1
|
Li H, Wang G, Tang Y, Wang L, Jiang Z, Liu J. Rhein alleviates diabetic cardiomyopathy by inhibiting mitochondrial dynamics disorder, apoptosis and hypertrophy in cardiomyocytes. Cell Signal 2025; 131:111734. [PMID: 40081546 DOI: 10.1016/j.cellsig.2025.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a significant cardiovascular complication in diabetic patients, and treatment regimens are limited. Rhein, a compound extracted from the herb rhubarb, was investigated in this study for its efficacy on DCM and the potential mechanism. METHODS Streptozotocin-induced DCM mice, high-glucose (HG)-treated neonatal rat cardiomyocytes (NRCMs), and H9c2 cells with ClpP knockdown were used for the study. We performed phenotypic and molecular mechanistic studies using immunoblotting, quantitative polymerase chain reaction, transmission electron microscopy, cardiac echocardiography, and histopathological analysis. RESULTS Rhein improved the cardiac function and myocardial fibrosis, and decreased the cross-sectional area of cardiomyocytes in the DCM mice. It also improved mitochondrial dynamic disorder as evidenced by a decreased ratio of mitochondrial fission-related proteins p-Drp1S616/ Drp1 and increased expression of mitochondrial fusion proteins (Opa1, Mfn1 and Mfn2). Rhein mitigated apoptosis as indicated by decreased apoptosis-related proteins (caspase 9, cleaved-caspase 3 and Bax) and increased anti-apoptosis protein Bcl2 in the heart tissue of DCM mice. Upregulations of cardiac hypertrophy associated genes (ANP, BNP and β-MHC) were significantly inhibited by Rhein treatment. In addition, the level of ClpP, a mitochondrial protease, was increased in DCM, but was normalized by Rhein treatment. However, ClpP knockdown exacerbated cardiomyocyte injury in the presence or absence of HG in H9c2 cells, indicating that a normal level of ClpP is essential for cardiomyocytes to survive. CONCLUSIONS Our results suggest that Rhein protects DCM by ameliorating mitochondrial dynamics disorder, inhibiting cardiomyocyte apoptosis, and myocardial hypertrophy. These protective effects of Rhein may be mediated by preventing ClpP upregulation.
Collapse
Affiliation(s)
- Hejuan Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Genwang Wang
- Department of Health Service, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Tang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China.
| | - Jing Liu
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Weeks KL, Bernardo BC, Bell JR, Lmd D, Mellor KM. New insights into diabetes-induced cardiac pathology. J Mol Cell Cardiol 2025:S0022-2828(25)00066-5. [PMID: 40262687 DOI: 10.1016/j.yjmcc.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Individuals with diabetes have an elevated risk of heart disease, and there is a significant clinical need for evidence-based treatments. Heart disease in diabetes manifests as a distinct cardiopathology, with cardiac structural and functional remodeling underlying increased susceptibility to cardiac dysfunction and arrhythmias. An understanding of the mechanisms associated with cardiac vulnerability in diabetes is incomplete, but recent studies have advanced new insights into the roles of metabolic disturbances, gene dysregulation and epicardial adipose influence. This perspective article highlights these three promising new developments in proposed mechanisms, and discusses exciting advances in cardiac-targeting for potential treatment of diabetic heart disease.
Collapse
Affiliation(s)
- K L Weeks
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - B C Bernardo
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - J R Bell
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Delbridge Lmd
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - K M Mellor
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Abdullah AR, Seliem MA, Khidr EG, Sobhy AM, El-Shiekh RA, Hafeez MSAE, El-Husseiny AA. A comprehensive review on diabetic cardiomyopathy (DCM): histological spectrum, diagnosis, pathogenesis, and management with conventional treatments and natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03980-9. [PMID: 40100371 DOI: 10.1007/s00210-025-03980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Diabetic complications are among the most pressing health issues currently. Cardiovascular problems, particularly diabetic cardiomyopathy (DCM), are responsible for almost 80% of diabetic deaths. Because of the increasing prevalence of diabetes and the increased threat of death from its consequences, researchers are searching for new pharmaceutical targets to delay or cure it. Currently, there are a few medicines available for the treatment of DCM, some of which have serious side effects. To address this issue, researchers are focusing on natural products. Thus, in this review, we discuss the prevalence, incidence, risk factors, histological spectrum, diagnosis, pathogenic pathways of DCM, genetic and epigenetic mechanisms involved in DCM, the current treatments, and the beneficial effects of natural product-based therapeutics. Natural treatments range from single doses to continuous regimens lasting weeks or months. Flavonoids are the largest class of natural compounds reported for the treatment of DCM. Natural regimens may cover the way for new treatment strategies for DCM for being multi-target agents in the treatment of DCM, with the ability to play a variety of functions via distinct signaling pathways.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Mahmoud A Seliem
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Ayah M Sobhy
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Mohamed S Abd El Hafeez
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
4
|
Ji K, Han M, Yang M, Xu Q, Zhang Y. Integrated meta-analysis and network pharmacology analysis: evaluation of Zhigancao decoction as treatment for diabetic cardiomyopathy. Front Cardiovasc Med 2025; 12:1454647. [PMID: 40161384 PMCID: PMC11949964 DOI: 10.3389/fcvm.2025.1454647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Background Zhigancao Decoction (ZGCD) is derived from "Treatise on Febrile Diseases" and is traditionally prescribed for treating a variety of cardiovascular conditions. As of now, there are no data to support its use as a treatment for diabetic cardiomyopathy (DCM) and the mechanism behind the effect is unclear as well. In the present study, clinical evidence for the efficacy of ZGCD in patients with DCM was examined using a meta-analysis and its underlying anti-DCM molecular mechanisms were explored via network pharmacology. Methods The current study utilized an extensive search strategy encompassing various domestic and foreign databases databases to retrieve pertinent articles published up to June 2024. In light of this, a thorough evaluation of the benefits and safety of Zhigancao decoction (ZGCD) was conducted in this study using RevMan and Stata. Subsequently, a number of active compounds and target genes for ZGCD were gathered from the TCMSP and BATMAN-TCM databases, while the main targets for DCM were obtained from databases such as GenCards, OMIM, TTD, and DrugBank. To select core genes, protein-protein interaction networks were generated using the STRING platform, and enrichment analyses were completed using the Metascape platform. Results Meta-analysis results were ultimately derived from 9 studies involving 661 patients in total. In comparison with WM therapy alone, the pooled results showed that ZGCD significantly enhanced overall effectiveness. Additionally, the utilization of ZGCD was leading to a reduction in LVEDV, LVESV and LVDD, also a greater increase in LVEF. Meanwhile, the utilization of ZGCD during intervention was more effective in reducing SBP, and DBP. In addition, the ZGCD showed potential in reducing the occurrence of adverse events. In the context of network pharmacology, five constituents of ZGCD-namely lysine, quercetin, gamma-aminobutyric acid, stigmasterol, and beta-sitosterol-are posited to exert anti-diabetic cardiomyopathy (anti-DCM) effects through interactions with the molecular targets ASS1, SERPINE1, CACNA2D1, AVP, APOB, ICAM1, EGFR, TNNC1, F2, F10, IGF1, TNNI2, CAV1, INSR, and INS. The primary mechanisms by which ZGCD may achieve its anti-DCM effects are likely mediated via the AGEs/RAGE signaling pathway, as well as through pathways related to lipid metabolism and atherosclerosis. Conclusion In comparison to WM therapy alone, ZGCD demonstrates greater efficacy and safety in the management of DCM. ZGCD not only significantly reduces blood pressure, but also enhances cardiac function while producing fewer adverse effects. The therapeutic effects of ZGCD on DCM can likely be ascribed to its capacity to modulate the AGEs-RAGE signaling pathway, as well as its efficacy in enhancing lipid metabolism and mitigating atherosclerosis. Systematic Review Registration identifier (INPLASY202430133).
Collapse
Affiliation(s)
- Kangshou Ji
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Meizi Han
- National Key Laboratory of Chinese Medicine Modernization, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Mingqian Yang
- Chinese Medicine College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qian Xu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Zhang
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
5
|
El-Afify D, El Amrousy D. Cardioprotective Effect of Nigella sativa in Pediatric Patients with Type 1 Diabetes Mellitus: A Randomized Controlled Study. Paediatr Drugs 2025. [DOI: 10.1007/s40272-025-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 04/02/2025]
|
6
|
Mthembu SX, Mazibuko-Mbeje SE, Silvestri S, Orlando P, Nkambule BB, Muller CJ, Tiano L, Dludla PV. Supplementation with aspalathin and sulforaphane protects cultured cardiac cells against dyslipidemia-associated oxidative damage. Metabol Open 2025; 25:100346. [PMID: 39882383 PMCID: PMC11774938 DOI: 10.1016/j.metop.2025.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.25 mM) to induce lipidemic-related complications. The results showed that both aspalathin and sulforaphane enhanced cellular metabolic activity and improved mitochondrial respiration correlating with improved mRNA expression of genes involved in mitochondrial function, including uncoupling protein 2, peroxisome proliferator-activated receptor, gamma coactivator 1-alpha, nuclear respiratory factor 1, and ubiquinol-cytochrome c reductase complex assembly factor 1. Beyond attenuating lipid peroxidation, the dietary compounds also suppressed intracellular reactive oxygen species and enhanced antioxidant responses, including the mRNA expression of nuclear factor erythroid 2-related factor 2. These envisaged benefits were associated with decreased cellular apoptosis. This preclinical study supports and warrants further investigation into the potential benefits of these dietary compounds or foods rich in aspalathin or sulforaphane in protecting against lipid-induced oxidative damage within the myocardium.
Collapse
Affiliation(s)
- Sinenhlanhla X.H. Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Department of Biochemistry, Mafikeng Campus, Northwest University, Mmabatho, 2735, South Africa
| | | | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
- Department of Human Sciences and Promotion of Quality of Life, University of San Raffaele, 00166 Roma, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J.F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Phiwayinkosi V. Dludla
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa
| |
Collapse
|
7
|
Shao F, Wieland J, Wang Y, Keles M, Meng Z, Lomada S, Qin M, Leiss V, Martin-Garrido A, Fuhrmann M, Qiu Y, Felix T, Vettel C, Heineke J, Feng Y. Deficiency in nucleoside diphosphate kinase B leads to endothelial activation of the hexosamine biosynthesis pathway and cardiac dysfunction. Cardiovasc Diabetol 2025; 24:84. [PMID: 39985023 PMCID: PMC11846329 DOI: 10.1186/s12933-025-02633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Nucleoside diphosphate kinase B (NDPKB) deficiency in endothelial cells (ECs) promotes the activation of the hexosamine biosynthesis pathway (HBP), leading to vascular damage in the retina. The aim of this study was to investigate the consequences of NDPKB deficiency in the mouse heart. METHODS NDPKB deficient mice were used in the study. Echocardiography was employed to assess cardiac function in vivo. Characterization of contractility in hiPSC-derived cardiomyocytes (hiPSC-CMs) was measured with the IonOptix contractility system. Immunoblotting and immunofluorescence were carried out to analyze the expression and localization of proteins in cultured cells and left ventricles (LVs). RESULTS NDPKB deficient mice displayed impaired glucose tolerance and increased heart weight compared to controls. Echocardiographic analysis revealed an increase in the diastolic diameter of the left ventricular posterior wall (LVPW), a decrease in the early diastolic mitral valve E and E' wave, and in the ratios of E/A and E'/A' in NDPKB deficient hearts, suggesting cardiac hypertrophy and diastolic dysfunction. In line with cardiac dysfunction, the phosphorylation of myocardial phospholamban (PLN) and the expression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) in the NDPKB deficient LVs were significantly reduced. Moreover, the accumulation of collagen, fibronectin as well as the upregulation of transforming growth factor β (TGF-β), were detected in NDPKB deficient LVs. In addition, activation of the HBP and its downstream O-GlcNAc cycle was observed in the LVs and cardiac ECs (CECs) isolated from the NDPKB-/- mice. Furthermore, a bipolar O-GlcNAc regulation was identified in CMs. O-GlcNAc was decreased in NDPKB-depleted CMs, while conditioned medium from NDPKB-depleted ECs significantly increased O-GlcNAc levels, along with contractile and relaxation dysfunction of the hiPSC-CMs, which was attenuated by inhibiting endothelial HBP activation. CONCLUSIONS Deficiency in NDPKB leads to endothelial activation of the HBP and cardiac dysfunction. Our findings may highlight the crucial role of proper endothelial HBP in maintaining cardiovascular homeostasis.
Collapse
MESH Headings
- Animals
- Hexosamines/biosynthesis
- Hexosamines/metabolism
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Disease Models, Animal
- Endothelial Cells/enzymology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Ventricular Function, Left
- Myocardial Contraction
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/genetics
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/deficiency
- Mice, Inbred C57BL
- Male
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Humans
- Phosphorylation
- Cells, Cultured
- Ventricular Remodeling
- Signal Transduction
Collapse
Affiliation(s)
- Feng Shao
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Johanna Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Yixin Wang
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Merve Keles
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Zenghui Meng
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany
| | - Santosh Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Miao Qin
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, University of Tübingen, 72074 Tübingen, Germany
| | - Abel Martin-Garrido
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Manuela Fuhrmann
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Yi Qiu
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Trogisch Felix
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Christiane Vettel
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Joerg Heineke
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
8
|
Pan J, Chen MY, Jiang CY, Zhang ZY, Yan JL, Meng XF, Han YP, Lou YY, Yang JT, Qian LB. Luteolin alleviates diabetic cardiac injury related to inhibiting SHP2/STAT3 pathway. Eur J Pharmacol 2025; 989:177259. [PMID: 39788407 DOI: 10.1016/j.ejphar.2025.177259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Diabetic cardiomyopathy, a heart disease resulting from diabetes mellitus, inflicts structural and functional damage to the heart. Recent studies have highlighted the potential role of luteolin, a flavonoid, in mitigating diabetic cardiovascular injuries. The Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is implicated in exacerbating diabetes- and obesity-related complications. Interestingly, luteolin has been shown to inhibit protein tyrosine phosphatases, but it's unclear how SHP2 relates to luteolin's protective effects against diabetic heart disease. Here, we hypothesized that the inhibition of SHP2 signaling could play a role in luteolin's protective action against diabetic heart injury. Diabetes was induced in male Sprague-Dawley rats through a high-fat diet followed by a single intraperitoneal dose of streptozotocin (30 mg/kg). Five weeks post-diabetes induction, these rats were intraperitoneally injected with luteolin at varying doses (5, 10, 20 mg/kg) every other day for an additional 5 weeks. Then cardiac function was assessed, and hearts were isolated for further analysis. We found that luteolin notably improved cardiac function, inhibited cardiac hypertrophy and fibrosis, reduced levels of inflammatory factors and reactive oxygen species, and activated superoxide dismutase. Importantly, luteolin treatment also reduced the expression of SHP2 and phosphorylated signal transducer and activator of transcription 3 (STAT3) in a dose-dependent manner. These findings suggest that luteolin protects the diabetic heart against inflammation, oxidative stress, hypertrophy, and fibrosis, which may relate to down-regulating cardiac SHP2/STAT3 signaling.
Collapse
Affiliation(s)
- Jie Pan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Meng-Yuan Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China; Department of Clinical Laboratory Medicine, First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Chun-Yan Jiang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zi-Yan Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jia-Lin Yan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Xiang-Fei Meng
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yu-Peng Han
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jin-Ting Yang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
9
|
Strunz CMC, Roggerio A, Cruz PL, Benvenuti LA, Irigoyen MC, Mansur ADP. Resveratrol Attenuates Fibrosis and Alters Signaling Pathways in Diabetic Cardiac and Skeletal Muscles and Adipose Tissue Without Reversing Structural Damage. Int J Mol Sci 2025; 26:1672. [PMID: 40004135 PMCID: PMC11855909 DOI: 10.3390/ijms26041672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Resveratrol (RSV) improves metabolic functions, but its tissue-specific effects on diabetes remain unclear. This study investigated RSV's impact on molecular pathways in an experimental model of diabetes in cardiac and skeletal muscles and adipose tissue. Wistar rats were assigned to control (C), control treated with RSV (RC), diabetic (D), and diabetic treated with RSV (RD). Diabetes was induced using streptozotocin and nicotinamide, and RSV was administered for six weeks. In diabetic rats, RSV treatment significantly reduced collagen accumulation in cardiac and skeletal muscle tissues compared to untreated diabetic controls, although it did not restore muscle mass. Adipose tissue in diabetic rats exhibited a significant reduction of 3.4 times in collagen levels following RSV treatment. However, this reduction was not associated with any measurable improvement in tissue function. In cardiac tissue, RSV downregulated phosphorylated protein kinase B (AKT)/AKT and phosphorylated ribosomal protein S6 (rpS6)/rpS6 while mammalian target of rapamycin (mTOR) activity remained unchanged. In skeletal muscle, RSV suppressed rpS6 phosphorylation without affecting (mTOR) signaling. RSV enhanced mTOR and Beclin-1 expression in adipose tissue, though metabolic dysfunction persisted. RSV reduced receptors for advanced glycation end-product expression in all tissues, indicating the modulation of hyperglycemia-driven pathways. RSV improved fibrosis and signaling pathways but failed to reverse abnormal tissue growth patterns, including cardiac hypertrophy, skeletal muscle atrophy, and adipose tissue atrophy.
Collapse
Affiliation(s)
- Célia Maria Cássaro Strunz
- Laboratório de Análises Clínicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (A.R.); (M.C.I.)
| | - Alessandra Roggerio
- Laboratório de Análises Clínicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (A.R.); (M.C.I.)
| | - Paula Lázara Cruz
- Laboratório de Hipertensão Experimental, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| | - Luiz Alberto Benvenuti
- Laboratório de Anatomia Patológica, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| | - Maria Cláudia Irigoyen
- Laboratório de Análises Clínicas, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil; (A.R.); (M.C.I.)
| | - Antonio de Padua Mansur
- Serviço de Prevenção, Cardiopatia na Mulher e Reabilitação Cardiovascular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| |
Collapse
|
10
|
Fang T, Ma C, Yang B, Zhao M, Sun L, Zheng N. Roxadustat improves diabetic myocardial injury by upregulating HIF-1α/UCP2 against oxidative stress. Cardiovasc Diabetol 2025; 24:67. [PMID: 39920720 PMCID: PMC11806548 DOI: 10.1186/s12933-025-02601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM), characterized by hyperglycemia, is intricately linked with cardiovascular complications. Hyperglycemia induces oxidative stress, compromising mitochondria energy metabolism disturbances, leading to cardiomyocyte hypoxia and dysregulation of hypoxia-inducible factor-1α (HIF-1α), thereby exacerbating diabetic myocardial injury. Roxadustat (FG-4592), as an inhibitor of HIF-PHD, reduces HIF-1α degradation and regulates the transcription and function of downstream target genes. This study explores the protective effect of FG-4592 on the diabetic myocardium and further investigates the specific mechanisms responsible for this action. METHODS We established diabetic myocardial injury mice and high glucose-induced rat cardiomyocyte models, administered FG-4592 pretreatment to clarify the protective effects and related mechanisms of FG-4592 on diabetic myocardial injury by detecting changes in oxidative stress, mitochondrial function, and related pathways. RESULTS FG-4592 demonstrated cardioprotective effects in diabetic mice by regulating mitochondrial structure and function, as well as maintaining oxidative stress balance in the myocardium. It stabilized HIF-1α, activated UCP2, and enhanced the PI3K/AKT/Nrf2 pathway, reducing mitochondrial superoxide production, improving mitochondrial respiratory potential, and modulating oxidative stress markers in high glucose-induced cardiomyocytes. CONCLUSIONS FG-4592 exerts protective effects against diabetic myocardial injury by reducing oxidative stress. The mechanism is linked with the upregulation of HIF-1α and UCP2, which subsequently activate the PI3K/AKT/Nrf2 signaling pathway.
Collapse
MESH Headings
- Animals
- Oxidative Stress/drug effects
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/prevention & control
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Male
- Signal Transduction/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Uncoupling Protein 2/metabolism
- Uncoupling Protein 2/genetics
- Up-Regulation
- Mice, Inbred C57BL
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Isoquinolines/pharmacology
- Rats, Sprague-Dawley
- Benzodioxoles/pharmacology
- Benzodioxoles/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Prolyl-Hydroxylase Inhibitors/pharmacology
- NF-E2-Related Factor 2/metabolism
- Cells, Cultured
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Tingting Fang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Congcong Ma
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Bingyun Yang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Meiyu Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
11
|
Wang Z, Wu C, Yin D, Dou K. Ferroptosis: mechanism and role in diabetes-related cardiovascular diseases. Cardiovasc Diabetol 2025; 24:60. [PMID: 39920799 PMCID: PMC11806630 DOI: 10.1186/s12933-025-02614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
Cardiovascular diseases represent the principal cause of death and comorbidity among people with diabetes. Ferroptosis, an iron-dependent non-apoptotic regulated cellular death characterized by lipid peroxidation, is involved in the pathogenesis of diabetic cardiovascular diseases. The susceptibility to ferroptosis in diabetic hearts is possibly related to myocardial iron accumulation, abnormal lipid metabolism and excess oxidative stress under hyperglycemia conditions. Accumulating evidence suggests ferroptosis can be the therapeutic target for diabetic cardiovascular diseases. This review summarizes ferroptosis-related mechanisms in the pathogenesis of diabetic cardiovascular diseases and novel therapeutic choices targeting ferroptosis-related pathways. Further study on ferroptosis-mediated cardiac injury can enhance our understanding of the pathophysiology of diabetic cardiovascular diseases and provide more potential therapeutic choices.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Yin
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kefei Dou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Weeks KL, Bernardo BC. Adeno-Associated Viruses as Gene Delivery Tools for Diabetic Heart Disease and Failure: Key Considerations for Clinicians and Preclinical Researchers. Heart Lung Circ 2025; 34:118-124. [PMID: 39818494 DOI: 10.1016/j.hlc.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
Diabetes is becoming more common worldwide, and people with diabetes are twice as likely to experience heart problems compared to those without diabetes. These cardiovascular complications are the foremost cause of mortality among people with diabetes. A specific form of heart failure known as "diabetic cardiomyopathy" can develop in individuals with diabetes. There are no treatments specifically approved for diabetic cardiomyopathy. Ongoing research is exploring innovative treatments, including the development of gene therapy techniques (e.g., adeno-associated viral vectors) designed to target specific molecular pathways affected in the disease. Here, we discuss the progress, challenges, and experimental considerations of gene therapy for the diabetic heart.
Collapse
Affiliation(s)
- Kate L Weeks
- Department of Anatomy & Physiology, University of Melbourne, Vic, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Vic, Australia; Central Clinical School, Monash University, Melbourne, Vic, Australia.
| | - Bianca C Bernardo
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Vic, Australia; Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia.
| |
Collapse
|
13
|
Yao Y, Yang B, Shi J. TiO x(OH) 4-2x Nanosheets with Catalytic Antioxidative Activity Alleviate Oxidative Injury in Diabetic Cardiomyopathy. J Am Chem Soc 2025; 147:3885-3895. [PMID: 39813109 DOI: 10.1021/jacs.4c18026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Diabetic cardiomyopathy (DCM) is one of the most lethal complications of diabetes and is induced by the overproduction of reactive oxygen species (ROS) in cardiomyocytes due to sustained high glucose levels, leading to cardiac oxidative damage and final sudden death. Drugs and antioxidants currently applied to the clinical therapy of DCM fail to scavenge ROS efficiently, resulting in compromised therapeutic efficacy. Herein, a nanocatalytic antioxidative therapeutic strategy is proposed for DCM treatment. A two-dimensional TiOx(OH)4-2x nanosheet platform has been constructed with efficient ROS-scavenging activity, which can catalyze antioxidation reaction through redox cycling between TiIV/TiIII accompanied by inner-sphere two-electron transfer. Cellular experiments demonstrate that the TiOx(OH)4-2x nanosheet can not only protect cardiomyocytes from oxidative damage induced by a high glucose environment but also alleviate inflammation to further protect cardiomyocytes from inflammatory injury. The in vivo animal model confirms that the nanosheet alleviates myocardial oxidative injury and recovers cardiac function. Such a nanocatalytic antioxidation strategy is expected to provide a feasible approach for treating DCM and other cardiovascular diseases.
Collapse
Affiliation(s)
- Yufan Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
14
|
Zhang YF, Liu YX, Yang WX. Sodium-dependent glucose transporter 2 inhibitors improve heart function in patients with type 2 diabetes and heart failure. World J Cardiol 2025; 17:100886. [PMID: 39866214 PMCID: PMC11755127 DOI: 10.4330/wjc.v17.i1.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
This article discusses the study by Grubić Rotkvić et al on the mechanisms of action of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM) and heart failure (HF). T2DM and HF are highly comorbid, with a significantly increased prevalence of HF in patients with T2DM. SGLT2i exhibit potential in reducing hospitalization rates for HF and cardiovascular mortality through multiple mechanisms, including improving blood glucose control, promoting urinary sodium excretion, reducing sympathetic nervous system activity, lowering both preload and afterload on the heart, alleviating inflammation and oxidative stress, enhancing endothelial function, improving myocardial energy metabolism, and stabilizing cardiac ion homeostasis. Further research and clinical practice will help optimize the use of SGLT2i in HF patients.
Collapse
Affiliation(s)
- Yi-Fei Zhang
- Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Yu-Xiang Liu
- Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Wu-Xiao Yang
- Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China.
| |
Collapse
|
15
|
Jaiswal A, Yadav P, Rawat PS, Kaur M, Babu SS, Khurana A, Bhatti JS, Navik U. Empagliflozin in diabetic cardiomyopathy: elucidating mechanisms, therapeutic potentials, and future directions. Mol Biol Rep 2025; 52:158. [PMID: 39853512 DOI: 10.1007/s11033-025-10260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Diabetic cardiomyopathy (DCM) represents a significant health burden, exacerbated by the global increase in type 2 diabetes mellitus (T2DM). This condition contributes substantially to the morbidity and mortality associated with diabetes, primarily through myocardial dysfunction independent of coronary artery disease. Current treatment strategies focus on managing symptoms rather than targeting the underlying pathophysiological mechanisms, highlighting a critical need for specific therapeutic interventions. This review explores the multifaceted role of empagliflozin, a sodium-glucose cotransporter 2 (SGLT-2) inhibitor, in addressing the complex etiology of DCM. We discuss the key mechanisms by which hyperglycemia contributes to cardiac dysfunction, including oxidative stress, mitochondrial impairment, and inflammation, and how empagliflozin mitigates these effects. Empagliflozin's effects on reducing hospitalization for heart failure and potentially lowering cardiovascular mortality mark it as a promising candidate for DCM management. By elucidating the underlying mechanisms through which empagliflozin operates, this review underscores its therapeutic potential and paves the way for future research into its broader applications in diabetic cardiac care. This synthesis aims to foster a deeper understanding of DCM and encourage the integration of empagliflozin into treatment paradigms, offering hope for improved outcomes in patients suffering from this debilitating condition.
Collapse
Affiliation(s)
- Aiswarya Jaiswal
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Maninder Kaur
- Department of Human Anatomy, Bhojia Dental College and Hospital, Budh, Baddi, Himachal Pradesh, 173205, India
| | | | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
16
|
Khattab E, Kyriakou M, Leonidou E, Sokratous S, Mouzarou A, Myrianthefs MM, Kadoglou NPE. Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy-Challenges and Prospectives. Pharmaceuticals (Basel) 2025; 18:134. [PMID: 39861195 PMCID: PMC11768626 DOI: 10.3390/ph18010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) is a multifaceted disorder with a pandemic spread and a remarkable burden of cardiovascular mortality and morbidity. Diabetic cardiomyopathy (DBCM) has been increasingly recognized as the development of cardiac dysfunction, which is accompanied by heart failure (HF) symptoms in the absence of obvious reasons like ischemic heart disease, hypertension, or valvulopathies. Several pathophysiological mechanisms have been proposed, including metabolic disorders (e.g., glycation products), oxidative stress, low-grade inflammation, mitochondrial dysfunction, etc., which should guide the development of new therapeutic strategies. Up to now, HF treatment has not differed between patients with and without diabetes, which limits the expected benefits despite the high cardiovascular risk in the former group. However, DBCM patients may require different management, which prioritize anti-diabetic medications or testing other novel therapies. This review aims to appraise the challenges and prospectives of the individualized pharmaceutical therapy for DBCM.
Collapse
Affiliation(s)
- Elina Khattab
- Department of Cardiology, Nicosia General Hospital, 2029 Nicosia, Cyprus; (E.K.); (M.K.); (S.S.); (M.M.M.)
| | - Michaelia Kyriakou
- Department of Cardiology, Nicosia General Hospital, 2029 Nicosia, Cyprus; (E.K.); (M.K.); (S.S.); (M.M.M.)
| | - Elena Leonidou
- Department of Cardiology, Limassol General Hospital, 3304 Limassol, Cyprus;
| | - Stefanos Sokratous
- Department of Cardiology, Nicosia General Hospital, 2029 Nicosia, Cyprus; (E.K.); (M.K.); (S.S.); (M.M.M.)
| | - Angeliki Mouzarou
- Department of Cardiology, Pafos General Hospital, 8026 Paphos, Cyprus;
| | - Michael M. Myrianthefs
- Department of Cardiology, Nicosia General Hospital, 2029 Nicosia, Cyprus; (E.K.); (M.K.); (S.S.); (M.M.M.)
| | | |
Collapse
|
17
|
Kakkar C, Sharma V, Mannan A, Gupta G, Singh S, Kumar P, Dua K, Kaur A, Singh S, Dhiman S, Singh TG. Diabetic Cardiomyopathy: An Update on Emerging Pathological Mechanisms. Curr Cardiol Rev 2025; 21:88-107. [PMID: 39501954 DOI: 10.2174/011573403x331870241025094307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 04/25/2025] Open
Abstract
Diabetic Cardiomyopathy (DCM) is a notable consequence of diabetes mellitus, distinguished by cardiac dysfunction that occurs separately from coronary artery disease or hypertension. A recent study has revealed an intricate interaction of pathogenic processes that contribute to DCM. Important aspects involve the dysregulation of glucose metabolism, resulting in heightened oxidative stress and impaired mitochondrial function. In addition, persistent high blood sugar levels stimulate inflammatory pathways, which contribute to the development of heart fibrosis and remodelling. Additionally, changes in the way calcium is managed and the presence of insulin resistance are crucial factors in the formation and advancement of DCM. This may be due to the involvement of many molecular mechanistic pathways such as NLRP3, NF-κB, PKC, and MAPK with their downstream associated signaling pathways. Gaining a comprehensive understanding of these newly identified pathogenic pathways is crucial in order to design precise therapy approaches that can enhance the results for individuals suffering from diabetes. In addition, this review offers an in-depth review of not just pathogenic pathways and molecular mechanistic pathways but also diagnostic methods, treatment options, and clinical trials.
Collapse
Affiliation(s)
- Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaurav Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
| | - Sachin Singh
- Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
| | - Puneet Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Central University of Punjab, Ghudda, Bathinda, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
18
|
Shah IA, Ishaq S, Lee SD, Wu BT. Effects of Exercise Training on Cardiac Mitochondrial Functions in Diabetic Heart: A Systematic Review. Int J Mol Sci 2024; 26:8. [PMID: 39795867 PMCID: PMC11719559 DOI: 10.3390/ijms26010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025] Open
Abstract
A diabetic heart is characterized by fibrosis, autophagy, oxidative stress, and altered mitochondrial functions. For this review, three databases (PubMed, EMBASE, and Web of Science) were searched for articles written in English from September 2023 to April 2024. Studies that used exercise training for at least 3 weeks and which reported positive, negative, or no effects were included. The CAMARADES checklist was used to assess the quality of the included studies, and ten studies (CAMARADES scores 4-7/10) were included. Nine studies showed that exercise training improved cardiac mitochondrial oxidative phosphorylation by decreasing ROS, increasing electron transport chain activity, and enhancing the production of ATP. Eight studies indicated that exercise training ameliorated mitochondrial biogenesis by increasing the levels of AMPK, PGC-1α, Akt, Irisin, and Sirtuin-III. Moreover, four studies focused on mitochondrial dynamics and concluded that exercise training helped decrease the levels of mitochondrial fission factor and dynamin-related protein- 1. Finally, six studies revealed improvements in mitochondrial physiological characteristics such as size, potential, and permeability. Our findings demonstrate the beneficial effects of exercise training on cardiac mitochondrial function in diabetic hearts. Exercise training improves cardiac mitochondrial physiological characteristics, oxidative phosphorylation, biogenesis, and dynamics.
Collapse
Affiliation(s)
- Iqbal Ali Shah
- PhD Program in Healthcare Science, China Medical University, Taichung 40402, Taiwan; (I.A.S.); (S.I.)
| | - Shahid Ishaq
- PhD Program in Healthcare Science, China Medical University, Taichung 40402, Taiwan; (I.A.S.); (S.I.)
| | - Shin-Da Lee
- PhD Program in Healthcare Science, China Medical University, Taichung 40402, Taiwan; (I.A.S.); (S.I.)
- Department of Physical Therapy, China Medical University, Taichung 40402, Taiwan
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung 40343, Taiwan;
| |
Collapse
|
19
|
Sarker M, Chowdhury N, Bristy AT, Emran T, Karim R, Ahmed R, Shaki MM, Sharkar SM, Sayedur Rahman GM, Reza HM. Astaxanthin protects fludrocortisone acetate-induced cardiac injury by attenuating oxidative stress, fibrosis, and inflammation through TGF-β/Smad signaling pathway. Biomed Pharmacother 2024; 181:117703. [PMID: 39586138 DOI: 10.1016/j.biopha.2024.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Hypertensive rats serve as a good experimental model for studying the pathophysiology of cardiac hypertrophy and remodeling leading to heart failure. In this study, we aimed to analyze the effect of astaxanthin and possible mechanisms involved in alleviating oxidative stress, fibrosis and inflammation that triggers cardiac remodeling using male uninephrectomized Long Evans rats. Cardiac hypertrophy and hypertension were induced in rats termed as 'FCA-Salt rats' by an oral administration of fludrocortisone acetate (FCA) and 1 % NaCl in drinking water. Biochemical assays showed that FCA-Salt rats exhibited an upregulation of oxidative stress markers AOPP, MDA and downregulation of NO in heart and kidney, which was reversed by astaxanthin treatment. Astaxanthin further regularized the reduced activities of antioxidant enzymes GSH, SOD and CAT in these tissues. ELISA revealed that astaxanthin significantly reduced the inflammatory response by reducing the elevated levels of IL-1β, IL-17a, and TNF-α and pro-fibrotic marker TGF-β1 in plasma. Real-time qPCR depicted an upregulation of TNF-α, IL-1β, IL-6, IL-17A as well as signaling molecules TGF-β1, Smad2 and Smad3 in heart of FCA-Salt rats, which was reduced significantly by astaxanthin. Sirius red staining showed that the cardiac and renal fibrosis was significantly improved by astaxanthin treatment. Together, our results suggest that astaxanthin treatment is beneficial in protecting cardio-renal damage in hypertension through TGF-β/Smad signaling pathway, hence, this molecule may be considered for the maintenance of cardio-renal health.
Collapse
Affiliation(s)
- Manoneeta Sarker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nowreen Chowdhury
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Anika Tabassum Bristy
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tushar Emran
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Reatul Karim
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Rezwana Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Mostaid Shaki
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shazid Md Sharkar
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - G M Sayedur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh.
| |
Collapse
|
20
|
Hu F, Lin C. TRPM2 knockdown attenuates myocardial apoptosis and promotes autophagy in HFD/STZ-induced diabetic mice via regulating the MEK/ERK and mTORC1 signaling pathway. Mol Cell Biochem 2024; 479:3307-3328. [PMID: 38308007 PMCID: PMC11511773 DOI: 10.1007/s11010-024-04926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes. Transient receptor potential melastatin 2 (TRPM2) activity increases in diabetic oxidative stress state, and it is involved in myocardial damage and repair. We explore the protective effect of TRPM2 knockdown on the progression of DCM. A type 2 diabetes animal model was established in C57BL/6N mice by long-term high-fat diet (HFD) feeding combined with a single injection of 100-mg/kg streptozotocin (STZ). Genetic knockdown of TRPM2 in heart was accomplished by the intravenous injection via the tail vein of adeno-associated virus type 9 carrying TRPM2 shRNA. Neonatal rat ventricular myocytes was exposed to 45 mM of high-glucose (HG) stimulation for 72 h in vitro to mimic the in vivo conditions. Western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry and fluorescence, electron, CCK-8, and flow cytometry were used to evaluate the phenotype of cardiac inflammation, fibrosis, apoptosis, and autophagy. Mice with HFD/STZ-induced diabetes exhibited systolic and diastolic dysfunction, as demonstrated by increased myocardial apoptosis and autophagy inhibition in the heart. Compared to control group, the protein expression of TRPM2, bax, cleaved caspase-3, and P62 was significantly elevated, and the protein expression of bcl-2 and LC3-II was significantly decreased in the myocardial tissues of the HFD/STZ-induced diabetes group. Knockdown of TRPM2 significantly reversed the HFD/STZ-induced myocardial apoptosis and autophagy inhibition. TRPM2 silencing attenuated HG-induced apoptosis and autophagy inhibition in primary cardiomyocytes via regulating the MEK/ERK mTORC1 signaling pathway. TRPM2 knockdown attenuates hyperglycemia-induced myocardial apoptosis and promotes autophagy in HFD/STZ-induced diabetic mice or HG-stimulated cardiomyocytes via regulating the MEK/ERK and mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| | - Chaoyang Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| |
Collapse
|
21
|
Dhiman S, Dhankhar S, Garg A, Rohilla M, Saini M, Singh TG, Chauhan S, Selim S, Al Jaouni SK, Yasmin S, Begum N, Alshahrani A, Ansari MY. Mechanistic insights and therapeutic potential of astilbin and apigenin in diabetic cardiomyopathy. Heliyon 2024; 10:e39996. [PMID: 39583813 PMCID: PMC11582444 DOI: 10.1016/j.heliyon.2024.e39996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a critical complication of Diabetes mellitus (DM), characterized by structural and functional changes in the myocardium independent of coronary artery disease or hypertension. Emerging evidence highlights the significant roles of phytochemicals, particularly astilbin and apigenin, in modulating key molecular pathways implicated in DCM. This review synthesizes current mechanistic insights and therapeutic potential of these compounds, focusing on their interactions with AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), O-linked N-acetylglucosamine (O-GlcNAc), sodium-glucose co-transporter 2 (SGLT2), protein kinase C (PKC), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) pathways. Astilbin and apigenin have demonstrated the ability to improve cardiac function, mitigate oxidative stress, and reduce inflammatory responses in diabetic conditions. By activating AMPK and PPARs, these flavonoids enhance glucose uptake and fatty acid oxidation, contributing to improved metabolic homeostasis. Their inhibition of O-GlcNAcylation, SGLT2 activity, and PKC signaling further attenuates hyperglycemia-induced cellular damage. Additionally, suppression of NF-κB, MAPK, and JNK pathways by astilbin and apigenin results in reduced pro-inflammatory cytokine production and apoptotic cell death. Collectively, these interactions position astilbin and apigenin as promising therapeutic agents for ameliorating DCM, offering novel avenues for treatment strategies aimed at modulating multiple pathogenic pathways.
Collapse
Affiliation(s)
- Sachin Dhiman
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sanchit Dhankhar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Anjali Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Devi Dyal College of Pharmacy, GolpuraBarwala, Panchkula, Haryana, 134118, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Aziza Alshahrani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Yousuf Ansari
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
22
|
Zhou W, Yu H, Yan S. Single-cell transcriptome sequencing revealed the metabolic changes and microenvironment changes of cardiomyocytes induced by diabetes. Comput Biol Chem 2024; 112:108136. [PMID: 38924959 DOI: 10.1016/j.compbiolchem.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Diabetes is a chronic metabolic disorder characterized by elevated blood glucose levels. This study aimed to analyze the changes underlying heterogeneities and communication properties of CMs in diabetes mellitus (DM). METHODS GSE213337 dataset was retrieved from NCBI Gene Expression Omnibus, containing the single-cell RNA sequencing data of hearts from the control and streptozotocin-induced diabetic mice. GSEA and GSVA were used to explore the function enrichment of DEGs in CM. Cell communication analysis was carried out to study the altered signals and significant ligand-receptor interactions. RESULTS Seventeen cell types were identified between DM and the controls. The increasing ratio of CM suggested the occurrence of diabetes induces potential pathological changes of CM proliferation. A total of 1144 DEGs were identified in CM. GSEA and GSVA analysis indicated the enhancing lipid metabolism involving in DM. The results of cell communication analysis suggested that high glucose activated the ability of CM receiving fibroblast and LEC, while inhibited the capacity of receiving ECC and pericyte. Furthermore, GAS and ANGPTL were significantly decreased under DM, which was consistent with the results of GSEA and GSVA. Finally, the ligand-receptor interactions such as vegfc-vegfr2, angptl1 were changes in CM. CONCLUSIONS The CM showed the significant heterogeneities in DM, which played an important role in myocardial fibrosis induce by hyperglycemia.
Collapse
Affiliation(s)
- Weiyu Zhou
- Department of Endocrine and Metabolic Diseases, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, Harbin, Heilongjiang 150000, China
| | - Haiqiao Yu
- Department of Endocrine and Metabolic Diseases, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, Harbin, Heilongjiang 150000, China
| | - Shuang Yan
- Department of Endocrine and Metabolic Diseases, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
23
|
Hartnick MD, Marnewick JL, Engel-Hills P, Kemp M, Pretorius K, Lekata S, Uys C. Impact of Chronic Consumption of Herbal Rooibos on Cardiovascular Function in Adults with Cardiovascular Risk. J Med Food 2024; 27:905-911. [PMID: 38958559 DOI: 10.1089/jmf.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
The prevalence of cardiovascular disease (CVD) has increased in South Africa, emphasizing the importance of prevention strategies. This study used echocardiography to investigate the impact of Rooibos on cardiovascular function in those at risk of CVD. This research aims to contribute to understanding its effects on reducing cardiovascular risk factors. The study design involved a 12-week randomized, parallel, double-blinded, placebo-controlled dietary intervention trial using capsules containing standardized water-soluble extracts of green and traditional fermented Rooibos alongside a placebo control. Echocardiography was incorporated as a diagnostic imaging tool to assess cardiac function in the participant cohort. Aorta (AO) dimensions showed no significant change in any intervention group. Left atrium (LA) reduced in size from 3.832 ± 0.071 cm to 3.675 ± 0.067 cm (P = 0.01). There was no significant change in LA/AO ratio in any intervention group. Interventricular septum diameter in the placebo group decreased from 1.334 ± 0.030 cm to 1.250 ± 0.025 cm (P = 0.002), with no significance in fermented Rooibos, while green Rooibos resulted in a decrease from 1.282 ± 0.036 cm to 1.186 ± 0.029 cm (P = 0.002). Left ventricle posterior wall (LVPW) showed no significant changes in any of the intervention group. The left ventricle mass in the placebo and green Rooibos groups demonstrated no significance changes, while fermented Rooibos caused a decrease from 204.102 ± 7.102 g to 191.394 ± 6.707 g (P = 0.015). The phytochemical bioactive components, such as the polyphenolic antioxidants present in green and fermented Rooibos, improved cardiovascular function. This study confirms the effectiveness of echocardiography as imaging tool for assessing cardiac function in this particular population. Regular Rooibos consumption may offer promising therapeutic benefits for preventing and managing CVD risk.
Collapse
Affiliation(s)
- Maria Diana Hartnick
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula, University of Technology, Cape Town, South Africa
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula, University of Technology, Cape Town, South Africa
| | - Penelope Engel-Hills
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula, University of Technology, Cape Town, South Africa
- Faculty of Health and Wellness Sciences, Cape Peninsula, University of Technology, Cape Town, South Africa
| | - Merlisa Kemp
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula, University of Technology, Cape Town, South Africa
- Faculty of Health and Wellness Sciences, Cape Peninsula, University of Technology, Cape Town, South Africa
| | - Kobus Pretorius
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula, University of Technology, Cape Town, South Africa
- Faculty of Health and Wellness Sciences, Cape Peninsula, University of Technology, Cape Town, South Africa
| | - Stanley Lekata
- Center for Postgraduate Studies, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Corrie Uys
- Center for Postgraduate Studies, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
24
|
Tuersuntuoheti M, Zhou L, Li J, Yang S, Zhou S, Gong H. Investigation of crucial genes and mitochondrial function impairment in diabetic cardiomyopathy. Gene 2024; 923:148563. [PMID: 38754569 DOI: 10.1016/j.gene.2024.148563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a special type of cardiovascular disease, termed as a situation of abnormal myocardial structure and function that occurs in diabetic patients. However, the most fundamental mechanisms of DCM have not been fully explicated, and useful targets for the therapeutic strategies still need to be explored. METHODS In the present study, we combined bioinformatics analysis and in vitro experiments throughout the process of DCM. Differentially Expressed Genes (DEGs) analysis was performed and the weighted gene co-expression network analysis (WGCNA) was constructed to determine the crucial genes that were tightly connected to DCM. Additionally, Functional enrichment analysis was conducted to define biological pathways. To identify the specific molecular mechanism, the human cardiomyocyte cell line (AC16) was stimulated by high glucose (HG, 50 mM D-glucose) and used to imitate DCM condition. Then, we tentatively examined the effect of high glucose on cardiomyocytes, the expression levels of crucial genes were further validated by in vitro experiments. RESULTS Generally, NPPA, IGFBP5, SERPINE1, and C3 emerged as potential therapeutic targets. Functional enrichment analysis performed by bioinformatics indicated that the pathogenesis of DCM is mainly related to heart muscle contraction and calcium (Ca2+) release activation. In vitro, we discovered that high glucose treatment induced cardiomyocyte injury and exacerbated mitochondrial dysfunction remarkably. CONCLUSION Our research defined four crucial genes, as well as determined that mitochondrial function impairment compromises calcium homeostasis ultimately resulting in contractile dysfunction is a central contributor to DCM progression. Hopefully, this study will offer more effective biomarkers for DCM diagnosis and treatment.
Collapse
Affiliation(s)
- Maierhaba Tuersuntuoheti
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Juexing Li
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shangneng Yang
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Suying Zhou
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Zhang K, Li Y, Ge X, Meng L, Kong J, Meng X. Regulatory T cells protect against diabetic cardiomyopathy in db/db mice. J Diabetes Investig 2024; 15:1191-1201. [PMID: 38943657 PMCID: PMC11363098 DOI: 10.1111/jdi.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/01/2024] Open
Abstract
AIMS/INTRODUCTION Regulatory T cells (Tregs) have protected against many cardiovascular diseases. This study was intended to explore the effect of Tregs on diabetic cardiomyopathy (DCM) using a db/db mouse model. MATERIALS AND METHODS Eight-week-old male db/db mice were randomly divided into four groups: the control group, administered 200 μL phosphate-buffered saline; the small-dose Treg group, administered 105 Tregs; the large-dose Treg group, administered 106 Tregs; and the PC group, administered 100 μg anti-CD25 specific antibody (PC61) and 106 Tregs. After 12 weeks, mice were euthanized. Transthoracic echocardiography was carried out at the beginning and end of the experiment. Relevant basic experiments to evaluate the effects of Tregs on DCM were carried out. RESULTS Echocardiography showed that the impaired diastolic and systolic functions were significantly improved in mice administered large-dose Tregs. Large-dose Tregs significantly ameliorated myocardial hypertrophy and fibrosis, and decreased hypertrophic gene expression and collagen deposition. The protective effects of Tregs on diabetic hearts were associated with decreased oxidative stress, inflammatory response and apoptosis. In addition, Tregs promoted the activation of the phosphatidylinositol 3-kinase-protein kinase B signaling pathway, whereas they inhibited extracellular signal-regulated kinase 1/2 and Jun N-terminal kinase phosphorylation, which might be responsible for the cardioprotective role of Tregs against DCM. CONCLUSIONS Tregs ameliorated myocardial hypertrophy and fibrosis, improved cardiac dysfunction, and protected against DCM progression in db/db mice. The mechanisms involved a decrease of inflammatory response, oxidative stress and apoptosis, which might be mediated by phosphatidylinositol 3-kinase-protein kinase B and mitogen-activated protein kinase pathways. Hence, Tregs might serve as a promising therapeutic approach for DCM treatment.
Collapse
Affiliation(s)
- Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yunyi Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiao Ge
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoChina
| | - Linlin Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
26
|
Grubić Rotkvić P, Rotkvić L, Đuzel Čokljat A, Cigrovski Berković M. Sodium-dependent glucose transporter 2 inhibitors effects on myocardial function in patients with type 2 diabetes and asymptomatic heart failure. World J Cardiol 2024; 16:448-457. [PMID: 39221192 PMCID: PMC11362810 DOI: 10.4330/wjc.v16.i8.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Sodium-dependent glucose transporter 2 inhibitors (SGLT2i) have shown efficacy in reducing heart failure (HF) burden in a very heterogeneous groups of patients, raising doubts about some contemporary assumptions of their mechanism of action. We previously published a prospective observational study that evaluated mechanisms of action of SGLT2i in patients with type 2 diabetes who were in HF stages A and B on dual hypoglycemic therapy. Two groups of patients were included in the study: the ones receiving SGLT2i as an add-on agent to metformin and the others on dipeptidyl peptidase-4 inhibitors as an add-on to metformin due to suboptimal glycemic control. AIM To evaluate the outcomes regarding natriuretic peptide, oxidative stress, inflammation, blood pressure, heart rate, cardiac function, and body weight. METHODS The study outcomes were examined by dividing each treatment arm into two subgroups according to baseline parameters of global longitudinal strain (GLS), N-terminal pro-brain natriuretic peptide, myeloperoxidase (MPO), high-sensitivity C-reactive protein (hsCRP), and systolic and diastolic blood pressure. To evaluate the possible predictors of observed changes in the SGLT2i arm during follow-up, a rise in stroke volume index, body mass index (BMI) decrease, and lack of heart rate increase, linear regression analysis was performed. RESULTS There was a greater reduction of MPO, hsCRP, GLS, and blood pressure in the groups with higher baseline values of mentioned parameters irrespective of the therapeutic arm after 6 months of follow-up. Significant independent predictors of heart rate decrease were a reduction in early mitral inflow velocity to early diastolic mitral annular velocity at the interventricular septal annulus ratio and BMI, while the predictor of stroke volume index increase was SGLT2i therapy itself. CONCLUSION SGLT2i affect body composition, reduce cardiac load, improve diastolic/systolic function, and attenuate the sympathetic response. Glycemic control contributes to the improvement of heart function, blood pressure control, oxidative stress, and reduction in inflammation.
Collapse
Affiliation(s)
- Petra Grubić Rotkvić
- Department of Cardiology, University Hospital Centre Zagreb, Zagreb 10000, Croatia.
| | - Luka Rotkvić
- Department of Cardiology, Magdalena Clinic for Cardiovascular Disease, Krapinske Toplice 49217, Croatia
| | - Ana Đuzel Čokljat
- Department of Internal Medicine, General Hospital Dubrovnik, Dubrovnik 20000, Croatia
| | - Maja Cigrovski Berković
- Department for Sport and Exercise Medicine, University of Zagreb Faculty of Kinesiology, Zagreb 10000, Croatia
| |
Collapse
|
27
|
Nawaz L, Grieve DJ, Muzaffar H, Iftikhar A, Anwar H. Methanolic Extract of Phoenix Dactylifera Confers Protection against Experimental Diabetic Cardiomyopathy through Modulation of Glucolipid Metabolism and Cardiac Remodeling. Cells 2024; 13:1196. [PMID: 39056777 PMCID: PMC11274523 DOI: 10.3390/cells13141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-β 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-β 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.
Collapse
Affiliation(s)
- Laaraib Nawaz
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK;
| | - Humaira Muzaffar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Arslan Iftikhar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Haseeb Anwar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| |
Collapse
|
28
|
Lee SH, Cho S, Lee JY, Kim JY, Kim S, Jeong M, Hong JY, Kim GY, Lee SW, Kim E, Kim J, Kim JW, Hwa J, Kim WH. Methionine sulfoxide reductase B2 protects against cardiac complications in diabetes mellitus. Diabetol Metab Syndr 2024; 16:149. [PMID: 38970135 PMCID: PMC11225187 DOI: 10.1186/s13098-024-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Diabetes mellitus (DM) is a progressive, chronic metabolic disorder characterized by high oxidative stress, which can lead to cardiac damage. Methionine sulfoxylation (MetO) of proteins by excessive reactive oxygen species (ROS) can impair the basic functionality of essential cellular proteins, contributing to heart failure. Methionine sulfoxide reductase B2 (MsrB2) can reverse oxidation induced MetO in mitochondrial proteins, so we investigated its role in diabetic cardiomyopathy. We observed that DM-induced heart damage in diabetic mice model is characterized by increased ROS, increased protein MetO with mitochondria structural pathology, and cardiac fibrosis. In addition, MsrB2 was significantly increased in mouse DM cardiomyocytes, supporting the induction of a protective process. Further, MsrB2 directly induces Parkin and LC3 activation (mitophagy markers) in cardiomyocytes. In MsrB2, knockout mice displayed abnormal electrophysiological function, as determined by ECG analysis. Histological analysis confirmed increased cardiac fibrosis and disrupted cardiac tissue in MsrB2 knockout DM mice. We then corroborated our findings in human DM heart samples. Our study demonstrates that increased MsrB2 expression in the heart protects against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
- Division of Endocrine and Kidney Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| | - Suyeon Cho
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jong Youl Lee
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Ji Yeon Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Suji Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Myoungho Jeong
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jung Yeon Hong
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Geun-Young Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Woo Lee
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Eunmi Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jihwa Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jee Woong Kim
- Division of Research Support, Department of Research Planning and Coordination, Korea National Institute of Health, Cheongju, Republic of Korea
| | - John Hwa
- Yale Cardiovascular Research Center, New Haven, USA.
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
29
|
Lei S, Lu X, Yan L, Liu T, Niu Y, Yu J. Polygonatum sibiricum (Huang Jing) polysaccharide reduces diabetic cardiomyopathy through increasing cyclic guanosine monophosphate-protein kinase G signaling in diabetic mice. J Diabetes Investig 2024; 15:823-834. [PMID: 38553792 PMCID: PMC11215682 DOI: 10.1111/jdi.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 07/02/2024] Open
Abstract
AIMS/INTRODUCTION Diabetic cardiomyopathy (DCM) is a prevalent condition among individuals with diabetes, and is associated with a high mortality rate. The anti-oxidant properties of Jing Huang or Polygonatum sibiricum polysaccharide (PSP) have been extensively used to treat diabetes-related disorders; however, its potential effectiveness against DCM remains unknown. This study aimed to investigate PSP's therapeutic effects on DCM in an experimental diabetic mouse model. MATERIALS AND METHODS To induce insulin resistance, mice were fed a high-fat diet for 3 months, followed by intraperitoneal streptozotocin injection to induce slight hyperglycemia and develop DCM. Both DCM and control mice were given PSP orally for 3 weeks. Western blotting was used to detect the protein expressions of protein kinase G, C/EBP homologous protein, glucose-regulated protein 78, phosphodiesterase type 5, protein kinase R-like endoplasmic reticulum (ER) kinase, and phospho-protein kinase R-like endoplasmic reticulum kinase in heart tissue. RESULTS The results showed a reduction in bodyweight and blood glucose levels in the PSP therapy group compared with DCM group. PSP also improved cardiac function and had a negligible effect on malondialdehyde activity. Furthermore, the findings showed that PSP alleviated ER and oxidative stress observed in DCM mice hearts, leading to the inhibition of cyclic guanosine monophosphate-specific phosphodiesterase type 5 and cardiac cyclic guanosine monophosphate reactivation. Phosphodiesterase type 5 inhibition reduced high-fat diet-induced cardiac dysfunction and decreased ER stress. CONCLUSIONS PSP could effectively protect diabetic myocardium by inhibiting endoplasmic reticulum stress. These findings provide crucial insights into the potential of PSP to ameliorate DCM conditions in diabetic mice by decreasing ER and oxidative stress, and enhancing cyclic guanosine monophosphate protein kinase G signaling.
Collapse
Affiliation(s)
- Shengping Lei
- Clinical Experimental CenterXi'an International Medical Center HospitalXi'anChina
- Xi'an Engineering Technology Research Center for Cardiovascular Active PeptidesXi'anChina
| | - Xin Lu
- Clinical Experimental CenterXi'an International Medical Center HospitalXi'anChina
| | - Lei Yan
- Clinical Experimental CenterXi'an International Medical Center HospitalXi'anChina
- Xi'an Engineering Technology Research Center for Cardiovascular Active PeptidesXi'anChina
| | - Tian Liu
- Clinical Experimental CenterXi'an International Medical Center HospitalXi'anChina
- Xi'an Engineering Technology Research Center for Cardiovascular Active PeptidesXi'anChina
| | - Yan Niu
- Clinical Experimental CenterXi'an International Medical Center HospitalXi'anChina
- Xi'an Engineering Technology Research Center for Cardiovascular Active PeptidesXi'anChina
| | - Jun Yu
- Clinical Experimental CenterXi'an International Medical Center HospitalXi'anChina
- Xi'an Engineering Technology Research Center for Cardiovascular Active PeptidesXi'anChina
| |
Collapse
|
30
|
Zhang T, Yi Q, Huang W, Feng J, Liu H. New insights into the roles of Irisin in diabetic cardiomyopathy and vascular diseases. Biomed Pharmacother 2024; 175:116631. [PMID: 38663105 DOI: 10.1016/j.biopha.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Diabetes mellitus (DM) is a prevalent chronic disease in the 21st century due to increased lifespan and unhealthy lifestyle choices. Extensive research indicates that exercise can play a significant role in regulating systemic metabolism by improving energy metabolism and mitigating various metabolic disorders, including DM. Irisin, a well-known exerkine, was initially reported to enhance energy expenditure by indicating the browning of white adipose tissue (WAT) through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) signaling. In this review, we summarize the potential mechanisms underlying the beneficial effects of Irisin on glucose dysmetabolism, including reducing gluconeogenesis, enhancing insulin energy expenditure, and promoting glycogenesis. Additionally, we highlight Irisin's potential to improve diabetic vascular diseases by stimulating nitric oxide (NO) production, reducing oxidative and nitrosative stress, curbing inflammation, and attenuating endothelial cell aging. Furthermore, we discuss the potential of Irisin to improve diabetic cardiomyopathy by preventing cardiomyocyte loss and reducing myocardial hypertrophy and fibrosis. Given Irisin's promising functions in managing diabetic cardiomyopathy and vascular diseases, targeting Irisin for therapeutic purposes could be a fruitful avenue for future research and clinical interventions.
Collapse
Affiliation(s)
- Tiandong Zhang
- Collage of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenhua Huang
- Collage of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; The Third People's Hospital of Longmatan District, Luzhou, Sichuan 646000, China.
| |
Collapse
|
31
|
Wu J, Cui Y, Ding W, Zhang J, Wang L. The protective effect of Macrostemonoside T from Allium macrostemon Bunge against Isoproterenol-Induced myocardial injury via the PI3K/Akt/mTOR signaling pathway. Int Immunopharmacol 2024; 133:112086. [PMID: 38642441 DOI: 10.1016/j.intimp.2024.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Myocardial injury (MI) signifies a pathological aspect of cardiovascular diseases (CVDs) such as coronary artery disease, diabetic cardiomyopathy, and myocarditis. Macrostemonoside T (MST) has been isolated from Allium macrostemon Bunge (AMB), a key traditional Chinese medicine (TCM) used for treating chest stuffiness and pains. Although MST has demonstrated considerable antioxidant activity in vitro, its protective effect against MI remains unexplored. To investigate MST's effects in both in vivo and in vitro models of isoproterenol (ISO)-induced MI and elucidate its underlying molecular mechanisms. This study established an ISO-induced MI model in rats and assessed H9c2 cytotoxicity to examine MST's impact on MI. Various assays, including histopathological staining, TUNEL staining, immunohistochemical staining, DCFH-DA staining, JC-1 staining, ELISA technique, and Western blot (WB), were utilized to explore the potential molecular mechanisms of MI protection. In vivo experiments demonstrated that ISO caused myocardial fiber disorders, elevated cardiac enzyme levels, and apoptosis. However, pretreatment with MST significantly mitigated these detrimental changes. In vitro experiments revealed that MST boosted antioxidant enzyme levels and suppressed malondialdehyde (MDA) production in H9c2 cells. Concurrently, MST inhibited ISO-induced reactive oxygen species (ROS) production and mitigated the decline in mitochondrial membrane potential, thereby reducing the apoptosis rate. Moreover, pretreatment with MST elevated the expression levels of p-PI3K, p-Akt, and p-mTOR, indicating activation of the PI3K/Akt/mTOR signaling pathway and consequent protection against MI. MST attenuated ISO-induced MI in rats by impeding apoptosis through activation of the PI3K/Akt/mTOR signaling pathway. This study presents potential avenues for the development of precursor drugs for CVDs.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Cui
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weixing Ding
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Lulu Wang
- School of Medicine, Changchun Sci-Tech University, Changchun 130600, China.
| |
Collapse
|
32
|
Zhang J, Wang G, Shi Y, Liu X, Liu S, Chen W, Ning Y, Cao Y, Zhao Y, Li M. Growth differentiation factor 11 regulates high glucose-induced cardiomyocyte pyroptosis and diabetic cardiomyopathy by inhibiting inflammasome activation. Cardiovasc Diabetol 2024; 23:160. [PMID: 38715043 PMCID: PMC11077721 DOI: 10.1186/s12933-024-02258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Guolong Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Yuxuan Shi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Xin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Shuang Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Wendi Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Yunna Ning
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Yongzhi Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China.
| | - Ming Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, 250012, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 250012, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, 250012, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, 250012, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), 250012, Jinan, Shandong, China.
| |
Collapse
|
33
|
Freitas SCF, Dutra MRH, Dourado PMM, Miranda VHDM, dos Santos CP, Sanches IC, Irigoyen MC, De Angelis K. Insulin Treatment Does Not Prevent EARLY Autonomic Cardiovascular and Diastolic Dysfunctions in Streptozotocin-Induced Diabetic Rats. Pharmaceuticals (Basel) 2024; 17:577. [PMID: 38794147 PMCID: PMC11124310 DOI: 10.3390/ph17050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies have found increased cardiovascular mortality risk in patients with type 1 diabetes when compared to normoglycemic people, even when they were kept under good glycemic control. However, the mechanisms underlying this condition have yet to be fully understood. Using streptozotocin (STZ)-induced diabetic rats, we evaluated the effects of insulin replacement therapy on cardiac, autonomic, inflammatory, and oxidative stress parameters. Daily treatment with insulin administrated subcutaneously in the STZ-diabetic rats showed a reduction in hyperglycemia (>250 mg/dL) to normalized values. The insulin treatment was effective in preventing alterations in cardiac morphometry and systolic function but had no impact on diastolic function. Also, the treatment was not able to prevent the impairment of baroreflex-tachycardic response and systolic arterial pressure variability (SAP-V). A correlation was found between improvement of these autonomic parameters and higher levels of IL-10 and lower levels of oxidized glutathione. Our findings show that insulin treatment was not able to prevent diastolic, baroreflex, and SAP-V dysfunction, suggesting an outstanding cardiovascular risk, even after obtaining a good glycemic control in STZ-induced diabetic rats. This study shed light on a relatively large population of diabetic patients in need of other therapies to be used in combination with insulin treatment and thus more effectively manage cardiovascular risk.
Collapse
Affiliation(s)
- Sarah C. F. Freitas
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, Brazil;
| | - Marina R. H. Dutra
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, Brazil;
| | - Paulo M. M. Dourado
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of São Paulo (USP), Sao Paulo 05403-000, Brazil; (P.M.M.D.)
| | | | - Camila P. dos Santos
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), São Paulo 04023-062, Brazil; (V.H.d.M.M.)
| | - Iris C. Sanches
- Movement Laboratory, Sao Judas Tadeu University (USJT), Sao Paulo 03166-000, Brazil
| | - Maria-Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of São Paulo (USP), Sao Paulo 05403-000, Brazil; (P.M.M.D.)
| | - Kátia De Angelis
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, Brazil;
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), São Paulo 04023-062, Brazil; (V.H.d.M.M.)
| |
Collapse
|
34
|
Koushki M, Farahani M, Yekta RF, Frazizadeh N, Bahari P, Parsamanesh N, Chiti H, Chahkandi S, Fridoni M, Amiri-Dashatan N. Potential role of resveratrol in prevention and therapy of diabetic complications: a critical review. Food Nutr Res 2024; 68:9731. [PMID: 38716357 PMCID: PMC11075469 DOI: 10.29219/fnr.v68.9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a category of metabolic conditions affecting about 5% of people worldwide. High mortality associated with DM is mostly due to its severe clinical complications, including diabetic nephropathy, retinopathy, neuropathy, and cardiomyopathy. Resveratrol (RSV) is a natural, biologically active polyphenol known to have various health-promoting effects in animal models and humans. OBJECTIVE In this review, we have reviewed the preventive and therapeutic role of RSV on diabetes complications with emphasis on its molecular mechanisms of action. METHODS To prepare this review, all the basic and clinical available literatures regarding this topic were gathered through electronic databases, including PubMed, Web of Science, Scopus, and Google Scholar. Therefore, we summarized previous studies that have evaluated the effects of RSV on diabetic complications and their mechanisms. Only English language studies published up to January 2023 were included in this review. RESULTS RSV improves glucose homeostasis, decreases insulin resistance, induces autophagy, regulates lipid metabolism, protects pancreatic β-cells, ameliorates metabolic disorders, and increases the GLUT4 expression. These effects induced by RSV are strongly associated with ability of this polyphenol agent to elevation expression/activity of AMP-activated protein kinase and Sirtuin 1 in various organs of diabetic subjects, which leads to prevention and therapy of diabetic complications. In addition, antioxidant and anti-inflammatory properties of RSV were reported to be involved in its action in diabetic complications, such as retinopathy and nephropathy. CONCLUSION RSV is a promising compound for improving diabetic complications. However, the exact antidiabetic mechanisms of RSV need to be further investigated.
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Naghmeh Frazizadeh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Bahari
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Somayeh Chahkandi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammadjavad Fridoni
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
35
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Ye W, Han K, Xie M, Li S, Chen G, Wang Y, Li T. Mitochondrial energy metabolism in diabetic cardiomyopathy: Physiological adaption, pathogenesis, and therapeutic targets. Chin Med J (Engl) 2024; 137:936-948. [PMID: 38527931 PMCID: PMC11046025 DOI: 10.1097/cm9.0000000000003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Indexed: 03/27/2024] Open
Abstract
Diabetic cardiomyopathy is defined as abnormal structure and function of the heart in the setting of diabetes, which could eventually develop heart failure and leads to the death of the patients. Although blood glucose control and medications to heart failure show beneficial effects on this disease, there is currently no specific treatment for diabetic cardiomyopathy. Over the past few decades, the pathophysiology of diabetic cardiomyopathy has been extensively studied, and an increasing number of studies pinpoint that impaired mitochondrial energy metabolism is a key mediator as well as a therapeutic target. In this review, we summarize the latest research in the field of diabetic cardiomyopathy, focusing on mitochondrial damage and adaptation, altered energy substrates, and potential therapeutic targets. A better understanding of the mitochondrial energy metabolism in diabetic cardiomyopathy may help to gain more mechanistic insights and generate more precise mitochondria-oriented therapies to treat this disease.
Collapse
Affiliation(s)
- Wanlin Ye
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kun Han
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, Division of Guideline and Rapid Recommendation, Cochrane China Center, MAGIC China Center, Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guo Chen
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyan Wang
- Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
37
|
Finsen SH, Hansen MR, Hansen PBL, Mortensen SP. Eight weeks of treatment with mineralocorticoid receptor blockade does not alter vascular function in individuals with and without type 2 diabetes. Physiol Rep 2024; 12:e16010. [PMID: 38610066 PMCID: PMC11014871 DOI: 10.14814/phy2.16010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Aldosterone has been suggested to be involved in the microvascular complications observed in type 2 diabetes. We aimed to investigate the effect of mineralocorticoid receptor (MR) blockade on endothelial function in individuals with type 2 diabetes compared to healthy controls. We included 12 participants with type 2 diabetes and 14 controls. We measured leg hemodynamics at baseline and during femoral arterial infusion of acetylcholine and sodium nitroprusside before and 8 weeks into treatment with MR blockade (eplerenone). Acetylcholine infusion was repeated with concomitant n-acetylcysteine (antioxidant) infusion. No difference in leg blood flow or vascular conductance was detected before or after the treatment with MR blockade in both groups and there was no difference between groups. Infusion of n-acetylcysteine increased baseline blood flow and vascular conductance, but did not change the vascular response to acetylcholine before or after treatment with MR blockade. Skeletal muscle eNOS content was unaltered by MR blockade and no difference between groups was detected. In conclusion, we found no effect of MR blockade endothelial function in individuals with and without type 2 diabetes. As the individuals with type 2 diabetes did not have vascular dysfunction, these results might not apply to individuals with vascular dysfunction.
Collapse
Affiliation(s)
- Stine H. Finsen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Department of NephrologyOdense University HospitalOdenseDenmark
| | - Mie R. Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Pernille B. L. Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Stefan P. Mortensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
38
|
Radzioch E, Dąbek B, Balcerczyk-Lis M, Frąk W, Fularski P, Młynarska E, Rysz J, Franczyk B. Diabetic Cardiomyopathy-From Basics through Diagnosis to Treatment. Biomedicines 2024; 12:765. [PMID: 38672121 PMCID: PMC11048005 DOI: 10.3390/biomedicines12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is the development of myocardial dysfunction in patients with diabetes despite the absence of comorbidities such as hypertension, atherosclerosis or valvular defect. The cardiovascular complications of poorly controlled diabetes are very well illustrated by the U.K. Prospective Diabetes Study (UKPDS), which showed a clear association between increasing levels of glycated hemoglobin and the development of heart failure (HF). The incidence of HF in patients with diabetes is projected to increase significantly, which is why its proper diagnosis and treatment is so important. Providing appropriate therapy focusing on antidiabetic and hypolipemic treatment with the consideration of pharmacotherapy for heart failure reduces the risk of CMD and reduces the incidence of cardiovascular complications. Health-promoting changes made by patients such as a low-carbohydrate diet, regular exercise and weight reduction also appear to be important in achieving appropriate outcomes. New hope for the development of therapies for DCM is offered by novel methods using stem cells and miRNA, which, however, require more thorough research to confirm their efficacy.
Collapse
Affiliation(s)
- Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
39
|
Liu B, Si J, Qi K, Li D, Li T, Tang Y, Ji E, Yang S. Chronic intermittent hypoxia aggravated diabetic cardiomyopathy through LKB1/AMPK/Nrf2 signaling pathway. PLoS One 2024; 19:e0296792. [PMID: 38452099 PMCID: PMC10919874 DOI: 10.1371/journal.pone.0296792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 03/09/2024] Open
Abstract
Chronic intermittent hypoxia (CIH) may play an important role in the development of diabetic cardiomyopathy (DCM). However, the exact mechanism of CIH-induced myocardial injury in DCM remains unclear. In vivo, the db/db mice exposed to CIH were established, and in vitro, the H9C2 cells were exposed to high glucose (HG) combined with intermittent hypoxia (IH). The body weight (BW), fasting blood glucose (FBG) and food intake were measured every two weeks. The glycolipid metabolism was assessed with the oral glucose tolerance test (OGTT) and insulin resistance (IR). Cardiac function was detected by echocardiography. Cardiac pathology was detected by HE staining, Masson staining, and transmission electron microscopy. The level of reactive oxygen species (ROS) in myocardial tissue was detected by dihydroethidium (DHE). The apoptosis was detected by TUNEL staining. The cell viability, ROS, and the mitochondrial membrane potential were detected by the cell counting kit-8 (CCK-8) assay and related kits. Western blotting was used to analyze the liver kinase B1/AMP-activated protein kinase/ nuclear factor-erythroid 2-related factor 2 (LKB1/AMPK/Nrf2) signaling pathway. CIH exposure accelerated glycolipid metabolism disorders and cardiac injury, and increased the level of cardiac oxidative stress and the number of positive apoptotic cells in db/db mice. IH and HG decreased the cell viability and the level of mitochondrial membrane potential, and increased ROS expression in H9C2 cells. These findings indicate that CIH exposure promotes glycolipid metabolism disorders and myocardial apoptosis, aggravating myocardial injury via the LKB1/AMPK/Nrf2 pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Tingting Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Yi Tang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
40
|
Shu H, Xu H, Pan Z, Liu Y, Deng W, Zhao R, Sun Y, Wang Z, Yang J, Gao H, Yao K, Zheng J, Yu Y, Li X. Early detection of myocardial involvement by non-contrast T1ρ mapping of cardiac magnetic resonance in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1335899. [PMID: 38510696 PMCID: PMC10952821 DOI: 10.3389/fendo.2024.1335899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
Objective This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.
Collapse
Affiliation(s)
- Hongmin Shu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Huimin Xu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zixiang Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yan Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Wei Deng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Ren Zhao
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Sun
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jinxiu Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Hui Gao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Kaixuan Yao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Xiaohu Li
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
41
|
Zhou Y, Zheng Z, Wu S, Zhu J. Ubiquitin-conjugating enzyme E2 for regulating autophagy in diabetic cardiomyopathy: A mini-review. J Diabetes 2024; 16:e13511. [PMID: 38052719 PMCID: PMC10925883 DOI: 10.1111/1753-0407.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
The prevalence of diabetic cardiomyopathy (DCM) increases year by year with the increase in the prevalence of diabetes mellitus (DM), which is one of the most serious cardiovascular complications of DM and a major cause of death in diabetic patients. Although the pathological molecular features of DCM have not been fully elucidated, increasing evidence suggests that impaired autophagy in cardiomyocytes plays a nonnegligible role in the development of DCM. It has been shown that SUMOylation [SUMO = small ubiquitin-like modifier], a post-translational modification of proteins, and its associated ubiquitin-proteasome system mediates protein quality control in the heart and plays an important role in the proteotoxic environment of the heart. Specifically, the expression of ubiquitin-conjugating enzyme E2 (Ubc9), the only SUMO-E2 enzyme, exerts a positive regulatory effect on autophagy in cardiomyocytes with potential cardioprotective effects. This review focuses on the role that autophagy plays in DCM and the potential for Ubc9-regulated autophagy pathways to ameliorate DCM, highlighting the potential of Ubc9 as an interventional target in DCM and providing new insights into the pathogenesis of the disease.
Collapse
Affiliation(s)
- Yueran Zhou
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Zequn Zheng
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Shenglin Wu
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Jinxiu Zhu
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City)ShenzhenChina
| |
Collapse
|
42
|
Julián MT, Pérez-Montes de Oca A, Julve J, Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovasc Diabetol 2024; 23:65. [PMID: 38347569 PMCID: PMC10863220 DOI: 10.1186/s12933-024-02136-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Heart failure (HF) is increasing at an alarming rate, primary due to the rising in aging, obesity and diabetes. Notably, individuals with type 1 diabetes (T1D) face a significantly elevated risk of HF, leading to more hospitalizations and increased case fatality rates. Several risk factors contribute to HF in T1D, including poor glycemic control, female gender, smoking, hypertension, elevated BMI, and albuminuria. However, early and intensive glycemic control can mitigate the long-term risk of HF in individuals with T1D. The pathophysiology of diabetes-associated HF is complex and multifactorial, and the underlying mechanisms in T1D remain incompletely elucidated. In terms of treatment, much of the evidence comes from type 2 diabetes (T2D) populations, so applying it to T1D requires caution. Sodium-glucose cotransporter 2 inhibitors have shown benefits in HF outcomes, even in non-diabetic populations. However, most of the information about HF and the evidence from cardiovascular safety trials related to glucose lowering medications refer to T2D. Glycemic control is key, but the link between hypoglycemia and HF hospitalization risk requires further study. Glycemic variability, common in T1D, is an independent HF risk factor. Technological advances offer the potential to improve glycemic control, including glycemic variability, and may play a role in preventing HF. In summary, HF in T1D is a complex challenge with unique dimensions. This review focuses on HF in individuals with T1D, exploring its epidemiology, risk factors, pathophysiology, diagnosis and treatment, which is crucial for developing tailored prevention and management strategies for this population.
Collapse
Affiliation(s)
- María Teresa Julián
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alejandra Pérez-Montes de Oca
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Alonso
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
43
|
Liu B, Zhang J, Zhou Z, Feng B, He J, Yan W, Zhou X, Amponsah AE, Guo R, Du X, Liu X, Cui H, O'Brien T, Ma J. Preclinical Evidence for the Effectiveness of Mesenchymal Stromal Cells for Diabetic Cardiomyopathy: A Systematic Review and Meta-analysis. Curr Stem Cell Res Ther 2024; 19:220-233. [PMID: 37165495 DOI: 10.2174/1574888x18666230510111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus that endangers human health. DCM results in cardiac dysfunction, which eventually progresses to heart failure. Mesenchymal stromal cells (MSCs), a type of multipotent stem cell, have shown promising therapeutic effects in various cardiovascular diseases and diabetic complications in preclinical studies due to their immunomodulatory and regenerative abilities. However, there is still a lack of evidence to summarize the effectiveness of MSCs in the treatment of DCM. Therefore, a meta-analysis and systematic review are warranted to evaluate the therapeutic potential of MSCs for DCM in preclinical studies. METHODS A comprehensive literature search in English or Chinese was conducted in PubMed, EMBASE, web of Science, Cochrane Library, and China National Knowledge Internet from inception to June 30, 2022. The summarized outcomes included echocardiography, morphology, and pathology. Data were independently extracted and analyzed by two authors. The software we adopted was Review Manager5.4.1. This systematic review was written in compliance with PRISMA 2020 and the review protocol was registered on PROSPERO, registration no. CRD42022350032. RESULTS We included 20 studies in our meta-analysis to examine the efficacy of MSCs in the treatment of DCM. The MSC-treated group showed a statistically significant effect on left ventricular ejection fraction (WMD=12.61, 95% CI 4.32 to 20.90, P=0.003) and short axis fractional shortening (WMD=6.84, 95% CI 4.09 to 9.59, P < 0.00001). The overall effects on the ratio of early to late diastolic mitral annular velocity, left ventricular end-diastolic pressure, maximum positive pressure development, maximum negative pressure development, left ventricular relaxation time constant, heart weight to body weight ratio, fibrosis area, and arteriole density were analyzed, suggesting that MSCs represent an effective therapy for the treatment of DCM. CONCLUSION Our results suggest a therapeutic role for MSCs in the treatment of DCM, and these results provide support for the use of MSCs in clinical trials of patients with DCM.
Collapse
Affiliation(s)
- Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Yan
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xinghong Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| | - Timothy O'Brien
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| |
Collapse
|
44
|
Qin J, Tan Y, Han Y, Yu L, Liu S, Zhao S, Wan H, Qu S. Interplay Between TGF-β Signaling and MicroRNA in Diabetic Cardiomyopathy. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07532-2. [PMID: 38117422 DOI: 10.1007/s10557-023-07532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In diabetic patients, concomitant cardiovascular disease is the main factor contributing to their morbidity and mortality. Diabetic cardiomyopathy (DCM) is a form of cardiovascular disease associated with diabetes that can result in heart failure. Transforming growth factor-β (TGF-β) isoforms play a crucial role in heart remodeling and repair and are elevated and activated in myocardial disorders. Alterations in certain microRNAs (miRNA) are closely related to diabetic cardiomyopathy. One or more miRNA molecules target the majority of TGF-β pathway components, and TGF-β directly or via SMADs controls miRNA synthesis. Based on these interactions, this review discusses potential cross-talk between TGF-β signaling and miRNA in DCM in order to investigate the creation of potential therapeutic targets.
Collapse
Affiliation(s)
- Jianning Qin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Yao Tan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Yang Han
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Letian Yu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Shali Liu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Simin Zhao
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Hengquan Wan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China.
| |
Collapse
|
45
|
Huang J, Pang X, Zhang X, Qiu W, Zhang X, Wang R, Xie W, Bai Y, Zhou S, Liao J, Xiong Z, Tang Z, Su R. N-acetylcysteine combined with insulin attenuates myocardial injury in canines with type 1 diabetes mellitus by modulating TNF-α-mediated apoptotic pathways and affecting linear ubiquitination. Transl Res 2023; 262:1-11. [PMID: 37422055 DOI: 10.1016/j.trsl.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The exact pathogenesis of type 1 diabetes mellitus (DM) is still unclear. Numerous organs, including the heart, will suffer damage and malfunction as a result of long-term hyperglycemia. Currently, insulin therapy alone is still not the best treatment for type 1 DM. In order to properly treat and manage patients with type 1 DM, it is vital to seek a combination that includes both insulin and additional medications. This study aims to explore the therapeutic effect and mechanism of N-acetylcysteine (NAC) combined with insulin on type 1 DM. By giving beagle canines injections of streptozotocin (STZ) and alloxan (ALX) (20 mg/kg each), a model of type 1 DM was created. The results showed that this combination could effectively control blood sugar level, improve heart function, avoid the damage of mitochondria and myocardial cells, and prevent the excessive apoptosis of myocardial cells. Importantly, the combination can activate nuclear factor kappa-B (NF-κB) by promoting linear ubiquitination of receptor-interacting protein kinase 1 (RIPK1) and NF-κB-essential modulator (NEMO) and inhibitor of NF-κB (IκB) phosphorylation. The combination can increase the transcription and linear ubiquitination of Cellular FLICE (FADD-like IL-1β-converting enzyme) -inhibitory protein (c-FLIP), diminish the production of cleaved-caspase-8 p18 and cleaved-caspase-3 to reduce apoptosis. This study confirmed that NAC combined with insulin can promote the linear ubiquitination of RIPK1, NEMO and c-FLIP and regulate the apoptosis pathway mediated by TNF-α to attenuate the myocardial injury caused by type 1 DM. Meanwhile, the research served as a resource when choosing a clinical strategy for DM cardiac complications.
Collapse
Affiliation(s)
- Jianjia Huang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoyue Pang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xinting Zhang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenyue Qiu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xuluan Zhang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rongmei Wang
- Department of Animal Science, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Wenting Xie
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuman Bai
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuilian Zhou
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianzhao Liao
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaoxin Tang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rongsheng Su
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
47
|
Bao J, Gao Z, Hu Y, Ye L, Wang L. Transient receptor potential vanilloid type 1: cardioprotective effects in diabetic models. Channels (Austin) 2023; 17:2281743. [PMID: 37983306 PMCID: PMC10761101 DOI: 10.1080/19336950.2023.2281743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Cardiovascular disease, especially heart failure (HF) is the leading cause of death in patients with diabetes. Individuals with diabetes are prone to a special type of cardiomyopathy called diabetic cardiomyopathy (DCM), which cannot be explained by heart diseases such as hypertension or coronary artery disease, and can contribute to HF. Unfortunately, the current treatment strategy for diabetes-related cardiovascular complications is mainly to control blood glucose levels; nonetheless, the improvement of cardiac structure and function is not ideal. The transient receptor potential cation channel subfamily V member 1 (TRPV1), a nonselective cation channel, has been shown to be universally expressed in the cardiovascular system. Increasing evidence has shown that the activation of TRPV1 channel has a potential protective influence on the cardiovascular system. Numerous studies show that activating TRPV1 channels can improve the occurrence and progression of diabetes-related complications, including cardiomyopathy; however, the specific mechanisms and effects are unclear. In this review, we summarize that TRPV1 channel activation plays a protective role in the heart of diabetic models from oxidation/nitrification stress, mitochondrial function, endothelial function, inflammation, and cardiac energy metabolism to inhibit the occurrence and progression of DCM. Therefore, TRPV1 may become a latent target for the prevention and treatment of diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Cohen CD, De Blasio MJ, Farrugia GE, Dona MS, Hsu I, Prakoso D, Kiriazis H, Krstevski C, Nash DM, Li M, Gaynor TL, Deo M, Drummond GR, Ritchie RH, Pinto AR. Mapping the cellular and molecular landscape of cardiac non-myocytes in murine diabetic cardiomyopathy. iScience 2023; 26:107759. [PMID: 37736052 PMCID: PMC10509303 DOI: 10.1016/j.isci.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Miles J. De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiovascular Research and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Malathi S.I. Dona
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Ian Hsu
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery and Imaging Platform, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Crisdion Krstevski
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - David M. Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Taylah L. Gaynor
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Alexander R. Pinto
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
49
|
Zhang XJ, Han XW, Jiang YH, Wang YL, He XL, Liu DH, Huang J, Liu HH, Ye TC, Li SJ, Li ZR, Dong XM, Wu HY, Long WJ, Ni SH, Lu L, Yang ZQ. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int Immunopharmacol 2023; 123:110747. [PMID: 37586299 DOI: 10.1016/j.intimp.2023.110747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent cardiovascular complication of diabetes mellitus, characterized by high morbidity and mortality rates worldwide. However, treatment options for DCM remain limited. For decades, a substantial body of evidence has suggested that the inflammatory response plays a pivotal role in the development and progression of DCM. Notably, DCM is closely associated with alterations in inflammatory cells, exerting direct effects on major resident cells such as cardiomyocytes, vascular endothelial cells, and fibroblasts. These cellular changes subsequently contribute to the development of DCM. This article comprehensively analyzes cellular, animal, and human studies to summarize the latest insights into the impact of inflammation on DCM. Furthermore, the potential therapeutic effects of current anti-inflammatory drugs in the management of DCM are also taken into consideration. The ultimate goal of this work is to consolidate the existing literature on the inflammatory processes underlying DCM, providing clinicians with the necessary knowledge and tools to adopt a more efficient and evidence-based approach to managing this condition.
Collapse
Affiliation(s)
- Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yan-Hui Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ya-Le Wang
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China
| | - Xing-Ling He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Dong-Hua Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jie Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hao-Hui Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Tao-Chun Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Si-Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Ru Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Ming Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hong-Yan Wu
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China.
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
50
|
Zhang Z, Dai Y, Xiao Y, Liu Q. Protective effects of catalpol on cardio-cerebrovascular diseases: A comprehensive review. J Pharm Anal 2023; 13:1089-1101. [PMID: 38024856 PMCID: PMC10657971 DOI: 10.1016/j.jpha.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 12/01/2023] Open
Abstract
Catalpol, an iridoid glucoside isolated from Rehmannia glutinosa, has gained attention due to its potential use in treating cardio-cerebrovascular diseases (CVDs). This extensive review delves into recent studies on catalpol's protective properties in relation to various CVDs, such as atherosclerosis, myocardial ischemia, infarction, cardiac hypertrophy, and heart failure. The review also explores the compound's anti-oxidant, anti-inflammatory, and anti-apoptotic characteristics, emphasizing the role of vital signaling pathways, including PGC-1α/TERT, PI3K/Akt, AMPK, Nrf2/HO-1, estrogen receptor (ER), Nox4/NF-κB, and GRP78/PERK. The article discusses emerging findings on catalpol's ability to alleviate diabetic cardiovascular complications, thrombosis, and other cardiovascular-related conditions. Although clinical studies specifically addressing catalpol's impact on CVDs are scarce, the compound's established safety and well-tolerated nature suggest that it could be a valuable treatment alternative for CVD patients. Further investigation into catalpol and related iridoid derivatives may unveil new opportunities for devising natural and efficacious CVD therapies.
Collapse
Affiliation(s)
- Zixi Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yongguo Dai
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|