1
|
Sun F, Li N, Liu Y, Han Y, Xu M, Xu C, Li J, Wang J. MiR-224-3p regulates ferroptosis and inflammation in lens epithelial cells by targeting ACSL4. Exp Eye Res 2025; 254:110306. [PMID: 39986367 DOI: 10.1016/j.exer.2025.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
In this study, we investigated the expression levels of miR-224-3p and inflammatory factors in the lens epithelium of patients with high myopia cataract (HMC) to determine how miR-224-3p/ACSL4 affects ferroptosis and inflammation in human lens epithelial cells (HLECs). The capsule tissues (including lens epithelial cells) of 36 patients with HMC and 36 patients with age-related cataract (ARC) were taken respectively. 18HMC and 18ARC capsule tissues were selected for RNA sequencing (RNA-Seq) and the rest were used for qPCR assays. The expression of miR-224-3p and ACSL4 in the capsules of patients was detected by qPCR, and RNA was extracted from each of the six capsules. To evaluate ferroptosis and inflammation, the levels of expression of ACSL4, GPX4, TFR1 and IL-6 was determined by immunohistochemistry, Transmission electron microscopy image showed the structure of mitochondria. The differential expression of mir-224-3p was identified through RNA sequencing, with its expression significantly increased in HMC. As a result, mir-224-3p was chosen for further experimentation. The expression levels of ACSL4, TFR1 and GPX4 varied between HMC and ARC. Target Scan predicted a direct binding site between mir-224-3p and ACSL4. The results showed that the expression levels of miR-224-3p, TFR1 and IL-6 in the HMC patients were significantly greater than those in ARC. ACSL4 and GPX4 in HMC were considerably lower than those in ARC. Electron microscopy images revealed that the mitochondria of HMC were significantly shrunken compared to those of ARC. So it was thought that ferroptosis and inflammation occured in HMC patients. A dual-luciferase report found miR-224-3p regulated ACSL4. PCR and WB assays revealed that ACSL4 was the downstream target gene of miR-224-3p. We also found that miR-224-3p promoted the proliferation and migration of HLECs. TNF-α (20 ng/mL) induced an inflammatory response in HLECs. Also, miR-224-3p effectively inhibited ferroptosis in HLECs induced by erastin, meanwhile the expression levels of Fe2+, MDA, ROS, and TFR1 were reduced, while GPX4 and GSH expression levels were elevated. The level of expression of IL-6 was decreased. Additionally, miR-224-3p increased the viability of HLECs by regulating ferroptosis and inflammation via ACSL4 targeting.
Collapse
Affiliation(s)
- Feng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Na Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Yan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Yuanyuan Han
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Mengyue Xu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Che Xu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Juan Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China.
| | - Jianfeng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China.
| |
Collapse
|
2
|
Safaei S, Yari A, Pourbagherian O, Maleki LA. The role of cytokines in shaping the future of Cancer immunotherapy. Cytokine 2025; 189:156888. [PMID: 40010034 DOI: 10.1016/j.cyto.2025.156888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
As essential immune system regulators, cytokines are essential for modulating both innate and adaptive immunological responses. They have become important tools in cancer immunotherapy, improving the immune system's capacity to identify and destroy tumor cells. This article examines the background, workings, and therapeutic uses of cytokines, such as interleukins, interferons, and granulocyte-macropHage colony-stimulating factors, in the management of cancer. It examines the many ways that cytokines affect immune cell activation, signaling pathways, tumor development, metastasis, and prognosis by modifying the tumor microenvironment. Despite the limited effectiveness of cytokine-based monotherapy, recent developments have concentrated on new fusion molecules such as immunocytokines, cytokine delivery improvements, and combination techniques to maximize treatment efficacy while reducing adverse effects. Current FDA-approved cytokine therapeutics and clinical trial results are also included in this study, which offers insights into how cytokines might be used with other therapies including checkpoint inhibitors, chemotherapy, and radiation therapy to address cancer treatment obstacles. This study addresses the intricacies of cytokine interactions in the tumor microenvironment, highlighting the possibility for innovative treatment methods and suggesting fresh techniques for enhancing cytokine-based immunotherapies. PEGylation, viral vector-mediated cytokine gene transfer, antibody-cytokine fusion proteins (immunocytokines), and other innovative cytokine delivery techniques are among the novelties of this work, which focuses on the most recent developments in cytokine-based immunotherapy. Additionally, the study offers a thorough examination of the little-reviewed topic of cytokine usage in conjunction with other treatment techniques. It also discusses the most recent clinical studies and FDA-approved therapies, providing a modern perspective on the developing field of cancer immunotherapy and suggesting creative ways to improve treatment effectiveness while lowering toxicity. BACKGROUND: Cytokines are crucial in cancer immunotherapy for regulating immune responses and modifying the tumor microenvironment (TME). However, challenges with efficacy and safety have driven research into advanced delivery methods and combination therapies to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirHossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Wang K, Lu Y, Cao Y, Feng P, Wu Q, Xiao P, Ding Y. Establishment and validation of an immune-related nomogram for the prognosis of pancreatic adenocarcinoma. Sci Rep 2025; 15:13431. [PMID: 40251364 PMCID: PMC12008212 DOI: 10.1038/s41598-025-98503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a highly aggressive neoplasm characterized by limited therapeutic options, particularly in the realm of immunotherapy. This study aims to improve prognosis prediction to guide therapeutic decision-making, and to identify novel targets for immunotherapy of PDAC. We conducted Cox and LASSO regression analyses to develop immune-related gene signature and corresponding nomogram, and the robustness of these signatures was demonstrated using multiple approaches. Additionally, CIBERSORT, ESTIMATE, and xCell algorithms were utilized to assess immune cell infiltration, with experimental validation performed though qPCR. An immune-related gene signature consisting of 18 genes, and the prognostic nomogram was established with superior performance compared to the conventional staging system. Key parameters incorporated into the nomogram included the gene signature, tumor stage, and postoperative treatment. Patients identified as high-risk exhibited an anti-inflammatory tumor microenvironment, characterized by an increase in M2-like tumor-associated macrophages and heightened tumor purity. Notably, the expression of interleukin 6 receptor (IL6R) in PDAC was predominantly derived from macrophages and was significantly associated with patient survival outcomes. Furthermore, attenuated IL-6/IL-6R signaling was found to promote M2-like macrophage differentiation. This study successfully established an immune-related gene signature and a robust nomogram for predicting clinical outcomes in patients with PDAC. Furthermore, we identified IL6R as a promising target for future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Kan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yunkun Lu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yanfei Cao
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310000, China
| | - Ping Feng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qiu Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yimin Ding
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
4
|
Lim HI, Kim GY, Choi YJ, Lee K, Ko SG. Uncovering the anti-cancer mechanism of cucurbitacin D against colorectal cancer through network pharmacology and molecular docking. Discov Oncol 2025; 16:551. [PMID: 40244518 PMCID: PMC12006582 DOI: 10.1007/s12672-025-02056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/01/2024] [Indexed: 04/18/2025] Open
Abstract
Colorectal cancer is a significant global health challenge due to chemoresistance, necessitating new treatments. Cucurbitacin D, with its anti-cancer properties, shows promise, but its effects on colorectal cancer are not well understood. We investigated the impact of cucurbitacin D on colorectal cancer cell lines using MTT assays and Annexin V/7-AAD staining followed by flow cytometry for apoptosis analysis. Public databases helped identify cucurbitacin D and colorectal cancer-related gene targets for network pharmacology analysis. Protein-protein interaction networks were constructed using STRING and analyzed in Cytoscape. Gene ontology and KEGG pathway enrichment analyses were performed using ClueGo. Molecular docking studies were conducted via Autodock Vina and visualized in Discovery Studio. Western blot assessed protein expression changes in key targets under cucurbitacin D. Cucurbitacin D dose-dependently reduced colorectal cancer cell viability and induced apoptosis. Network pharmacology pinpointed crucial targets like STAT3, AKT1, CCND1, and CASP3. Molecular docking confirmed strong interactions with these targets. Enrichment analysis highlighted involvement in the 'PI3K-AKT,' 'JAK-STAT,' and 'ErbB' signaling pathways. These findings suggest cucurbitacin D as a potential anti-colorectal cancer agent, demonstrating significant effects on cell viability and apoptosis, and engaging critical cancer-related pathways, making it a promising candidate for further colorectal cancer therapeutic research.
Collapse
Affiliation(s)
- Hae-In Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Ga Yoon Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yu-Jeong Choi
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, 30019, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Cai Y, Jin X, Dai Y. Tocilizumab improves the efficacy of anti-PD-1 in a patient with advanced gastroesophageal junction cancer: a case report. Front Oncol 2025; 15:1530387. [PMID: 40255422 PMCID: PMC12005994 DOI: 10.3389/fonc.2025.1530387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/22/2025] Open
Abstract
Background Cancer-related inflammation contributes to the progression of malignancies and considerably affects therapeutic outcomes. IL-6 acts as a main mediator of both local and systemic inflammatory responses. Although IL-6 therapies have been successful in the treatment of inflammatory conditions, there has been little experience in patients with cancer. Case presentation A 66-year-old man was diagnosed with gastroesophageal junction squamous cell carcinoma (stage IV) with liver metastasis. The patient presented with notable cancer-associated systemic inflammatory symptoms, and experienced disease progression after initial two cycles of anti-PD-1 combined with chemotherapy. After tocilizumab treatment, the symptoms improved rapidly. The patient showed favorable response to subsequent anti-PD-1 plus second-line chemotherapy, and survived without disease progression. Conclusion Targeting IL-6 holds promise for the management of cancer-associated inflammation and improvement of therapeutic outcomes.
Collapse
Affiliation(s)
- Yushi Cai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Xuan Jin
- Department of Oncology, Peking University First Hospital, Beijing, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Gupta S, Arnab S, Silver-Beck N, Nguyen KL, Bethea JR. Investigating mechanisms underlying the development of paralysis symptom in a model of MS. Brain Res Bull 2025; 223:111275. [PMID: 40020761 PMCID: PMC11956544 DOI: 10.1016/j.brainresbull.2025.111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disorder with approximately 80 % of patients suffering from pain and 50 % from paralysis. Using a rodent model for MS, experimental autoimmune encephalomyelitis (EAE), researchers have predominately investigated paralysis/motor disease as the clinical symptom of EAE with fewer studying MS/EAE pain. However, in EAE, all mice exhibit a pain like phenotype and only a subset progresses to paralysis. Despite extensive research characterizing the disease pathology, the etiology that contributes to the range of pain and motor symptom occurrence in MS remains understudied. This is the first study to dissect MS symptom pathophysiology, using the non-PTX EAE model, in mice that experience mechanical hypersensitivity (pain-like phenotype) with and without paralysis. We found that mechanical hypersensitivity experienced by mice with or without paralysis is comparable between the two groups, irrespective of sex. In addition, there is a significant increase in the activation and infiltration of immune cells, demyelination, and heightened protein expression of B cell chemoattractant CXCL13 within the spinal cord of mice exhibiting mechanical hypersensitivity and paralysis, compared to mice only experiencing mechanical hypersensitivity.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Anatomy and Cell Biology, The George Washington University, Ross Hall, Washington D.C. 20052, United States
| | - Sreejita Arnab
- Department of Anatomy and Cell Biology, The George Washington University, Ross Hall, Washington D.C. 20052, United States
| | - Noah Silver-Beck
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kayla L Nguyen
- Department of Anatomy and Cell Biology, The George Washington University, Ross Hall, Washington D.C. 20052, United States.
| | - John R Bethea
- Department of Anatomy and Cell Biology, The George Washington University, Ross Hall, Washington D.C. 20052, United States.
| |
Collapse
|
7
|
Tarjányi O, Olasz K, Rátky F, Sétáló G, Boldizsár F. Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy? Int J Mol Sci 2025; 26:2943. [PMID: 40243560 PMCID: PMC11988683 DOI: 10.3390/ijms26072943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to the destruction of peripheral joint cartilage and bone tissue. Despite the advent of biological therapies in the past decades, the complete remission of RA patients is still out of reach. Therefore, the search for novel therapeutic approaches is still open in the field of RA. Proteasome inhibitors (PIs) were originally designed to be used in hematological malignancies like multiple myeloma. However, evidence has shown that they are potent inhibitors of the NF-κB pathway, which plays a pivotal role in inflammatory processes and RA. Furthermore, inhibition of cell activation and induction of apoptosis was also reported about PIs. In the present review, we summarize the current knowledge about the potential effects of PIs in RA based on reports from animal and human studies. We believe that there is substantial potential in the use of PIs in RA therapy either alone or in combination with the medications already used.
Collapse
Affiliation(s)
- Oktávia Tarjányi
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Fanni Rátky
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - György Sétáló
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| |
Collapse
|
8
|
Zhang L, Li J, Feng M, Xu X, Tang W, Jiang Y, Xia Z, Liu H, Shen F, Li X, Jiang L. Tigecycline modulates LPS-induced inflammatory response in sepsis via NF-κB signalling pathways: Experimental insights into immune regulation. Int J Antimicrob Agents 2025; 66:107496. [PMID: 40139445 DOI: 10.1016/j.ijantimicag.2025.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Sepsis is associated with high morbidity and high mortality and has strongly motivated intense studies into its mechanisms. Antibiotics, aimed to eradicate bacteria, have some impact on the immune system due to anti-inflammatory properties. Tigecycline, an antibiotic of the glycylcycline class, is commonly used for severe infections. PURPOSE This study aimed to investigate tigecycline's mechanism on the inflammatory response of sepsis to find new targets for sepsis treatment. The objective included (i) to observe the changes in inflammatory factors in LPS (lipopolysaccharide) induced septic mice after tigecycline administration, (ii) to detect the effect of tigecycline on macrophages NF-κB (nuclear factor kappa B) signalling. METHODS For LPS-induced sepsis in mice and intervention with tigecycline, mice were first injected with tigecycline (6.5 mg/kg) via tail vein followed by LPS (15 mg/kg). Luminex analysis was performed on 16 mediators. NF-κB signalling pathway antibody chip detected the expression of target sites in macrophages of the LPS group and tigecycline + LPS group. RESULTS Tigecycline has inhibitory effects on LPS-induced inflammatory response in septic mice, decreasing the concentrations of IL (interleukin)-6, IL-27, TNF-α (tumour necrosis factor-α), TNF RII, IFN-γ (interferon-gamma), CCL5/RANTES (CC Motif Chemokine Ligand) while increasing IL-6Rα, IL-10, and TWEAK (TNF-related weak inducer of apoptosis). Tigecycline downregulated phosphorylation levels of key sites JNK (c-Jun N-terminal kinase)1/2/3, p-p65 (s468) and p-p105/p50 (s907) in NF-κB signalling. CONCLUSIONS Tigecycline may inhibit the excessive immune response induced by LPS in sepsis, which may cause a potential protective effect on the host through immune regulation.
Collapse
Affiliation(s)
- Lu Zhang
- Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Intensive Care Unit, Shanghai Deji Hospital, Shanghai, China
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaocheng Xu
- Minhang District of Shanghai Medical Emergency Center, Shanghai, China
| | - Weiyi Tang
- Minhang Hospital, Fudan University, Shanghai, China
| | | | - Zhuye Xia
- Minhang Hospital, Fudan University, Shanghai, China
| | - Hongjie Liu
- Minhang Hospital, Fudan University, Shanghai, China
| | - Feiyang Shen
- Minhang Hospital, Fudan University, Shanghai, China
| | - Xiang Li
- Minhang Hospital, Fudan University, Shanghai, China.
| | - Lijing Jiang
- Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zhang Z, Wang P, Lei T, Guo J, Jiang Y, Li Y, Zheng J, Wang S, Xu H, Jian G, Zhang Q, Qing Y. The role and impact of the IL-6 mediated JAK2-STAT1/3 signaling pathway in the pathogenesis of gout. Front Pharmacol 2025; 16:1480844. [PMID: 40170729 PMCID: PMC11959054 DOI: 10.3389/fphar.2025.1480844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Background Interleukin-6 (IL-6) is a pleiotropic cytokine, with specific effects depending on the immune microenvironment. Extensive research has confirmed the pathological roles of the IL-6/JAK2/STAT1/3 signaling pathway in inflammation, autoimmunity, and cancer, as well as its involvement in the pathogenesis of various rheumatic diseases. However, the role and impact of IL-6 as an upstream regulator of the JAK2-STAT1/3 pathway in gout have seldom been reported. This study explores the influence and role of upstream IL-6 in regulating the JAK2-STAT1/3 signaling pathway on gout inflammation, offering new insights for targeted therapeutic interventions and drug development in gout management. Methods and Results Clinical data and peripheral blood specimens were collected from gout patients and healthy individuals. In vitro and in vivo models of acute gout inflammation were established by stimulating PBMCs, THP-1 cells, and mice with MSU crystals. IL-6 expression was manipulated using IL-6 agonists and IL-6 knockout (KO) mouse technology to investigate the role and impact of the IL-6-mediated JAK2-STAT1/3 signaling pathway in gout models. RT-qPCR, WB, and ELISA were utilized to assess gene and protein expression levels. Paw swelling in mice was measured using a caliper gauge, while HE and IHC staining were conducted to evaluate the inflammatory status of mouse paw pad synovial tissues and detect the positive expression of relevant proteins. Serum IL-6 protein expression levels were significantly elevated in patients with gouty arthritis (GA) compared to healthy individuals, with multifactor logistic regression revealing an odds ratio (OR) of 2.175 for IL-6. In GA patients, mRNA expression of IL-6, JAK2, STAT1/3, and IL-1β was notably lower in the gout group compared to the healthy control (HC) group. Moreover, IL-6, JAK2, STAT1/3, p-JAK2, p-STAT1/3, and IL-1β proteins were markedly higher in the acute gout (AG) group compared to the intercritical gout (IG) and HC groups. Within the IG group, IL-6, JAK2, STAT3, and IL-1β proteins were significantly elevated compared to the HC group, whereas STAT1, p-JAK2, and p-STAT1/3 proteins were significantly lower. The expression of IL-6 protein and JAK2 mRNA showed positive correlations with certain inflammatory markers. In the 2h human blood in vitro gout inflammation model, expressions of IL-1β, IL-6, JAK2 mRNA, and IL-1β, IL-6, JAK2, STAT1/3, p-JAK2, p-STAT1/3 proteins were significantly higher compared to both the blank control and PBS-negative control groups. In the acute gout THP-1 cell model, The 6-hour model group showed significantly higher levels of IL-1β, IL-6, JAK2, STAT1/3 mRNA, and corresponding proteins, including their phosphorylated forms, compared to the blank control group. Additionally, treatment with an IL-6 agonist further increased these expression levels compared to the untreated model group. In the acute gout mouse model, IL-6 KO mice exhibited significantly reduced footpad swelling and swelling index compared to wild-type (WT) mice. HE staining revealed decreased inflammatory cell infiltration in IL-6 KO mice. Furthermore, Compared to 12-hour gout model WT mice, IL-1β, IL-6, JAK2, STAT1/3 mRNA, protein expression, and phosphorylated protein levels were notably decreased in IL-6 KO mice. IHC staining showed reduced positive expression of p-JAK2 and p-STAT1/3 in IL-6 KO mice. At the 24-hour mark, IL-6 mRNA and protein expression levels did not differ significantly between IL-6 KO and WT mice; however, IL-1β mRNA and protein expression, as well as JAK2 and STAT3 mRNA expression, were reduced in IL-6 KO mice, while STAT1 mRNA expression remained similar. Conclusion IL-6 emerges as a potential risk factor for acute gout attacks, with its involvement in the JAK2-STAT1/3 signaling pathway contributing to the inflammation and pathogenesis process of acute gout through positive feedback mechanisms.
Collapse
Affiliation(s)
- Zeng Zhang
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- The Third People’s Hospital of Suining, Suining, Sichuan, China
| | - Peng Wang
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tianyi Lei
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jianwei Guo
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yi Jiang
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanhui Li
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jianxiong Zheng
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shunbing Wang
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haimuzi Xu
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guilin Jian
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- The Third People’s Hospital of Suining, Suining, Sichuan, China
| | - Quanbo Zhang
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yufeng Qing
- Hyperuricaemia and Gout Research Centre, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
10
|
Calvello R, Caponio GR, Cianciulli A, Porro C, Ruggiero M, Celano G, De Angelis M, Panaro MA. Antioxidant Activity and Anti-Inflammatory Effect of Blood Orange By-Products in Treated HT-29 and Caco-2 Colorectal Cancer Cell Lines. Antioxidants (Basel) 2025; 14:356. [PMID: 40227443 PMCID: PMC11939351 DOI: 10.3390/antiox14030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/15/2025] Open
Abstract
Blood orange peel flour (BO-pf)-a by-product of the citrus supply chain-still contains bioactive molecules with known health benefits, such as antiradical scavenging activity or an antiproliferative activity regarding tumors. In vitro studies have demonstrated that orange polyphenols showed potential involvement in necroptosis. In addition to previous research, we tested BO-pf on two colorectal cancer cell lines. Using HT29 and Caco2 cells, our experiments confirmed the regulation of inflammasome expression. They provided valuable insights into how BO-pf influences the cancer cell features (i.e., viability, proliferation, and pro- and anti-inflammatory activity). Notably, BO-pf extract is a rich source of polyphenolic compounds with antioxidant properties. Western blot and real-time PCR analyses showed that treatment with BO-pf extract demonstrated beneficial effects by influencing the expression of both pro-inflammatory cytokines (IL-1β, IL-6) through the modulation of the TLR4/NF-kB/NLRP3 inflammasome signaling. Moreover, the results of this study demonstrate that BO-pf extracts can enhance the expression of anti-inflammatory cytokines, such as IL-10 and TGFβ, suggesting that BO-pf extracts may represent a promising functional ingredient to counteract the intestinal inflammatory responses involved in IBD.
Collapse
Affiliation(s)
- Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Giusy Rita Caponio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Via A. Gramsci 89/91, 71121 Foggia, Italy;
| | - Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Giuseppe Celano
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria De Angelis
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| |
Collapse
|
11
|
Zhao W, Qian J, Li J, Su T, Deng X, Fu Y, Liang X, Cui H. From death to birth: how osteocyte death promotes osteoclast formation. Front Immunol 2025; 16:1551542. [PMID: 40165960 PMCID: PMC11955613 DOI: 10.3389/fimmu.2025.1551542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bone remodeling is a dynamic and continuous process involving three components: bone formation mediated by osteoblasts, bone resorption mediated by osteoclasts, and bone formation-resorption balancing regulated by osteocytes. Excessive osteocyte death is found in various bone diseases, such as postmenopausal osteoporosis (PMOP), and osteoclasts are found increased and activated at osteocyte death sites. Currently, apart from apoptosis and necrosis as previously established, more forms of cell death are reported, including necroptosis, ferroptosis and pyroptosis. These forms of cell death play important role in the development of inflammatory diseases and bone diseases. Increasing studies have revealed that various forms of osteocyte death promote osteoclast formation via different mechanism, including actively secreting pro-inflammatory and pro-osteoclastogenic cytokines, such as tumor necrosis factor alpha (TNF-α) and receptor activator of nuclear factor-kappa B ligand (RANKL), or passively releasing pro-inflammatory damage associated molecule patterns (DAMPs), such as high mobility group box 1 (HMGB1). This review summarizes the established and potential mechanisms by which various forms of osteocyte death regulate osteoclast formation, aiming to provide better understanding of bone disease development and therapeutic target.
Collapse
Affiliation(s)
- Weijie Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiale Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ji Li
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tian Su
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of pharmacy, Hainan Medical University, Haikou, China
| | - Xiaozhong Deng
- Department of Pain Treatment, Nanxi Shan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yonghua Fu
- Department of Hand and Foot Microsurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuelong Liang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongwang Cui
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
12
|
Dekui J, Tian L, Chengying Z, Yi H. Joint association of dietary live microbe intake and depression with cancer survivor in US adults: evidence from NHANES. BMC Cancer 2025; 25:487. [PMID: 40098072 PMCID: PMC11912725 DOI: 10.1186/s12885-025-13699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The mortality of cancer survivors is influenced by various factors. This study aims to investigate the relationship between dietary live microbe intake and depression with the mortality of cancer survivors among U.S. adults. METHODS This cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2001 to 2018. Based on the classification by Sanders et al., foods were categorized by their levels of live microbes as follows: low (< 10^4 CFU/g), medium (10^4-10^7 CFU/g), and high (> 10^7 CFU/g). Using this classification and dietary questionnaire data, participants were divided into three groups: (1) low dietary live microbe intake (only low-level foods), (2) medium dietary live microbe intake (medium but not high-level foods), and (3) high dietary live microbe intake (any high-level foods). Additionally, foods classified as medium and high were combined into a "Medium-High" category. Cancer survivors were identified by their affirmative response to the question: "Have you ever been told by a doctor or other health professional that you had cancer or malignancy of any kind?" The Patient Health Questionnaire-9 (PHQ-9) was administered to assess depressive symptoms, with a score of ≥ 10 indicating depression. The study examined the independent and joint associations of dietary live microbe intake and depression with mortality outcomes in cancer survivors, employing Cox regression analysis adjusted for weights to calculate relative risk. Mediation analysis was conducted to evaluate the effect of PHQ-9 on the relationship between dietary live microbe intake and all-cause mortality in cancer patients. RESULTS During a median follow-up of 6.2 years, we identified a total of 605 all-cause mortality among participants, including 204 from cancer and 401 from non-cancer-related causes. The analysis showed that medium-high dietary live microbe intake was consistently associated with a lower risk of all-cause mortality (HR, 0.741; 95% CI, 0.602-0.912; P = 0.005) and non-CVD mortality (HR, 0.687; 95% CI, 0.545-0.866; P = 0.001) when compared to low dietary live microbe intake in adjusted models. Conversely, depression was linked to a higher risk of all-cause mortality (HR, 1.789; 95% CI, 1.281-2.473; P < 0.001) and non-CVD mortality (HR, 1.901; 95% CI, 1.249-2.793; P = 0.001) compared to individuals without depression. Notably, joint analyses revealed that low dietary live microbe intake was associated with the highest risk of all-cause mortality among cancer survivors who also experienced depression (HR, 3.122; 95% CI, 1.734-5.619; P < 0.001). Additionally, mediation analysis indicated that the PHQ-9 score mediated 18.4% of the association between dietary live microbe intake and all-cause mortality in cancer survivors mediation proportion 18.4%; 95% CI, 7.5-29.2%. CONCLUSIONS Our results indicated that low dietary live microbe intake and depression are associated with an increased risk of non-CVD and all-cause mortality among cancer survivors. Additionally, the PHQ-9 score demonstrated a mediating effect on the relationship between dietary live microbe intake and all-cause mortality in this population.
Collapse
Affiliation(s)
- Jin Dekui
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Lv Tian
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, China
| | - Zhang Chengying
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Hu Yi
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
13
|
Huang J, Xiao R, Shi S, Li Q, Li M, Xiao M, Wang Y, Yang Y, Li W, Tang Y. Circulating IL6 is involved in the infiltration of M2 macrophages and CD8+ T cells. Sci Rep 2025; 15:8681. [PMID: 40082587 PMCID: PMC11906812 DOI: 10.1038/s41598-025-92817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
To elucidate the relationship between circulating cytokines and the prognosis of microsatellite-stable(MSS) colorectal cancer (CRC) patients, we examined the correlation between circulating cytokine levels and tumor immune infiltration microenvironment in this patient population. By conducting a preliminary analysis of the GEO database, we identified five core genes associated with colorectal cancer and further analyzed their impact on immune infiltration. We measured serum cytokine levels and validated the immune infiltration results through immunohistochemical staining of common inflammatory cell markers, including CD3, CD4, CD8, CD163, and FOXP3. Our findings indicate that serum cytokine levels significantly influence immune infiltration in colorectal cancer, particularly IL6 and IFNγ, which play crucial roles. Specifically, the infiltration of M2-type macrophages and CD8 + T cells is correlated with serum levels of IL6 and IFNγ. MSS CRC patients with elevated IL6 expression exhibit improved prognosis.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Rui Xiao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Suyujie Shi
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qingshu Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Xiao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yalan Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaying Yang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China.
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yi Tang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China.
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Du J, Li Z, Kong Y, Song W, Chen Z, Zhang M, Huang Y, Zhang C, Guo X, Hou L, Tan Y, Liang L, Wang Y, Feng Y, Liu Q, Li J, Zhu D, Fu X, Huang S. Combined skin injury model from airblast overpressure and seawater immersion in rats: establishment, characterization, and mechanistic insights. J Mol Histol 2025; 56:105. [PMID: 40080211 DOI: 10.1007/s10735-025-10379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
In maritime operations, individuals often face the threat of combined injury caused by airblast overpressure and seawater immersion. Airblast overpressure, induced by explosions, leads to significant internal damage despite the absence of visible open wounds. Seawater immersion exacerbates injuries due to its high osmolarity, microbial content, and thermal conductivity. Given the critical role of the skin as the body's largest organ, understanding its specific injuries in this scenario is imperative but currently underexplored. To bridge this gap, the study developed a novel rat skin combined injury model (RSCIM) in which rats were exposed to calibrated airblast overpressure followed by immediate seawater immersion. Physical simulations, histopathological examinations, and immunological assessments were used to confirm the model's accuracy. Specifically, finite element analysis reveals that the epidermal layer could effectively disperse and resist the immediate effects of overpressure. Histologically, the epidermal layer after combined injury maintained a continuous and complete structure. The collagen fibers of dermis were dispersed and broken. There were scattered capillaries, red blood cells and no skin appendages within the adipose layer. The muscle layer was manifested by deformation and breakage of muscle fibers. The fluorescence intensity of iNOS tended to decrease as the distance from the explosion source increased, which demonstrated significant inflammatory effects in the skin with combined injury. Furthermore, the transcriptome sequencing data revealed major physiological changes caused by combined injury, including inflammatory response, ion transport, biomechanical response, apoptosis, etc. Notably, S100A9 serves as a critical marker for combined injuries in RSCIM, but its expression characteristics and localization during tissue injury still need to be further explored. The model provides a robust foundation for exploring the combined injury mechanisms of airblast overpressure and seawater immersion and developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Jinpeng Du
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Zhao Li
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yi Kong
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Wei Song
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Zhongming Chen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengde Zhang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yuyan Huang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Chao Zhang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Xu Guo
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Linhao Hou
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yaxin Tan
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Liting Liang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yuzhen Wang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yu Feng
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Qinghua Liu
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Jianjun Li
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Dongzhen Zhu
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Xiaobing Fu
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China.
| | - Sha Huang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China.
| |
Collapse
|
15
|
Deng Y, Jia X, Liu L, He Q, Liu L. The role of intestinal macrophage polarization in colitis-associated colon cancer. Front Immunol 2025; 16:1537631. [PMID: 40109347 PMCID: PMC11919874 DOI: 10.3389/fimmu.2025.1537631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic inflammation of the intestine is a significant risk factor in the development of colorectal cancer. The emergence of colitis and colorectal cancer is a complex, multifactorial process involving chronic inflammation, immune regulation, and tumor microenvironment remodeling. Macrophages represent one of the most prevalent cells in the colorectal cancer microenvironment and play a pivotal role in maintaining intestinal health and the development of colitis-associated colon cancer (CAC). Macrophages are activated mainly in two ways and resulted in three phenotypes: classically activated macrophages (M1), alternatively activated macrophages (M2). The most characteristic of these cells are the pro-inflammatory M1 and anti-inflammatory M2 types, which play different roles at different stages of the disease. During chronic inflammation progresses to cancer, the proportion of M2 macrophages gradually increases. The M2 macrophages secrete cytokines such as IL-10 and TGF-β, which promote angiogenesis and matrix remodeling, and create the favorable conditions for cancer cell proliferation, infiltration, and migration. Therefore, macrophage polarization has a dual effect on the progression of colitis to CAC. The combination of immunotherapy with reprogrammed macrophages and anti-tumor drugs may provide an effective means for enhancing the therapeutic effect. It may represent a promising avenue for developing novel treatments for CAC. In this review, we focus on the process of intestinal macrophage polarization in CAC and the role of intestinal macrophage polarization in the progression of colitis to colon cancer, and review the immunotherapy targets and relevant drugs targeting macrophages in CAC.
Collapse
Affiliation(s)
- Yujie Deng
- Medical Research Center, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaobing Jia
- The First Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Liu Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Scie Technology of China, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Fu M, Lv M, Guo J, Mei A, Qian H, Yang H, Wu W, Liu Z, Zhong J, Wei Y, Min X, Wu H, Chen J. The clinical significance of T-cell regulation in hypertension treatment. Front Immunol 2025; 16:1550206. [PMID: 40079010 PMCID: PMC11897580 DOI: 10.3389/fimmu.2025.1550206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Hypertension, a globally prevalent condition, is closely associated with T cell-mediated inflammatory responses. Studies have shown that T cells, by secreting pro-inflammatory cytokines such as interferon-gamma (IFN-γ), Interleukin-17 (IL-17), and Tumor necrosis factor-alpha (TNF-α), directly lead to vascular dysfunction and elevated blood pressure. The activation of Th1 and Th17 cell subsets, along with the dysfunction of regulatory T cells (Tregs), is a critical mechanism in the onset and progression of hypertension. This review explores the role of T cells in the pathophysiology of hypertension and discusses potential therapeutic strategies targeting T cell regulation, such as immunotherapy and gene-editing technologies. These emerging treatments hold promise for providing personalized therapeutic options for hypertensive patients, reducing inflammatory complications, and improving treatment outcomes.
Collapse
Affiliation(s)
- Miaoxin Fu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Mingzhu Lv
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jinyue Guo
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenwen Wu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Wei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haiyan Wu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
17
|
Fan M, Zhu Y, Qian L, Hu C, Ding H. Association between preoperative inflammatory status via CALLY index and postoperative pneumonia occurrence in resectable esophageal squamous cell carcinoma patients: a retrospective cohort study. Front Oncol 2025; 15:1486983. [PMID: 40034601 PMCID: PMC11872739 DOI: 10.3389/fonc.2025.1486983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Background Postoperative pneumonia significantly affects recovery and prognosis in patients with esophageal squamous cell carcinoma. The CALLY index, derived from preoperative hematological parameters, may serve as a predictive marker for such complications. Objectives To assess the association between preoperative inflammatory status via the CALLY index and the occurrence of postoperative pneumonia in patients with resectable ESCC. Methods A retrospective cohort study was conducted from January 2020 to December 2022 at The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University. A total of 215 patients who met inclusion criteria were analyzed. Clinical data, including CALLY indices calculated preoperatively, were collected. Propensity score matching was applied to minimize confounding biases. The predictive value of the CALLY index was assessed using receiver operating characteristic analysis, and logistic regression was used to identify factors associated with postoperative pneumonia. Results ROC curve analysis demonstrated the CALLY index had an area under the curve of 0.764 for predicting postoperative pneumonia, with a cutoff value of 1.97 achieving 67.69% sensitivity and 84.67% specificity. In multivariate analysis, a lower CALLY index was significantly associated with increased pneumonia risk, independent of other factors (adjusted OR = 0.66, p < 0.001). High CALLY index scores correlated with a decreased likelihood of postoperative pneumonia, reinforcing its utility as a non-invasive prognostic marker. Conclusions The CALLY index is a robust, independent predictor of postoperative pneumonia in patients with resectable ESCC. Preoperative assessment of this index could enhance risk stratification and guide proactive management strategies to improve postoperative outcomes.
Collapse
Affiliation(s)
| | | | | | - Chuanxian Hu
- Department of Cardiothoracic Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Hui Ding
- Department of Cardiothoracic Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
18
|
Kosanovic Rajacic B, Sagud M, Begic D, Nikolac Perkovic M, Kozmar A, Rogic D, Mihaljevic Peles A, Bozicevic M, Pivac N. Increased Interleukin-6 Levels in Responders with Treatment-Resistant Depression After Bright Light Therapy. Biomolecules 2025; 15:295. [PMID: 40001598 PMCID: PMC11852636 DOI: 10.3390/biom15020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Treatment-resistant depression (TRD) remains a challenge despite the growing number of interventions. Peripheral interleukin-6 (IL-6) levels have repeatedly been associated with both the presence and response to different treatments in TRD. There is currently no information available on the effects of bright light therapy (BLT) on serum IL-6 levels. This study assessed the effects of BLT on serum IL-6 levels in TRD patients. Serum IL-6 was determined at two points in TRD patients-at baseline and after 4 weeks of BLT-and at a single point in the healthy controls. Depression severity was measured by the Hamilton Rating Scale for Depression (HAMD)-17 and the Montgomery-Åsberg Depression Rating Scale (MADRS). The study included 104 females, 54 diagnosed with TRD (median age 52.5) and 50 healthy controls (median age 44.5). At baseline, patients had higher IL-6 levels than the controls. BLT treatment reduced HAMD-17 and MADRS scores. Serum IL-6 levels were not significantly affected by the 4 weeks of BLT. However, when patients were divided according to treatment response, IL-6 levels were increased in responders to BLT. The neuroinflammatory mechanism may be involved in the etiopathogenesis and the treatment of TRD, while changes in serum IL-6 levels may be potential indicators of response to treatment.
Collapse
Affiliation(s)
- Biljana Kosanovic Rajacic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.); (A.M.P.); (M.B.)
| | - Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.); (A.M.P.); (M.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Drazen Begic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.); (A.M.P.); (M.B.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Ana Kozmar
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (A.K.); (D.R.)
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Dunja Rogic
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (A.K.); (D.R.)
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Alma Mihaljevic Peles
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.); (A.M.P.); (M.B.)
| | - Marija Bozicevic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.); (A.M.P.); (M.B.)
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
19
|
D’Amico RC, Nagashima S, Carstens LB, Bertoldi KDG, Mataruco S, Honório D’Agostini JC, Hlatchuk EC, da Silva SB, de Noronha L, Baena CP. COVID-19 Induces Greater NLRP3 Inflammasome Activation in Obese Patients than Other Chronic Illnesses: A Case-Control Study. Int J Mol Sci 2025; 26:1541. [PMID: 40004007 PMCID: PMC11855377 DOI: 10.3390/ijms26041541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity has been identified as an independent risk factor for severe COVID-19 unfavorable outcomes. Several factors, such as increased ACE2 receptor expression and chronic inflammation, can contribute to this relationship, yet the activation of the NLRP3 inflammasome pathway is also a key element. Our primary goal was to determine whether chronic NLRP3 inflammasome activation in people with obesity is different in critical COVID-19 and in critical chronic conditions. A retrospective analysis was conducted using clinical data and post-mortem lung tissue samples from 14 COVID-19 patients with obesity (group A) and 9 patients with obesity who died from non-COVID-19 causes (group B). Immunohistochemical analysis assessed twelve markers related to the NLRP3 inflammasome pathway. Group A showed a significantly higher expression of ASC (p = 0.0387) and CASP-1 (p = 0.0142). No significant differences were found for IL-8, TNF-α, NF-kB, NLRP3, IL-1β, and gasdermin-D. Group B had higher levels of IL-6 (p < 0.0001), IL-18 (p = 0.002), CASP-9 (p < 0.0001), and HIF (p = 0.0327). We concluded that COVID-19 activates the NLRP3 inflammasome pathway, possibly leading to pyroptotic cell death mediated by caspase-1. In contrast, people with obesity without COVID-19, despite exhibiting some markers of the NLRP3 inflammasome, are more likely to experience necroptosis mediated by caspase-9.
Collapse
Affiliation(s)
- Raíssa Campos D’Amico
- Post-Graduate Program in Health Sciences (PPGCS), Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (R.C.D.); (S.N.); (L.B.C.); (K.d.G.B.); (C.P.B.)
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (S.M.); (S.B.d.S.)
| | - Seigo Nagashima
- Post-Graduate Program in Health Sciences (PPGCS), Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (R.C.D.); (S.N.); (L.B.C.); (K.d.G.B.); (C.P.B.)
| | - Lucas Baena Carstens
- Post-Graduate Program in Health Sciences (PPGCS), Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (R.C.D.); (S.N.); (L.B.C.); (K.d.G.B.); (C.P.B.)
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (S.M.); (S.B.d.S.)
| | - Karina de Guadalupe Bertoldi
- Post-Graduate Program in Health Sciences (PPGCS), Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (R.C.D.); (S.N.); (L.B.C.); (K.d.G.B.); (C.P.B.)
| | - Sabrina Mataruco
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (S.M.); (S.B.d.S.)
| | | | - Elisa Carolina Hlatchuk
- School of Medicine, Universidade Federal do Paraná, Curitiba 80060-240, Paraná, Brazil; (J.C.H.D.); (E.C.H.)
| | - Sofia Brunoro da Silva
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (S.M.); (S.B.d.S.)
| | - Lucia de Noronha
- Post-Graduate Program in Health Sciences (PPGCS), Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (R.C.D.); (S.N.); (L.B.C.); (K.d.G.B.); (C.P.B.)
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (S.M.); (S.B.d.S.)
- School of Medicine, Universidade Federal do Paraná, Curitiba 80060-240, Paraná, Brazil; (J.C.H.D.); (E.C.H.)
| | - Cristina Pellegrino Baena
- Post-Graduate Program in Health Sciences (PPGCS), Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (R.C.D.); (S.N.); (L.B.C.); (K.d.G.B.); (C.P.B.)
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil; (S.M.); (S.B.d.S.)
| |
Collapse
|
20
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
21
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
22
|
Hu Z, Chen S, Zhang E, Wei L, Wang J, Shang Q, Gao X, Huang Y. Novel inflammatory markers in intracerebral hemorrhage: Results from Olink proteomics analysis. FASEB J 2025; 39:e70341. [PMID: 39853806 PMCID: PMC11760662 DOI: 10.1096/fj.202402183rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Inflammation is a crucial factor in intracerebral hemorrhage (ICH) pathophysiology, but specific inflammatory biomarkers in ICH patients remain unclear. This study aimed to identify novel circulating inflammatory biomarkers for improved ICH prediction and diagnosis. We profiled expression levels of 92 cardiovascular disease related proteins in plasma from 26 matched ICH patients and controls using Olink technology. Differentially expressed proteins were validated using ELISA and RT-qPCR in a second matched cohort. Receiver operating characteristic (ROC) curves evaluated how well the diagnostic tests performed. The study identified 18 inflammatory-related proteins with significantly different expression levels between ICH patients and controls. These proteins participate in critical biological processes and pathways, such as the regulation of inflammatory mediator secretion, cell death, immune cell proliferation and differentiation, pathogen response, and PI3K-Akt and JAK-STAT pathways. Notably, we discovered for the first time that Kidney Injury Molecule-1 (KIM1) is significantly upregulated in the plasma of ICH patients, suggesting its potential as a predictive and diagnostic biomarker for ICH. Validation results from ELISA and RT-qPCR showed that Interleukin-6 (IL-6), Pentraxin 3 (PTX3), KIM1, and Galectin-9 (Gal-9) concentrations were markedly increased in the blood plasma and white matter of individuals with ICH. ROC analysis showed that the combined marker of IL-6, PTX3, KIM1 and Gal-9 had a high diagnostic efficacy (AUC = 0.941). This study identified a novel biomarker panel (IL-6, PTX3, KIM1, Gal-9) for ICH diagnosis. KIM1 upregulation in ICH patients is a novel finding, further investigation is needed into its expression and function in ICH.
Collapse
Affiliation(s)
- Ziliang Hu
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingboZhejiangChina
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Siqi Chen
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Enhao Zhang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Liangzhe Wei
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Jieyi Wang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Qing Shang
- Department of NeurologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Xiang Gao
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingboZhejiangChina
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Yi Huang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| |
Collapse
|
23
|
Cowansage K, Nair R, Lara-Ruiz JM, Berman DE, Boyd CC, Milligan TL, Kotzab D, Bellanti DM, Shank LM, Morgan MA, Smolenski DJ, Babakhanyan I, Skopp NA, Evatt DP, Kelber MS. Genetic and peripheral biomarkers of comorbid posttraumatic stress disorder and traumatic brain injury: a systematic review. Front Neurol 2025; 16:1500667. [PMID: 39931547 PMCID: PMC11807831 DOI: 10.3389/fneur.2025.1500667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Background Posttraumatic stress disorder (PTSD) commonly cooccurs with traumatic brain injury (TBI) in military populations and is a significant predictor of poor long-term outcomes; however, it is unclear to what extent specific biological variables are associated with comorbidity. This PROSPERO-registered systematic review evaluates the current body of literature on genetic and peripheral biomarkers associated with comorbid TBI and PTSD. Methods Searches were conducted in four databases (PubMed, PsycInfo, PTSDPubs, Scopus). We included published studies examining differences in peripheral biomarkers among civilian, military, and veteran participants with both TBI and PTSD compared to those with TBI alone as well as, in some cases, PTSD alone and healthy controls. Data were extracted from included studies and evidence quality was assessed. Results Our final analysis included 16 studies, the majority of which were based on data from active duty military and veteran participants. The results suggest that multiple gene variants are likely to contribute to the cumulative risk of PTSD comorbid with TBI. An elevated circulating level of the pro-inflammatory cytokine IL-6 was the most consistently replicated blood-based indicator of comorbid illness, compared to mTBI alone. Conclusion Several genetic and protein markers of cellular injury and inflammation appear to be promising indicators of chronic pathology in comorbid TBI and PTSD. Additional research is needed to determine how such factors indicate, predict, and contribute to comorbidity and to what extent they represent viable targets for the development of novel diagnostic tools and therapeutic interventions.
Collapse
Affiliation(s)
- Kiriana Cowansage
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Reshmi Nair
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Jose M. Lara-Ruiz
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Daniel E. Berman
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Courtney C. Boyd
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Tiffany L. Milligan
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Daniel Kotzab
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Dawn M. Bellanti
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Lisa M. Shank
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Maria A. Morgan
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Derek J. Smolenski
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Ida Babakhanyan
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Nancy A. Skopp
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Daniel P. Evatt
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| | - Marija S. Kelber
- Psychological Health Center of Excellence, Defense Health Agency, Falls Church, VA, United States
| |
Collapse
|
24
|
Wang S, Zhou D, Chen W, Guo Q, Hou L, Wu R, Wang W, Khan MA, Ahmad M, Huang F, Zheng M, Wang G, Zhao H, Geng X, Yu X. High serum CA19-9 predicts severe cholecystitis in calculous cholecystitis patients. BMC Gastroenterol 2025; 25:33. [PMID: 39849359 PMCID: PMC11756138 DOI: 10.1186/s12876-025-03616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND CA19-9 is a classical tumor marker and plays an important role in the diagnosis of biliary and pancreatic cancer. However, a few cases reported that the tumor maker CA19-9 is abnormally elevated in patients with calculous cholecystitis, but the relation between severity of calculous cholecystitis and serum CA19-9 level are still unknown. METHODS Total 105 calculous cholecystitis patients from first hospital were collected and divided into high serum CA19-9 group(high group, n = 35) and normal serum CA19-9 group(normal group, n = 70). Perioperative data including blood cell count, inflammatory markers, liver function, imaging and operation-related parameters from these patients were collected for analysis and verified with second group of 105 calculous cholecystitis patients from second hospital. Besides, the gallbladder specimens were collected for immunohistochemical staining and mRNA sequencing. RESULTS Abdominal pain occur in more than 90% patients in high group, which is similar with that of normal group. But WBC, neutrophils count, NLR, CRP level and IL-6 level is higher in high group than that of normal group. In addition, the gallbladder wall thickness, the operation duration and the operation conversion rate is also higher in high group, which is verified from second hospital. Higher expression of CA19-9 was found by immunohistochemical staining in gallbladder specimen and more autophagy pathway related genes enriched in high group. CONCLUSIONS This study demonstrated that higher level of serum CA19-9 correlates with more severe cholecystitis in calculous cholecystitis patients for the first time, which will provide helpful information for clinical practice and basic research in related field.
Collapse
Affiliation(s)
- Shouwen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Dachen Zhou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Wanjin Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Qi Guo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Liujin Hou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ruolin Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Muhammad Annus Khan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Muhammad Ahmad
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fan Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Guobin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Hongchuan Zhao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Xiaoping Geng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Xiaojun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
25
|
Tokareva K, Peterson AC, Baraff A, Chung SP, Barton J, Baker JF, England BR, Mikuls TR, Smith NL, Coffey DG, Weiss NS, Singh N. Use of disease modifying anti-rheumatic drugs and risk of multiple myeloma in US Veterans with rheumatoid arthritis. BMC Rheumatol 2025; 9:7. [PMID: 39819734 PMCID: PMC11740324 DOI: 10.1186/s41927-025-00457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Biologic (b) and targeted synthetic (ts) disease-modifying anti-rheumatic drugs (DMARDs) used in the management of rheumatoid arthritis (RA) target inflammatory pathways implicated in the pathogenesis of multiple myeloma (MM). It is unknown whether use of b/tsDMARDs affects the incidence of MM. METHODS In this cohort study using Veterans Health Administration (VHA) data, we identified Veterans newly diagnosed with RA from 1/1/2002 to 12/31/2018 using diagnostic codes and medication fills. DMARD exposure was categorized as follows: conventional synthetic (cs)DMARDs; bDMARDs, which included tumor necrosis factor inhibitors (TNFi), non-TNFi; and a tsDMARD, tofacitinib. A Cox proportional hazards model with time-varying exposure was used to estimate the hazard ratio for developing MM among those who received b/tsDMARD medications relative to b/tsDMARD-naïve persons. RESULTS 27,540 veterans with RA met eligibility criteria of whom 8322 (30%) took a b/tsDMARD during follow-up. There were 77 incident cases of MM over 192,000 person-years of follow-up. The age-adjusted incidence rate (IR) of MM among b/tsDMARD-naïve patients was 0.37 (95% CI 0.28-0.49) per 1000 person-years and 0.42 among current or former b/tsDMARD users (95% CI 0.25-0.65). Adjusting for age and other demographic characteristics, the hazard ratio for MM associated with use of b/tsDMARDs was 1.32 (95% CI 0.78, 2.26). CONCLUSION In this study of Veterans with RA, the rate of MM did not differ between b/tsDMARD and csDMARD users. The relatively short duration of follow-up and few events limited our power to detect treatment-related differences in MM risk.
Collapse
Affiliation(s)
| | | | | | | | | | - Joshua F Baker
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Bryant R England
- University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ted R Mikuls
- University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Nicholas L Smith
- ERIC, VA Puget Sound, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - David G Coffey
- Division of Myeloma, University of Miami, Miami, FL, USA
| | - Noel S Weiss
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Namrata Singh
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
- , 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
26
|
Xie H, Wei L, Ruan G, Zhang H, Shi H. Interleukin-6 as a Pan-Cancer Prognostic Inflammatory Biomarker: A Population-Based Study and Comprehensive Bioinformatics Analysis. J Inflamm Res 2025; 18:573-587. [PMID: 39831196 PMCID: PMC11740593 DOI: 10.2147/jir.s484962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose Interleukin-6 (IL-6) is a central factor linking inflammation to cancer. This study aimed to provide a comprehensive assessment of the prognostic value of IL-6 and its immunotherapeutic features using a population-based pan-cancer analysis and comprehensive bioinformatic analysis. Patients and Methods In the cohort study, 540 patients were included to explore the prognostic value of serum IL-6 levels in cancer. The differential expression of IL-6 and its association with survival and immune cell infiltration were investigated using the TCGA database. The SangerBox database was used to analyze the correlation between IL-6 expression and immune checkpoint (ICP), tumor mutation burden (TMB), and microsatellite instability (MSI) in cancer. Genomic changes in the IL-6 levels were studied using the c-BioPortal database. The IL-6 co-expression network was analyzed using the LinkedOmics database. Results Serum IL-6 is an independent prognostic factor for cancer, especially gastrointestinal cancers. Compared to other serum inflammatory markers, serum IL-6 is an optimal biomarker for cancer prognosis. A comprehensive bioinformatics analysis showed higher IL-6 expression in human cancers than in the paired normal tissues. The IL-6 expression is closely associated with prognosis, ICP, TMB, and MSI. In addition, it is also strongly correlated with tumor-infiltrating cells. IL-6 levels are significantly associated with the prognosis of stomach adenocarcinoma (STAD). The IL-6 co-expression network in STAD is mainly involved in regulating inflammatory pathways and cell communication. Conclusion IL-6 is a potential prognostic and immune biomarker of cancer. Compared to other clinical inflammatory biomarkers, IL-6 demonstrates superior prognostic efficacy.
Collapse
Affiliation(s)
- Hailun Xie
- Department of Gastrointestinal and Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Lishuang Wei
- Department of Gastrointestinal and Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Guotian Ruan
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Heyang Zhang
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Hanping Shi
- Department of Gastrointestinal and Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
27
|
Cao Y, Zhao X, Miao Y, Wang X, Deng D. How the Versatile Self-Assembly in Drug Delivery System to Afford Multimodal Cancer Therapy? Adv Healthc Mater 2025; 14:e2403715. [PMID: 39587000 DOI: 10.1002/adhm.202403715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Indexed: 11/27/2024]
Abstract
The rapid development of self-assembly technology during the past few decades has effectively addressed plenty of the issues associated with carrier-based drug delivery systems, such as low loading efficiency, complex fabrication processes, and inherent toxicity of carriers. The integration of nanoscale delivery systems with self-assembly techniques has enabled efficient and targeted self-administration of drugs, enhanced bioavailability, prolonged circulation time, and controllable drug release. Concurrently, the limitations of single-mode cancer treatment, including low bioavailability, poor therapeutic outcomes, and significant side effects, have highlighted the urgent need for multimodal combined antitumor therapies. Set against the backdrop of multimodal cancer therapy, this review summarizes the research progress and applications of a large number of self-assembled drug delivery platforms, including natural small molecule self-assembled, carrier-free self-assembled, amphiphilic polymer-based self-assembled, peptide-based self-assembled, and metal-based self-assembled nano drug delivery systems. This review particularly analyzes the latest advances in the application of self-assembled nano drug delivery platforms in combined antitumor therapies mediated by chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, and immunotherapy, providing innovative research insights for further optimization and expansion of self-assembled nano drug delivery systems in the clinical translation and development of antitumor combined therapy.
Collapse
Affiliation(s)
- Yuqi Cao
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaomin Zhao
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuhang Miao
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Dawei Deng
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
28
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
29
|
Yao W, Zhao K, Li X. Platelet stimulation-regulated expression of ILK and ITGB3 contributes to intrahepatic cholangiocarcinoma progression through FAK/PI3K/AKT pathway activation. Cell Mol Life Sci 2024; 82:19. [PMID: 39725790 DOI: 10.1007/s00018-024-05526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal hepatobiliary malignancy with an increasing incidence annually. Extensive research has elucidated the existence of a reciprocal interaction between platelets and cancer cells, which promotes tumor proliferation and metastasis. This study aims to investigate the function and mechanism underlying iCCA progression driven by the interplay between platelets and tumor cells, aiming to provide novel therapeutic strategies for iCCA. METHODS The associations between platelets and cancer development were investigated by analyzing the peripheral blood platelet count, degree of platelet activation and infiltration in the microenvironment of patients with iCCA. By co-culturing tumor cells with platelets, the influence of platelet stimulation on the epithelial-mesenchymal transition (EMT), proliferation, and metastasis of iCCA cells was assessed through in vitro and in vivo experiments. Quantitative proteomic profiling was conducted to identify key downstream targets that were altered in tumor cells following platelet stimulation. The RNA interference technique was utilized to investigate the impacts of gene silencing on the malignant biological behaviors of tumor cells. RESULTS Compared with healthy adults, patients with iCCA presented significantly higher levels of peripheral blood platelet counts, platelet activation and infiltration degrees, which were also found to be correlated with patient prognosis. Platelet stimulation greatly facilitated the EMT of iCCA cells, leading to enhanced proliferative and metastatic capabilities. Mechanistically, proteomic profiling identified a total of 67 up-regulated and 40 down-regulated proteins in iCCA cells co-cultured with platelets. Among these proteins, two elevated targets ILK and ITGB3, were further demonstrated to be partially responsible for platelet-induced iCCA progression, which might depend on their regulatory effects on FAK/PI3K/AKT signaling transduction. CONCLUSIONS Our data revealed that platelet-related indices were abnormally ascendant in iCCA patients compared to healthy adults. Co-culturing with platelets enhanced the progression of EMT, and the motility and viability of iCCA cells in vitro and in vivo. Proteomic profiling discovered that platelets promoted the development of iCCA through FAK/PI3K/AKT pathway by means of elevating the expression of ILK and ITGB3, indicating that both proteins are promising therapeutic targets for iCCA with the guidance of platelet-related indices.
Collapse
Affiliation(s)
- Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
30
|
Aebisher D, Bartusik-Aebisher D, Przygórzewska A, Oleś P, Woźnicki P, Kawczyk-Krupka A. Key Interleukins in Inflammatory Bowel Disease-A Review of Recent Studies. Int J Mol Sci 2024; 26:121. [PMID: 39795980 PMCID: PMC11719876 DOI: 10.3390/ijms26010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammatory bowel disease (IBD) is an immune disorder of the gastrointestinal tract with a complex aetiopathogenesis, whose development is influenced by many factors. The prevalence of IBD is increasing worldwide, in both industrialized and developing countries, making IBD a global health problem that seriously affects quality of life. In 2019, there were approximately 4.9 million cases of IBD worldwide. Such a large number of patients entails significant healthcare costs. In the treatment of patients with IBD, the current therapeutic target is mucosal healing, as intestinal inflammation often persists despite resolution of abdominal symptoms. Treatment strategies include amino salicylates, corticosteroids, immunosuppressants, and biologic therapies that focus on reducing intestinal mucosal inflammation, inducing and prolonging disease remission, and treating complications. The American College of Gastroenterology (ACG) guidelines also indicate that nutritional therapies may be considered in addition to other therapies. However, current therapeutic approaches are not fully effective and are associated with various limitations, such as drug resistance, variable efficacy, and side effects. As the chronic inflammation that accompanies IBD is characterized by infiltration of a variety of immune cells and increased expression of a number of pro-inflammatory cytokines, including IL-6, TNF-α, IL-12, IL-23 and IFN-γ, new therapeutic approaches are mainly targeting immune pathways. Interleukins are one of the molecular targets in IBD therapy. Interleukins and related cytokines serve as a means of communication for innate and adaptive immune cells, as well as nonimmune cells and tissues. These cytokines play an important role in the pathogenesis and course of IBD, making them promising targets for current and future therapies. In our work, we review scientific studies published between January 2022 and November 2024 describing the most important interleukins involved in the pathogenesis of IBD. Some of the papers present new data on the precise role that individual interleukins play in IBD. New clinical data have also been provided, particularly on blocking interleukin 23 and interleukin 1beta. In addition, several new approaches to the use of different interleukins in the treatment of IBD have been described in recent years.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| |
Collapse
|
31
|
Chen Y, Guo Y, Li S, Xu J, Zhao C, Wang J, Yang J, Ning W, Qu Y, Zhang M, Wang S, Zhang H. Tumor-derived IL-6 promotes chordoma invasion by stimulating tumor-associated macrophages M2 polarization and TNFα secretion. Int Immunopharmacol 2024; 143:113315. [PMID: 39393273 DOI: 10.1016/j.intimp.2024.113315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
AIMS Chordoma is a rare and aggressive bone tumor with high-recurrence and lack of effective treatment methods. Tumor associated macrophages (TAMs) are abundant in tumor microenvironment (TME) and polarize toward M2 in chordoma. It has been observed that the high proportion of M2 cells is associated with chordoma rapid progression. However, the mechanism of TAMs polarization and promotion to tumor progression in chordoma is still unclear. The is an urgent need for further research. MATERIALS AND METHODS Flow cytometry and immunohistochemical staining was used to detect the degree of macrophages infiltration in chordoma. A co-culture model of chordoma cells and macrophages was established in vitro to investigate the effects of their interaction on cell function, cytokine secretion, and RNA transcriptome expression. KEY FINDINGS In this study, we found M2 macrophage was predominantly abundant immune cell population in chordoma, and its proportion was associated with the degree of bone destruction. We demonstrated that interleukin 6 (IL-6) derived from chordoma cells could induce TAMs polarization by activating STAT3 phosphorylation, and TAMs could enhance chordoma cells migration and invasion through TNFα/NF-κB pathway. The interaction of chordoma cells and TAMs could promote the bone destruction-related factor Cathepsin B (CTSB) and inhibitory immune checkpoints expression. We also confirmed blocking IL-6/STAT3 pathway could significantly attenuate the M2 polarization of TAMs and decrease the secretion of TNFα. SIGNIFICANCE This study illustrates the dynamics between chordoma cells and TAMs in promoting chordoma invasion and suggests that IL-6/STAT3 pathway is a potential therapeutic target to reduce TAM-induced chordoma invasion.
Collapse
Affiliation(s)
- Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Chao Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jun Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jingjing Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
32
|
Shi N, Jiang S, Zhao Y, Zhang Y, Duan X, Hong GB, Yang Z, Duan Y, Niu H. HFD aggravated the arthritis and atherosclerosis by altering the intestinal status and gut microbiota. Mol Med 2024; 30:270. [PMID: 39716053 DOI: 10.1186/s10020-024-01014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Rheumatoid arthritis (RA) and cardiovascular disease (CVD) are both the chronic inflammatory disease. To investigate the influence of secondary atherosclerosis on arthritis mice, we treated the ApoE-/- mice with K/BxN serum and high fat diet (HFD), and subsequently assessed the phenotypes as well as immune profiles of K/BxN serum and HFD induced ApoE-/- mice. We found that HFD treatment aggravated the hyperlipidemia, atherosclerotic lesions, ankle swelling and arthropathy of mice. We further demonstrated that HFD altered the gut microbiota and metabolism, intestinal homeostasis and Th17/Treg cell balance in lamina propria lymphocytes. Moreover, HFD decreased the number of Peyer' s patches and altered the expression profiling of gut immune cells. In addition, HFD increased the number of aortic leukocytes and macrophages, then aggravated the atherosclerosis in aorta, which led to greater inflammation in mice aorta and aortic root. Collectively, our study indicated that HFD aggravated the arthritis and atherosclerosis, which may be contributed by microbiota dysbiosis, the intestinal permeability and disrupted immunological homeostasis.
Collapse
Affiliation(s)
- Na Shi
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application, School of Medicine, Institute of Laboratory Animal Sciences, Jinan University, Guangzhou, 510632, China
| | - Shan Jiang
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application, School of Medicine, Institute of Laboratory Animal Sciences, Jinan University, Guangzhou, 510632, China
| | - Yue Zhao
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application, School of Medicine, Institute of Laboratory Animal Sciences, Jinan University, Guangzhou, 510632, China
| | - Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Xinwang Duan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Guo-Bao Hong
- Department of Nephrology, The Affiliated Shunde Hospital of Jinan University, Guangdong, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical Sciences of Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Yuanyuan Duan
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application, School of Medicine, Institute of Laboratory Animal Sciences, Jinan University, Guangzhou, 510632, China.
| | - Haitao Niu
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application, School of Medicine, Institute of Laboratory Animal Sciences, Jinan University, Guangzhou, 510632, China.
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical Sciences of Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
33
|
Zou S, Ouyang M, Cheng Q, Shi X, Zhao Y, Sun M. IL-6R Inhibitors and Gastrointestinal Perforations: A Pharmacovigilance Study and a Predicting Nomogram. Biomedicines 2024; 12:2860. [PMID: 39767766 PMCID: PMC11673817 DOI: 10.3390/biomedicines12122860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Objective IL-6R inhibitors are widely used in many inflammation-related diseases, especially so during the COVID-19 pandemic. However, their relationship with gastrointestinal perforations (GIPs) has been reported more and more. We comprehensively analyzed IL-6R inhibitors in association with GIPs from the United States FDA Adverse Event Reporting System (FAERS). Methods: A disproportionate analysis was used to quantify the signals of GIPs caused by IL-6R inhibitors using two algorithms, and we assessed the risk using logistic regression analysis. We also established a risk prediction model of GIPs. Results: We identified 994 cases with GIPs of IL-6R inhibitors (tocilizumab and sarilumab) from the FAERS database. The GIPs signals of IL-6R inhibitors were significant, including tocilizumab (reporting odds ratio [ROR] 6.86, 95%CI 6.43-7.31) and sarilumab (ROR 4.03, 95%CI 2.83-5.73). Duodenal perforation had the strongest signals of tocilizumab (n = 312; ROR 19.45, 95%CI 17.33-21.83; IC025 3.72) and sarilumab (n = 14; ROR 9.57, 95%CI 5.66-16.17; IC025 1.92). The median time to GIPs was near 60 days. In total, 71% of the cases occurred within the first six months after tocilizumab treatment. After excluding missing data, we found that independent risk factors included female (OR 1.52, 95%CI 1.16-1.98), ≥40 years (OR 5.63, 95%CI 1.78-17.78), glucocorticoids (OR 1.37, 95%CI 1.10-1.72), and nonsteroidal anti-inflammatory drugs (NSAIDs, OR 3.46, 95%CI 2.77-4.32). The risk prediction model showed good discrimination and clinical applicability in both the training (AUC, 0.73) and validation (AUC, 0.75) sets. Conclusions: IL-6R inhibitors may increase the risk of GIPs, especially female, middle-aged patients, IL-6R inhibitors, NSAIDs, and glucocorticoids. Therefore, we suggest that these factors associated with gastrointestinal reactions should be considered during treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Minghui Sun
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (S.Z.); (M.O.); (Q.C.); (X.S.); (Y.Z.)
| |
Collapse
|
34
|
Xu Z, Zhu J, Ma Z, Zhen D, Gao Z. Combined Bulk and Single-Cell Transcriptomic Analysis to Reveal the Potential Influences of Intestinal Inflammatory Disease on Multiple Sclerosis. Inflammation 2024:10.1007/s10753-024-02195-z. [PMID: 39680254 DOI: 10.1007/s10753-024-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Multiple sclerosis (MS) and inflammatory bowel disease (IBD) are both autoimmune disorders caused by dysregulated immune responses. Still, there is a growing awareness of the comorbidity between MS and IBD. However, the shared pathophysiological mechanisms between these two diseases are still lacking. RNA sequencing datasets (GSE126124, GSE9686, GSE36807, GSE21942) were analyzed to identify the shared differential expressed genes (DEGs) for IBD and experimental allergic encephalomyelitis (EAE). Other datasets (GSE17048, GSE75214, and GSE16879) were downloaded for further verification and analysis. Shared pathways and regulatory networks were explored based on these DEGs. The single-cell transcriptome of central nervous system (CNS) immune cells sequenced from EAE brains and the public datasets of IBD (PRJCA003980) were analyzed for the immune characteristics of the shared DEGs. Mass cytometry by time-of-flight (CyTOF) of peripheral blood mononuclear cells (PBMCs) was performed for the systematic immune response in the EAE model. Machine learning algorithms were also used to identify the diagnostic biomarkers of MS. We identified 74 common DEGs from the selected RNA sequencing datasets, and single-cell RNA data of the intestinal tissues of IBD patients showed that 56 of 74 DEGs were highly enriched in IL1B+ macrophages. These 56 DEGs, defined as inflammation-related DEGs (IRGs), were also highly expressed in pro-inflammatory macrophages of EAE mice and MS patients. The abundance of systematic CD14+ monocytes was validated by CyTOF data. These IRGs were highly enriched in immune response, NOD-like receptor signaling pathway, IL-18 signaling pathway, and other related pathways. In addition, 'AddModuleScore_UCell' analysis further validated that these IRGs (such as IL1B, S100A8, and other inflammatory factors) are highly expressed mainly in pro-inflammatory macrophages, which play an essential role in pro-inflammatory activation in IBD and multiple sclerosis, such as IL-17 signaling pathway, NF-kappa B signaling pathway, and TNF signaling pathway. Finally, suppressors of cytokine signaling 3(SOCS3) and formyl peptide receptor 2(FPR2) were identified as potential biomarkers by machine learning. Two genes were highly expressed in pro-inflammatory macrophages of IBD and MS disease compared to control, and other datasets and experiments further revealed that SOCS3 and FPR2 were highly expressed in IBD and EAE samples. These shared IRGs, which encode inflammatory cytokines, exhibit high expression levels in inflammatory macrophages in IBD and may play a significant role in the inflammatory cytokine storm in MS patients. Two potential biomarkers, SOCS3 and FPR2, were screened out with great diagnostic value for MS and IBD.
Collapse
Affiliation(s)
- Zhu Xu
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China.
- Guizhou Medical University, Guizhou, China.
| | - Junyu Zhu
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| | - Zhuo Ma
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| | - Dan Zhen
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| | - Zindan Gao
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| |
Collapse
|
35
|
Chen X, Lou Y, Zhou F, Shi D, Liu X, Tao F. Identification of novel indolinone derivatives as CTSC inhibitors to treat inflammatory bowel disease by modulating inflammatory factors. Eur J Med Chem 2024; 280:116914. [PMID: 39383651 DOI: 10.1016/j.ejmech.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Novel inflammatory bowel disease (IBD) therapeutic drugs, mainly biologics that neutralize pro-inflammatory factors and janus kinase inhibitors that inhibit cytokine-mediated signal transduction, face problems including low efficacy rates, limited therapeutic benefits, and infection risks. It is an important task to find proteins that broadly regulate a variety of cytokines and to develop corresponding drugs. Cathepsin C (CTSC) mediates neutrophil-related inflammatory, participates in the recruitment and activation of inflammatory cells, and regulates cytokines levels, and is considered an ideal target for IBD treatment. In this study, starting from the in-house molecule, through medicinal chemistry and target-based design, a novel CTSC inhibitor B22 with IBD therapeutic efficacy was discovered. In vitro target verification and mechanism study indicated that B22 inhibit CTSC activity by binding to S2 pocket and S1 site, further inhibiting downstream serine protease activity. In addition, B22 exhibited anti-inflammatory activity and regulated various cytokines levels. In vivo studies highlighted B22 bears acceptable toxicity and suitable pharmacokinetic properties, and displays anti-inflammatory activity in IBD model. In conclusion, B22 is a potential anti-inflammatory molecule for IBD by targeting CTSC and deserves further research.
Collapse
Affiliation(s)
- Xing Chen
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, PR China
| | - Yan Lou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Feilong Zhou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Daxing Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China.
| | - Fangbiao Tao
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
36
|
Liu Y, Yu X, Shen H, Hong Y, Hu G, Niu W, Ge J, Xuan J, Qin JJ, Li Q. Mechanisms of traditional Chinese medicine in the treatment and prevention of gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156003. [PMID: 39305742 DOI: 10.1016/j.phymed.2024.156003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Gastric cancer (GC) ranks as the fifth most prevalent malignancy worldwide. Conventional treatments, including radiotherapy and chemotherapy, often induce severe side effects and significant adverse reactions, and they may also result in drug resistance. Consequently, there is a critical need for the development of new therapeutic agents. Traditional Chinese Medicine (TCM) and natural products are being extensively researched due to their low toxicity, multi-targeted approaches, and diverse pathways. Scholars are increasingly focusing on identifying active anticancer components within TCM. PURPOSE This review aims to summarise research conducted over the past 14 years on the treatment of GC using TCM. The focus is on therapeutic targets, mechanisms, and efficacy of Chinese medicine and natural products, including monomer compounds, extracts or analogues, and active ingredients. METHODS Relevant articles on TCM and GC were retrieved from PubMed using appropriate keywords. The collected articles were screened and classified according to the types of TCM, with an emphasis on the molecular mechanisms underlying the treatment of GC. RESULTS The research on TCM indicates that TCM and natural products can effectively inhibit the metastasis, proliferation, and invasion of tumour cells. They can also induce apoptosis, autophagy and improve the chemosensitivity of drug-resistant cells. Additionally, injections derived from Chinese herbal medicine, when used as an adjunct to conventional chemotherapy, can significantly improve the prognosis of GC patients by reducing chemotherapy toxicity. CONCLUSION This review summarises the progress of TCM treatment of GC over the past 14 years, and discusses its therapeutic application of GC, which proves that TCM is a promising treatment strategy for GC in the future.
Collapse
Affiliation(s)
- Yanyang Liu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuefei Yu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China
| | - Huize Shen
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yangjian Hong
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaofeng Hu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenyuan Niu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaming Ge
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Xuan
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Yang S, Li Y, Zhang Y, Wang Y. Impact of chronic stress on intestinal mucosal immunity in colorectal cancer progression. Cytokine Growth Factor Rev 2024; 80:24-36. [PMID: 39490234 DOI: 10.1016/j.cytogfr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Chronic stress is a significant risk factor that contributes to the progression of colorectal cancer (CRC) and has garnered considerable attention in recent research. It influences the distribution and function of immune cells within the intestinal mucosa through the "brain-gut" axis, altering cytokine and chemokine secretion and creating an immunosuppressive tumor microenvironment. The intestine, often called the "second brain," is particularly susceptible to the effects of chronic stress. Cytokines and chemokines in intestinal mucosal immunity(IMI) are closely linked to CRC cells' proliferation, metastasis, and drug resistance under chronic stress. Recently, antidepressants have emerged as potential therapeutic agents for CRC, possibly by modulating IMI to restore homeostasis and exert anti-tumor effects. This article reviews the role of chronic stress in promoting CRC progression via its impact on intestinal mucosal immunity, explores potential targets within the intestinal mucosa under chronic stress, and proposes new approaches for CRC treatment.
Collapse
Affiliation(s)
- Shengya Yang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
38
|
Yang Y, Qiao Y, Liu G, Yi G, Liu H, Zhang T, Tong M. Protective effect of a newly probiotic Lactobacillus reuteri LY2-2 on DSS-induced colitis. Eur J Nutr 2024; 64:5. [PMID: 39546032 DOI: 10.1007/s00394-024-03535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE This study aimed to investigate the role of a newly isolated strain L.reuteri LY2-2 in colitis in mice and explored the underlying mechanisms. METHODS L. REUTERI LY2-2 was orally administered to mice with dextran sulfate sodium (DSS)-induced colitis. 5-Aminosalicylic acid (5-ASA) treatment was used as the drug control. RESULTS The results showed that the disease severity of colitis mice was significantly alleviated. The intestinal inflammation was restricted by synergistically reducing pro-inflammatory cytokines, inhibiting TLR4-NF-κB signaling, restoring the abnormal immune response, and enhancing intestinal barrier function. Of note, L.reuteri LY2-2 showed great potential in modulating macrophages polarization in colonic tissues. Moreover, the gut dysbiosis was improved. The potentially pro-inflammatory pathogenic bacteria such as Helicobacter and Romboutsia decreased and the probiotics including L.rhamnosus and L.plantarum increased. Interestingly, the above pathological indexes in the L.reuteri LY2-2 group were better than those in the 5-ASA group. CONCLUSION L.reuteri LY2-2 had a better protective effect on DSS-induced colitis via its anti-inflammatory and microbiota-balancing properties, which supports the potential value of this probiotic against colitis. These results contribute to product development of functional probiotics for colitis and provide valuable insights for their mechanisms of biological function to affect human health status.
Collapse
Affiliation(s)
- Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China
| | - Yuyu Qiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China
| | - Ge Liu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China
| | - Gaoqin Yi
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China
| | - Hongli Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Ting Zhang
- Department of Ruminant Nutrition, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China.
| |
Collapse
|
39
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
40
|
Fang YF, Chang SH, Kuo CF, See LC. Safety outcomes of tocilizumab and tofacitinib treatment for rheumatoid arthritis: Target trial emulation. Int J Rheum Dis 2024; 27:e15406. [PMID: 39523495 DOI: 10.1111/1756-185x.15406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Biological disease-modifying antirheumatic drugs have been the primary treatment option for moderate to severe rheumatoid arthritis (RA) in Taiwan since 2010. Tocilizumab is an interleukin-6 receptor inhibitor, whereas tofacitinib is a Janus kinase inhibitor. The two medications were indicated to treat RA by direct and indirect inhibition of interleukin-6 cytokine. We compared the safety outcomes of tocilizumab and tofacitinib in patients with RA in real-world clinical settings, following the 7 key components of target trial emulation (TTE). METHODS The data source was the Taiwan National Health Insurance Research Database. Patients with RA between 2010 and 2018 were eligible and assigned to either tocilizumab or tofacitinib based on their first prescription of these two medications. The index date was set as the first prescription date of either study medication. Propensity score stabilized weighting (PSSW) was used to balance the characteristics between the two medication groups. The incidences of safety outcomes were all-cause mortality, cancer, coronary heart disease, stroke, venous thrombosis events, tuberculosis, joint replacement events, and herpes zoster infection. The intention-to-treat (ITT) effect was commenced from the index date until the study outcomes, independently, 3 years, withdrawal, or December 31, 2021, whichever occurred first. For the per-protocol (PP) effect, patients were required to maintain the same medical group during the entire follow-up period. RESULTS A total of 2125 patients with RA who were prescribed tocilizumab (n = 844) or tofacitinib (n = 1281) were included in this study. The mean follow-up duration was 2.78 years in the tocilizumab group and 2.83 years in the tofacitinib group. For ITT, the sample sizes were 721 and 1196 for the tocilizumab and tofacitinib, respectively, after PSSW. A substantially lower incidence rate of herpes zoster infection (per 100 patient-years) was observed in the tocilizumab group (3.67) than in the tofacitinib group (7.61), with a hazard ratio of 0.48 (95%CI =0.37-0.63; p < .0001). All-cause mortality, cancer, coronary heart disease, stroke, total hip replacement, and tuberculosis were similar between the two medication groups. For PP, the sample sizes were 619 and 1085 for the tocilizumab and tofacitinib, respectively, after PSSW. The results of the PP analysis were similar to those of the ITT analysis. CONCLUSIONS Tocilizumab and tofacitinib act along the same inflammatory pathway. A lower herpes zoster incident rate was observed in the tocilizumab group than in the tofacitinib group. The incidence rates of other safety concerns and mortality rates were comparable in both groups of patients with RA treated in real-world settings.
Collapse
Affiliation(s)
- Yao-Fan Fang
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Shu-Hao Chang
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chang-Fu Kuo
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Lai-Chu See
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Biostatistics Core Laboratory, Molecular Medicine Research Centre, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
41
|
Mado H, Stasiniewicz A, Adamczyk-Sowa M, Sowa P. Selected Interleukins Relevant to Multiple Sclerosis: New Directions, Potential Targets and Therapeutic Perspectives. Int J Mol Sci 2024; 25:10931. [PMID: 39456713 PMCID: PMC11506881 DOI: 10.3390/ijms252010931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that progresses with demyelination and neurodegeneration. To date, many studies have revealed the key role of interleukins in the pathogenesis of MS, but their impact has not been fully explained. The aim of the present study was to collect and review the results obtained so far regarding the influence of interleukins on the development and course of MS and to assess the potential for their further use. Through the platform "PubMed", terms related to interleukins and MS were searched. The following interval was set as the time criterion: 2014-2024. A total of 12,731 articles were found, and 100 papers were subsequently used. Cells that produce IL-10 have a neuroprotective effect, whereas those that synthesize IL-6 most likely exacerbate neuroinflammation. IL-12, IL-23 and IL-18 represent pro-inflammatory cytokines. It was found that treatment with an anti-IL-12p40 monoclonal antibody in a study group of MS patients showed a beneficial effect. IL-4 is a pleiotropic cytokine that plays a significant role in type 2 immune responses and inhibits MS progression. IL-13 is an anti-inflammatory cytokine through which the processes of oligodendrogenesis and remyelination occur more efficiently. The group of interleukins discussed in our paper may represent a promising starting point for further research aimed at finding new therapies and prognostic markers for MS.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Artur Stasiniewicz
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
42
|
Tang ML, Xiong XY, Zhang H, Wang YZ, Cheng RQ, Zuo J, Jin L, Lin ZM, Chang J. From Hit to Lead: Discovery of First-In-Class Furanone Glycoside D228 Derived from Chimonanthus salicifolius for the Treatment of Inflammatory Bowel Disease. J Med Chem 2024; 67:17101-17123. [PMID: 39298383 DOI: 10.1021/acs.jmedchem.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
TNFα and related inflammatory factor antibody drugs have been orchestrated for the treatment of inflammatory bowel disease (IBD). However, antibody drugs elicited inevitable disadvantages and small molecule drugs are in an urgent need. Herein, we described the discovery, design, synthesis, and SAR studies from furanone glycoside compound Phoenicein (hit) isolated from Chimonanthus salicifolius to D228 (lead). Remarkably, D228 exhibited good inhibitory activity on B and T lymphocyte and excellent anti-IBD efficacy in vivo. Mechanistically, D228 alleviated the inflammation response by downregulating the MyD88/TRAF6/p38 signaling. Importantly, the relationship of D228, Phoenicein, and their aglycone 7a was deduced: D228 could be considered as a prodrug and metabolized to intermediate Phoenicein. In turn, Phoenicein released their shared active aglycone 7a. Additionally, D228 demonstrated good and balanced profiles of safety and efficacy both in vitro and in vivo. These results suggested that D228 could be used as an ideal lead and potentially utilized for IBD chemotherapy.
Collapse
Affiliation(s)
- Mei-Lin Tang
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xiao-Yu Xiong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Heyanhao Zhang
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yun-Zhi Wang
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Rong-Qian Cheng
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Jin
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ze-Min Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Chang
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
43
|
Gu K, May HA, Kang MH. Targeting Molecular Signaling Pathways and Cytokine Responses to Modulate c-MYC in Acute Myeloid Leukemia. Front Biosci (Schol Ed) 2024; 16:15. [PMID: 39344393 DOI: 10.31083/j.fbs1603015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Overexpression of the MYC oncogene, encoding c-MYC protein, contributes to the pathogenesis and drug resistance of acute myeloid leukemia (AML) and many other hematopoietic malignancies. Although standard chemotherapy has predominated in AML therapy over the past five decades, the clinical outcomes and patient response to treatment remain suboptimal. Deeper insight into the molecular basis of this disease should facilitate the development of novel therapeutics targeting specific molecules and pathways that are dysregulated in AML, including fms-like tyrosine kinase 3 (FLT3) gene mutation and cluster of differentiation 33 (CD33) protein expression. Elevated expression of c-MYC is one of the molecular features of AML that determines the clinical prognosis in patients. Increased expression of c-MYC is also one of the cytogenetic characteristics of drug resistance in AML. However, direct targeting of c-MYC has been challenging due to its lack of binding sites for small molecules. In this review, we focused on the mechanisms involving the bromodomain and extra-terminal (BET) and cyclin-dependent kinase 9 (CDK9) proteins, phosphoinositide-Akt-mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase-signal transduction and activation of transcription (JAK/STAT) pathways, as well as various inflammatory cytokines, as an indirect means of regulating MYC overexpression in AML. Furthermore, we highlight Food and Drug Administration (FDA)-approved drugs for AML, and the results of preclinical and clinical studies on novel agents that have been or are currently being tested for efficacy and tolerability in AML therapy. Overall, this review summarizes our current knowledge of the molecular processes that promote leukemogenesis, as well as the various agents that intervene in specific pathways and directly or indirectly modulate c-MYC to disrupt AML pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyle Gu
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Harry A May
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
44
|
Shi T, Sun M, Tuerhong S, Li M, Wang J, Wang Y, Zheng Q, Zou L, Lu C, Sun Z, Zou Z, Shao J, Du J, Li R, Liu B, Meng F. Acidity-targeting transition-aided universal chimeric antigen receptor T-cell (ATT-CAR-T) therapy for the treatment of solid tumors. Biomaterials 2024; 309:122607. [PMID: 38759487 DOI: 10.1016/j.biomaterials.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The use of CAR-T cells in treating solid tumors frequently faces significant challenges, mainly due to the heterogeneity of tumor antigens. This study assessed the efficacy of an acidity-targeting transition-aided universal chimeric antigen receptor T (ATT-CAR-T) cell strategy, which is facilitated by an acidity-targeted transition. Specifically, the EGFRvIII peptide was attached to the N-terminus of a pH-low insertion peptide. Triggered by the acidic conditions of the tumor microenvironment, this peptide alters its structure and selectively integrates into the membrane of solid tumor cells. The acidity-targeted transition component effectively relocated the EGFRvIII peptide across various tumor cell membranes; thus, allowing the direct destruction of these cells by EGFRvIII-specific CAR-T cells. This method was efficient even when endogenous antigens were absent. In vivo tests showed marked antigen modification within the acidic tumor microenvironment using this component. Integrating this component with CAR-T cell therapy showed high effectiveness in combating solid tumors. These results highlight the capability of ATT-CAR-T cell therapy to address the challenges presented by tumor heterogeneity and expand the utility of CAR-T cell therapy in the treatment of solid tumors.
Collapse
Affiliation(s)
- Tianyu Shi
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengna Sun
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Subiyinuer Tuerhong
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengru Li
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Jiayu Wang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yingxin Wang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Qinghua Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lu Zou
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Changchang Lu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhichen Sun
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhengyun Zou
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Jie Shao
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Juan Du
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Rutian Li
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Fanyan Meng
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
45
|
Hu C, Cao F, Jiang Y, Liu K, Li T, Gao Y, Li W, Han W. Molecular insights into chronic atrophic gastritis treatment: Coptis chinensis Franch studied via network pharmacology, molecular dynamics simulation and experimental analysis. Comput Biol Med 2024; 178:108804. [PMID: 38941899 DOI: 10.1016/j.compbiomed.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Chronic atrophic gastritis (CAG), characterized by inflammation and erosion of the gastric lining, is a prevalent digestive disorder and considered a precursor to gastric cancer (GC). Coptis chinensis France (CCF) is renowned for its potent heat-clearing, detoxification, and anti-inflammatory properties. Zuojin Pill (ZJP), a classic Chinese medicine primarily composed of CCF, has demonstrated effectiveness in CAG treatment. This study aims to elucidate the potential mechanism of CCF treatment for CAG through a multifaceted approach encompassing network pharmacology, molecular docking, molecular dynamics simulation and experimental verification. The study identified three major active compounds of CCF and elucidated key pathways, such as TNF signaling, PI3K-Akt signaling and p53 signaling. Molecular docking revealed interactions between these active compounds and pivotal targets like PTGS2, TNF, MTOR, and TP53. Additionally, molecular dynamics simulation validated berberine as the primary active compound of CCF, which was further confirmed through experimental verification. This study not only identified berberine as the primary active compound of CCF but also provided valuable insights into the molecular mechanisms underlying CCF's efficacy in treating CAG. Furthermore, it offers a reference for refining therapeutic strategies for CAG management.
Collapse
Affiliation(s)
- Chengxiang Hu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Fuyan Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yongxin Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Wannan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
46
|
Nie J, Jiang X, Wang G, Xu Y, Pan R, Yu W, Li Y, Wang J. Yu-Ping-Feng-San alleviates inflammation in atopic dermatitis mice by TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118092. [PMID: 38604509 DOI: 10.1016/j.jep.2024.118092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yu-Ping-Feng-San (YPF) is a traditional Chinese medicine formula that has therapeutic effects on allergic diseases such as allergic rhinitis and asthma. However, its potential efficacy and mechanism in the treatment of atopic dermatitis (AD) has not been extensively illustrated. AIM OF THE STUDY The purpose of this study was to investigate the efficacy and possible mechanisms of YPF in AD pathogenesis. METHODS Network pharmacology and GEO data mining were adopted to firstly identify the potential mechanisms of YPF on AD. Then DNCB induced-AD murine model was established to test the efficacy of YPF and verify its effects on inflammatory cytokines and NF-κB pathway. In addition, molecular docking was performed to detect the binding affinity of YPF's active components with NF-κB pathway related molecules. RESULTS Network pharmacology and human data mining suggested that YPF may act on the NF-κB pathway in AD pathogenesis. With DNCB mice model, we found that YPF significantly improved AD symptoms, reduced SCORAD scores, and alleviated skin tissue inflammation in mice. At the same time, the expression of inflammatory cytokines, TNF-α, sPLA2-IIA and IL-6, was down-regulated. Moreover, YPF suppressed TLR4/MyD88/NF-κB pathway in situ in a dose-dependent manner. Molecular docking further confirmed that seven compounds in YPF had exceptional binding properties with TNF-α, IL-6 and TLR4. CONCLUSION YPF may help the recovery of AD by inhibiting the TLR4/MyD88/NF-κB pathway, which provides novel insights for the treatment of AD by YPF.
Collapse
Affiliation(s)
- Jing Nie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China; Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoyuan Jiang
- FangShan Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Guomi Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China.
| | - Yanan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Rui Pan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Wantao Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuanwen Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
47
|
Chen WJ, Pan XW, Song X, Liu ZC, Xu D, Chen JX, Dong KQ, Di SC, Ye JQ, Gan SS, Wang LH, Zhou W, Cui XG. Preoperative neoadjuvant targeted therapy remodels intra-tumoral heterogeneity of clear-cell renal cell carcinoma and ferroptosis inhibition induces resistance progression. Cancer Lett 2024; 593:216963. [PMID: 38768682 DOI: 10.1016/j.canlet.2024.216963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Neoadjuvant tyrosine kinase inhibitor (TKI) therapy is an important treatment option for advanced renal cell carcinoma (RCC). Many RCC patients may fail to respond or be resistant to TKI therapy. We aimed to explore the key mechanisms of neoadjuvant therapy résistance. We obtained tumor samples from matched pre-treatment biopsy and post-treatment surgical samples and performed single-cell RNA sequencing. Sunitinib-resistant ccRCC cell lines were established. Ferroptosis was detected by ferrous ion and lipid peroxidation levels. Tumor growth and resistance to Sunitinib was validated in vitro and vivo. Immunohistochemistry was used to validate the levels key genes and lipid peroxidation. Multi-center cohorts were included, including TCGA, ICGC, Checkmate-025 and IMmotion151 clinical trial. Survival analysis was performed to identify the associated clinical and genomic variables. Intratumoral heterogeneity was first described in the whole neoadjuvant management. The signature of endothelial cells was correlated with drug sensitivity and progression-free survival. Ferroptosis was shown to be the key biological program in malignant cell resistance. We observed tissue lipid peroxidation was negatively correlated with IL6 and tumor response. TKI-resistant cell line was established. SLC7A11 knockdown promoted cell growth and lipid peroxidation, increased the ferroptosis level, and suppressed the growth of tumor xenografts significantly (P < 0.01). IL6 could reverse the ferroptosis and malignant behavior caused by SLC7A11 (-) via JAK2/STAT3 pathway, which was rescued by the ferroptosis inducer Erastin. Our data indicate that ferroptosis is a novel strategy for advanced RCC treatment, which activated by IL6, providing a new idea for resistance to TKIs.
Collapse
Affiliation(s)
- Wen-Jin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China; Depanrtment of Urology, Third Affiliated Hospital of the Naval Medical University, Shanghai, 201805, China.
| | - Xiu-Wu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xu Song
- Department of Urology, Shanghai Seventh People's Hospital, Shanghai, 200137, China.
| | - Zi-Chang Liu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Da Xu
- Depanrtment of Urology, Third Affiliated Hospital of the Naval Medical University, Shanghai, 201805, China.
| | - Jia-Xin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Ke-Qin Dong
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Si-Chen Di
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jian-Qing Ye
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Si-Shun Gan
- Depanrtment of Urology, Third Affiliated Hospital of the Naval Medical University, Shanghai, 201805, China.
| | - Lin-Hui Wang
- Department of Urology, Changhai Hospital of Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Wang Zhou
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xin-Gang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China; Depanrtment of Urology, Third Affiliated Hospital of the Naval Medical University, Shanghai, 201805, China.
| |
Collapse
|
48
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
49
|
Yu Z, Wang J, Xia W, Wang Y, Zhang Y, Tang J, Cui H, Yang X, Bao C, Ye Z. The Development of an Isotope Dilution Mass Spectrometry Method for Interleukin-6 Quantification. Int J Mol Sci 2024; 25:6777. [PMID: 38928482 PMCID: PMC11203838 DOI: 10.3390/ijms25126777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inflammatory responses and tumor developments are closely related, with interleukin-6 (IL-6) playing important roles in both processes. IL-6 has been extensively identified as a potential tumor biomarker. This study developed an isotope dilution mass spectrometry (IDMS) method for quantifying IL-6 based on signature peptides. These peptides were screened by excluding those with missed cleavage or post-translational modification. The method's accuracy was verified using amino acid-based IDMS, in which purified IL-6 protein samples were quantified after hydrolyzing them into amino acids, and no significant difference was observed (p-value < 0.05). The method demonstrated good linearity and sensitivity upon testing. The specificity and matrix effect of the method were verified, and a precision study showed that the coefficient of variation was less than 5% for both the intra-day and inter-day tests. Compared to immunoassays, this method offers distinct advantages, such as the facilitation of multi-target analysis. Furthermore, the peptides used in this study are much more convenient for storage and operation than the antibodies or purified proteins typically used in immunoassays.
Collapse
Affiliation(s)
- Zetao Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Jing Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Wenqiang Xia
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China;
| | - Yuemin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Jintian Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Xiaoying Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Chenchen Bao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| |
Collapse
|
50
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|