypertension, proteinuria, and fetal growth restriction, is one of the leading causes of maternal and perinatal mortality. By far, there is no effective pharmacological therapy for preeclampsia. The present study was conducted to investigate the effects of L-citrulline supplementation in Dahl salt-sensitive rat, a model of superimposed preeclampsia. EXPERIMENTAL APPROACH Parental DSSR were treated with L-citrulline (2.5 g/L in drinking water) from the day of mating to the end of lactation period. Blood pressure of the rats was monitored throughout pregnancy and markers of preeclampsia were assessed. Endothelial function of the pregnant DSSR was assessed by wire myograph. KEY RESULTS L-citrulline supplementation significantly reduced maternal blood pressure, proteinuria, and levels of circulating soluble fms-like tyrosine kinase 1 in DSSR. L-citrulline improved maternal endothelial function by augmenting the production of nitric oxide in the aorta and improving endothelium-derived hyperpolarizing factor-mediated vasorelaxation in resistance arteries. L-citrulline supplementation improved placental insufficiency and fetal growth, which were associated with an enhancement of angiogenesis and reduction of fibrosis and senescence in the placentas. In addition, L-citrulline downregulated genes involved in the toll-like receptor 4 and nuclear factor-κB signaling pathway. CONCLUSION AND IMPLICATIONS This study shows that L-citrulline supplementation reduces gestational hypertension, improves placentation and fetal growth in a rat model of superimposed preeclampsia. L-citrulline supplementation may represent an effective and safe therapeutic strategy for preeclampsia that benefit both the mother and the fetus.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Yawen Zhou
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Uyen D P Lam
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Biomedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Gisela Reifenberg
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anke Werner
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Alice Habermeier
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ellen I Closs
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
20
|
Hettinger ZR, Kargl CK, Shannahan JH, Kuang S, Gavin TP. Extracellular vesicles released from stress-induced prematurely senescent myoblasts impair endothelial function and proliferation. Exp Physiol 2021; 106:2083-2095. [PMID: 34333817 DOI: 10.1113/ep089423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the impact of stress-induced premature senescence on skeletal muscle myoblast-derived extracellular vesicles (EVs) and myoblast-endothelial cell crosstalk? What is the main finding and its importance? Hydrogen peroxide treatment of human myoblasts induced stress-induced premature senescence (SIPS) and increased the release of exosome-sized EVs (30-150 nm in size) five-fold compared to untreated controls. Treatment of SIPS myoblast-derived EVs on endothelial cells increased senescence markers and decreased proliferation. Gene expression analysis of SIPS myoblast-derived EVs revealed a four-fold increase in senescence factor transforming growth factor-β. These results highlight potential mechanisms by which senescence imparts deleterious effects on the cellular microenvironment. ABSTRACT Cellular senescence contributes to numerous diseases through the release of pro-inflammatory factors as part of the senescence-associated secretory phenotype (SASP). In skeletal muscle, resident muscle progenitor cells (satellite cells) express markers of senescence with advancing age and in response to various pathologies, which contributes to reduced regenerative capacities in vitro. Satellite cells regulate their microenvironment in part through the release of extracellular vesicles (EVs), but the effect of senescence on EV signaling is unknown. Primary human myoblasts were isolated following biopsies of the vastus lateralis from young healthy subjects. Hydrogen peroxide (H2 O2 ) treatment was used to achieve stress-induced premature senescence (SIPS) of myoblasts. EVs secreted by myoblasts with and without H2 O2 treatment were isolated, analysed and used to treat human umbilical vein endothelial cells (HUVECs) to assess senescence and angiogenic impact. H2 O2 treatment of primary human myoblasts in vitro increased markers of senescence (β-galactosidase and p21Cip1 ), decreased proliferation and increased exosome-like EV (30-150 nm) release approximately five-fold. In HUVECs, EV treatment from H2 O2 -treated myoblasts increased markers of senescence (β-galactosidase and transforming growth factor β), decreased proliferation and impaired HUVEC tube formation. Analysis of H2 O2 -treated myoblast-derived EV mRNA revealed a nearly four-fold increase in transforming growth factor β expression. Our novel results highlight the impact of SIPS on myoblast communication and identify a VasoMyo Crosstalk by which SIPS myoblast-derived EVs impair endothelial cell function in vitro.
Collapse
Affiliation(s)
- Zachary R Hettinger
- Max E. Wastl Human Performance Laboratory, Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Christopher K Kargl
- Max E. Wastl Human Performance Laboratory, Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Shihuan Kuang
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Timothy P Gavin
- Max E. Wastl Human Performance Laboratory, Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
21
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
22
|
Ferrari S, Pesce M. Stiffness and Aging in Cardiovascular Diseases: The Dangerous Relationship between Force and Senescence. Int J Mol Sci 2021; 22:3404. [PMID: 33810253 PMCID: PMC8037660 DOI: 10.3390/ijms22073404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Biological aging is a process associated with a gradual decline in tissues' homeostasis based on the progressive inability of the cells to self-renew. Cellular senescence is one of the hallmarks of the aging process, characterized by an irreversible cell cycle arrest due to reactive oxygen species (ROS) production, telomeres shortening, chronic inflammatory activation, and chromatin modifications. In this review, we will describe the effects of senescence on tissue structure, extracellular matrix (ECM) organization, and nucleus architecture, and see how these changes affect (are affected by) mechano-transduction. In our view, this is essential for a deeper understanding of the progressive pathological evolution of the cardiovascular system and its relationship with the detrimental effects of risk factors, known to act at an epigenetic level.
Collapse
Affiliation(s)
- Silvia Ferrari
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico(IRCCS), 20138 Milan, Italy;
- PhD Program in Translational Medicine, Department of Molecular Medicine, Università degli studi di Pavia, 27100 Pavia, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico(IRCCS), 20138 Milan, Italy;
| |
Collapse
|
23
|
Dou F, Wu B, Chen J, Liu T, Yu Z, Chen C. PPAR α Targeting GDF11 Inhibits Vascular Endothelial Cell Senescence in an Atherosclerosis Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2045259. [PMID: 33728018 PMCID: PMC7935606 DOI: 10.1155/2021/2045259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 01/01/2023]
Abstract
Atherosclerosis (AS) is a complex vascular disease that seriously harms the health of the elderly. It is closely related to endothelial cell aging, but the role of senescent cells in atherogenesis remains unclear. Studies have shown that peroxisome proliferator-activated receptor alpha (PPARα) inhibits the development of AS by regulating lipid metabolism. Our previous research showed that PPARα was involved in regulating the repair of damaged vascular endothelial cells. Using molecular biology and cell biology approaches to detect senescent cells in atherosclerosis-prone apolipoprotein E-deficient (Apoe -/-) mice, we found that PPARα delayed atherosclerotic plaque formation by inhibiting vascular endothelial cell senescence, which was achieved by regulating the expression of growth differentiation factor 11 (GDF11). GDF11 levels declined with age in several organs including the myocardium, bone, central nervous system, liver, and spleen in mice and participated in the regulation of aging. Our results showed that PPARα inhibited vascular endothelial cell senescence and apoptosis and promoted vascular endothelial cell proliferation and angiogenesis by increasing GDF11 production. Taken together, these results demonstrated that PPARα inhibited vascular endothelial cell aging by promoting the expression of the aging-related protein GDF11, thereby delaying the occurrence of AS.
Collapse
Affiliation(s)
- Fangfang Dou
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Beiling Wu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| |
Collapse
|
24
|
Wang X, HuangFu C, Zhu X, Liu J, Gong X, Pan Q, Ma X. Exosomes and Exosomal MicroRNAs in Age-Associated Stroke. Curr Vasc Pharmacol 2021; 19:587-600. [PMID: 33563154 DOI: 10.2174/1570161119666210208202621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function, and are implicated in the initiation and progression of stroke. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Changmei HuangFu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiudeng Zhu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Jiehong Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xinqin Gong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| |
Collapse
|
25
|
Lee G, Hoang T, Jung E, Jung S, Han S, Chung M, Chae S, Chae H. Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. Aging Cell 2020; 19:e13279. [PMID: 33274583 PMCID: PMC7744959 DOI: 10.1111/acel.13279] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Endothelial dysfunction is one of the main age‐related arterial phenotypes responsible for cardiovascular disease (CVD) in older adults. This endothelial dysfunction results from decreased bioavailability of nitric oxide (NO) arising downstream of endothelial oxidative stress. In this study, we investigated the protective effect of anthocyanins and the underlying mechanism in rat thoracic aorta and human vascular endothelial cells in aging models. In vitro, cyanidin‐3‐rutinoside (C‐3‐R) and cyanidin‐3‐glucoside (C‐3‐G) inhibited the d‐galactose (d‐gal)‐induced senescence in human endothelial cells, as indicated by reduced senescence‐associated‐β‐galactosidase activity, p21, and p16INK4a. Anthocyanins blocked d‐gal‐induced reactive oxygen species (ROS) formation and NADPH oxidase activity. Anthocyanins reversed d‐gal‐mediated inhibition of endothelial nitric oxide synthase (eNOS) serine phosphorylation and SIRT1 expression, recovering NO level in endothelial cells. Also, SIRT1‐mediated eNOS deacetylation was shown to be involved in anthocyanin‐enhanced eNOS activity. In vivo, anthocyanin‐rich mulberry extract was administered to aging rats for 8 weeks. In vivo, mulberry extract alleviated endothelial senescence and oxidative stress in the aorta of aging rats. Consistently, mulberry extract also raised serum NO levels, increased phosphorylation of eNOS, increased SIRT1 expression, and reduced nitrotyrosine in aortas. The eNOS acetylation was higher in the aging group and was restored by mulberry extract treatment. Similarly, SIRT1 level associated with eNOS decreased in the aging group and was restored in aging plus mulberry group. These findings indicate that anthocyanins protect against endothelial senescence through enhanced NO bioavailability by regulating ROS formation and reducing eNOS uncoupling.
Collapse
Affiliation(s)
- Geum‐Hwa Lee
- Non‐Clinical Evaluation Center Biomedical Research Institute Jeonbuk National University Hospital Jeonju Korea
| | - The‐Hiep Hoang
- Non‐Clinical Evaluation Center Biomedical Research Institute Jeonbuk National University Hospital Jeonju Korea
| | - Eun‐Soo Jung
- Clinical Trial Center for Functional Foods (CTCF2) Jeonbuk National University Hospital Jeonju Korea
| | - Su‐Jin Jung
- Clinical Trial Center for Functional Foods (CTCF2) Jeonbuk National University Hospital Jeonju Korea
| | - Seong‐Kyu Han
- Department of Oral Physiology School of Dentistry & Institute of Oral Bioscience Jeonbuk National University Jeonju Korea
| | - Myoung‐Ja Chung
- Department of Pathology Jeonbuk National University Medical School Jeonju Korea
| | - Soo‐Wan Chae
- Clinical Trial Center for Functional Foods (CTCF2) Jeonbuk National University Hospital Jeonju Korea
| | - Han‐Jung Chae
- Non‐Clinical Evaluation Center Biomedical Research Institute Jeonbuk National University Hospital Jeonju Korea
- School of Pharmacy Jeonbuk National University Jeonju Korea
- Research Institute of Clinical Medicine of Jeonbuk National University‐Biomedical Research Institute of Jeonbuk National University Hospital Jeonju Korea
| |
Collapse
|
26
|
Liang Y, Liang N, Yin L, Xiao F. Cellular and molecular mechanisms of xenobiotics-induced premature senescence. Toxicol Res (Camb) 2020; 9:669-675. [PMID: 33178427 DOI: 10.1093/toxres/tfaa073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Premature senescence, which share common features with replicative senescence such as morphology, senescence-associated galactosidase (SA-β-gal) activity, cell cycle regulation, and gene expression, can be triggered by the exposure of various xenobiotics including environmental pollutant, peroxides, and anticancer drugs. The exact mechanisms underlying the senescence onset and stabilization are still obscure. In this review, we summarized the possible cellular and molecular mechanisms of xenobiotics-induced premature senescence, including induction of reactive oxygen species (ROS), tumor suppressors, and DNA damage; disequilibrium of calcium homeostasis; activation of transforming growth factor-β (TGF-β); and blockage of aryl hydrocarbon receptor (AHR) pathway. The deeper understanding of the molecular mechanisms underlying xenobiotics-induced senescence may shed light on new therapeutic strategies for age-related pathologies and extend healthy lifespan.
Collapse
Affiliation(s)
- Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Ningjuan Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Lirong Yin
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| |
Collapse
|
27
|
Dominic A, Banerjee P, Hamilton DJ, Le NT, Abe JI. Time-dependent replicative senescence vs. disturbed flow-induced pre-mature aging in atherosclerosis. Redox Biol 2020; 37:101614. [PMID: 32863187 PMCID: PMC7767754 DOI: 10.1016/j.redox.2020.101614] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulation of senescent cells has a causative role in the pathology of age-related disorders including atherosclerosis (AS) and cardiovascular diseases (CVDs). However, the concept of senescence is now drastically changing, and the new concept of senescence-associated reprogramming/stemness has emerged, suggesting that senescence is not merely related to “cell cycle arrest” or halting various cellular functions. It is well known that disturbed flow (D-flow) accelerates pre-mature aging and plays a significant role in the development of AS. We will discuss in this review that pre-mature aging induced by D-flow is not comparable to time-dependent aging, particularly with a focus on the possible involvement of senescence-associated secretory phenotype (SASP) in senescence-associated reprogramming/stemness, or increasing cell numbers. We will also present our outlook of nicotinamide adenine dinucleotides (NAD)+ deficiency-induced mitochondrial reactive oxygen species (mtROS) in evoking SASP by activating DNA damage response (DDR). MtROS plays a key role in developing cross-talk between nuclear-mitochondria, SASP, and ultimately atherosclerosis formation. Although senescence induced by time and various stress factors is a classical concept, we wish that the readers will see the undergoing Copernican-like change in this concept, as well as to recognize the significant contrast between pre-mature aging induced by D-flow and time-dependent aging.
Collapse
Affiliation(s)
- Abishai Dominic
- Department of Molecular and Cellular Biology Texas A&M Health Science Center, USA; Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Priyanka Banerjee
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Dale J Hamilton
- Department of Medicine, Center for Bioenergetics Houston Methodist Research Institute, Texas, USA
| | - Nhat-Tu Le
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA.
| | - Jun-Ichi Abe
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
28
|
Abdulkadir RR, Alwjwaj M, Othman OA, Rakkar K, Bayraktutan U. Outgrowth endothelial cells form a functional cerebral barrier and restore its integrity after damage. Neural Regen Res 2020; 15:1071-1078. [PMID: 31823887 PMCID: PMC7034270 DOI: 10.4103/1673-5374.269029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Breakdown of blood-brain barrier, formed mainly by brain microvascular endothelial cells (BMECs), represents the major cause of mortality during early phases of ischemic strokes. Hence, discovery of novel agents that can effectively replace dead or dying endothelial cells to restore blood-brain barrier integrity is of paramount importance in stroke medicine. Although endothelial progenitor cells (EPCs) represent one such agents, their rarity in peripheral blood severely limits their adequate isolation and therapeutic use for acute ischemic stroke which necessitate their ex vivo expansion and generate early EPCs and outgrowth endothelial cells (OECs) as a result. Functional analyses of these cells, in the present study, demonstrated that only OECs endocytosed DiI-labelled acetylated low-density lipoprotein and formed tubules on matrigel, prominent endothelial cell and angiogenesis markers, respectively. Further analyses by flow cytometry demonstrated that OECs expressed specific markers for stemness (CD34), immaturity (CD133) and endothelial cells (CD31) but not for hematopoietic cells (CD45). Like BMECs, OECs established an equally tight in vitro model of human BBB with astrocytes and pericytes, suggesting their capacity to form tight junctions. Ischemic injury mimicked by concurrent deprivation of oxygen and glucose (4 hours) or deprivation of oxygen and glucose followed by reperfusion (20 hours) affected both barrier integrity and function in a similar fashion as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux, respectively. Wound scratch assays comparing the vasculoreparative capacity of cells revealed that, compared to BMECs, OECs possessed a greater proliferative and directional migratory capacity. In a triple culture model of BBB established with astrocytes, pericytes and BMEC, exogenous addition of OECs effectively repaired the damage induced on endothelial layer in serum-free conditions. Taken together, these data demonstrate that OECs may effectively home to the site of vascular injury and repair the damage to maintain (neuro)vascular homeostasis during or after a cerebral ischemic injury.
Collapse
Affiliation(s)
- Rais Reskiawan Abdulkadir
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Othman Ahmad Othman
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Kamini Rakkar
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
- Correspondence to: Ulvi Bayraktutan, .
| |
Collapse
|
29
|
Tousian H, Razavi BM, Hosseinzadeh H. Looking for immortality: Review of phytotherapy for stem cell senescence. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:154-166. [PMID: 32405357 PMCID: PMC7211350 DOI: 10.22038/ijbms.2019.40223.9522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, we discussed natural agents with protective effects against stem cell senescence. Different complications have been observed due to stem cell senescence and the most important of them is "Aging". Senescent cells have not normal function and their secretary inflammatory factors induce chronic inflammation in body which causes different pathologies. Stem cell senescence also has been investigated in different diseases or as drug adverse effects. We searched databases such as Embase, Pubmed and Web of Science with keywords "stem cell", "progenitor cell", "satellite", "senescence" and excluded keywords "cancer", "tumor", "malignancy" and "carcinoma" without time limitation until May 2019. Among them we chose 52 articles that have investigated protective effects of natural agents (extracts or molecules) against cellular senescence in different kind of adult stem cells. Most of these studies were in endothelial progenitor cells, hematopoietic stem cells, mesenchymal stem cells, adipose-derived stem cells and few were about other kinds of stem cells. Most studied agents were resveratrol and ginseng which are also commercially available as supplement. Most protective molecular targets were telomerase and anti-oxidant enzymes to preserve genome integrity and reduce senescence-inducing signals. Due to the safe and long history of herbal usage in clinic, phytotherapy can be used for preventing stem cell senescence and their related complication. Resveratrol and ginseng can be the first choice for this aim due to their protective mechanisms in various kinds of stem cells and their long term clinical usage.
Collapse
Affiliation(s)
- Hourieh Tousian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Kim GD. Sirt1-Mediated Anti-Aging Effects of Houttuynia cordata Extract in a High Glucose-Induced Endothelial Cell-Aging Model. Prev Nutr Food Sci 2020; 25:108-112. [PMID: 32292763 PMCID: PMC7143013 DOI: 10.3746/pnf.2020.25.1.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/28/2022] Open
Abstract
Houttuynia cordata (HC) is a herb widely used in traditional Asian medicine as an ingredient in complex prescriptions. HC is known for its anti-leukemic, anti-oxidative, and anti-inflammatory properties. However, its anti-vascular endothelial aging efficacy and the underlying mechanisms are not fully understood. In this study, we investigated the anti-aging effects of HC in a high glucose (HG)-induced endothelial cell (EC)-aging model. Treatment with HC (40 μg/mL) increased migration of ECs, and increased phosphorylation of extracellular signal-regulated kinases and p38 in a dose-dependent manner. Following HG treatment (30 mM), HC significantly decreased the number of senescence-associated β-galactosidase positive cells, which are the biomarkers for aging, in a dose-dependent manner. Based on levels of phosphorylation, HC (40 μg/mL) was shown to increase expression of sirtuin1 (Sirt1) and endothelial nitric oxide synthase (eNOS) by 74.4% and 328.2%, respectively. Furthermore, treatment of HG-induced senescent ECs with HC (40 μg/mL) significantly increased nitric oxide production (P<0.05). These results demonstrate that HC both increases EC migration and regulates the Sirt1/eNOS pathway, suggesting HC has potential for protecting ECs against HG-induced aging.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
31
|
Aoki H, Yamashita M, Hashita T, Ogami K, Hoshino S, Iwao T, Matsunaga T. Efficient differentiation and purification of human induced pluripotent stem cell-derived endothelial progenitor cells and expansion with the use of inhibitors of ROCK, TGF-β, and GSK3β. Heliyon 2020; 6:e03493. [PMID: 32154424 PMCID: PMC7056658 DOI: 10.1016/j.heliyon.2020.e03493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/29/2023] Open
Abstract
Endothelial cells (ECs) and endothelial progenitor cells (EPCs) play crucial roles in maintaining vascular health and homeostasis. Both cell types have been used in regenerative therapy as well as in various in vitro models; however, the properties of primary human ECs and EPCs are dissimilar owing to differences in genetic backgrounds and sampling techniques. Human induced pluripotent stem cells (hiPSCs) are an alternative cell source of ECs and EPCs. However, owing to the low purity of differentiated cells from hiPSCs, purification via an antigen–antibody reaction, which damages the cells, is indispensable. Besides, owing to limited expandability, it is difficult to produce these cells in large numbers. Here we report the development of relatively simple differentiation and purification methods for hiPSC-derived EPCs (iEPCs). Furthermore, we discovered that a combination of three small molecules, that is, Y-27632 (a selective inhibitor of Rho-associated, coiled-coil containing protein kinase [ROCK]), A 83–01 (a receptor-like kinase inhibitor of transforming growth factor beta [TGF-β]), and CHIR-99021 (a selective inhibitor of glycogen synthase kinase-3β [GSK3β] that also activates Wnt), dramatically stimulated protein synthesis-related pathways and enhanced the proliferative capacity of iEPCs. These findings will help to establish a supply system of EPCs at an industrial scale.
Collapse
Affiliation(s)
- Hiromasa Aoki
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Misaki Yamashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Koichi Ogami
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Shinichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
- Corresponding author.
| |
Collapse
|
32
|
Maeda M, Tsuboi T, Hayashi T. An Inhibitor of Activated Blood Coagulation Factor X Shows Anti-Endothelial Senescence and Anti-Atherosclerotic Effects. J Vasc Res 2019; 56:181-190. [DOI: 10.1159/000499975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/28/2019] [Indexed: 11/19/2022] Open
|
33
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
34
|
Endothelial progenitor cells: Potential novel therapeutics for ischaemic stroke. Pharmacol Res 2019; 144:181-191. [DOI: 10.1016/j.phrs.2019.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023]
|
35
|
Song S, Wu S, Wang Y, Wang Z, Ye C, Song R, Song D, Ruan Y. 17β-estradiol inhibits human umbilical vascular endothelial cell senescence by regulating autophagy via p53. Exp Gerontol 2018; 114:57-66. [PMID: 30399406 DOI: 10.1016/j.exger.2018.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cell (VEC) senescence is an initiating factor in numerous cardiovascular diseases. Recent studies showed that 17β-estradiol (17β-E2), an estrogen with numerous biological activities such as inhibition of atherosclerosis, protects VECs from senescence. However, the effects of 17β-E2 on human umbilical VECs (HUVECs) remain unknown. This study investigated the anti-senescent effect of 17β-E2 on HUVECs and explored the underlying mechanism with respect to autophagy and p53 activity. First, rapamycin and 3-methyladenine were used to clarify the relationship between autophagy and senescence in HUVECs, and an inverse relationship was demonstrated. Next, the effect of 17β-E2 on H2O2-induced senescence of HUVECs was examined. Increased autophagy induced by 17β-E2 inhibited H2O2-induced senescence of HUVECs, increased cell viability, and maintained HUVEC morphology. 17β-E2 pre-treatment also decreased cell cycle arrest, decreased the dephosphorylation of Rb, decreased the production of ET-1, and increased the production of NO. Most importantly, 17β-E2 pre-treatment increased autophagy by activating p53 and its downstream effector p53-upregulated modulator of apoptosis (PUMA). Overall, our data indicate the critical role of autophagy in the anti-senescent effect of 17β-E2 on HUVECs.
Collapse
Affiliation(s)
- Shicong Song
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Saizhu Wu
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuyan Wang
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Wang
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxiong Ye
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Song
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongqing Song
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunjun Ruan
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Han S, Aydin MM, Akansel S, Usanmaz SE, Akçali C, Uludağ MO, Demirel Yilmaz E. Age- and sex-dependent alteration of functions and epigenetic modifications of vessel and endothelium related biomarkers. Turk J Biol 2018; 42:286-296. [PMID: 30814892 DOI: 10.3906/biy-1803-59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Aging is a main risk factor for development of cardiovascular diseases associated with the impairment of endothelial function in both sexes. In the present study, age-related changes in vascular responsiveness, epigenetic modifications of vessel wall, and blood biomarkers related to endothelial functions were examined in an age- and sex-dependent manner. Acetylcholine (ACh)-induced relaxations of the aorta were decreased in 3-, 6-, and 12-month-old rats compared to those in 1-month-old female rats. In males, maximum relaxations related to ACh were higher in 1- and 6-month-old rats than in 3- and 12-month-old rats. Plasma levels of nitric oxide (NO) and asymmetric dimethylarginine (ADMA) decreased with age in female rats, and total antioxidant capacity (TAC) and hydrogen sulfide (H 2S) levels displayed biphasic alterations. In male rats, plasma levels of NO, TAC, and ADMA decreased with age, and H2S levels increased. Aging also caused a sex-dependent alteration in epigenetic modification of vessels. Expressions of H3K27me2, H3K27me3, H3K36me2, and H3K36me3 were much higher in vessels of 12-month-old female rats compared to those in younger age groups. These results indicate that vascular functions, epigenetic modifications of vessels, and plasma levels of endothelium-related biomarkers are affected by age and sex. These findings could be important for the assessment of vascular status over the course of the life span.
Collapse
Affiliation(s)
- Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University , Ankara , Turkey
| | - Muammer Merve Aydin
- Department of Biophysics, Faculty of Medicine, Ankara University , Ankara , Turkey
| | - Serdar Akansel
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University , Turkey
| | - Suzan Emel Usanmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University , Turkey
| | - Can Akçali
- Department of Biophysics, Faculty of Medicine, Ankara University , Ankara , Turkey
| | - Mecit Orhan Uludağ
- Department of Pharmacology, Faculty of Pharmacy, Gazi University , Ankara , Turkey
| | - Emine Demirel Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University , Turkey
| |
Collapse
|
37
|
Childs BG, Li H, van Deursen JM. Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest 2018; 128:1217-1228. [PMID: 29608141 DOI: 10.1172/jci95146] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence, a major tumor-suppressive cell fate, has emerged from humble beginnings as an in vitro phenomenon into recognition as a fundamental mechanism of aging. In the process, senescent cells have attracted attention as a therapeutic target for age-related diseases, including cardiovascular disease (CVD), the leading cause of morbidity and mortality in the elderly. Given the aging global population and the inadequacy of current medical management, attenuating the health care burden of CVD would be transformative to clinical practice. Here, we review the evidence that cellular senescence drives CVD in a bimodal fashion by both priming the aged cardiovascular system for disease and driving established disease forward. Hence, the growing field of senotherapy (neutralizing senescent cells for therapeutic benefit) is poised to contribute to both prevention and treatment of CVD.
Collapse
Affiliation(s)
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, and
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
38
|
Brahmanaidu P, Uddandrao VVS, Sasikumar V, Naik RR, Pothani S, Begum MS, Rajeshkumar MP, Varatharaju C, Meriga B, Rameshreddy P, Kalaivani A, Saravanan G. Reversal of endothelial dysfunction in aorta of streptozotocin-nicotinamide-induced type-2 diabetic rats by S-Allylcysteine. Mol Cell Biochem 2017; 432:25-32. [PMID: 28258439 DOI: 10.1007/s11010-017-2994-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/24/2017] [Indexed: 12/23/2022]
Abstract
Dietary measures and plant-based therapies as prescribed by native systems of medicine have gained attraction among diabetics with claims of efficacy. The present study investigated the effects of S-Allylcysteine (SAC) on body weight gain, glucose, insulin, insulin resistance, and nitric oxide synthase in plasma and argininosuccinate synthase (AS) and argininosuccinate lyase (ASL), lipid peroxides and antioxidant enzymes in aorta of control and streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats. Changes in body weight, glucose, insulin, insulin resistance, and antioxidant profiles of aorta and mRNA expressions of nitric oxide synthase, AS, and ASL were observed in experimental rats. SAC (150 mg/kg b.w) showed its therapeutic effects similar to gliclazide in decreasing glucose, insulin resistance, lipid peroxidation, and increasing body weight; insulin, antioxidant enzymes, and mRNA levels of nitric oxide synthase, argininosuccinate synthase, and argininosuccinate lyase genes in STZ-NA rats. Histopathologic studies also revealed the protective nature of SAC on aorta. In conclusion, garlic and its constituents mediate the anti-diabetic potential through mitigating hyperglycemic status, changing insulin resistance by alleviating endothelial dysregulation in both plasma and tissues.
Collapse
Affiliation(s)
- Parim Brahmanaidu
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | - V V Sathibabu Uddandrao
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - Vadivukkarasi Sasikumar
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - Ramavat Ravindar Naik
- National Center for Laboratory Animal Sciences, National Institute of Nutrition (ICMR-New Delhi), Hyderabad, India
| | - Suresh Pothani
- National Center for Laboratory Animal Sciences, National Institute of Nutrition (ICMR-New Delhi), Hyderabad, India
| | - Mustapha Sabana Begum
- Department of Biochemistry, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu, 637408, India
| | - M Prasanna Rajeshkumar
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science, Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - Chandrasekar Varatharaju
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science, Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - Balaji Meriga
- Animal Physiology & Biochemistry Lab, Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, India
| | - P Rameshreddy
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - A Kalaivani
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
- Department of Biochemistry, PGP College of Arts and Science, Namakkal, Tamil Nadu, India
| | - Ganapathy Saravanan
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India.
| |
Collapse
|
39
|
Accelerated cellular senescence as underlying mechanism for functionally impaired bone marrow-derived progenitor cells in ischemic heart disease. Atherosclerosis 2017; 260:138-146. [DOI: 10.1016/j.atherosclerosis.2017.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/20/2017] [Accepted: 03/17/2017] [Indexed: 02/05/2023]
|
40
|
Sun C, Wang X, Zheng G, Fan S, Lu J, Zhang Z, Wu D, Shan Q, Hu B, Zheng Y. Protective effect of different flavonoids against endothelial senescence via NLRP3 inflammasome. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
41
|
Pantsulaia I, Ciszewski WM, Niewiarowska J. Senescent endothelial cells: Potential modulators of immunosenescence and ageing. Ageing Res Rev 2016; 29:13-25. [PMID: 27235855 DOI: 10.1016/j.arr.2016.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Recent studies have demonstrated that the accumulation of senescent endothelial cells may be the primary cause of cardiovascular diseases. Because of their multifunctional properties, endothelial cells actively take part in stimulating the immune system and inflammation. In addition, ageing is characterized by the progressive deterioration of immune cells and a decline in the activation of the immune response. This results in a loss of the primary function of the immune system, which is eliminating damaged/senescent cells and neutralizing potential sources of harmful inflammatory reactions. In this review, we discuss cellular senescence and the senescence-associated secretory phenotype (SASP) of endothelial cells and summarize the link between endothelial cells and immunosenescence. We describe the possibility that age-related changes in Toll-like receptors (TLRs) and microRNAs can affect the phenotypes of senescent endothelial cells and immune cells via a negative feedback loop aimed at restraining the excessive pro-inflammatory response. This review also addresses the following questions: how do senescent endothelial cells influence ageing or age-related changes in the inflammatory burden; what is the connection between ECs and immunosenescence, and what are the crucial hypothetical pathways linking endothelial cells and the immune system during ageing.
Collapse
|
42
|
Hanson MA, Cooper C, Aihie Sayer A, Eendebak RJ, Clough GF, Beard JR. Developmental aspects of a life course approach to healthy ageing. J Physiol 2016; 594:2147-60. [PMID: 26518329 DOI: 10.1113/jp270579] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/30/2015] [Indexed: 12/23/2022] Open
Abstract
We examine the mechanistic basis and wider implications of adopting a developmental perspective on human ageing. Previous models of ageing have concentrated on its genetic basis, or the detrimental effects of accumulated damage, but also have raised issues about whether ageing can be viewed as adaptive itself, or is a consequence of other adaptive processes, for example if maintenance and repair processes in the period up to reproduction are traded off against later decline in function. A life course model places ageing in the context of the attainment of peak capacity for a body system, starting in early development when plasticity permits changes in structure and function induced by a range of environmental stimuli, followed by a period of decline, the rate of which depends on the peak attained as well as the later life conditions. Such path dependency in the rate of ageing may offer new insights into its modification. Focusing on musculoskeletal and cardiovascular function, we discuss this model and the possible underlying mechanisms, including endothelial function, oxidative stress, stem cells and nutritional factors such as vitamin D status. Epigenetic changes induced during developmental plasticity, and immune function may provide a common mechanistic process underlying a life course model of ageing. The life course trajectory differs in high and low resource settings. New insights into the developmental components of the life course model of ageing may lead to the design of biomarkers of later chronic disease risk and to new interventions to promote healthy ageing, with important implications for public health.
Collapse
Affiliation(s)
- M A Hanson
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.,NIHR Nutrition Biomedical Research Centre, University Hospital Southampton, UK
| | - C Cooper
- NIHR Nutrition Biomedical Research Centre, University Hospital Southampton, UK.,MRC Lifecourse Epidemiology Unit, University Hospital Southampton, UK
| | - A Aihie Sayer
- NIHR Nutrition Biomedical Research Centre, University Hospital Southampton, UK.,MRC Lifecourse Epidemiology Unit, University Hospital Southampton, UK
| | - R J Eendebak
- Andrology Research Unit, Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Old St Mary's Building, Hathersage Road, Manchester, UK
| | - G F Clough
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - J R Beard
- Department of Ageing and Lifecourse, World Health Organization, 20 Avenue Appia, 1211, Geneva 27, Switzerland
| |
Collapse
|
43
|
Vandenbriele C, Kauskot A, Vandersmissen I, Criel M, Geenens R, Craps S, Luttun A, Janssens S, Hoylaerts MF, Verhamme P. Platelet endothelial aggregation receptor-1: a novel modifier of neoangiogenesis. Cardiovasc Res 2015; 108:124-38. [DOI: 10.1093/cvr/cvv193] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/26/2015] [Indexed: 01/23/2023] Open
|
44
|
Maeda M, Hayashi T, Mizuno N, Hattori Y, Kuzuya M. Intermittent high glucose implements stress-induced senescence in human vascular endothelial cells: role of superoxide production by NADPH oxidase. PLoS One 2015; 10:e0123169. [PMID: 25879533 PMCID: PMC4400006 DOI: 10.1371/journal.pone.0123169] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022] Open
Abstract
Impaired glucose tolerance characterized by postprandial hyperglycemia, which occurs frequently in elderly persons and represents an important preliminary step in diabetes mellitus, poses an independent risk factor for the development of atherosclerosis. Endothelial cellular senescence is reported to precede atherosclerosis. We reported that continuous high glucose stimulus causes endothelial senescence more markedly than hypertension or dyslipidemia stimulus. In the present study, we evaluated the effect of fluctuating glucose levels on human endothelial senescence. Constant high glucose increased senescence-associated-β-galactosidase(SA-β-gal) activity, a widely used marker for cellular senescence. Interestingly, in intermittent high glucose, this effect was more pronounced as well as increase of p21 and p16INK4a , senescence related proteins with DNA damage. However, telomerase was not activated and telomere length was not shortened, thus stress-induced senescence was shown. However, constant high glucose activated telomerase and shortened telomere length, which suggested replicative senescence. Intermittent but not constant high glucose strikingly up-regulated the expression of p22phox, an NADPH oxidase component, increasing superoxide. The small interfering RNA of p22phox undermined the increase in SA-β-gal activity induced by intermittent high glucose. Conclusively, intermittent high glucose can promote vascular endothelial senescence more than constant high glucose, which is in partially dependent on superoxide overproduction.
Collapse
Affiliation(s)
- Morihiko Maeda
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Toshio Hayashi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- * E-mail:
| | - Natsumi Mizuno
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930–0194, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930–0194, Japan
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| |
Collapse
|
45
|
Gradinaru D, Borsa C, Ionescu C, Prada GI. Oxidized LDL and NO synthesis--Biomarkers of endothelial dysfunction and ageing. Mech Ageing Dev 2015; 151:101-13. [PMID: 25804383 DOI: 10.1016/j.mad.2015.03.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/24/2022]
Abstract
Oxidized LDL (oxLDL) and nitric oxide (NO) exert contradictory actions within the vascular endothelium microenvironment influencing key events in atherogenesis. OxLDL and NO are so far regarded as representative parameters of oxidative stress and endothelial dysfunction, new targets in prevention, diagnosis and therapy of cardiovascular diseases, and also as candidate biomarkers in evaluating the human biological age. The aim of this review is to explore recent literature on molecular mechanisms and pathophysiological relationships between LDL oxidation, NO synthesis and vascular endothelium function/dysfunction in ageing, focusing on the following aspects: (1) the impact of metabolic status on both LDL oxidation and NO synthesis in relation with oxidative stress, (2) the use of oxidized LDL and NO activity as biomarkers in human studies reporting on cardiovascular outcomes, and (3) evidences supporting the importance of oxidized LDL and NO activity as relevant biomarkers in vascular ageing and age-related diseases.
Collapse
Affiliation(s)
- Daniela Gradinaru
- Ana Aslan National Institute of Gerontology and Geriatrics, 9 Caldarusani Street, Sector 1, P.O. Box 2-4, 011241 Bucharest, Romania; Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, 6 Taian Vuia Street, Sector 2, 020956 Bucharest, Romania.
| | - Claudia Borsa
- Ana Aslan National Institute of Gerontology and Geriatrics, 9 Caldarusani Street, Sector 1, P.O. Box 2-4, 011241 Bucharest, Romania
| | - Cristina Ionescu
- Ana Aslan National Institute of Gerontology and Geriatrics, 9 Caldarusani Street, Sector 1, P.O. Box 2-4, 011241 Bucharest, Romania
| | - Gabriel Ioan Prada
- Ana Aslan National Institute of Gerontology and Geriatrics, 9 Caldarusani Street, Sector 1, P.O. Box 2-4, 011241 Bucharest, Romania; Carol Davila University of Medicine and Pharmacy, Faculty of Medicine, Department of Geriatrics and Gerontology, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| |
Collapse
|
46
|
Riahi Y, Kaiser N, Cohen G, Abd-Elrahman I, Blum G, Shapira OM, Koler T, Simionescu M, Sima AV, Zarkovic N, Zarkovic K, Orioli M, Aldini G, Cerasi E, Leibowitz G, Sasson S. Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a TXNIP-dependent manner. J Cell Mol Med 2015; 19:1887-99. [PMID: 25754218 PMCID: PMC4549039 DOI: 10.1111/jcmm.12561] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co-culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP-1 monocyte-derived foam cells, were analysed for the induction of senescence. Senescence associated β-galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4-hydroxnonenal (4-HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4-HNE in the co-culture medium blunted this effect. Furthermore, both foam cells and 4-HNE increased the expression of the pro-oxidant thioredoxin-interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell-induced senescence. Previous studies showed that peroxisome proliferator-activated receptor (PPAR)δ was activated by 4-hydroalkenals, such as 4-HNE. Pharmacological interventions supported the involvement of the 4-HNE-PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell-released 4-HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence.
Collapse
Affiliation(s)
- Yael Riahi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.,Endocrinology and Metabolism Service, Department of Medicine, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Nurit Kaiser
- Endocrinology and Metabolism Service, Department of Medicine, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Guy Cohen
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ihab Abd-Elrahman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Galia Blum
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Oz M Shapira
- Department of Cardiothoracic Surgery, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Tomer Koler
- Department of Cardiothoracic Surgery, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology N. Simionescu of The Romanian Academy, Bucharest, Romania
| | - Anca V Sima
- Institute of Cellular Biology and Pathology N. Simionescu of The Romanian Academy, Bucharest, Romania
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Kamelija Zarkovic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marica Orioli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Erol Cerasi
- Endocrinology and Metabolism Service, Department of Medicine, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Shlomo Sasson
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
47
|
Lazorthes S, Vallot C, Briois S, Aguirrebengoa M, Thuret JY, St Laurent G, Rougeulle C, Kapranov P, Mann C, Trouche D, Nicolas E. A vlincRNA participates in senescence maintenance by relieving H2AZ-mediated repression at the INK4 locus. Nat Commun 2015; 6:5971. [PMID: 25601475 PMCID: PMC4309439 DOI: 10.1038/ncomms6971] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) play major roles in proper chromatin organization and function. Senescence, a strong anti-proliferative process and a major anticancer barrier, is associated with dramatic chromatin reorganization in heterochromatin foci. Here we analyze strand-specific transcriptome changes during oncogene-induced human senescence. Strikingly, while differentially expressed RNAs are mostly repressed during senescence, ncRNAs belonging to the recently described vlincRNA (very long intergenic ncRNA) class are mainly activated. We show that VAD, a novel antisense vlincRNA strongly induced during senescence, is required for the maintenance of senescence features. VAD modulates chromatin structure in cis and activates gene expression in trans at the INK4 locus, which encodes cell cycle inhibitors important for senescence-associated cell proliferation arrest. Importantly, VAD inhibits the incorporation of the repressive histone variant H2A.Z at INK4 gene promoters in senescent cells. Our data underline the importance of vlincRNAs as sensors of cellular environment changes and as mediators of the correct transcriptional response. Senescence is associated with chromatin reorganization in heterochromatin foci. Here the authors show that VAD, a very long intergenic non-coding RNA activated by senescence, inhibits the incorporation of the repressive histone variant H2A.Z to INK4 promoters in senescent cells.
Collapse
Affiliation(s)
- Sandra Lazorthes
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| | - Céline Vallot
- UMR 7216, Université Paris Diderot, 75205 Paris, France
| | - Sébastien Briois
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| | - Marion Aguirrebengoa
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| | - Jean-Yves Thuret
- CEA, iBiTec-S, SBIGeM/CNRS-FRE3377 and I2BC/Université Paris-Sud and Paris-Saclay, 91191 Gif-sur-Yvette, France
| | | | | | - Philipp Kapranov
- 1] St Laurent Institute, Woburn, Massachusetts 01801, USA [2] Institute of Genomics, Huaqiao University School of Medicine, Xiamen 361021, China [3] Academy of Biology and Biotechnology, South Federal University, Rostov-on-Don, Russia
| | - Carl Mann
- CEA, iBiTec-S, SBIGeM/CNRS-FRE3377 and I2BC/Université Paris-Sud and Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Didier Trouche
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| | - Estelle Nicolas
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| |
Collapse
|
48
|
|
49
|
Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics 2014; 41:485-95. [PMID: 25269674 DOI: 10.1016/j.jgg.2014.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Advanced age is an independent risk factor for ageing-related complex diseases, such as coronary artery disease, stroke, and hypertension, which are common but life threatening and related to the ageing-associated vascular dysfunction. On the other hand, patients with progeria syndromes suffer from serious atherosclerosis, suggesting that the impaired vascular functions may be critical to organismal ageing, or vice versa. However, it remains largely unknown how vascular cells, particularly endothelial cell, become senescent and how the senescence impairs the vascular functions and contributes to the age-related vascular diseases over time. Here, we review the recent progress on the characteristics of vascular ageing and endothelial cell senescence in vitro and in vivo, evaluate how genetic and environmental factors as well as autophagy and stem cell influence endothelial cell senescence and how the senescence contributes to the age-related vascular phenotypes, such as atherosclerosis and increased vascular stiffness, and explore the possibility whether we can delay the age-related vascular diseases through the control of vascular ageing.
Collapse
Affiliation(s)
- Xiao-Li Tian
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China.
| | - Yang Li
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Hayashi T, Yamaguchi T, Sakakibara Y, Taguchi K, Maeda M, Kuzuya M, Hattori Y. eNOS-dependent antisenscence effect of a calcium channel blocker in human endothelial cells. PLoS One 2014; 9:e88391. [PMID: 24520379 PMCID: PMC3919771 DOI: 10.1371/journal.pone.0088391] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/06/2014] [Indexed: 01/23/2023] Open
Abstract
Senescence of vascular endothelial cells is an important contributor to the pathogenesis of age-associated vascular disorders such as atherosclerosis. We investigated the effects of antihypertensive agents on high glucose-induced cellular senescence in human umbilical venous endothelial cells (HUVECs). Exposure of HUVECs to high glucose (22 mM) for 3 days increased senescence-associated- β-galactosidase (SA-β-gal) activity, a senescence marker, and decreased telomerase activity, a replicative senescence marker. The calcium channel blocker nifedipine, but not the β1-adrenergic blocking agent atenolol or the angiotensin-converting enzyme inhibitor perindopril, reduced SA-β-gal positive cells and prevented a decrease in telomerase activity in a high-glucose environment. This beneficial effect of nifedipine was associated with reduced reactive oxygen species (ROS) and increased endothelial nitric oxide synthase (eNOS) activity. Thus, nifedipine prevented high glucose-induced ROS generation and increased basal eNOS phosphorylation level at Ser-1177. Treatment with NG-nitro-L-arginine (L-NAME) and transfection of small interfering RNA (siRNA) targeting eNOS eliminated the anti-senscence effect of nifedipine. These results demonstrate that nifedipine can prevent endothelial cell senescence in an eNOS-dependent manner. The anti-senescence action of nifedipine may represent a novel mechanism by which it protects against atherosclerosis.
Collapse
Affiliation(s)
- Toshio Hayashi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Tomoe Yamaguchi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasufumi Sakakibara
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kumiko Taguchi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Morihiko Maeda
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|