1
|
Ho AK, Jeganathan F, Bictash M, Chen HJ. Identification of novel small molecule chaperone activators for neurodegenerative disease treatment. Biomed Pharmacother 2025; 187:118049. [PMID: 40239269 DOI: 10.1016/j.biopha.2025.118049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
A pathological hallmark of neurodegenerative disease is the accumulation of aberrant protein aggregates which contribute to the cytotoxicity and are therefore a target for therapy development. One key mechanism to manage cellular protein homeostasis is heat shock proteins (HSPs), protein chaperones which are known to target aberrant protein accumulation. Activation of HSPs target aberrant TDP-43, tau and amyloid to rescue neurodegenerative disease. As an attempt to target HSP activation for neurodegeneration therapy, we here develop a drug screening assay to identify compounds that will activate the master regulator of HSPs, the transcription factor heat shock factor 1 (HSF1). As HSF1 is bound by HSP90 which prevents its activation, we developed a NanoBRET assay, which allows us to monitor and quantify the HSF1-HSP90 interaction in living cells to screen for compounds disrupting this interaction and thereby releasing HSF1 for activation. After the optimisation and validation of the assay, a two thousand compound library was screened which produced 10 hits including two known HSP90 inhibitors. Follow-up functional study showed that one of the hits oxyphenbutazone (OPB) significantly reduces the accumulation of insoluble TDP-43 in a cell model, eliciting no signs of stress or toxicity. Overall, this study demonstrates a viable strategy for new drug discovery in targeting aberrant proteins and identifies potential candidates for translation into neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Anita K Ho
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Fiona Jeganathan
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, London WC1E 6BT, UK
| | - Magda Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, London WC1E 6BT, UK
| | - Han-Jou Chen
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
2
|
Zhan A, Zhong K, Zhang K. Novel subcellular regulatory mechanisms of protein homeostasis and its implications in amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2025; 756:151582. [PMID: 40056503 DOI: 10.1016/j.bbrc.2025.151582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disorder. Protein aggregates induce various forms of neuronal dysfunction and represent pathological hallmarks in ALS patients. Reducing protein aggregates could be a promising therapeutic strategy for ALS. While most studies have focused on cytoplasmic protein homeostasis, neurons adaptively reduce aggregates across subcellular compartments during stress through previously uncharacterized mechanisms. Here, we summarize novel compartment-specific proteostatic mechanisms: (1) the ERAD/RESET pathways, (2) HSPs-mediated nuclear sequestration, (3) mitochondrial aggregate import (MAGIC), (4) neurite-localized UPS/autophagosome and NMP, and (5) exopher-mediated extracellular disposal. These mechanisms collectively ensure cellular stress adaptation and provide novel therapeutic targets for ALS treatment.
Collapse
Affiliation(s)
- Aisheng Zhan
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Keke Zhong
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Kejing Zhang
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
3
|
Masood S, Almas MS, Hassan SSU, Tahira S, Fiaz MH, Minhas UEA, Zafar HMQ, Masood M. Safety and efficacy of arimoclomol in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol Sci 2025:10.1007/s10072-025-08062-5. [PMID: 40024955 DOI: 10.1007/s10072-025-08062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Amyotrophic Lateral Sclerosis (ALS) is a debilitating motor neuron disorder characterized by muscle weakness, atrophy, and spasticity. This meta-analysis aims to assess the safety and efficacy of Arimoclomol in patients with ALS. METHOD A comprehensive literature search was conducted on 3 databases to discover articles published up to August 2024. Included studies were randomized controlled trials (RCTs). Data was analysed using Review Manager (v5.4). Cochrane Risk of Bias-2 (RoB-2) was adopted to assess the quality of RCTs. RESULTS A total of 359 patients were analysed, with 239 individuals in the Arimoclomol group and 120 individuals in the placebo group. The pooled analysis of the primary outcome, change in Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) score from baseline, did not demonstrate a statistically significant difference favoring the Arimoclomol group (MD = 0.4495; 95% CI: -0.39, 1.27; p = 0.30). Similarly, secondary outcomes, including the Combined Assessment of Function and Survival (CAFS) rank score (MD = 1.00; 95% CI: -2.68, 4.67; p = 0.60), increase in transaminases (RR = 1.05; 95% CI: 0.19, 5.70; p = 0.95), mortality rate (RR = 0.86; 95% CI: 0.55, 1.34; p = 0.50), and adverse events (RR = 0.86; 95% CI: 0.55, 1.34; p = 0.50), showed no statistically significant differences between the groups. CONCLUSION This study does not conclusively demonstrate that Arimoclomol has beneficial effects on ALS patients' physical functionality but shows promise for safety. Further clinical trials are needed to explore the neuroprotective effects of Arimoclomol in the treatment of ALS.
Collapse
Affiliation(s)
- Saad Masood
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | | | | | - Sameen Tahira
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | | | | | | | - Musa Masood
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
4
|
Pazarcı P, Kaplan HM. In Vitro Apoptotic and Antiproliferative Activity of Hypericum Perforatum Extract on Human Osteosarcoma Cell Line. J Med Food 2025; 28:38-43. [PMID: 39585205 DOI: 10.1089/jmf.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Hypericum perforatum (HP) has been widely used as an alternative medicine due to its active pharmacological properties. While the antiproliferative effects of components such as hypericin and hyperforin have been demonstrated in malignant cell lines, most studies have focused on the pharmacological properties of the HP extract itself. Recent research has indicated that HP and its active substances possess anticancer activities; however, there is a lack of studies examining its effects on osteosarcoma. In addition, HP has demonstrated the ability to mitigate the toxicity of several drugs, including chemotherapeutic agents. Hence, the primary objective of this study was to explore the potential anticancer properties of HP in relation to osteosarcoma cells. MG-63 human osteosarcoma cells were cultured and treated with HP extract. Apoptotic factors were analyzed using ELISA, while cell viability was assessed using the MTT test. The results revealed a significant increase in the activities of proapoptotic proteins GRP78, Wee1, apoptosis-inducing factor (AIF), GADD153, Bax, and cleaved caspase-3 in MG-63 osteosarcoma cells after 48 hours of treatment with HP at a concentration of 0.8%. Conversely, the activity of Bcl-2, an antiapoptotic protein, significantly decreased. Moreover, HP extract demonstrated a dose-dependent reduction in cell viability in MG-63 cells. In conclusion, HP extract induces apoptosis in MG-63 osteosarcoma cells by upregulating the expressions of proapoptotic proteins GRP78, Wee1, AIF, GADD153, Bax, and cleaved caspase-3. This study will assist researchers in understanding the importance of alternative treatments using HP in the context of human osteosarcoma therapy, which many researchers are currently unaware of.
Collapse
Affiliation(s)
- Percin Pazarcı
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Halil M Kaplan
- Department of Pharmacology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
6
|
Wenzhi Y, Xiangyi L, Dongsheng F. The prion-like effect and prion-like protein targeting strategy in amyotrophic lateral sclerosis. Heliyon 2024; 10:e34963. [PMID: 39170125 PMCID: PMC11336370 DOI: 10.1016/j.heliyon.2024.e34963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Pathological proteins in amyotrophic lateral sclerosis (ALS), such as superoxide dismutase 1, TAR DNA-binding protein 43, and fused in sarcoma, exhibit a prion-like pattern. All these proteins have a low-complexity domain and seeding activity in cells. In this review, we summarize the studies on the prion-like effect of these proteins and list six prion-like protein targeting strategies that we believe have potential for ALS therapy, including antisense oligonucleotides, antibody-based technology, peptide, protein chaperone, autophagy enhancement, and heteromultivalent compounds. Considering the pathological complexity and heterogeneity of ALS, we believe that the final solution to ALS therapy is most likely to be an individualized cocktail therapy, including clearance of toxicity, blockage of pathological progress, and protection of neurons.
Collapse
Affiliation(s)
- Yang Wenzhi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Liu Xiangyi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Fan Dongsheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
7
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
8
|
Benatar M, Hansen T, Rom D, Geist MA, Blaettler T, Camu W, Kuzma-Kozakiewicz M, van den Berg LH, Morales RJ, Chio A, Andersen PM, Pradat PF, Lange D, Van Damme P, Mora G, Grudniak M, Elliott M, Petri S, Olney N, Ladha S, Goyal NA, Meyer T, Hanna MG, Quinn C, Genge A, Zinman L, Jabari D, Shoesmith C, Ludolph AC, Neuwirth C, Nations S, Shefner JM, Turner MR, Wuu J, Bennett R, Dang H, Sundgreen C. Safety and efficacy of arimoclomol in patients with early amyotrophic lateral sclerosis (ORARIALS-01): a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Neurol 2024; 23:687-699. [PMID: 38782015 DOI: 10.1016/s1474-4422(24)00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder leading to muscle weakness and respiratory failure. Arimoclomol, a heat-shock protein-70 (HSP70) co-inducer, is neuroprotective in animal models of amyotrophic lateral sclerosis, with multiple mechanisms of action, including clearance of protein aggregates, a pathological hallmark of sporadic and familial amyotrophic lateral sclerosis. We aimed to evaluate the safety and efficacy of arimoclomol in patients with amyotrophic lateral sclerosis. METHODS ORARIALS-01 was a multinational, randomised, double-blind, placebo-controlled, parallel-group trial done at 29 centres in 12 countries in Europe and North America. Patients were eligible if they were aged 18 years or older and met El Escorial criteria for clinically possible, probable, probable laboratory-supported, definite, or familial amyotrophic lateral sclerosis; had an ALS Functional Rating Scale-Revised score of 35 or more; and had slow vital capacity at 70% or more of the value predicted on the basis of the participant's age, height, and sex. Patients were randomly assigned (2:1) in blocks of 6, stratified by use of a stable dose of riluzole or no riluzole use, to receive oral arimoclomol citrate 1200 mg/day (400 mg three times per day) or placebo. The Randomisation sequence was computer generated centrally. Investigators, study personnel, and study participants were masked to treatment allocation. The primary outcome was the Combined Assessment of Function and Survival (CAFS) rank score over 76 weeks of treatment. The primary outcome and safety were analysed in the modified intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03491462, and is completed. FINDINGS Between July 31, 2018, and July 17, 2019, 287 patients were screened, 245 of whom were enrolled in the trial and randomly assigned. The modified intention-to-treat population comprised 239 patients (160 in the arimoclomol group and 79 in the placebo group): 151 (63%) were male and 88 (37%) were female; mean age was 57·6 years (SD 10·9). CAFS score over 76 weeks did not differ between groups (mean 0·51 [SD 0·29] in the arimoclomol group vs 0·49 [0·28] in the placebo group; p=0·62). Cliff's delta comparing the two groups was 0·039 (95% CI -0·116 to 0·194). Proportions of participants who died were similar between the treatment groups: 29 (18%) of 160 patients in the arimoclomol group and 18 (23%) of 79 patients in the placebo group. Most deaths were due to disease progression. The most common adverse events were gastrointestinal. Adverse events were more often deemed treatment-related in the arimoclomol group (104 [65%]) than in the placebo group (41 [52%]) and more often led to treatment discontinuation in the arimoclomol group (26 [16%]) than in the placebo group (four [5%]). INTERPRETATION Arimoclomol did not improve efficacy outcomes compared with placebo. Although available biomarker data are insufficient to preclude future strategies that target the HSP response, safety data suggest that a higher dose of arimoclomol would not have been tolerated. FUNDING Orphazyme.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | - Dror Rom
- Prosoft Clinical, Chesterbrook, PA, USA
| | | | | | - William Camu
- Department of Neurology University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | | | - Raul Juntas Morales
- Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Adriano Chio
- Rita Levi Montalcini Department of Neuroscience, University of Torino, Torino, Italy
| | - Peter M Andersen
- Department of Clinical Sciences, Neuroscience, Umeå University, Umeå, Sweden
| | | | - Dale Lange
- Department of Neurology, Hospital for Special Surgery, New York, NY, USA
| | - Philip Van Damme
- Department of Neurology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri, IRCCS Milano, Milan, Italy
| | - Mariusz Grudniak
- Research and Development Department, Polish Stem Cell Bank, Warsaw, Poland
| | - Matthew Elliott
- University of Virginia Medical Center, Charlottesville, VA, USA
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Nicholas Olney
- Providence Portland Medical Center, Providence Brain and Spine Institute, Portland, OR, USA
| | - Shafeeq Ladha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Namita A Goyal
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Thomas Meyer
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael G Hanna
- University College London, National Hospital for Neurology and Neurosurgery, London, UK
| | - Colin Quinn
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela Genge
- Department of Neurology, Montreal Neurological Institute, Montreal, QC, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Duaa Jabari
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Christen Shoesmith
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | | | - Christoph Neuwirth
- Neuromuscular Disease Unit/ALS Clinic, Kantonspital St Gallen, St Gallen, Switzerland
| | | | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
9
|
Jagaraj CJ, Shadfar S, Kashani SA, Saravanabavan S, Farzana F, Atkin JD. Molecular hallmarks of ageing in amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:111. [PMID: 38430277 PMCID: PMC10908642 DOI: 10.1007/s00018-024-05164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, severely debilitating and rapidly progressing disorder affecting motor neurons in the brain, brainstem, and spinal cord. Unfortunately, there are few effective treatments, thus there remains a critical need to find novel interventions that can mitigate against its effects. Whilst the aetiology of ALS remains unclear, ageing is the major risk factor. Ageing is a slowly progressive process marked by functional decline of an organism over its lifespan. However, it remains unclear how ageing promotes the risk of ALS. At the molecular and cellular level there are specific hallmarks characteristic of normal ageing. These hallmarks are highly inter-related and overlap significantly with each other. Moreover, whilst ageing is a normal process, there are striking similarities at the molecular level between these factors and neurodegeneration in ALS. Nine ageing hallmarks were originally proposed: genomic instability, loss of telomeres, senescence, epigenetic modifications, dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, stem cell exhaustion, and altered inter-cellular communication. However, these were recently (2023) expanded to include dysregulation of autophagy, inflammation and dysbiosis. Hence, given the latest updates to these hallmarks, and their close association to disease processes in ALS, a new examination of their relationship to pathophysiology is warranted. In this review, we describe possible mechanisms by which normal ageing impacts on neurodegenerative mechanisms implicated in ALS, and new therapeutic interventions that may arise from this.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sara Assar Kashani
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
10
|
Yamamuro-Tanabe A, Mukai Y, Kojima W, Zheng S, Matsumoto N, Takada S, Mizuhara M, Kosuge Y, Ishimaru Y, Yoshioka Y. An Increase in Peroxiredoxin 6 Expression Induces Neurotoxic A1 Astrocytes in the Lumbar Spinal Cord of Amyotrophic Lateral Sclerosis Mice Model. Neurochem Res 2023; 48:3571-3584. [PMID: 37556038 DOI: 10.1007/s11064-023-04003-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with selective degeneration of motor neurons. It has been reported that an increase in the levels of inflammatory cytokines and glial cells such as reactive astrocytes is closely involved in the pathological progression of ALS. Recently, the levels of neuropathic cytotoxic (A1) astrocytes among reactive astrocytes have reportedly increased in the central nervous system of ALS mice, which induce motor neuron degeneration through the production of inflammatory cytokines and secretion of neuropathic factors. Hence, elucidating the induction mechanism of A1 astrocytes in ALS is important to understand the mechanism of disease progression in ALS. In this study, we observed that the expression of peroxiredoxin 6 (PRDX6), a member of the peroxiredoxin family, was markedly upregulated in astrocytes of the lumbar spinal cord of SOD1G93A mice model for ALS. Additionally, when PRDX6 was transiently transfected into the mouse astrocyte cell line C8-D1A and human astrocytoma cell line U-251 MG, the mRNA expression of complement C3 (a marker for A1 astrocyte phenotype) and inflammatory cytokines was increased. Furthermore, the mRNA expression of C3 and inflammatory cytokine was increased in C8-D1A and U-251 MG cells stably expressing PRDX6, and the increased mRNA expression was significantly suppressed by MJ33 (lithium[1-hexadecoxy-3-(2,2,2-trifluoroethoxy) propan-2-yl] methyl phosphate), an inhibitor of the phospholipase A2 activity of PRDX6. Our results suggest that the expression of PRDX6 in astrocytes plays an important role in the induction of A1 astrocytes and expression of inflammatory cytokines in the ALS mice model.
Collapse
Affiliation(s)
- Akiko Yamamuro-Tanabe
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yurika Mukai
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Wataru Kojima
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Siyuan Zheng
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Naoko Matsumoto
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Shoho Takada
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Mao Mizuhara
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
11
|
Boock V, Roy B, Pfeffer G, Kimonis V. Therapeutic developments for valosin-containing protein mediated multisystem proteinopathy. Curr Opin Neurol 2023; 36:432-440. [PMID: 37678339 DOI: 10.1097/wco.0000000000001184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW Missense mutations in valosin-containing protein (VCP) can lead to a multisystem proteinopathy 1 (MSP1) with any combination of limb-girdle distribution inclusion body myopathy (IBM) (present in about 90% of cases), Paget's disease of bone, and frontotemporal dementia (IBMPFD). VCP mutations lead to gain of function activity with widespread disarray in cellular function, with enhanced ATPase activity, increased binding with its cofactors, and reduced mitofusin levels. RECENT FINDINGS This review highlights novel therapeutic approaches in VCP-MSP in in-vitro and in-vivo models. Furthermore, we also discuss therapies targeting mitochondrial dysfunction, autophagy, TDP-43 pathways, and gene therapies in other diseases with similar pathway involvement which can also be applicable in VCP-MSP. SUMMARY Being a rare disease, it is challenging to perform large-scale randomized control trials (RCTs) in VCP-MSP. However, it is important to recognize potential therapeutic targets, and assess their safety and efficacy in preclinical models, to initiate RCTs for potential therapies in this debilitating disease.
Collapse
Affiliation(s)
- Victoria Boock
- Department of Pediatrics, University of California - Irvine School of Medicine, Orange, California
| | - Bhaskar Roy
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Virginia Kimonis
- Department of Pediatrics, University of California - Irvine School of Medicine, Orange, California
- Department of Neurology
- Department of Pathology, University of California - Irvine School of Medicine, Orange, California, USA
| |
Collapse
|
12
|
Venediktov AA, Bushueva OY, Kudryavtseva VA, Kuzmin EA, Moiseeva AV, Baldycheva A, Meglinski I, Piavchenko GA. Closest horizons of Hsp70 engagement to manage neurodegeneration. Front Mol Neurosci 2023; 16:1230436. [PMID: 37795273 PMCID: PMC10546621 DOI: 10.3389/fnmol.2023.1230436] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023] Open
Abstract
Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too.
Collapse
Affiliation(s)
- Artem A. Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Yu Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Varvara A. Kudryavtseva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Egor A. Kuzmin
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aleksandra V. Moiseeva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Anna Baldycheva
- STEMM Laboratory, University of Exeter, Exeter, United Kingdom
| | - Igor Meglinski
- Department of Physics, University of Oulu, Oulu, Finland
- College of Engineering and Physical Sciences, Aston University, Birmingham, United Kingdom
| | - Gennadii A. Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
13
|
Bireley JD, Morren JA. CNM-Au8: an experimental agent for the treatment of amyotrophic lateral sclerosis (ALS). Expert Opin Investig Drugs 2023; 32:677-683. [PMID: 37642362 DOI: 10.1080/13543784.2023.2252738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Two established disease-specific therapies for the treatment of amyotrophic lateral sclerosis (ALS) are riluzole and edaravone. Limitations of these medications include minimal progression slowing or survival benefit, and effectiveness only in selected populations, particularly for edaravone. AMX0035 and tofersen received US FDA approval in September 2022 and April 2023, respectively. However, phase 3 trials, further examining both medications' efficacy, are ongoing. CNM-Au8 is an efficient catalyst of energy metabolism and is therefore a potential disease-modifying treatment for ALS, a neurodegenerative condition in which there is bioenergetics impairment. AREAS COVERED In this review, we provide an overview of the current ALS treatment market, followed by a description of the pharmacodynamics and pharmacokinetics of CNM-Au8. The main preclinical and available early clinical evidence of CNM-Au8 is then described, as well as its potential as an ALS treatment. EXPERT OPINION Oral treatment with CNM-Au8 failed to meet primary clinical and electrodiagnostic endpoints in phase 2/3 clinical trials. Despite this failure, a number of exploratory endpoints included in phase 2/3 trials suggest CNM-Au8 has the potential to significantly slow clinical worsening, improve quality of life, and prolong survival in ALS. Further study of CNM-Au8 in a phase 3 clinical trial is currently underway.
Collapse
Affiliation(s)
- J Daniel Bireley
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John A Morren
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
15
|
Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, Lu S, Huang C, Liu L, Tang J, Gao F. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol 2023; 63:102754. [PMID: 37224697 DOI: 10.1016/j.redox.2023.102754] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Oxidative stress (OS), defined as redox imbalance in favor of oxidant burden, is one of the most significant biological events in cancer progression. Cancer cells generally represent a higher oxidant level, which suggests a dual therapeutic strategy by regulating redox status (i.e., pro-oxidant therapy and/or antioxidant therapy). Indeed, pro-oxidant therapy exhibits a great anti-cancer capability, attributing to a higher oxidant accumulation within cancer cells, whereas antioxidant therapy to restore redox homeostasis has been claimed to fail in several clinical practices. Targeting the redox vulnerability of cancer cells by pro-oxidants capable of generating excessive reactive oxygen species (ROS) has surfaced as an important anti-cancer strategy. However, multiple adverse effects caused by the indiscriminate attacks of uncontrolled drug-induced OS on normal tissues and the drug-tolerant capacity of some certain cancer cells greatly limit their further applications. Herein, we review several representative oxidative anti-cancer drugs and summarize their side effects on normal tissues and organs, emphasizing that seeking a balance between pro-oxidant therapy and oxidative damage is of great value in exploiting next-generation OS-based anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Hao Jiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jing Zuo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Chen
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Kangjia Luo
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xionghua Xiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Shuaijun Lu
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Liu
- Ningbo Women & Children's Hospital, Ningbo, 315012, China.
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Feng Gao
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
16
|
Włodarczyk P, Witczak M, Gajewska A, Chady T, Piotrowski I. The role of TDP-43 protein in amyotrophic lateral sclerosis. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease where both upper and lower motoneurons are damaged. Even though the pathogenesis of ALS is unclear, the TDP-43 aggregations and non-nuclear localization may be crucial to understanding this process. Despite intensive research on ALS therapies, only two lifespan-prolonging medications have been approved: Riluzole and Edaravone. Unravelling the TDP-43 pathology could help develop new ALS therapies using mechanisms such as inhibition of nuclear export, autophagy, chaperones, or antisense oligonucleotides. Selective inhibitors of nuclear export (SINEs) are drugs that block Exportin 1 (XPO1) and cause the accumulation of not exported molecules inside the nucleus. SINEs that target XPO1 are shown to slightly extend the survival of neurons and soften motor symptoms. Dysfunctional proteins, including TDP-43, can be eliminated through autophagocytosis, which is regulated by the mTOR kinase. Stimulating the elimination of protein deposits may be an effective ALS therapy. Antisense oligonucleotides (ASO) are single-stranded, synthetic oligonucleotides that can bind and modulate specific RNA: via ribonuclease H, inducing their degradation or inducing alternative splicing via blocking primary RNA transcripts. Current ASOs therapies used in ALS focus on SOD1, C9ORF72, FUS, and ATXN2, and they may be used to slow the ALS progression. Reversing the aggregation is a promising therapeutic strategy. Chaperones control other proteins' quality and protect them against stress factors. Due to the irreversible character of ALS, it is essential to understand its complicated pathology better and to seek new therapies.
Collapse
|
17
|
Del Tredici K, Braak H. Neuropathology and neuroanatomy of TDP-43 amyotrophic lateral sclerosis. Curr Opin Neurol 2022; 35:660-671. [PMID: 36069419 DOI: 10.1097/wco.0000000000001098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Intracellular inclusions consisting of the abnormal TDP-43 protein and its nucleocytoplasmic mislocalization in selected cell types are hallmark pathological features of sALS. Descriptive (histological, morphological), anatomical, and molecular studies all have improved our understanding of the neuropathology of sporadic amyotrophic lateral sclerosis (sALS). This review highlights some of the latest developments in the field. RECENT FINDINGS Increasing evidence exists from experimental models for the prion-like nature of abnormal TDP-43, including a strain-effect, and with the help of neuroimaging-based studies, for spreading of disease along corticofugal connectivities in sALS. Progress has also been made with respect to finding and establishing reliable biomarkers (neurofilament levels, diffusor tensor imaging). SUMMARY The latest findings may help to elucidate the preclinical phase of sALS and to define possible mechanisms for delaying or halting disease development and progression.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | | |
Collapse
|
18
|
A molecular view of amyotrophic lateral sclerosis through the lens of interaction network modules. PLoS One 2022; 17:e0268159. [PMID: 35576218 PMCID: PMC9109932 DOI: 10.1371/journal.pone.0268159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background
Despite the discovery of familial cases with mutations in Cu/Zn-superoxide dismutase (SOD1), Guanine nucleotide exchange C9orf72, TAR DNA-binding protein 43 (TARDBP) and RNA-binding protein FUS as well as a number of other genes linked to Amyotrophic Lateral Sclerosis (ALS), the etiology and molecular pathogenesis of this devastating disease is still not understood. As proteins do not act alone, conducting an analysis of ALS at the system level may provide new insights into the molecular biology of ALS and put it into relationship to other neurological diseases.
Methods
A set of ALS-associated genes/proteins were collected from publicly available databases and text mining of scientific literature. We used these as seed proteins to build protein-protein interaction (PPI) networks serving as a scaffold for further analyses. From the collection of networks, a set of core modules enriched in seed proteins were identified. The molecular biology of the core modules was investigated, as were their associations to other diseases. To assess the core modules’ ability to describe unknown or less well-studied ALS biology, they were queried for proteins more recently associated to ALS and not involved in the primary analysis.
Results
We describe a set of 26 ALS core modules enriched in ALS-associated proteins. We show that these ALS core modules not only capture most of the current knowledge about ALS, but they also allow us to suggest biological interdependencies. In addition, new associations of ALS networks with other neurodegenerative diseases, e.g. Alzheimer’s, Huntington’s and Parkinson’s disease were found. A follow-up analysis of 140 ALS-associated proteins identified since 2014 reveals a significant overrepresentation of new ALS proteins in these 26 disease modules.
Conclusions
Using protein-protein interaction networks offers a relevant approach for broadening the understanding of the biological context of known ALS-associated genes. Using a bottom-up approach for the analysis of protein-protein interaction networks is a useful method to avoid bias caused by over-connected proteins. Our ALS-enriched modules cover most known biological functions associated with ALS. The presence of recently identified ALS-associated proteins in the core modules highlights the potential for using these as a scaffold for identification of novel ALS disease mechanisms.
Collapse
|
19
|
Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, Tateishi H, Tateishi T, Otsuka M, Fujita M, Başak AN. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:2400. [PMID: 35269543 PMCID: PMC8910198 DOI: 10.3390/ijms23052400] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hilal Sever
- Ministry of Health, Istanbul Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul 34098, Turkey;
| | - Firdevs Ocak
- Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alaaddin Keykubat University, Alanya 07425, Turkey;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (KUTTAM-NDAL), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
20
|
Shah S, Dooms MM, Amaral-Garcia S, Igoillo-Esteve M. Current Drug Repurposing Strategies for Rare Neurodegenerative Disorders. Front Pharmacol 2022; 12:768023. [PMID: 34992533 PMCID: PMC8724568 DOI: 10.3389/fphar.2021.768023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rare diseases are life-threatening or chronically debilitating low-prevalent disorders caused by pathogenic mutations or particular environmental insults. Due to their high complexity and low frequency, important gaps still exist in their prevention, diagnosis, and treatment. Since new drug discovery is a very costly and time-consuming process, leading pharmaceutical companies show relatively low interest in orphan drug research and development due to the high cost of investments compared to the low market return of the product. Drug repurposing–based approaches appear then as cost- and time-saving strategies for the development of therapeutic opportunities for rare diseases. In this article, we discuss the scientific, regulatory, and economic aspects of the development of repurposed drugs for the treatment of rare neurodegenerative disorders with a particular focus on Huntington’s disease, Friedreich’s ataxia, Wolfram syndrome, and amyotrophic lateral sclerosis. The role of academia, pharmaceutical companies, patient associations, and foundations in the identification of candidate compounds and their preclinical and clinical evaluation will also be discussed.
Collapse
Affiliation(s)
- Sweta Shah
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
21
|
Xu Q, Jiang M, Gu S, Zhang X, Feng G, Ma X, Xu S, Wu E, Huang JH, Wang F. Metabolomics changes in brain-gut axis after unpredictable chronic mild stress. Psychopharmacology (Berl) 2022; 239:729-743. [PMID: 35133451 PMCID: PMC8891102 DOI: 10.1007/s00213-021-05958-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive disorder is a leading cause of disability worldwide, affecting up to 17 % of the general population. The neural mechanisms of depression, however, are yet to be uncovered. Recently, attention has been drawn to the effects of dysfunctional brain-gut axis on depression, and many substances have been suggested to be involved in the communication between the gut and brain, such as ghrelin. METHODS We herein systematically examined the changes of metabolomics after unpredictable chronic mild stress (UCMS)-induced depression-like behaviors in rats and compared the altered metabolites in the hippocampus and jejunum samples. RESULTS Our results show that many metabolites significantly changed with UCMS both in the hippocampus and jejunum, such as L-glutamine, L-tyrosine, hydroxylamine, and 3-phosphoglyceric acid. Further studies suggested that these changes are the reasons for anxiety-like behaviors and depression-like behaviors in UCMS rats and also are the reasons for hippocampal neural plasticity. CONCLUSIONS Coexistence of brain and gut metabolic changes in UCMS-induced depressive behavior in rats suggests a possible role of brain-gut axis in depression. This study provides insights into the neurobiology of depression.
Collapse
Affiliation(s)
- Qiuyue Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mingchen Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Pediatrics, Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, China
| | - Simeng Gu
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, 212013, China
| | - Xunle Zhang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China
| | - Guangkui Feng
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Lianyungang, 222000, China.
| | - Xianjun Ma
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Lianyungang, 222000, China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, 76508, USA
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, 76508, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, 76508, USA
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, 76508, USA
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
22
|
Sitarska D, Tylki-Szymańska A, Ługowska A. Treatment trials in Niemann-Pick type C disease. Metab Brain Dis 2021; 36:2215-2221. [PMID: 34596813 PMCID: PMC8580890 DOI: 10.1007/s11011-021-00842-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 10/28/2022]
Abstract
Niemann-Pick type C (NPC) disease is a genetically determined neurodegenerative metabolic disease. It belongs to the lysosomal storage diseases and its main cause is impaired cholesterol transport in late endosomes or lysosomes. It is an autosomal recessive inherited disease that results from mutations in the NPC1 or NPC2 genes. The treatment efforts are focused on the slowing its progression. The only registered drug, devoted for NPC patients is Miglustat. Effective treatment is still under development. NPC disease mainly affects the nervous system, and the crossing of the blood-brain barrier by medicines is still a challenge, therefore the combination therapies of several compounds are increasingly being worked on. The aim of this paper is to present the possibilities in treatment of Niemann-Pick type C disease. The discussed research results relate to animal studies.
Collapse
Affiliation(s)
- Dominika Sitarska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| | - Anna Tylki-Szymańska
- Department of Pediatric Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
23
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
24
|
Bai Y, Su X, Piao L, Jin Z, Jin R. Involvement of Astrocytes and microRNA Dysregulation in Neurodegenerative Diseases: From Pathogenesis to Therapeutic Potential. Front Mol Neurosci 2021; 14:556215. [PMID: 33815055 PMCID: PMC8010124 DOI: 10.3389/fnmol.2021.556215] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are the most widely distributed and abundant glial cells in the central nervous system (CNS). Neurodegenerative diseases (NDDs) are a class of diseases with a slow onset, progressive progression, and poor prognosis. Common clinical NDDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). Although these diseases have different etiologies, they are all associated with neuronal loss and pathological dysfunction. Accumulating evidence indicates that neurotransmitters, neurotrophic factors, and toxic metabolites that are produced and released by activated astrocytes affect and regulate the function of neurons at the receptor, ion channel, antigen transfer, and gene transcription levels in the pathogenesis of NDDs. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a wide range of biological roles by regulating the transcription and post-transcriptional translation of target mRNAs to induce target gene expression and silencing. Recent studies have shown that miRNAs participate in the pathogenesis of NDDs by regulating astrocyte function through different mechanisms and may be potential targets for the treatment of NDDs. Here, we review studies of the role of astrocytes in the pathogenesis of NDDs and discuss possible mechanisms of miRNAs in the regulation of astrocyte function, suggesting that miRNAs may be targeted as a novel approach for the treatment of NDDs.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xing Su
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lianhua Piao
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zheng Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Rihua Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. This deserves investigation because it may be at the core of neuroinflammation, and elucidation of its mechanism will open roads toward developing efficacious treatments centered on molecular chaperones (i.e., chaperonotherapy). Here, we discuss information available on the role of three members of the CS—heat shock protein (Hsp)60, Hsp70, and Hsp90—in IS modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with the latter being the most likely involved in neuroinflammation because they can interact with the IS. We discuss some of the interactions, their consequences, and the molecules involved but many aspects are still incompletely elucidated, and we hope that this review will encourage research based on the data presented to pave the way for the development of chaperonotherapy. This may consist of blocking a chaperone that promotes destructive neuroinflammation or replacing or boosting a defective chaperone with cytoprotective activity against neurodegeneration.
Collapse
|
26
|
Vucic S, Kiernan MC, Menon P, Huynh W, Rynders A, Ho KS, Glanzman R, Hotchkin MT. Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-A u8 as a mechanism to slow diseas e progression. BMJ Open 2021; 11:e041479. [PMID: 33431491 PMCID: PMC7802642 DOI: 10.1136/bmjopen-2020-041479] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive and universally fatal neurodegenerative disorder. In Europe, Australia and Canada, riluzole is the only approved therapeutic agent for the treatment of ALS, while in the USA, riluzole and edaravone have been approved by the Food and Drug Administration (FDA) . Neither riluzole nor edaravone treatment has resulted in substantial disease-modifying effects. There is, therefore, an urgent need for drugs that result in safe and effective treatment. Here, we present the design and rationale for the phase 2 RESCUE-ALS study, investigating the novel nanocatalytic drug, CNM-Au8, as a therapeutic intervention that enhances the metabolic and energetic capacity of motor neurones. CNM-Au8 is an aqueous suspension of clean-surfaced, faceted gold nanocrystals that have extraordinary catalytic capabilities, that enhance efficiencies of key metabolic reactions, while simultaneously reducing levels of reactive oxygen species. This trial utilises a novel design by employing motor unit number index (MUNIX), measured by electromyography, as a quantitative measure of lower motor neurone loss and as an early marker of ALS disease progression. METHODS AND ANALYSIS This is a multicentre, randomised, double-blind, parallel group, placebo-controlled study of the efficacy, safety, pharmacokinetics and pharmacodynamics of CNM-Au8 in ALS patients. Patients will be randomised 1:1 to either receive 30 mg of CNM-Au8 once daily or matching placebo over a 36-week double-blind treatment period. Efficacy will be assessed as the change in motor neurone loss as measured by electromyography (eg, MUNIX, the primary endpoint; and secondary endpoints including MScanFit, motor unit size index, Split Hand Index, Neurophysiology Index). Exploratory endpoints include standard clinical and quality of life assessments. ETHICS AND DISSEMINATION RESCUE-ALS was approved by the Western Sydney Local Health District Human Research Ethics Committee (Ethics Ref: 2019/ETH12107). Results of the study will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04098406.
Collapse
Affiliation(s)
- Steve Vucic
- Department of Neurology, Westmead Hospital and Western Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Parvathi Menon
- Department of Neurology, Westmead Hospital and Western Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Karen S Ho
- Clene Nanomedicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
27
|
Mengel E, Bembi B, Del Toro M, Deodato F, Gautschi M, Grunewald S, Grønborg S, Héron B, Maier EM, Roubertie A, Santra S, Tylki-Szymanska A, Day S, Symonds T, Hudgens S, Patterson MC, Guldberg C, Ingemann L, Petersen NHT, Kirkegaard T, Í Dali C. Clinical disease progression and biomarkers in Niemann-Pick disease type C: a prospective cohort study. Orphanet J Rare Dis 2020; 15:328. [PMID: 33228797 PMCID: PMC7684888 DOI: 10.1186/s13023-020-01616-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023] Open
Abstract
Background Niemann–Pick disease type C (NPC) is a rare, progressive, neurodegenerative disease associated with neurovisceral manifestations resulting from lysosomal dysfunction and aberrant lipid accumulation. A multicentre, prospective observational study (Clinical Trials.gov ID: NCT02435030) of individuals with genetically confirmed NPC1 or NPC2 receiving routine clinical care was conducted, to prospectively characterize and measure NPC disease progression and to investigate potential NPC-related biomarkers versus healthy individuals. Progression was measured using the abbreviated 5-domain NPC Clinical Severity Scale (NPCCSS), 17-domain NPCCSS and NPC clinical database (NPC-cdb) score. Cholesterol esterification and heat shock protein 70 (HSP70) levels were assessed from peripheral blood mononuclear cells (PBMCs), cholestane-3β,5α-,6β-triol (cholestane-triol) from serum, and unesterified cholesterol from both PBMCs and skin biopsy samples. The inter- and intra-rater reliability of the 5-domain NPCCSS was assessed by 13 expert clinicians’ rating of four participants via video recordings, repeated after ≥ 3 weeks. Intraclass correlation coefficients (ICCs) were calculated. Results Of the 36 individuals with NPC (2–18 years) enrolled, 31 (86.1%) completed the 6–14-month observation period; 30/36 (83.3%) were receiving miglustat as part of routine clinical care. A mean (± SD) increase in 5-domain NPCCSS scores of 1.4 (± 2.9) was observed, corresponding to an annualized progression rate of 1.5. On the 17-domain NPCCSS, a mean (± SD) progression of 2.7 (± 4.0) was reported. Compared with healthy individuals, the NPC population had significantly lower levels of cholesterol esterification (p < 0.0001), HSP70 (p < 0.0001) and skin unesterified cholesterol (p = 0.0006). Cholestane-triol levels were significantly higher in individuals with NPC versus healthy individuals (p = 0.008) and correlated with the 5-domain NPCCSS (Spearman’s correlation coefficient = 0.265, p = 0.0411). The 5-domain NPCCSS showed high ICC agreement in inter-rater reliability (ICC = 0.995) and intra-rater reliability (ICC = 0.937). Conclusions Progression rates observed were consistent with other reports on disease progression in NPC. The 5-domain NPCCSS reliability study supports its use as an abbreviated alternative to the 17-domain NPCCSS that focuses on the most relevant domains of the disease. The data support the use of cholestane-triol as a disease monitoring biomarker and the novel methods of measuring unesterified cholesterol could be applicable to support NPC diagnosis. Levels of HSP70 in individuals with NPC were significantly decreased compared with healthy individuals. Trial registration CT-ORZY-NPC-001: ClincalTrials.gov NCT02435030, Registered 6 May 2015, https://clinicaltrials.gov/ct2/show/NCT02435030; EudraCT 2014–005,194-37, Registered 28 April 2015, https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-005194-37/DE. OR-REL-NPC-01: Unregistered.
Collapse
Affiliation(s)
- Eugen Mengel
- SphinCS GmbH, Institute of Clinical Science for LSD, Hochheim, Germany.
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria Della Misericordia, Udine, Italy
| | | | | | | | - Stephanie Grunewald
- Metabolic Department, Great Ormond Street Hospital NHS Foundation Trust, Institute for Child Health, NIHR Biomedical Research Centre UCL, London, UK
| | - Sabine Grønborg
- Centre for Inherited Metabolic Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Bénédicte Héron
- Reference Centre for Lysosomal Disease, Trousseau University Hospital, Paris, France
| | - Esther M Maier
- Dr. Von Hauner Children's Hospital, University of Munich, Munich, Germany
| | - Agathe Roubertie
- Institute of Neurosciences, University Hospital of Montpellier, Montpellier, France
| | | | | | - Simon Day
- Clinical Trials Consulting & Training Limited, Buckingham, UK
| | - Tara Symonds
- Clinical Outcomes Solutions Limited, Folkestone, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gittings LM, Sattler R. Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Fac Rev 2020; 9:12. [PMID: 33659944 PMCID: PMC7886072 DOI: 10.12703/b/9-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by degeneration of both upper and lower motor neurons and subsequent progressive loss of muscle function. Within the last decade, significant progress has been made in the understanding of the etiology and pathobiology of the disease; however, treatment options remain limited and only two drugs, which exert a modest effect on survival, are approved for ALS treatment in the US. Therefore, the search for effective ALS therapies continues, and over 60 clinical trials are in progress for patients with ALS and other therapeutics are at the pre-clinical stage of development. Recent advances in understanding the genetics, pathology, and molecular mechanisms of ALS have led to the identification of novel targets and strategies that are being used in emerging ALS therapeutic interventions. Here, we review the current status and mechanisms of action of a selection of emerging ALS therapies in pre-clinical or early clinical development, including gene therapy, immunotherapy, and strategies that target neuroinflammation, phase separation, and protein clearance.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
29
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Wang Y, Patani R. Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Expert Opin Ther Targets 2020; 24:971-984. [PMID: 32746659 DOI: 10.1080/14728222.2020.1805734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating disease with a lifetime risk of approximately 1:400. It is incurable and invariably fatal. Average survival is between 3 and 5 years and patients become increasingly paralyzed, losing the ability to speak, eat, and breathe. Therapies in development either (i) target specific familial forms of ALS (comprising a minority of around 10% of cases) or ii) emanate from (over)reliance on animal models or non-human/non-neuronal cell models. There is a desperate and unmet clinical need for effective treatments. Deciphering the primacy and relative contributions of defective protein homeostasis and RNA metabolism in ALS across different model systems will facilitate the identification of putative therapeutic targets. AREAS COVERED This review examines the putative common primary molecular events that lead to ALS pathogenesis. We focus on deregulated RNA metabolism, protein mislocalization/pathological aggregation and the role of glia in ALS-related motor neuron degeneration. Finally, we describe promising targets for therapeutic evaluation. EXPERT OPINION Moving forward, an effective strategy could be achieved by a poly-therapeutic approach which targets both deregulated RNA metabolism and protein dyshomeostasis in the relevant cell types, at the appropriate phase of disease.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| |
Collapse
|
31
|
Mignani S, Majoral JP, Desaphy JF, Lentini G. From Riluzole to Dexpramipexole via Substituted-Benzothiazole Derivatives for Amyotrophic Lateral Sclerosis Disease Treatment: Case Studies. Molecules 2020; 25:E3320. [PMID: 32707914 PMCID: PMC7435757 DOI: 10.3390/molecules25153320] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
The 1,3-benzothiazole (BTZ) ring may offer a valid option for scaffold-hopping from indole derivatives. Several BTZs have clinically relevant roles, mainly as CNS medicines and diagnostic agents, with riluzole being one of the most famous examples. Riluzole is currently the only approved drug to treat amyotrophic lateral sclerosis (ALS) but its efficacy is marginal. Several clinical studies have demonstrated only limited improvements in survival, without benefits to motor function in patients with ALS. Despite significant clinical trial efforts to understand the genetic, epigenetic, and molecular pathways linked to ALS pathophysiology, therapeutic translation has remained disappointingly slow, probably due to the complexity and the heterogeneity of this disease. Many other drugs to tackle ALS have been tested for 20 years without any success. Dexpramipexole is a BTZ structural analog of riluzole and was a great hope for the treatment of ALS. In this review, as an interesting case study in the development of a new medicine to treat ALS, we present the strategy of the development of dexpramipexole, which was one of the most promising drugs against ALS.
Collapse
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, 45, rue des Saints Peres, 75006 Paris, France
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse CEDEX 4, France;
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse CEDEX 4, France
| | - Jean-François Desaphy
- Dipartimento di Scienze Biomediche e Oncologia Umana, Scuola di Medicina, Università degli Studi di Bari Aldo Moro, Piazza Giulio Cesare, 70124 Bari, Italy;
| | - Giovanni Lentini
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
32
|
Liscic RM, Alberici A, Cairns NJ, Romano M, Buratti E. From basic research to the clinic: innovative therapies for ALS and FTD in the pipeline. Mol Neurodegener 2020; 15:31. [PMID: 32487123 PMCID: PMC7268618 DOI: 10.1186/s13024-020-00373-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and Frontotemporal Degeneration (FTD) are neurodegenerative disorders, related by deterioration of motor and cognitive functions and short survival. Aside from cases with an inherited pathogenic mutation, the causes of the disorders are still largely unknown and no effective treatment currently exists. It has been shown that FTD may coexist with ALS and this overlap occurs at clinical, genetic, and molecular levels. In this work, we review the main pathological aspects of these complex diseases and discuss how the integration of the novel pathogenic molecular insights and the analysis of molecular interaction networks among all the genetic players represents a critical step to shed light on discovering novel therapeutic strategies and possibly tailoring personalized medicine approaches to specific ALS and FTD patients.
Collapse
Affiliation(s)
- Rajka Maria Liscic
- Department of Neurology, Johannes Kepler University, Linz, Austria
- School of Medicine, University of Osijek, Osijek, Croatia
| | - Antonella Alberici
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili-University of Brescia, Brescia, Italy
| | - Nigel John Cairns
- College of Medicine and Health and Living Systems Institute, University of Exeter, Exeter, UK
| | - Maurizio Romano
- Department of Life Sciences, Via Valerio 28, University of Trieste, 34127, Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.
| |
Collapse
|
33
|
Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology 2020; 167:107986. [DOI: 10.1016/j.neuropharm.2020.107986] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
|
34
|
ALSUntangled 53: Carnitine supplements. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:477-483. [PMID: 32046513 DOI: 10.1080/21678421.2020.1726565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Hou TY, Zhou Y, Zhu LS, Wang X, Pang P, Wang DQ, Liuyang ZY, Man H, Lu Y, Zhu LQ, Liu D. Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer's disease. J Neurochem 2020; 154:441-457. [PMID: 31951013 DOI: 10.1111/jnc.14961] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs have been implicated in diverse physiological and pathological processes. We previously reported that aberrant microRNA-124 (miR-124)/non-receptor-type protein phosphatase 1 (PTPN1) signaling plays an important role in the synaptic disorders associated with Alzheimer's disease (AD). In this study, we further investigated the potential role of miR-124/PTPN1 in the tau pathology of AD. We first treated the mice with intra-hippocampal stereotactic injections. Then, we used quantitative real-time reverse transcription PCR (qRT-PCR) to detect the expression of microRNAs. Western blotting was used to measure the level of PTPN1, the level of tau protein, the phosphorylation of tau at AD-related sites, and alterations in the activity of glycogen synthase kinase 3β (GSK-3β) and protein phosphatase 2 (PP2A). Immunohistochemistry was also used to detect changes in tau phosphorylation levels at AD-related sites and somadendritic aggregation. Soluble and insoluble tau protein was separated by 70% formic acid (FA) extraction to examine tau solubility. Finally, behavioral experiments (including the Morris water maze, fear conditioning, and elevated plus maze) were performed to examine learning and memory ability and emotion-related behavior. We found that artificially replicating the abnormalities in miR-124/PTPN1 signaling induced AD-like tau pathology in the hippocampus of wild-type mice, including hyperphosphorylation at multiple sites, insolubility and somadendritic aggregation, as well as learning/memory deficits. We also found that disruption of miR-124/PTPN1 signaling was caused by the loss of RE1-silencing transcription factor protein, which can be initiated by Aβ insults or oxidative stress, as observed in the brains of P301S mice. Correcting the deregulation of miR-124/PTPN1 signaling rescued the tau pathology and learning/memory impairments in the P301S mice. We also found that miR-124/PTPN1 abnormalities induced activation of glycogen synthase kinase 3 (GSK-3) and inactivation of protein phosphatase 2A (PP2A) by promoting tyrosine phosphorylation, implicating an imbalance in tau kinase/phosphatase. Thus, targeting the miR-124/PTPN1 signaling pathway is a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Tong-Yao Hou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yang Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ling-Shuang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiong Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Pei Pang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ding-Qi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhen-Yu Liuyang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Youming Lu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Dan Liu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
36
|
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Front Physiol 2020; 10:1556. [PMID: 31998141 PMCID: PMC6965159 DOI: 10.3389/fphys.2019.01556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases involve the progressive deterioration of structures within the central nervous system responsible for motor control, cognition, and autonomic function. Alzheimer's disease and Parkinson's disease are among the most common neurodegenerative disease and have an increasing prevalence over the age of 50. Central in the pathophysiology of these neurodegenerative diseases is the loss of protein homeostasis, resulting in misfolding and aggregation of damaged proteins. An element of the protein homeostasis network that prevents the dysregulation associated with neurodegeneration is the role of molecular chaperones. Heat shock proteins (HSPs) are chaperones that regulate the aggregation and disaggregation of proteins in intracellular and extracellular spaces, and evidence supports their protective effect against protein aggregation common to neurodegenerative diseases. Consequently, upregulation of HSPs, such as HSP70, may be a target for therapeutic intervention for protection against neurodegeneration. A novel therapeutic intervention to increase the expression of HSP may be found in heat therapy and/or heat acclimation. In healthy populations, these interventions have been shown to increase HSP expression. Elevated HSP may have central therapeutic effects, preventing or reducing the toxicity of protein aggregation, and/or peripherally by enhancing neuromuscular function. Broader physiological responses to heat therapy have also been identified and include improvements in muscle function, cerebral blood flow, and markers of metabolic health. These outcomes may also have a significant benefit for people with neurodegenerative disease. While there is limited research into body warming in patient populations, regular passive heating (sauna bathing) has been associated with a reduced risk of developing neurodegenerative disease. Therefore, the emerging evidence is compelling and warrants further investigation of the potential benefits of heat acclimation and passive heat therapy for sufferers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P. Hunt
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Geoffrey M. Minett
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Graham K. Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian B. Stewart
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. Neurotoxicology 2020; 76:162-173. [DOI: 10.1016/j.neuro.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
38
|
Clarke BE, Gil RS, Yip J, Kalmar B, Greensmith L. Regional differences in the inflammatory and heat shock response in glia: implications for ALS. Cell Stress Chaperones 2019; 24:857-870. [PMID: 31168740 PMCID: PMC6717175 DOI: 10.1007/s12192-019-01005-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022] Open
Abstract
Preferential neuronal vulnerability is characteristic of several neurodegenerative diseases including the motor neuron disease amyotrophic lateral sclerosis (ALS). It is well established that glia play a critical role in ALS, but it is unknown whether regional differences in the ability of glia to support motor neurons contribute to the specific pattern of neuronal degeneration. In this study, using primary mixed glial cultures from different mouse CNS regions (spinal cord and cortex), we examined whether regional differences exist in key glial pathways that contribute to, or protect against, motor neuron degeneration. Specifically, we examined the NF-κB-mediated inflammatory pathway and the cytoprotective heat shock response (HSR). Glial cultures were treated with pro-inflammatory stimuli, tumour necrosis factor-ɑ/lipopolysaccharide or heat stressed to stimulate the inflammatory and HSR respectively. We found that spinal cord glia expressed more iNOS and produced more NO compared to cortical glia in response to inflammatory stimuli. Intriguingly, we found that expression of ALS-causing SOD1G93A did not elevate the levels of NO in spinal cord glia. However, activation of the stress-responsive HSR was attenuated in SOD1G93A cultures, with a reduced Hsp70 induction in response to stressful stimuli. Exposure of spinal cord glia to heat shock in combination with inflammatory stimuli reduced the activation of the inflammatory response. The results of this study suggest that impaired heat shock response in SOD1G93A glia may contribute to the exacerbated inflammatory reactions observed in ALS mice. Graphical abstract Mixed primary glial cultures were established from cortical and spinal cord regions of wild-type mice and mice expressing ALS-causing mutant human SOD1 and the inflammatory and heat shock responses were investigated in these cultures. In the absence of stress, all cultures appeared to have similar cellular composition, levels of inflammatory mediators and similar expression level of heat shock proteins. When stimulated, spinal cord glia were more reactive and activated the inflammatory pathway more readily than cortical glia; this response was similar in wild-type and SOD1G93A glial cultures. Although the heat shock response was similar in spinal cord and cortical glial, in SOD1G93A expressing glia from both the spinal cord and cortex, the induction of heat shock response was diminished. This impaired heat shock response in SOD1G93A glia may therefore contribute to the exacerbated inflammatory reactions observed in ALS mice.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Disease, London, WC1N 3BG, UK
| | - Rebecca San Gil
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
| | - Jing Yip
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Bernadett Kalmar
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Linda Greensmith
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Disease, London, WC1N 3BG, UK
| |
Collapse
|
39
|
Lyon MS, Milligan C. Extracellular heat shock proteins in neurodegenerative diseases: New perspectives. Neurosci Lett 2019; 711:134462. [PMID: 31476356 DOI: 10.1016/j.neulet.2019.134462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 01/20/2023]
Abstract
One pathological hallmark of neurodegenerative diseases and CNS trauma is accumulation of insoluble, hydrophobic molecules and protein aggregations found both within and outside cells. These may be the consequences of an inadequate or overburdened cellular response to stresses resulting from potentially toxic changes in extra- and intracellular environments. The upregulated expression of heat shock proteins (HSPs) is one example of a highly conserved cellular response to both internal and external stress. Intracellularly these proteins act as chaperones, playing vital roles in the folding of nascent polypeptides, the translocation of proteins between subcellular locations, and the disaggregation of misfolded or aggregated proteins in an attempt to maintain cellular proteostasis during both homeostatic and stressful conditions. While the predominant study of the HSPs has focused on their intracellular chaperone functions, it remains unclear if all neuronal populations can mount a complete stress response. Alternately, it is now well established that some members of this family of proteins can be secreted by nearby, non-neuronal cells to act in the extracellular environment. This review addresses the current literature detailing the use of exogenous and extracellular HSPs in the treatment of cellular and animal models of neurodegenerative disease. These findings offer a new measure of therapeutic potential to the HSPs, but obstacles must be overcome before they can be efficiently used in a clinical setting.
Collapse
Affiliation(s)
- Miles S Lyon
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
40
|
Histamine Is an Inducer of the Heat Shock Response in SOD1-G93A Models of ALS. Int J Mol Sci 2019; 20:ijms20153793. [PMID: 31382568 PMCID: PMC6696457 DOI: 10.3390/ijms20153793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial non-cell autonomous disease where activation of microglia and astrocytes largely contributes to motor neurons death. Heat shock proteins have been demonstrated to promote neuronal survival and exert a strong anti-inflammatory action in glia. Having previously shown that the pharmacological increase of the histamine content in the central nervous system (CNS) of SOD1-G93A mice decreases neuroinflammation, reduces motor neuron death, and increases mice life span, here we examined whether this effect could be mediated by an enhancement of the heat shock response. (2) Methods: Heat shock protein expression was analyzed in vitro and in vivo. Histamine was provided to primary microglia and NSC-34 motor neurons expressing the SOD1-G93A mutation. The brain permeable histamine precursor histidine was chronically administered to symptomatic SOD1-G93A mice. Spine density was measured by Golgi-staining in motor cortex of histidine-treated SOD1-G93A mice. (3) Results: We demonstrate that histamine activates the heat shock response in cultured SOD1-G93A microglia and motor neurons. In SOD1-G93A mice, histidine augments the protein content of GRP78 and Hsp70 in spinal cord and cortex, where the treatment also rescues type I motor neuron dendritic spine loss. (4) Conclusion: Besides the established histaminergic neuroprotective and anti-inflammatory effects, the induction of the heat shock response in the SOD1-G93A model by histamine confirms the importance of this pathway in the search for successful therapeutic solutions to treat ALS.
Collapse
|
41
|
Ban J, Sámano C, Mladinic M, Munitic I. Glia in amyotrophic lateral sclerosis and spinal cord injury: common therapeutic targets. Croat Med J 2019. [PMID: 31044582 PMCID: PMC6509626 DOI: 10.3325/cmj.2019.60.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The toolkit for repairing damaged neurons in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI) is extremely limited. Here, we reviewed the in vitro and in vivo studies and clinical trials on nonneuronal cells in the neurodegenerative processes common to both these conditions. Special focus was directed to microglia and astrocytes, because their activation and proliferation, also known as neuroinflammation, is a key driver of neurodegeneration. Neuroinflammation is a multifaceted process that evolves during the disease course, and can be either beneficial or toxic to neurons. Given the fundamental regulatory functions of glia, pathogenic mechanisms in neuroinflammation represent promising therapeutic targets. We also discussed neuroprotective, immunosuppressive, and stem-cell based approaches applicable to both ALS and SCI.
Collapse
Affiliation(s)
| | | | | | - Ivana Munitic
- Ivana Munitic, Department of Biotechnology, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia,
| |
Collapse
|
42
|
Volonté C, Apolloni S, Sabatelli M. Histamine beyond its effects on allergy: Potential therapeutic benefits for the treatment of Amyotrophic Lateral Sclerosis (ALS). Pharmacol Ther 2019; 202:120-131. [PMID: 31233766 DOI: 10.1016/j.pharmthera.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
ALS currently remains a challenge despite many efforts in performing successful clinical trials and formulating therapeutic solutions. By learning from current failures and striving for success, scientists and clinicians are checking every possibility to search for missing hints and efficacious treatments. Because the disease is very complex and heterogeneous and, moreover, targeting not only motor neurons but also several different cell types including muscle, glial, and immune cells, the right answer to ALS is conceivably a multidrug strategy or the use of broad-spectrum molecules. The aim of the present work is to gather evidence about novel perspectives on ALS pathogenesis and to present recent and innovative paradigms for therapy. In particular, we describe how an old molecule possessing immunomodulatory and neuroprotective functions beyond its recognized effects on allergy, histamine, might have a renewed and far-reaching momentum in ALS.
Collapse
Affiliation(s)
- Cinzia Volonté
- CNR-Institute of Cell Biology and Neurobiology/UCSC, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Savina Apolloni
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Mario Sabatelli
- Institute of Neurology-Catholic University of Sacro Cuore, Clinic Center NEMO- Fondazione Pol. A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
43
|
Chittoor-Vinod VG, Bazick H, Todd AG, Falk D, Morelli KH, Burgess RW, Foster TC, Notterpek L. HSP90 Inhibitor, NVP-AUY922, Improves Myelination in Vitro and Supports the Maintenance of Myelinated Axons in Neuropathic Mice. ACS Chem Neurosci 2019; 10:2890-2902. [PMID: 31017387 PMCID: PMC6588339 DOI: 10.1021/acschemneuro.9b00105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
![]()
Hereditary
demyelinating neuropathies linked to peripheral myelin
protein 22 (PMP22) involve the disruption of normal protein trafficking
and are therefore relevant targets for chaperone therapy. Using a
small molecule HSP90 inhibitor, EC137, in cell culture models, we
previously validated the chaperone pathway as a viable target for
therapy development. Here, we tested five commercially available inhibitors
of HSP90 and identified BIIB021 and AUY922 to support Schwann cell
viability and enhance chaperone expression. AUY922 showed higher efficacy,
compared to BIIB021, in enhancing myelin synthesis in dorsal root
ganglion explant cultures from neuropathic mice. For in vivo testing,
we randomly assigned 2–3 month old C22 and 6 week old Trembler
J (TrJ) mice to receive two weekly injections of either vehicle or
AUY922 (2 mg/kg). By the intraperitoneal (i.p.) route, the drug was
well-tolerated by all mice over the 5 month long study, without influence
on body weight or general grooming behavior. AUY922 improved the maintenance
of myelinated nerves of both neuropathic models and attenuated the
decline in rotarod performance and peak muscle force production in
C22 mice. These studies highlight the significance of proteostasis
in neuromuscular function and further validate the HSP90 pathway as
a therapeutic target for hereditary neuropathies.
Collapse
Affiliation(s)
- Vinita G. Chittoor-Vinod
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| | - Hannah Bazick
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| | - Adrian G. Todd
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida 32611, United States
| | - Darin Falk
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida 32611, United States
| | - Kathryn H. Morelli
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, United States
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Robert W. Burgess
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, United States
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Thomas C. Foster
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| | - Lucia Notterpek
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| |
Collapse
|
44
|
Ebbert MTW, Jensen TD, Jansen-West K, Sens JP, Reddy JS, Ridge PG, Kauwe JSK, Belzil V, Pregent L, Carrasquillo MM, Keene D, Larson E, Crane P, Asmann YW, Ertekin-Taner N, Younkin SG, Ross OA, Rademakers R, Petrucelli L, Fryer JD. Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. Genome Biol 2019; 20:97. [PMID: 31104630 PMCID: PMC6526621 DOI: 10.1186/s13059-019-1707-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/06/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The human genome contains "dark" gene regions that cannot be adequately assembled or aligned using standard short-read sequencing technologies, preventing researchers from identifying mutations within these gene regions that may be relevant to human disease. Here, we identify regions with few mappable reads that we call dark by depth, and others that have ambiguous alignment, called camouflaged. We assess how well long-read or linked-read technologies resolve these regions. RESULTS Based on standard whole-genome Illumina sequencing data, we identify 36,794 dark regions in 6054 gene bodies from pathways important to human health, development, and reproduction. Of these gene bodies, 8.7% are completely dark and 35.2% are ≥ 5% dark. We identify dark regions that are present in protein-coding exons across 748 genes. Linked-read or long-read sequencing technologies from 10x Genomics, PacBio, and Oxford Nanopore Technologies reduce dark protein-coding regions to approximately 50.5%, 35.6%, and 9.6%, respectively. We present an algorithm to resolve most camouflaged regions and apply it to the Alzheimer's Disease Sequencing Project. We rescue a rare ten-nucleotide frameshift deletion in CR1, a top Alzheimer's disease gene, found in disease cases but not in controls. CONCLUSIONS While we could not formally assess the association of the CR1 frameshift mutation with Alzheimer's disease due to insufficient sample-size, we believe it merits investigating in a larger cohort. There remain thousands of potentially important genomic regions overlooked by short-read sequencing that are largely resolved by long-read technologies.
Collapse
Affiliation(s)
- Mark T. W. Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224 USA
| | - Tanner D. Jensen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Joseph S. Reddy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602 USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602 USA
| | - Veronique Belzil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Luc Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Eric Larson
- Department of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Paul Crane
- Department of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Yan W. Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224 USA
| |
Collapse
|
45
|
Ban J, Sámano C, Mladinic M, Munitic I. Glia in amyotrophic lateral sclerosis and spinal cord injury: common therapeutic targets. Croat Med J 2019; 60:109-120. [PMID: 31044582 PMCID: PMC6509626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 07/17/2024] Open
Abstract
The toolkit for repairing damaged neurons in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI) is extremely limited. Here, we reviewed the in vitro and in vivo studies and clinical trials on nonneuronal cells in the neurodegenerative processes common to both these conditions. Special focus was directed to microglia and astrocytes, because their activation and proliferation, also known as neuroinflammation, is a key driver of neurodegeneration. Neuroinflammation is a multifaceted process that evolves during the disease course, and can be either beneficial or toxic to neurons. Given the fundamental regulatory functions of glia, pathogenic mechanisms in neuroinflammation represent promising therapeutic targets. We also discussed neuroprotective, immunosuppressive, and stem-cell based approaches applicable to both ALS and SCI.
Collapse
Affiliation(s)
| | | | | | - Ivana Munitic
- Ivana Munitic, Department of Biotechnology, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia,
| |
Collapse
|
46
|
Hammond N, Munkacsi AB, Sturley SL. The complexity of a monogenic neurodegenerative disease: More than two decades of therapeutic driven research into Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1109-1123. [PMID: 31002946 DOI: 10.1016/j.bbalip.2019.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022]
Abstract
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.
Collapse
Affiliation(s)
- Natalie Hammond
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| | - Stephen L Sturley
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
47
|
Cieślak M, Roszek K, Wujak M. Purinergic implication in amyotrophic lateral sclerosis-from pathological mechanisms to therapeutic perspectives. Purinergic Signal 2019; 15:1-15. [PMID: 30430356 PMCID: PMC6439052 DOI: 10.1007/s11302-018-9633-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinically heterogeneous disorder characterized by degeneration of upper motor neurons in the brainstem and lower motor neurons in the spinal cord. Multiple mechanisms of motor neuron injury have been implicated, including more than 20 different genetic factors. The pathogenesis of ALS consists of two stages: an early neuroprotective stage and a later neurotoxic. During early phases of disease progression, the immune system through glial and T cell activities provides anti-inflammatory factors that sustain motor neuron viability. As the disease progresses and motor neuron injury accelerates, a rapidly succeeding neurotoxic phase develops. A well-orchestrated purine-mediated dialog among motor neurons, surrounding glia and immune cells control the beneficial and detrimental activities occurring in the nervous system. In general, low adenosine triphosphate (ATP) concentrations protect cells against excitotoxic stimuli through purinergic P2X4 receptor, whereas high concentrations of ATP trigger toxic P2X7 receptor activation. Finally, adenosine is also involved in ALS progression since A2A receptor antagonists prevent motor neuron death. Given the complex cellular cross-talk occurring in ALS and the recognized function of extracellular nucleotides and adenosine in neuroglia communication, the comprehensive understanding of purinome dynamics might provide new research perspectives to decipher ALS and help to design more efficient and targeted drugs. This review will focus on the purinergic players involved in ALS etiology and disease progression and current therapeutic strategies to enhance neuroprotection and suppress neurotoxicity.
Collapse
Affiliation(s)
- M Cieślak
- Neurology Clinic, Marek Cieślak, Toruń, Poland
| | - K Roszek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St, 87-100, Toruń, Poland
| | - M Wujak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St, 87-100, Toruń, Poland.
| |
Collapse
|
48
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 485] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
49
|
Protective effects of Withania somnifera extract in SOD1 G93A mouse model of amyotrophic lateral sclerosis. Exp Neurol 2018; 309:193-204. [PMID: 30134145 DOI: 10.1016/j.expneurol.2018.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/21/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
Withania somnifera (WS; commonly known as Ashwagandha or Indian ginseng) is a medicinal plant whose extracts have been in use for centuries in various regions of the world as a rejuvenator. There is now a growing body of evidence documenting neuroprotective functions of the plant extracts or its purified compounds in several models of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Based on the extract's beneficial effect in a mouse model of ALS with TDP-43 proteinopathy, the current study was designed to test its efficacy in another model of familial ALS. Our results show that administration of WS extracts by gavage to mice expressing G93A mutant form of superoxide dismutase (SOD1) resulted in increased longevity, improved motor performance and increased number of motor neurons in lumbar spinal cord. The WS treatment caused substantial reduction in levels of misfolded SOD1whereas it enhanced expression of cellular chaperons in spinal cord of SOD1G93A mice. WS markedly reduced glial activation and prevented phosphorylation of nuclear factor kappaB (NF-κB). The overall immunomodulatory effect of WS was further evidenced by changes in expression of multiple cytokines/chemokines. WS also served as an autophagy inducer which may be beneficial at early stages of the disease. These results suggest that WS extracts might constitute promising therapeutics for treatment of ALS with involvement of misfolded SOD1.
Collapse
|
50
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|