1
|
Marth C, Moore RG, Bidziński M, Pignata S, Ayhan A, Rubio MJ, Beiner M, Hall M, Vulsteke C, Braicu EI, Sonoda K, Wu X, Frentzas S, Mattar A, Lheureux S, Chen X, Hasegawa K, Magallanes-Maciel M, Choi CH, Shalkova M, Kaen D, Wang PH, Berger R, Okpara CE, McKenzie J, Yao L, Orlowski R, Khemka V, Gilbert L, Makker V. First-Line Lenvatinib Plus Pembrolizumab Versus Chemotherapy for Advanced Endometrial Cancer: A Randomized, Open-Label, Phase III Trial. J Clin Oncol 2025; 43:1083-1100. [PMID: 39591551 PMCID: PMC11936476 DOI: 10.1200/jco-24-01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 11/28/2024] Open
Abstract
PURPOSE Lenvatinib plus pembrolizumab (len + pembro) significantly improved progression-free survival (PFS) and overall survival (OS) versus chemotherapy in previously treated advanced or recurrent endometrial cancer (aEC) in the phase III Study 309/KEYNOTE-775. We report results from the phase III, randomized, open-label European Network of Gynaecological Oncological Trial-en9/LEAP-001 study (ClinicalTrials.gov identifier: NCT03884101) that evaluated len + pembro versus chemotherapy in first-line aEC. METHODS Patients with stage III to IV or recurrent, radiographically apparent EC and no previous chemotherapy or disease progression ≥6 months after neo/adjuvant platinum-based chemotherapy were randomly assigned 1:1 to lenvatinib 20 mg once daily plus pembrolizumab 200 mg once every 3 weeks or paclitaxel 175 mg/m2 plus carboplatin AUC 6 mg/mL/min once every 3 weeks. Primary end points were PFS and OS, evaluated in the mismatch repair-proficient (pMMR) and all-comers populations. Noninferiority was assessed for OS at final analysis (FA) for len + pembro versus chemotherapy (multiplicity-adjusted, one-sided nominal alpha, .0159; null hypothesis-tested hazard ratio [HR], 1.1). RESULTS Eight hundred forty-two patients were randomly assigned (len + pembro, n = 420 [pMMR population, n = 320]; chemotherapy, n = 422 [pMMR population, n = 322]). At FA (data cutoff, October 2, 2023), median PFS (95% CI) in the pMMR population was 9.6 (8.2 to 11.9) versus 10.2 (8.4 to 10.5) months with len + pembro versus chemotherapy (hazard ratio [HR], 0.99 [95% CI, 0.82 to 1.21]) and among all-comers was 12.5 (10.3 to 15.1) versus 10.2 (8.4 to 10.4) months (HR, 0.91 [95% CI, 0.76 to 1.09]; descriptive analyses). Median OS (95% CI) in the pMMR population was 30.9 (25.4 to 37.7) versus 29.4 (26.2 to 35.4) months with len + pembro versus chemotherapy (HR, 1.02 [95% CI, 0.83 to 1.26]; noninferiority P = .246, not statistically significant per multiplicity control strategy) and among all-comers was 37.7 (32.2 to 43.6) versus 32.1 (27.2 to 35.7) months (HR, 0.93 [95% CI, 0.77 to 1.12]). Grade ≥3 treatment-related adverse events occurred in 331/420 (79%) versus 274/411 (67%) treated patients. CONCLUSION First-line len + pembro did not meet prespecified statistical criteria for PFS or OS versus chemotherapy in pMMR aEC.
Collapse
Affiliation(s)
- Christian Marth
- AGO-Austria and Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard G. Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester, Rochester, NY
| | - Mariusz Bidziński
- Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie, Warsaw, Poland
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Ali Ayhan
- Turkish Society of Gynecologic Oncology (TRSGO), Başkent University, Ankara, Turkey
- Deceased
| | - M. Jesús Rubio
- H. Reina Sofía de Córdoba and GEICO Group, Córdoba, Spain
| | | | - Marcia Hall
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Christof Vulsteke
- Department of Medical Oncology, Integrated Cancer Center Ghent, AZ Maria Middelares Ghent and Center of Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Elena Ioana Braicu
- Charité Universitätsmedizin Berlin and North Eastern German Society for Gynecologic Oncology (NOGGO), Berlin, Germany
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | - Kenzo Sonoda
- Gynecology Service, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Xiaohua Wu
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Sophia Frentzas
- Department of Medical Oncology, Monash Health & Monash University, Melbourne, VIC, Australia
| | | | | | - Xiaojun Chen
- Obstetrics and Gynecology Hospital Fudan University, Shanghai, China
| | - Kosei Hasegawa
- Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | | | - Chel Hun Choi
- Samsung Medical Center, Sungkyunkwan University Seoul, Seoul, Republic of Korea
| | - Mariia Shalkova
- Communal Non-Profit Enterprise Regional Center of Oncology, Kharkiv, Ukraine
| | - Diego Kaen
- Centro Oncologico Riojano Integral and National University of La Rioja, La Rioja, Argentina
| | | | - Regina Berger
- AGO-Austria and University Hospital for Gynaecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | - Lucy Gilbert
- Division of Gynecologic Oncology, McGill University Health Centre, Women's Health Research Unit, Research Institute - McGill University Health Centre, Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Vicky Makker
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | | |
Collapse
|
2
|
Sueshige Y, Shiraiwa K, Tanaka R, Abe H, Tatsuta R, Saito T, Iwao M, Endo M, Arakawa M, Murakami K, Itoh H. Sensitive quantification of free lenvatinib using ultra-high performance liquid chromatography coupled to tandem mass spectrometry and the clinical significance of measuring free lenvatinib concentration. Clin Chim Acta 2025; 569:120188. [PMID: 39938627 DOI: 10.1016/j.cca.2025.120188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/20/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND AIMS Lenvatinib, an oral molecular target drug used for the treatment of hepatocellular carcinoma (HCC), has a high protein binding rate, resulting in high variability of free drug concentration in blood depending on patient conditions and drug interactions. In this study, an ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) assay was established to measure free lenvatinib concentrations. The novel assay was used to measure free lenvatinib concentrations in plasma of HCC patients, and the effect of hepatic dysfunction on free lenvatinib concentrations was evaluated. MATERIALS AND METHODS We studied 31 HCC patients treated orally with lenvatinib at Oita University Hospital. Blood samples were collected at seven time points on the first day of lenvatinib administration to measure total and free lenvatinib concentrations using UHPLC-MS/MS. RESULTS Pharmacokinetic (PK) parameters were calculated, and hepatic function was assessed using Child-Pugh (CP) classification and CP score. Patients were divided into CP class A (n = 22) and class B (n = 9), and PK parameters were compared between the two groups. The CP class B group had significantly higher trough concentrations (Ctrough) of total and free lenvatinib as well as Ctrough normalized to dose (Ctrough/Dose) compared to the class A group. A significant positive correlation was found between CP score and both Ctrough and Ctrough/Dose of total and free lenvatinib. However, free lenvatinib concentration tended to reflect the effects of hepatic function decline more sensitively than total concentration. In addition, plasma albumin concentration correlated significantly with protein binding rate. CONCLUSIONS The results of this study indicate that free lenvatinib concentration may reflect the effects of declining hepatic function more sensitively than total lenvatinib concentration. Therefore, measurement of free lenvatinib concentration may be clinically useful in patients with impaired hepatic function.
Collapse
Affiliation(s)
- Yoshio Sueshige
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Ken Shiraiwa
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan.
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Hironori Abe
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu-shi, Oita, Japan
| | - Masao Iwao
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu-shi, Oita, Japan
| | - Mizuki Endo
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu-shi, Oita, Japan
| | - Mie Arakawa
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu-shi, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu-shi, Oita, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| |
Collapse
|
3
|
Kai J, Liu X, Wu M, Liu P, Lin M, Yang H, Zhao Q. Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism. Per Med 2025; 22:45-58. [PMID: 39764674 DOI: 10.1080/17410541.2024.2447224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet. Here, we briefly summarize the conventional and state-of-the-art technologies contributing to individualized medication in clinical settings, aiming to explore therapy options enhancing clinical outcomes.
Collapse
Affiliation(s)
- Jiejing Kai
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Liu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijia Wu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meihua Lin
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Yang
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Pagliaro R, Medusa PM, Vitiello F, Aronne L, Campbell SFM, Perrotta F, Bianco A. Case report: Selpercatinib in the treatment of RET fusion-positive advanced lung adenocarcinoma: a challenging clinical case. Front Oncol 2025; 14:1500449. [PMID: 39882443 PMCID: PMC11774735 DOI: 10.3389/fonc.2024.1500449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
Background Rearranged during transfection (RET) fusions represent a distinct molecular subset of non-small cell lung cancer (NSCLC) with targeted therapeutic potential. Selpercatinib, a highly selective RET inhibitor, has demonstrated efficacy in various solid tumors harboring RET alterations. Here, we present a case highlighting the use and clinical outcomes of selpercatinib in a patient diagnosed with advanced lung adenocarcinoma harboring a RET fusion. Case presentation A 59-year-old woman with a history of stage IV lung adenocarcinoma harboring a KIF5B-RET fusion presented with disease progression following first-line chemo-immunotherapy. Selpercatinib was initiated as a targeted therapy, leading to a notable radiographic response and clinical improvement. The patient experienced a significant reduction in tumor burden and reported improved symptom control, with no significant adverse effects during the 21-month follow-up period. Conclusions This case highlights the efficacy and tolerability of selpercatinib in treating advanced lung adenocarcinoma with a RET fusion. The observed clinical response supports the early use of selpercatinib as a targeted therapy for RET fusion-positive NSCLC, including in patients with compromised general and respiratory conditions, especially in cases refractory to conventional treatments. Long-term follow-up studies are warranted to validate these findings and assess the durability of responses.
Collapse
Affiliation(s)
- Raffaella Pagliaro
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Paola Maria Medusa
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Department of Pneumology and Oncology, Monaldi Hospital A.O. Dei Colli, Naples, Italy
| | - Fabiana Vitiello
- Department of Pneumology and Oncology, Monaldi Hospital A.O. Dei Colli, Naples, Italy
| | - Luigi Aronne
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Susan F. M. Campbell
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| |
Collapse
|
5
|
Shashni B, Tran HT, Vong LB, Chung RJ, Nagasaki Y. Sorafenib-Loaded Silica-Containing Redox Nanoparticle Decreases Tumorigenic Potential of Lewis Lung Carcinoma. Pharmaceutics 2025; 17:50. [PMID: 39861698 PMCID: PMC11768447 DOI: 10.3390/pharmaceutics17010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Methods: Sorafenib was loaded into siRNP via dialysis (sora@siRNP). The therapeutic efficacy and safety of sora@siRNP (20 and 40 mg-sora/kg) were evaluated in a xenograft mouse model of Lewis lung carcinoma (subcutaneous tumors and experimental metastasis) following oral administration. Results: Crosslinking nanosilica in siRNP improved drug stability, enabling 8.9% sorafenib loading and pH resilience. Oral sora@siRNP exhibited dose-dependent tumor growth suppression by downregulating pMEK, outperforming free sorafenib, which showed inconsistent efficacy likely due to formulation variability. Intestinal damage, a major adverse effect of free sorafenib, was significantly reduced with sora@siRNP, attributed to siRNP's antioxidant property of mitigating oxidative damage. Survival rates in the experimental metastasis model were 66-74% for sorafenib but reached 100% for sora@siRNP, highlighting its superior efficacy and safety. Conclusions: These findings demonstrate that nanosilica-crosslinked antioxidant nanoparticles (siRNP) enhance the stability, delivery efficiency, and safety of lipophilic drugs like sorafenib for oral administration. This platform holds promise for improving therapeutic outcomes in lung cancer while minimizing adverse effects.
Collapse
Affiliation(s)
- Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan; (B.S.); (H.T.T.)
| | - Hao Thi Tran
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan; (B.S.); (H.T.T.)
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam;
- School of Biomedical Engineering, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan;
- High-Value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan; (B.S.); (H.T.T.)
- High-Value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan
- Master’s School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Gayathri JS, Krishna SS, Rakesh MP. Tyrosine Kinase Inhibitor Induced Proteinuria - A Review. Drug Res (Stuttg) 2025; 75:5-11. [PMID: 39406370 DOI: 10.1055/a-2423-3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tyrosine Kinase inhibitor (TKI) is a class of drugs that interfere with protein kinases' signal transduction pathways through an array of inhibitory mechanisms. Tyrosine kinases (TK) have an inevitable role in downstream signal transduction and the proliferation of tumour cells. Hence, tyrosine kinase inhibitors (TKIs) are frequently employed as anti-neoplastic agents in the treatment of colon, breast, kidney, and lung cancers. They can be used as single or combination therapy with other targeted therapies. It is understood that TKIs pose a risk of developing proteinuria in some patients as it can primarily result in dysfunction of the split diaphragm, constriction or blockage of capillary lumens mediated by the basement membrane, acute interstitial nephritis, or acute tubular necrosis. This paper reviews the mechanism of action of TKIs, the pathophysiological mechanism of TKI-induced proteinuria, and its management Fig. 1.
Collapse
Affiliation(s)
- J S Gayathri
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, India
| | - S Swathi Krishna
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, India
| | - M P Rakesh
- Department of Medical Oncology, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, India
| |
Collapse
|
7
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Mukherjee S, Joshi V, Reddy KP, Singh N, Das P, Datta P. Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors. Asian J Pharm Sci 2024; 19:100980. [PMID: 39640056 PMCID: PMC11617995 DOI: 10.1016/j.ajps.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Buoyed by the discovery of small-molecule tyrosine kinase inhibitors (smTKIs), significant impact has been made in cancer chemotherapeutics. However, some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties. Almost all of these molecules exhibit significant inter- and intra-patient variations in plasma concentration-time profiles. Thus, therapeutic drug monitoring, dose adjustments and precision medicine are being contemplated by clinicians. Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release, overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes. In this context, the present review comprehensively tabulates and critically analyzes all the relevant properties (T1/2, solubility, pKa, therapeutic index, IC50, metabolism etc.) of the approved smTKIs. A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs, with a focus on strategies to enhance their pharmacokinetic profile, tumor targeting ability, and therapeutic efficacy. Various nanocarrier platforms, have been discussed, highlighting their unique features and potential applications in cancer therapy. Nanoformulations have been shown to improve area under the curve and peak plasma concentration, and reduce dosing frequency for several smTKIs in animal models. It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future. There, the review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.
Collapse
Affiliation(s)
| | | | - Kolimi Prashanth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Priyanka Das
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| |
Collapse
|
9
|
Zhang X, Ren X, Zhu T, Zheng W, Shen C, Lu C. A real-world pharmacovigilance study of FDA adverse event reporting system (FAERS) events for sunitinib. Front Pharmacol 2024; 15:1407709. [PMID: 39114350 PMCID: PMC11303340 DOI: 10.3389/fphar.2024.1407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background Sunitinib is approved for the treatment of metastatic renal cell carcinoma (mRCC), imatinib-resistant gastrointestinal stromal tumors (GIST), and advanced pancreatic neuroendocrine tumors (PNET). This study aims to investigate the safety profiles of sunitinib through data mining of the US Food and Drug Administration Adverse Event Reporting System (FAERS). Methods The individual case safety reports (ICSRs) on sunitinib from 2006 Q1 to 2024 Q1 were collected from the ASCII data packages in the Food and Drug Administration Adverse Event Reporting System (FAERS). After standardizing the data, a variety of disproportionality analyses, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) were employed to identify the potential safety signals of sunitinib-associated AEs. Results A total of 35,923 ICSRs of sunitinib as the "primary suspected" drug were identified within the reporting period. The search detected 276 disproportionate preferred terms (PTs). The most common AEs, including diarrhea, asthenia, decreased appetite, hypertension, and dysgeusia, were consistent with the drug label and clinical trials. Unexpected significant AEs, such as uveal melanocytic proliferation, salivary gland fistula, yellow skin, eyelash discoloration, scrotal inflammation, were detected. The median onset time of sunitinib-related AEs was 57 days (interquartile range [IQR]16-170 days), with most of the ICSRs developing within the first month (n = 4,582, 39.73%) after sunitinib therapy as initiated. Conclusion The results of our study were consistent with routine clinical observations, and some unexpected AEs signals were also identified for sunitinib, providing valuable evidence for the safe use of sunitinib in the real-world and contributing to the clinical monitoring and risk identification of sunitinib.
Collapse
Affiliation(s)
- Xusheng Zhang
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiuli Ren
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyu Zhu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wanjin Zheng
- Department of Pharmacology, Hospital for Skin Diseases, Shandong First Medical University, Jinan, China
- Department of Pharmacology, Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
| | - Chengwu Shen
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cuicui Lu
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Kollipara S, Chougule M, Boddu R, Bhatia A, Ahmed T. Playing Hide-and-Seek with Tyrosine Kinase Inhibitors: Can We Overcome Administration Challenges? AAPS J 2024; 26:66. [PMID: 38862853 DOI: 10.1208/s12248-024-00939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy against various types of cancers through molecular targeting mechanisms. Over the past 22 years, more than 100 TKIs have been approved for the treatment of various types of cancer indicating the significant progress achieved in this research area. Despite having significant efficacy and ability to target multiple pathways, TKIs administration is associated with challenges. There are reported inconsistencies between observed food effect and labeling administration, challenges of concomitant administration with acid-reducing agents (ARA), pill burden and dosing frequency. In this context, the objective of present review is to visit administration challenges of TKIs and effective ways to tackle them. We have gathered data of 94 TKIs approved in between 2000 and 2022 with respect to food effect, ARA impact, administration schemes (food and PPI restrictions), number of pills per day and administration frequency. Further, trend analysis has been performed to identify inconsistencies in the labeling with respect to observed food effect, molecules exhibiting ARA impact, in order to identify solutions to remove these restrictions through novel formulation approaches. Additionally, opportunities to reduce number of pills per day and dosing frequency for better patient compliance were suggested using innovative formulation interventions. Finally, utility of physiologically based pharmacokinetic modeling (PBPK) for rationale formulation development was discussed with literature reported examples. Overall, this review can act as a ready-to-use-guide for the formulation, biopharmaceutics scientists and medical oncologists to identify opportunities for innovation for TKIs.
Collapse
Affiliation(s)
- Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Mahendra Chougule
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Ashima Bhatia
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India.
| |
Collapse
|
11
|
Latham BD, Geffert RM, Jackson KD. Kinase Inhibitors FDA Approved 2018-2023: Drug Targets, Metabolic Pathways, and Drug-Induced Toxicities. Drug Metab Dispos 2024; 52:479-492. [PMID: 38286637 PMCID: PMC11114602 DOI: 10.1124/dmd.123.001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Small molecule kinase inhibitors are one of the fastest growing classes of drugs, which are approved by the US Food and Drug Administration (FDA) for cancer and noncancer indications. As of September 2023, there were over 70 FDA-approved small molecule kinase inhibitors on the market, 42 of which were approved in the past five years (2018-2023). This minireview discusses recent advances in our understanding of the pharmacology, metabolism, and toxicity profiles of recently approved kinase inhibitors with a central focus on tyrosine kinase inhibitors (TKIs). In this minireview we discuss the most common therapeutic indications and molecular target(s) of kinase inhibitors FDA approved 2018-2023. We also describe unique aspects of the metabolism, bioactivation, and drug-drug interaction (DDI) potential of kinase inhibitors; discuss drug toxicity concerns related to kinase inhibitors, such as drug-induced liver injury; and highlight clinical outcomes and challenges relevant to TKI therapy. Case examples are provided for common TKI targets, metabolism pathways, DDI potential, and risks for serious adverse drug reactions. The minireview concludes with a discussion of perspectives on future research to optimize TKI therapy to maximize efficacy and minimize drug toxicity. SIGNIFICANCE STATEMENT: This minireview highlights important aspects of the clinical pharmacology and toxicology of small molecule kinase inhibitors FDA approved 2018-2023. We describe key advances in the therapeutic indications and molecular targets of TKIs. The major metabolism pathways and toxicity profiles of recently approved TKIs are discussed. Clinically relevant case examples are provided that demonstrate the risk for hepatotoxic drug interactions involving TKIs and coadministered drugs.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Vanderick A, Colinet B. Absence of cross-toxicity between MET inhibitors in a non-small-cell lung cancer with a MET exon 14 skipping mutation. Acta Clin Belg 2024; 79:148-151. [PMID: 38494868 DOI: 10.1080/17843286.2024.2330137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Selective tyrosine kinase inhibitors are proven effective in patients with non-small lung cancer (NSCLC) with a MET exon 14 skipping mutation. CASE PRESENTATION The patient developed a metastatic lung adenocarcinoma with a MET exon 14 skipping mutation. She was treated with a first 1b MET inhibitor, Capmatinib, but had to stop the drug because of major hepatotoxicity. A few months later, she started Tepotinib, another 1b MET inhibitor with this time, no sign of hepatotoxicity. DISCUSSION Adverse events are frequent with 1b MET inhibitors. However, there is a wide interpatient variability. Absence of cross-toxicity between Capmatinib and Tepotinib is misunderstood but can be explained by slight differences in phamarcodynamics and pharmacokinetics. Practitionners have to be warned about severe adverse events to stop or change the drug if necessary. CONCLUSION This is the first case showing the absence of cross-toxicity between 1b MET inhibitors.
Collapse
Affiliation(s)
- Ariane Vanderick
- Pneumology, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Benoît Colinet
- Department of Pneumology, Grand hôpital de Charleroi, Charleroi, Belgium
| |
Collapse
|
13
|
Giannitrapani L, Di Gaudio F, Cervello M, Scionti F, Ciliberto D, Staropoli N, Agapito G, Cannataro M, Tassone P, Tagliaferri P, Seidita A, Soresi M, Affronti M, Bertino G, Russello M, Ciriminna R, Lino C, Spinnato F, Verderame F, Augello G, Arbitrio M. Genetic Biomarkers of Sorafenib Response in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:2197. [PMID: 38396873 PMCID: PMC10888718 DOI: 10.3390/ijms25042197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The identification of biomarkers for predicting inter-individual sorafenib response variability could allow hepatocellular carcinoma (HCC) patient stratification. SNPs in angiogenesis- and drug absorption, distribution, metabolism, and excretion (ADME)-related genes were evaluated to identify new potential predictive biomarkers of sorafenib response in HCC patients. Five known SNPs in angiogenesis-related genes, including VEGF-A, VEGF-C, HIF-1a, ANGPT2, and NOS3, were investigated in 34 HCC patients (9 sorafenib responders and 25 non-responders). A subgroup of 23 patients was genotyped for SNPs in ADME genes. A machine learning classifier method was used to discover classification rules for our dataset. We found that only the VEGF-A (rs2010963) C allele and CC genotype were significantly associated with sorafenib response. ADME-related gene analysis identified 10 polymorphic variants in ADH1A (rs6811453), ADH6 (rs10008281), SULT1A2/CCDC101 (rs11401), CYP26A1 (rs7905939), DPYD (rs2297595 and rs1801265), FMO2 (rs2020863), and SLC22A14 (rs149738, rs171248, and rs183574) significantly associated with sorafenib response. We have identified a genetic signature of predictive response that could permit non-responder/responder patient stratification. Angiogenesis- and ADME-related genes correlation was confirmed by cumulative genetic risk score and network and pathway enrichment analysis. Our findings provide a proof of concept that needs further validation in follow-up studies for HCC patient stratification for sorafenib prescription.
Collapse
Affiliation(s)
- Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (L.G.); (M.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (F.D.G.); (A.S.); (M.S.); (M.A.)
| | - Francesca Di Gaudio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (F.D.G.); (A.S.); (M.S.); (M.A.)
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (L.G.); (M.C.)
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (N.S.); (P.T.); (P.T.)
| | - Domenico Ciliberto
- Medical and Translational Oncology Unit, A.O.U. R. Dulbecco, 88100 Catanzaro, Italy;
| | - Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (N.S.); (P.T.); (P.T.)
- Medical and Translational Oncology Unit, A.O.U. R. Dulbecco, 88100 Catanzaro, Italy;
| | - Giuseppe Agapito
- Department of Legal, Economic and Social Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Mario Cannataro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (N.S.); (P.T.); (P.T.)
- Medical and Translational Oncology Unit, A.O.U. R. Dulbecco, 88100 Catanzaro, Italy;
- College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (N.S.); (P.T.); (P.T.)
- Medical and Translational Oncology Unit, A.O.U. R. Dulbecco, 88100 Catanzaro, Italy;
| | - Aurelio Seidita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (F.D.G.); (A.S.); (M.S.); (M.A.)
- Villa Sofia-Cervello Hospital, C.O.U. Medical Oncology, 90146 Palermo, Italy; (F.S.); (F.V.)
| | - Maurizio Soresi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (F.D.G.); (A.S.); (M.S.); (M.A.)
| | - Marco Affronti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (F.D.G.); (A.S.); (M.S.); (M.A.)
| | - Gaetano Bertino
- Hepatology Unit, A.O.U. Policlinico-San Marco, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | | | - Rosaria Ciriminna
- Institute of Nanostructured Materials, National Research Council (CNR), 90146 Palermo, Italy; (R.C.); (C.L.)
| | - Claudia Lino
- Institute of Nanostructured Materials, National Research Council (CNR), 90146 Palermo, Italy; (R.C.); (C.L.)
| | - Francesca Spinnato
- Villa Sofia-Cervello Hospital, C.O.U. Medical Oncology, 90146 Palermo, Italy; (F.S.); (F.V.)
| | - Francesco Verderame
- Villa Sofia-Cervello Hospital, C.O.U. Medical Oncology, 90146 Palermo, Italy; (F.S.); (F.V.)
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (L.G.); (M.C.)
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Terada T. [Management of high-alert medications by clinical pharmacological approaches]. Nihon Yakurigaku Zasshi 2024; 159:96-99. [PMID: 38432926 DOI: 10.1254/fpj.23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
During the past decade, many high-alert medications have been developed and used in clinical practice. Particularly, in the pharmacotherapy of high-alert medications with large individual differences, more attention is needed. To achieve appropriate and individualized pharmacotherapy, there are many issues to be addressed from a clinical pharmacology perspective, such as enhanced monitoring and prior risk identification. This paper is focusing on the therapeutic drug monitoring of molecularly targeted anticancer drugs, and the provision of real-world evidence based on the clinical implementation of pharmacogenetic testing.
Collapse
Affiliation(s)
- Tomohiro Terada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| |
Collapse
|
15
|
Kim E, Kim SS, Ryu MO. Palmar-plantar erythrodysesthesia syndrome resulting from toceranib phosphate in a dog with apocrine gland anal sac adenocarcinoma: a case report. J Vet Sci 2023; 24:e76. [PMID: 37904638 PMCID: PMC10694368 DOI: 10.4142/jvs.23163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 11/01/2023] Open
Abstract
An 11-year-old neutered male Miniature Poodle with a stage 3 apocrine gland adenocarcinoma was started on chemotherapy with toceranib phosphate after surgery. Beginning on day 10 of toceranib, the dog's foot pads became erythematous and hyperkeratinized. The dog complained of pain, inability to walk, depression, and loss of appetite. The symptoms resolved when toceranib was discontinued and reappeared when toceranib was resumed. Grade 3 palmar-plantar erythrodysesthesia was identified as an adverse event of toceranib based on the VCOG-CTCAE and Naranjo scale. Although very rare in veterinary medicine, clinicians should consider that palmar-plantar erythrodysesthesia can occur after toceranib administration.
Collapse
Affiliation(s)
- Eunjoo Kim
- VIP Animal Medical Center KR, City Place Bld., Seoul 02830, Korea
| | - Sung-Soo Kim
- VIP Animal Medical Center KR, City Place Bld., Seoul 02830, Korea
| | - Min-Ok Ryu
- VIP Animal Medical Center KR, City Place Bld., Seoul 02830, Korea
- Laboratory of Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 88082, Korea.
| |
Collapse
|
16
|
Wang J, Tan J, Wu B, Wu R, Han Y, Wang C, Gao Z, Jiang D, Xia X. Customizing cancer treatment at the nanoscale: a focus on anaplastic thyroid cancer therapy. J Nanobiotechnology 2023; 21:374. [PMID: 37833748 PMCID: PMC10571362 DOI: 10.1186/s12951-023-02094-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive kind of thyroid cancer. Various therapeutic methods have been considered for the treatment of ATC, but its prognosis remains poor. With the advent of the nanomedicine era, the use of nanotechnology has been introduced in the treatment of various cancers and has shown great potential and broad prospects in ATC treatment. The current review meticulously describes and summarizes the research progress of various nanomedicine-based therapeutic methods of ATC, including chemotherapy, differentiation therapy, radioiodine therapy, gene therapy, targeted therapy, photothermal therapy, and combination therapy. Furthermore, potential future challenges and opportunities for the currently developed nanomedicines for ATC treatment are discussed. As far as we know, there are few reviews focusing on the nanomedicine of ATC therapy, and it is believed that this review will generate widespread interest from researchers in a variety of fields to further expedite preclinical research and clinical translation of ATC nanomedicines.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Jie Tan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruolin Wu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Yanmei Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| |
Collapse
|
17
|
Chour A, Duruisseaux M. Response to Commentary on "Brief Report: Severe Sotorasib-Related Hepatotoxicity and Non-Liver Adverse Events Associated With Sequential Anti-PD(L)1 and Sotorasib Therapy in KRASG12C-Mutant Lung Cancer". J Thorac Oncol 2023; 18:e114-e115. [PMID: 37758349 DOI: 10.1016/j.jtho.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Ali Chour
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France; Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR Institut National de la Santé et de la Recherche Médicale (INSERM) 1052 Centre National de la Recherche Scientifique (CNRS) 5286, Lyon, France; Université Claude Bernard, Université de Lyon, Lyon, France
| | - Michaël Duruisseaux
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France; Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR Institut National de la Santé et de la Recherche Médicale (INSERM) 1052 Centre National de la Recherche Scientifique (CNRS) 5286, Lyon, France; Université Claude Bernard, Université de Lyon, Lyon, France.
| |
Collapse
|
18
|
Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther 2023; 8:262. [PMID: 37414756 PMCID: PMC10326056 DOI: 10.1038/s41392-023-01469-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
Since their invention in the early 2000s, tyrosine kinase inhibitors (TKIs) have gained prominence as the most effective pathway-directed anti-cancer agents. TKIs have shown significant utility in the treatment of multiple hematological malignancies and solid tumors, including chronic myelogenous leukemia, non-small cell lung cancers, gastrointestinal stromal tumors, and HER2-positive breast cancers. Given their widespread applications, an increasing frequency of TKI-induced adverse effects has been reported. Although TKIs are known to affect multiple organs in the body including the lungs, liver, gastrointestinal tract, kidneys, thyroid, blood, and skin, cardiac involvement accounts for some of the most serious complications. The most frequently reported cardiovascular side effects range from hypertension, atrial fibrillation, reduced cardiac function, and heart failure to sudden death. The potential mechanisms of these side effects are unclear, leading to critical knowledge gaps in the development of effective therapy and treatment guidelines. There are limited data to infer the best clinical approaches for the early detection and therapeutic modulation of TKI-induced side effects, and universal consensus regarding various management guidelines is yet to be reached. In this state-of-the-art review, we examine multiple pre-clinical and clinical studies and curate evidence on the pathophysiology, mechanisms, and clinical management of these adverse reactions. We expect that this review will provide researchers and allied healthcare providers with the most up-to-date information on the pathophysiology, natural history, risk stratification, and management of emerging TKI-induced side effects in cancer patients.
Collapse
Affiliation(s)
- Sunitha Shyam Sunder
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Division of Cardiovascular Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saraswati Pokharel
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
19
|
Solana-Altabella A, Megías-Vericat JE, Ballesta-López O, Martínez-Cuadrón D, Montesinos P. Drug-drug interactions associated with FLT3 inhibitors for acute myeloblastic leukemia: current landscape. Expert Rev Clin Pharmacol 2023; 16:133-148. [PMID: 36708283 DOI: 10.1080/17512433.2023.2174523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION FLT3 inhibitors (FLT3i) are drugs in which there is limited experience and not yet enough information on the mechanisms of absorption, transport, and elimination; but especially on the potential drug-drug interactions (DDIs). There are therefore risks in the management of FLT3i DDIs (i.e. sorafenib, ponatinib, crenolanib, midostaurin, quizartinib, and gilteritinib) and ignoring them can compromise therapeutic success in acute myeloid leukemia (AML) treatment, in complex patients and secondary pathologies. AREAS COVERED This review summarizes the DDIs of FLT3i with P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporting (OAT), organic cationic transporting (OCT), cytochrome P450 (CYP) subunits, and other minor metabolic/transport pathways. EMBASE, PubMed, the Cochrane Central Register and the Web of Science were searched. The last literature search was performed on the 14 February 2022. EXPERT OPINION FLT3i will be combined with other therapeutic agents (supportive care, doublet, or triplet therapy) and in different clinical settings, which means a greater chance of controlling and even eradicating the disease effectively, but also an increased risk to patients due to potential DDIs. Healthcare professionals should be aware of the potential interactions that may occur and be vigilant in monitoring those patients who are receiving any potentially interacting drug.
Collapse
Affiliation(s)
- Antonio Solana-Altabella
- Servicio de Farmacia Área del Medicamento, Hospital Universitari i Politècnic La Fe Av. Valencia, Spain.,Grupo de Investigación en Hematología y Hemoterapia, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | | | - Octavio Ballesta-López
- Servicio de Farmacia Área del Medicamento, Hospital Universitari i Politècnic La Fe Av. Valencia, Spain.,Grupo de Investigación en Hematología y Hemoterapia, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - David Martínez-Cuadrón
- Grupo de Investigación en Hematología y Hemoterapia, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.,Servicio de Hematología y Hemoterapia Hospital Universitari i Politècnic La Fe. Valencia Spain
| | - Pau Montesinos
- Grupo de Investigación en Hematología y Hemoterapia, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.,Servicio de Hematología y Hemoterapia Hospital Universitari i Politècnic La Fe. Valencia Spain
| |
Collapse
|
20
|
Noda S, Morita SY, Terada T. Dose Individualization of Oral Multi-Kinase Inhibitors for the Implementation of Therapeutic Drug Monitoring. Biol Pharm Bull 2022; 45:814-823. [PMID: 35786588 DOI: 10.1248/bpb.b21-01098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oral multi-kinase inhibitors have transformed the treatment landscape for various cancer types and provided significant improvements in clinical outcomes. These agents are mainly approved at fixed doses, but the large inter-individual variability in pharmacokinetics and pharmacodynamics (efficacy and safety) has been an unsolved clinical issue. For example, certain patients treated with oral multi-kinase inhibitors at standard doses have severe adverse effects and require dose reduction and discontinuation, yet other patients have a suboptimal response to these drugs. Consequently, optimizing the dosing of oral multi-kinase inhibitors is important to prevent over-dosing or under-dosing. To date, multiple studies on the exposure-efficacy/toxicity relationship of molecular targeted therapy have been attempted for the implementation of therapeutic drug monitoring (TDM) strategies. In this milieu, we recently conducted research on several multi-kinase inhibitors, such as sunitinib, pazopanib, sorafenib, and lenvatinib, with the aim to optimize their treatment efficacy using a pharmacokinetic/pharmacodynamic approach. Among them, sunitinib use is an example of successful TDM implementation. Sunitinib demonstrated a significant correlation between drug exposure and treatment efficacy or toxicities. As a result, TDM services for sunitinib has been covered by the National Health Insurance program in Japan since April 2018. Additionally, other multi-kinase targeted anticancer drugs have promising data regarding the exposure-efficacy/toxicity relationship, suggesting the possibility of personalization of drug dosage. In this review, we provide a comprehensive summary of the clinical evidence for dose individualization of multi-kinase inhibitors and discuss the utility of TDM of multi-kinase inhibitors, especially sunitinib, pazopanib, sorafenib, and lenvatinib.
Collapse
Affiliation(s)
- Satoshi Noda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital.,Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| |
Collapse
|
21
|
Yin J, Li F, Li Z, Yu L, Zhu F, Zeng S. Feature, Function, and Information of Drug Transporter-Related Databases. Drug Metab Dispos 2022; 50:76-85. [PMID: 34426411 DOI: 10.1124/dmd.121.000419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
With the rapid progress in pharmaceutical experiments and clinical investigations, extensive knowledge of drug transporters (DTs) has accumulated, which is valuable data for the understanding of drug metabolism and disposition. However, such data are largely dispersed in the literature, which hampers its utility and significantly limits its possibility for comprehensive analysis. A variety of databases have, therefore, been constructed to provide DT-related data, and they were reviewed in this study. First, several knowledge bases providing data regarding clinically important drugs and their corresponding transporters were discussed, which constituted the most important resources of DT-centered data. Second, some databases describing the general transporters and their functional families were reviewed. Third, various databases offering transporter information as part of their entire data collection were described. Finally, customized database functions that are available to facilitate DT-related research were discussed. This review provided an overview of the whole collection of DT-related databases, which might facilitate research on precision medicine and rational drug use. SIGNIFICANCE STATEMENT: A collection of well established databases related to drug transporters were comprehensively reviewed, which were organized according to their importance in drug absorption, distribution, metabolism, and excretion research. These databases could collectively contribute to the research on rational drug use.
Collapse
Affiliation(s)
- Jiayi Yin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Fengcheng Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Zhaorong Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Feng Zhu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| |
Collapse
|
22
|
Matsumoto A, Shiraiwa K, Suzuki Y, Tanaka K, Kawano M, Iwasaki T, Tanaka R, Tatsuta R, Tsumura H, Itoh H. Sensitive quantification of free pazopanib using ultra-high performance liquid chromatography coupled to tandem mass spectrometry and assessment of clinical application. J Pharm Biomed Anal 2021; 206:114348. [PMID: 34509660 DOI: 10.1016/j.jpba.2021.114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Pazopanib is widely used to treat renal cell carcinomas and soft tissue tumors in Japan. Although several reports demonstrated the usefulness of therapeutic drug monitoring (TDM) of pazopanib, those studies measured only total pazopanib concentration. For drugs with high protein binding rates such as pazopanib, measuring free concentrations may be clinically more useful than measuring total concentrations. In this study, we aimed to develop a high-throughput method for quantification of free pazopanib in human plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Free pazopanib was separated by ultrafiltration. After a simple solid-phase extraction step using a 96-well plate, pazopanib was analyzed by UHPLC-MS/MS in positive electrospray ionization mode. The novel method fulfilled the requirements of the US Food and Drug Administration guidelines for assay validation, and the lower limit of quantification was 0.05 ng/mL. The calibration curve was linear over the concentration range of 0.05-50 ng/mL. The average recovery rate was 66.9 ± 2.1% (mean ± SD). The precision was below 7.02%, and accuracy was within 10.60% across all quality control levels. Matrix effect varied between 44.4% and 60.4%. This assay was successfully applied to measure trough free pazopanib concentrations in three patients treated with pazopanib for soft tissue tumors. We succeeded to develop a novel high-throughput UHPLC-MS/MS method for quantification of free pazopanib in human plasma. This method can be applied to TDM for patients receiving pazopanib in the clinical setting.
Collapse
Affiliation(s)
- Asami Matsumoto
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Ken Shiraiwa
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan.
| | - Yosuke Suzuki
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Oita University Faculty of Medicine, Yufu-shi, Oita, Japan
| | - Masanori Kawano
- Department of Orthopaedic Surgery, Oita University Faculty of Medicine, Yufu-shi, Oita, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Oita University Faculty of Medicine, Yufu-shi, Oita, Japan
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Oita University Faculty of Medicine, Yufu-shi, Oita, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| |
Collapse
|
23
|
Maillard M, Louveau B, Vilquin P, Goldwirt L, Thomas F, Mourah S. Pharmacogenomics in solid cancers and hematologic malignancies: Improving personalized drug prescription. Therapie 2021; 77:171-183. [PMID: 34922740 DOI: 10.1016/j.therap.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
The discovery of molecular alterations involved in oncogenesis is evolving rapidly and has led to the development of new innovative targeted therapies in oncology. High-throughput sequencing techniques help to identify genomic targets and to provide predictive molecular biomarkers of response to guide alternative therapeutic strategies. Besides the emergence of these theranostic markers for the new targeted treatments, pharmacogenetic markers (corresponding to genetic variants existing in the constitutional DNA, i.e., the host genome) can help to optimize the use of chemotherapy. In this review, we present the current clinical applications of constitutional PG and the recent concepts and advances in pharmacogenomics, a rapidly evolving field that focuses on various molecular alterations identified on constitutional or somatic (tumor) genome.
Collapse
Affiliation(s)
- Maud Maillard
- Institut Claudius-Regaud, Institut universitaire du cancer de Toulouse, IUCT-Oncopole, 31059 Toulouse, France; Centre de recherches en cancérologie de Toulouse CRCT, 31037 Toulouse, France; Université Paul-Sabatier Toulouse III, 31062 Toulouse, France
| | - Baptiste Louveau
- Inserm, UMR_S976, 75475 Paris, France; Université de Paris, 75010 Paris, France; Pharmacogenomics department, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Paul Vilquin
- Inserm, UMR_S976, 75475 Paris, France; Université de Paris, 75010 Paris, France; Pharmacogenomics department, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Lauriane Goldwirt
- Inserm, UMR_S976, 75475 Paris, France; Université de Paris, 75010 Paris, France; Pharmacogenomics department, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Fabienne Thomas
- Institut Claudius-Regaud, Institut universitaire du cancer de Toulouse, IUCT-Oncopole, 31059 Toulouse, France; Centre de recherches en cancérologie de Toulouse CRCT, 31037 Toulouse, France; Université Paul-Sabatier Toulouse III, 31062 Toulouse, France
| | - Samia Mourah
- Inserm, UMR_S976, 75475 Paris, France; Université de Paris, 75010 Paris, France; Pharmacogenomics department, Hôpital Saint-Louis, AP-HP, 75010 Paris, France.
| |
Collapse
|
24
|
Catalán-Latorre A, Sureda M, Brugarolas-Masllorens A, Escudero-Ortiz V. Therapeutic Drug Monitoring of Erlotinib in Non-Small Cell Lung Carcinoma: A Case Study. Ther Drug Monit 2021; 43:447-450. [PMID: 33840795 DOI: 10.1097/ftd.0000000000000894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT We describe a clinical case of an 84-year-old man diagnosed with non-small cell lung carcinoma and epidermal growth factor receptor mutation, who was treated with erlotinib, with doses adjusted by therapeutic drug monitoring. This case involved a clearance fluctuation leading to over-therapeutic drug concentrations of erlotinib and toxicity. The intrapatient and interpatient variability of erlotinib, in addition to other factors such as age or variations in liver clearance, create situations that are challenging in clinical practice. During treatment, erlotinib serum concentrations were measured, and the dose was accordingly adjusted. The erlotinib dose required to reduce toxicity (rash grade III) and maintain effective plasma concentrations, as well as clinical and radiological responses, was 50% of the initial dose, underscoring the relevance of therapeutic drug monitoring for tyrosine kinase inhibitors in routine clinical practice.
Collapse
Affiliation(s)
- Ana Catalán-Latorre
- Platform of Oncology, Hospital Quironsalud Torrevieja, Torrevieja, Alicante
- Cathedra of Multidisciplinary Oncology, UCAM Catholic University of San Antonio, Murcia; and
| | - Manuel Sureda
- Platform of Oncology, Hospital Quironsalud Torrevieja, Torrevieja, Alicante
- Cathedra of Multidisciplinary Oncology, UCAM Catholic University of San Antonio, Murcia; and
| | - Antonio Brugarolas-Masllorens
- Platform of Oncology, Hospital Quironsalud Torrevieja, Torrevieja, Alicante
- Cathedra of Multidisciplinary Oncology, UCAM Catholic University of San Antonio, Murcia; and
| | - Vanesa Escudero-Ortiz
- Platform of Oncology, Hospital Quironsalud Torrevieja, Torrevieja, Alicante
- Pharmacy and Clinical Nutrition Group, Universidad CEU Cardenal Herrera, Elche, Alicante, Spain
| |
Collapse
|
25
|
Panetta JC, Campagne O, Gartrell J, Furman W, Stewart CF. Pharmacokinetically guided dosing of oral sorafenib in pediatric hepatocellular carcinoma: A simulation study. Clin Transl Sci 2021; 14:2152-2160. [PMID: 34060723 PMCID: PMC8604221 DOI: 10.1111/cts.13069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 02/01/2023] Open
Abstract
Sorafenib improves outcomes in adult hepatocellular carcinoma; however, hand foot skin reaction (HFSR) is a dose limiting toxicity of sorafenib that limits its use. HFSR has been associated with sorafenib systemic exposure. The objective of this study was to use modeling and simulation to determine whether using pharmacokinetically guided dosing to achieve a predefined sorafenib target range could reduce the rate of HFSR. Sorafenib steady‐state exposures (area under the concentration curve from 0 to 12‐h [AUC0–>12 h]) were simulated using published sorafenib pharmacokinetics at either a fixed dosage (90 mg/m2/dose) or a pharmacokinetically guided dose targeting an AUC0–>12 h between 20 and 55 h µg/ml. Dosages were either rounded to the nearest quarter of a tablet (50 mg) or capsule (10 mg). A Cox proportional hazard model from a previously published study was used to quantify HFSR toxicity. Simulations showed that in‐target studies increased from 50% using fixed doses with tablets to 74% using pharmacokinetically guided dosing with capsules. The power to observe at least 4 of 6 patients in the target range increased from 33% using fixed dosing with tablets to 80% using pharmacokinetically guided with capsules. The expected HFSR toxicity rate decreased from 22% using fixed doses with tablets to 16% using pharmacokinetically guided dosing with capsules. The power to observe less than 6 of 24 studies with HFSR toxicity increased from 51% using fixed dosing with tablets to 88% using pharmacokinetically guided with capsules. Our simulations provide the rationale to use pharmacokinetically guided sorafenib dosing to maintain effective exposures that potentially improve tolerability in pediatric clinical trials.
Collapse
Affiliation(s)
- John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jessica Gartrell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wayne Furman
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
26
|
El-Khoueiry AB, Hanna DL, Llovet J, Kelley RK. Cabozantinib: An evolving therapy for hepatocellular carcinoma. Cancer Treat Rev 2021; 98:102221. [PMID: 34029957 DOI: 10.1016/j.ctrv.2021.102221] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is rising in incidence and remains a leading cause of cancer-related death. After a decade of disappointing trials following the approval of sorafenib for patients with advanced HCC, a number of tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting angiogenesis and immune checkpoints have recently been approved. The phase 3 CELESTIAL trial demonstrated improved progression-free and overall survival with the TKI cabozantinib compared to placebo, supporting it as a treatment option for patients with advanced HCC previously treated with sorafenib. Cabozantinib blocks multiple key pathways of HCC pathogenesis, including VEGFR, MET, and the TAM (TYRO3, AXL, MER) family of receptor kinases, and promotes an immune-permissive tumor microenvironment. Here, we review the mechanisms of action of cabozantinib, including effects on tumor growth and its immunomodulatory properties, providing pre-clinical rationale for combination strategies with checkpoint inhibitors. We discuss the design and outcomes of CELESTIAL including improved survival across subgroups defined by age, disease etiology, baseline AFP level, prior therapies (including duration of prior sorafenib), and tumor burden. Cabozantinib had a manageable safety profile with dose modification. Studies combining cabozantinib with atezolizumab (COSMIC-312) and durvalumab (CAMILLA) in the first and second-line settings are ongoing, as well as a neoadjuvant study of cabozantinib with nivolumab. Future investigations are warranted to define the use of cabozantinib in patients with Child-Pugh B liver function and identify markers predictive of clinical benefit. The role of cabozantinib in HCC continues to evolve with an anticipated role in immunotherapy combinations.
Collapse
Affiliation(s)
| | - Diana L Hanna
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA; Hoag Cancer Center, Newport Beach, CA, USA
| | - Josep Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Robin Kate Kelley
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| |
Collapse
|
27
|
Demlová R, Turjap M, Peš O, Kostolanská K, Juřica J. Therapeutic Drug Monitoring of Sunitinib in Gastrointestinal Stromal Tumors and Metastatic Renal Cell Carcinoma in Adults-A Review. Ther Drug Monit 2021; 42:20-32. [PMID: 31259881 DOI: 10.1097/ftd.0000000000000663] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sunitinib is an inhibitor of multiple receptor tyrosine kinases and is a standard-of-care treatment for advanced and metastatic renal cell carcinoma and a second-line treatment in locally advanced inoperable and metastatic gastrointestinal stromal tumors. A fixed dose of the drug, however, does not produce a uniform therapeutic outcome in all patients, and many face adverse effects and/or toxicity. One of the possible causes of the interindividual variability in the efficacy and toxicity response is the highly variable systemic exposure to sunitinib and its active metabolite. This review aims to summarize all available clinical evidence of the treatment of adult patients using sunitinib in approved indications, addressing the necessity to introduce proper and robust therapeutic drug monitoring (TDM) of sunitinib and its major metabolite, N-desethylsunitinib. METHODS The authors performed a systematic search of the available scientific literature using the PubMed online database. The search terms were "sunitinib" AND "therapeutic drug monitoring" OR "TDM" OR "plasma levels" OR "concentration" OR "exposure." The search yielded 520 journal articles. In total, 447 publications were excluded because they lacked sufficient relevance to the reviewed topic. The remaining 73 articles were, together with currently valid guidelines, thoroughly reviewed. RESULTS There is sufficient evidence confirming the concentration-efficacy and concentration-toxicity relationship in the indications of gastrointestinal stromal tumors and metastatic renal clear-cell carcinoma. For optimal therapeutic response, total (sunitinib + N-desethylsunitinib) trough levels of 50-100 ng/mL serve as a reasonable target therapeutic range. To avoid toxicity, the total trough levels should not exceed 100 ng/mL. CONCLUSIONS According to the current evidence presented in this review, a TDM-guided dose modification of sunitinib in selected groups of patients could provide a better treatment outcome while simultaneously preventing sunitinib toxicity.
Collapse
Affiliation(s)
- Regina Demlová
- Department of Pharmacology, Medical Faculty, Masaryk University, Brno
| | - Miroslav Turjap
- Department of Clinical Pharmacy, University Hospital Ostrava, Ostrava
| | - Ondřej Peš
- Department of Biochemistry, Medical Faculty, Masaryk University
| | | | - Jan Juřica
- Department of Pharmacology, Medical Faculty, Masaryk University, Masaryk Memorial Cancer Institute; and.,Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
28
|
Delmond KA, Delleon H, Goveia RM, Teixeira TM, Abreu DC, Mello-Andrade F, Reis AADS, Silva DDME, Barbosa ADP, Tavares RS, Anunciação CE, Silveira-Lacerda E. Influence of genetic polymorphisms in glutathione-S-transferases gene in response to imatinib among Brazilian patients with chronic myeloid leukemia. Mol Biol Rep 2021; 48:2035-2046. [PMID: 33709282 DOI: 10.1007/s11033-020-06093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022]
Abstract
Polymorphism in metabolizing enzymes can influence drug response as well as the risk for adverse drug reactions. Nevertheless, there are still few studies analyzing the consequence of polymorphisms for the Glutathione-S-transferases (GST) gene to drug response in chronic myeloid leukemia (CML). This study reports, the influence of GSTP1*B and GSTT1/GSTM1null polymorphisms in response to imatinib in CML patients in a Brazilian population. One hundred thirty-nine CML patients from the Clinical Hospital of Goiânia, Goiás, Brazil, treated with imatinib were enrolled in this study. Genotyping of GSTT1 and GSTM1 genes deletions were performed by qPCR and of GSTP1 gene was performed by RFLP-PCR. The frequency of GSTP1*1B, GSTT1 and GSTM1null polymorphisms were determined for all patients. The influence of each patient's genotypes was analyzed with the patient's response to imatinib treatment. Brazilian CML patients revealed GSTT1 and GSTM1 genes deletions. GSTT1 deletion was found in 19.3% of patients and GSTM1 deletion in 48.7% of patients with CML. GSTT1/GSTM1 deletion was found in 11.7% in Brazilian CML patients. The "G allele" of GSTP1*B, is associated with later cytogenetic response in imatinib therapy. While, the gene presence combined with GG genotype (GSTM1 present/GSTPI-GG) conferred a tend to a later cytogenetic response to patients. GSTP1*B and GSTT1/GSTM1null polymorphisms influence treatment response in CML. Brazilian CML patients presenting GSTP1 AA/AG genotypes alone and in combination with GSTT1 null reach the cytogenetic response faster, while patients presenting GSTP1-GG and GSTMI positive genotypes may take longer to achieve cytogenetic response. As a result, it allows a better prognosis, with the use of an alternative therapy, other than reducing treatment cost.
Collapse
Affiliation(s)
- Kezia Aguiar Delmond
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
- College of Goyazes Union, Trindade, Goiás, 75380-000, Brazil
| | - Hugo Delleon
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
- Uni-Anhanguera University Center of Goias, Goiânia, Goiás, 74423-115, Brazil
| | - Rebeca Mota Goveia
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
| | - Thallita Monteiro Teixeira
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
| | - Davi Carvalho Abreu
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
- Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Angela Adamski da Silva Reis
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Daniela de Melo E Silva
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | | | | | - Carlos Eduardo Anunciação
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Elisângela Silveira-Lacerda
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
29
|
Rajendran RL, Paudel S, Gangadaran P, Oh JM, Oh EJ, Hong CM, Lee S, Chung HY, Lee J, Ahn BC. Extracellular Vesicles Act as Nano-Transporters of Tyrosine Kinase Inhibitors to Revert Iodine Avidity in Thyroid Cancer. Pharmaceutics 2021; 13:248. [PMID: 33578882 PMCID: PMC7916551 DOI: 10.3390/pharmaceutics13020248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
A new approach for using extracellular vesicles (EVs) to deliver tyrosine kinase inhibitors (TKIs) to enhance iodine avidity in radioactive iodine-refractory thyroid cancer is needed. We isolated and characterized primary human adipose-derived stem cells (ADSCs) and isolated their EVs. The EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. A new TKI was loaded into the EVs by incubation (37 °C; 10 min) or sonication (18 cycles; 4 s per cycle) with 2 s intervals and a 2 min ice bath every six cycles. TKI loading was confirmed and measured by mass spectrometry. EV uptake into radioactive iodine-refractory thyroid cancer cells (SW1736 cells) was confirmed by microscopy. We treated the SW1736 cells with vehicle, TKI, or TKI-loaded EVs (sonication TKI-loaded EVs [EVsTKI(S)]) and examined the expression of iodide-metabolizing proteins and radioiodine uptake in the SW1736 cells. ADSCs cells showed >99% of typical stem cell markers, such as CD90 and CD105. The EVs displayed a round morphology, had an average size of 211.4 ± 3.83 nm, and were positive for CD81 and Alix and negative for cytochrome c. The mass spectrometry results indicate that the sonication method loaded ~4 times more of the TKI than did the incubation method. The EVsTKI(S) were used for further experiments. Higher expression levels of iodide-metabolizing mRNA and proteins in the EVsTKI(S)-treated SW1736 cells than in TKI-treated SW1736 cells were confirmed. EVsTKI(S) treatment enhanced 125I uptake in the recipient SW1736 cells compared with free-TKI treatment. This is the first study that demonstrated successful delivery of a TKI to radioactive iodine-refractory thyroid cancer cells using EVs as the delivery vehicle. This approach can revert radioiodine-resistant thyroid cancer cells back to radioiodine-sensitive thyroid cancer cells.
Collapse
Affiliation(s)
- Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (P.G.); (J.M.O.); (J.L.)
| | - Sanjita Paudel
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.L.)
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (P.G.); (J.M.O.); (J.L.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (P.G.); (J.M.O.); (J.L.)
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41404, Korea;
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.L.)
| | - Ho Yun Chung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (P.G.); (J.M.O.); (J.L.)
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41404, Korea;
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (P.G.); (J.M.O.); (J.L.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41404, Korea;
| |
Collapse
|
30
|
Xu H, Liu Q. Individualized Management of Blood Concentration in Patients with Gastrointestinal Stromal Tumors. Onco Targets Ther 2021; 13:13345-13355. [PMID: 33456310 PMCID: PMC7804055 DOI: 10.2147/ott.s279998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/18/2020] [Indexed: 01/29/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor, and surgical resection is the first choice for the treatment of the disease, but since the advent of tyrosine kinase inhibitors (TKIs) such as imatinib (IM), the prognosis of the disease has undergone revolutionary changes. According to the current version of the guidelines, most GIST patients receive a fixed dose without taking into account their own individual differences, resulting in a wide difference in blood concentration, adverse reactions and prognosis. With more studies on the relationship between blood drug concentrations and prognosis, the concept of individualized therapy has been paid more attention by researchers. Therapeutic drug monitoring (TDM) has also been made available for the research field of GIST targeted therapy. How to reduce the incidence of drug resistance and adverse reactions in patients with GISTs has become the focus of the current research. This article reviews the common monitoring methods and timing of TKIs blood concentration, the reasonable range of blood drug concentration, the toxic or adverse effects caused by high blood drug concentration, some possible factors affecting blood drug concentration and recent research progress, in order to discuss and summarize the treatment strategy of individual blood drug concentration, improve the prognosis of patients and reduce the adverse effects as much as possible.
Collapse
Affiliation(s)
- Hao Xu
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qi Liu
- Trauma Center, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
31
|
Castellano D, Pablo Maroto J, Benzaghou F, Taguieva N, Nguyen L, Clary DO, Jonasch E. Exposure-response modeling of cabozantinib in patients with renal cell carcinoma: Implications for patient care. Cancer Treat Rev 2020; 89:102062. [DOI: 10.1016/j.ctrv.2020.102062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/17/2023]
|
32
|
Schwartz G, Darling JO, Mindo M, Damicis L. Management of Adverse Events Associated with Cabozantinib Treatment in Patients with Advanced Hepatocellular Carcinoma. Target Oncol 2020; 15:549-565. [PMID: 32770441 PMCID: PMC7434721 DOI: 10.1007/s11523-020-00736-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cabozantinib is an oral multikinase inhibitor whose targets include vascular endothelial growth factor receptors, MET, and the TAM family of kinases (TYRO3, AXL, MER). Cabozantinib is approved for patients with advanced hepatocellular carcinoma who have been previously treated with sorafenib, based on improved overall survival and progression-free survival relative to placebo in the phase III CELESTIAL study. During CELESTIAL, the most common adverse events (AEs) experienced by patients receiving cabozantinib included palmar-plantar erythrodysesthesia, fatigue, gastrointestinal-related events, and hypertension. These AEs can significantly impact treatment tolerability and patient quality of life. However, AEs can be effectively managed with supportive care and dose modifications. During CELESTIAL, more than half of the patients receiving cabozantinib required a dose reduction, while the rate of treatment discontinuation due to AEs was low. Here, we review the safety profile of cabozantinib and provide guidance on the prevention and management of the more common AEs, based on current evidence from the literature as well as our clinical experience. We consider the specific challenges faced by clinicians in treating this patient population and discuss factors that may affect exposure and tolerability to cabozantinib.
Collapse
Affiliation(s)
- Gabriel Schwartz
- Gastrointestinal Medical Oncology Clinic, University of California San Francisco, 1825 Fourth St, Fourth Floor, San Francisco, CA, 94158, USA.
| | | | - Malori Mindo
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lucia Damicis
- IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| |
Collapse
|
33
|
Hopkins AM, Menz BD, Wiese MD, Kichenadasse G, Gurney H, McKinnon RA, Rowland A, Sorich MJ. Nuances to precision dosing strategies of targeted cancer medicines. Pharmacol Res Perspect 2020; 8:e00625. [PMID: 32662214 PMCID: PMC7358594 DOI: 10.1002/prp2.625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023] Open
Abstract
Selecting the dose of a targeted cancer medicine that is most appropriate for a specific individual is a rational approach to maximize therapeutic outcomes and minimize toxicity. There are many different options for optimizing the dose of targeted cancer medicines and the purpose of this review is to provide a comprehensive comparison of the main options explored in prospective studies. Precision initial dose selection of targeted cancer therapies has been minimally explored to date; however, concentration, toxicity, and therapeutic outcome markers are used to guide on-therapy dose adaption of targeted cancer therapies across several medicines and cancers. While a specific concentration, toxicity, or therapeutic outcome marker commonly dominates an investigated precision on-therapy dose adaption strategy, greater attention to simultaneously account for exposure, toxicity, therapeutic outcomes, disease status, time since treatment initiation and patient preferences are required for optimal patient outcomes. To enable successful implementation of precision dosing strategies for targeted cancer medicines into clinical practice, future prospective studies aiming to develop strategies should consider these elements in their design.
Collapse
Affiliation(s)
- Ashley M. Hopkins
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Bradley D. Menz
- Division of PharmacySouthern Adelaide Local Health Network, Flinders Medical CentreAdelaideSouth AustraliaAustralia
| | - Michael D. Wiese
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Ganessan Kichenadasse
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Howard Gurney
- Department of Medical OncologyWestmead HospitalSydneyNew South WalesAustralia
| | - Ross A. McKinnon
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Michael J. Sorich
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
34
|
Janssen JM, Dorlo TP, Beijnen JH, Huitema AD. Evaluation of Extrapolation Methods to Predict Trough Concentrations to Guide Therapeutic Drug Monitoring of Oral Anticancer Drugs. Ther Drug Monit 2020; 42:532-539. [DOI: 10.1097/ftd.0000000000000767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Sorafenib exposure and its correlation with response and safety in advanced hepatocellular carcinoma: results from an observational retrospective study. Cancer Chemother Pharmacol 2020; 86:129-139. [DOI: 10.1007/s00280-020-04105-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/16/2020] [Indexed: 11/26/2022]
|
36
|
Janssen JM, Dorlo TPC, Steeghs N, Beijnen JH, Hanff LM, van Eijkelenburg NKA, van der Lugt J, Zwaan CM, Huitema ADR. Pharmacokinetic Targets for Therapeutic Drug Monitoring of Small Molecule Kinase Inhibitors in Pediatric Oncology. Clin Pharmacol Ther 2020; 108:494-505. [PMID: 32022898 DOI: 10.1002/cpt.1808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
In recent years new targeted small molecule kinase inhibitors have become available for pediatric patients with cancer. Relationships between drug exposure and treatment response have been established for several of these drugs in adults. Following these exposure-response relationships, pharmacokinetic (PK) target minimum plasma rug concentration at the end of a dosing interval (Cmin ) values to guide therapeutic drug monitoring (TDM) in adults have been proposed. Despite the fact that variability in PK may be even larger in pediatric patients, TDM is only sparsely applied in pediatric oncology. Based on knowledge of the PK, mechanism of action, molecular driver, and pathophysiology of the disease, we bridge available data on the exposure-efficacy relationship from adults to children and propose target Cmin values to guide TDM for the pediatric population. Dose adjustments in individual pediatric patients can be based on these targets. Nevertheless, further research should be performed to validate these targets.
Collapse
Affiliation(s)
- Julie M Janssen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Lidwien M Hanff
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Hematology and Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
37
|
Fleeman N, Houten R, Bagust A, Richardson M, Beale S, Boland A, Dundar Y, Greenhalgh J, Hounsome J, Duarte R, Shenoy A. Lenvatinib and sorafenib for differentiated thyroid cancer after radioactive iodine: a systematic review and economic evaluation. Health Technol Assess 2020; 24:1-180. [PMID: 31931920 PMCID: PMC6983913 DOI: 10.3310/hta24020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Thyroid cancer is a rare cancer, accounting for only 1% of all malignancies in England and Wales. Differentiated thyroid cancer (DTC) accounts for ≈94% of all thyroid cancers. Patients with DTC often require treatment with radioactive iodine. Treatment for DTC that is refractory to radioactive iodine [radioactive iodine-refractory DTC (RR-DTC)] is often limited to best supportive care (BSC). OBJECTIVES We aimed to assess the clinical effectiveness and cost-effectiveness of lenvatinib (Lenvima®; Eisai Ltd, Hertfordshire, UK) and sorafenib (Nexar®; Bayer HealthCare, Leverkusen, Germany) for the treatment of patients with RR-DTC. DATA SOURCES EMBASE, MEDLINE, PubMed, The Cochrane Library and EconLit were searched (date range 1999 to 10 January 2017; searched on 10 January 2017). The bibliographies of retrieved citations were also examined. REVIEW METHODS We searched for randomised controlled trials (RCTs), systematic reviews, prospective observational studies and economic evaluations of lenvatinib or sorafenib. In the absence of relevant economic evaluations, we constructed a de novo economic model to compare the cost-effectiveness of lenvatinib and sorafenib with that of BSC. RESULTS Two RCTs were identified: SELECT (Study of [E7080] LEnvatinib in 131I-refractory differentiated Cancer of the Thyroid) and DECISION (StuDy of sorafEnib in loCally advanced or metastatIc patientS with radioactive Iodine-refractory thyrOid caNcer). Lenvatinib and sorafenib were both reported to improve median progression-free survival (PFS) compared with placebo: 18.3 months (lenvatinib) vs. 3.6 months (placebo) and 10.8 months (sorafenib) vs. 5.8 months (placebo). Patient crossover was high (≥ 75%) in both trials, confounding estimates of overall survival (OS). Using OS data adjusted for crossover, trial authors reported a statistically significant improvement in OS for patients treated with lenvatinib compared with those given placebo (SELECT) but not for patients treated with sorafenib compared with those given placebo (DECISION). Both lenvatinib and sorafenib increased the incidence of adverse events (AEs), and dose reductions were required (for > 60% of patients). The results from nine prospective observational studies and 13 systematic reviews of lenvatinib or sorafenib were broadly comparable to those from the RCTs. Health-related quality-of-life (HRQoL) data were collected only in DECISION. We considered the feasibility of comparing lenvatinib with sorafenib via an indirect comparison but concluded that this would not be appropriate because of differences in trial and participant characteristics, risk profiles of the participants in the placebo arms and because the proportional hazard assumption was violated for five of the six survival outcomes available from the trials. In the base-case economic analysis, using list prices only, the cost-effectiveness comparison of lenvatinib versus BSC yields an incremental cost-effectiveness ratio (ICER) per quality-adjusted life-year (QALY) gained of £65,872, and the comparison of sorafenib versus BSC yields an ICER of £85,644 per QALY gained. The deterministic sensitivity analyses show that none of the variations lowered the base-case ICERs to < £50,000 per QALY gained. LIMITATIONS We consider that it is not possible to compare the clinical effectiveness or cost-effectiveness of lenvatinib and sorafenib. CONCLUSIONS Compared with placebo/BSC, treatment with lenvatinib or sorafenib results in an improvement in PFS, objective tumour response rate and possibly OS, but dose modifications were required to treat AEs. Both treatments exhibit estimated ICERs of > £50,000 per QALY gained. Further research should include examination of the effects of lenvatinib, sorafenib and BSC (including HRQoL) for both symptomatic and asymptomatic patients, and the positioning of treatments in the treatment pathway. STUDY REGISTRATION This study is registered as PROSPERO CRD42017055516. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Nigel Fleeman
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Rachel Houten
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Adrian Bagust
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Marty Richardson
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Sophie Beale
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Angela Boland
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Yenal Dundar
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Janette Greenhalgh
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Juliet Hounsome
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Rui Duarte
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Aditya Shenoy
- The Clatterbridge Cancer Centre NHS Foundation Trust, Birkenhead, UK
| |
Collapse
|
38
|
Jolibois J, Schmitt A, Royer B. A simple and fast LC-MS/MS method for the routine measurement of cabozantinib, olaparib, palbociclib, pazopanib, sorafenib, sunitinib and its main active metabolite in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121844. [DOI: 10.1016/j.jchromb.2019.121844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/01/2023]
|
39
|
Trousil S, Lee P, Edwards RJ, Maslen L, Lozan-Kuehne JP, Ramaswami R, Aboagye EO, Clarke S, Liddle C, Sharma R. Altered cytochrome 2E1 and 3A P450-dependent drug metabolism in advanced ovarian cancer correlates to tumour-associated inflammation. Br J Pharmacol 2019; 176:3712-3722. [PMID: 31236938 DOI: 10.1111/bph.14776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous work has focussed on changes in drug metabolism caused by altered activity of CYP3A in the presence of inflammation and, in particular, inflammation associated with malignancy. However, drug metabolism involves a number of other P450s, and therefore, we assessed the effect of cancer-related inflammation on multiple CYP enzymes using a validated drug cocktail. EXPERIMENTAL APPROACH Patients with advanced stage ovarian cancer and healthy volunteers were recruited. Participants received caffeine, chlorzoxazone, dextromethorphan, and omeprazole as in vivo probes for CYP1A2, CYP2E1, CYP2D6, CYP3A, and CYP2C19. Blood was collected for serum C-reactive protein and cytokine analysis. KEY RESULTS CYP2E1 activity was markedly up-regulated in cancer (6-hydroxychlorzoxazone/chlorzoxazone ratio of 1.30 vs. 2.75), while CYP3A phenotypic activity was repressed in cancer (omeprazole sulfone/omeprazole ratio of 0.23 vs. 0.49). Increased activity of CYP2E1 was associated with raised serum levels of IL-6, IL-8, and TNF-α. Repression of CYP3A correlated with raised levels of serum C-reactive protein, IL-6, IL-8, and TNF-α. CONCLUSIONS AND IMPLICATIONS CYP enzyme activity is differentially affected by the presence of tumour-associated inflammation, affecting particularly CYP2E1- and CYP3A-mediated drug metabolism, and may have profound implications for drug development and prescribing in oncological settings.
Collapse
Affiliation(s)
- Sebastian Trousil
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Patrizia Lee
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Robert J Edwards
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Lynn Maslen
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Ramya Ramaswami
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney, Westmead, Westmead, NSW, Australia
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
40
|
Lin QM, Li YH, Lu XR, Wang R, Pang NH, Xu RA, Cai JP, Hu GX. Characterization of Genetic Variation in CYP3A4 on the Metabolism of Cabozantinib in Vitro. Chem Res Toxicol 2019; 32:1583-1590. [PMID: 31293154 DOI: 10.1021/acs.chemrestox.9b00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cabozantinib is a multityrosine kinase inhibitor and has a wide range of applications in the clinic, whose metabolism is predominately dependent on CYP3A4. This study was performed to characterize the enzymatic properties of 29 CYP3A4 alleles toward cabozantinib and the functional changes of five selected alleles (the wild-type, CYP3A4.2.8.14 and .15) toward cabozantinib in the presence of ketoconazole. Cabozantinib, 1-100 μM, with/without the presence of ketoconazole and CYP3A4 enzymes in the incubation system went through 30 min incubation at 37 °C, and the concentrations of cabozantinib N-oxide were quantified by UPLC-MS/MS to calculate the corresponding kinetic parameters of each variant. Collectively, without the presence of ketoconazole, most variants displayed defective enzymatic activities in different degrees, and only CYP3A4.14 and .15 showed significantly augmented enzymatic activities. With the presence of ketoconazole, five tested CYP3A4 alleles, even CYP3A4.14 and .15, exhibited obvious reductions in intrinsic clearance. Besides, we compared cabozantinib with regorafenib in relative clearance to confirm that CYP3A4 has the property of substrate specificity. As the first study of CYP3A4 genetic polymorphisms toward cabozantinib, our observations can provide prediction of an individual's capability in response to cabozantinib and guidance for medication and treatment of cabozantinib.
Collapse
Affiliation(s)
- Qian-Meng Lin
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Ying-Hui Li
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Xiang-Ran Lu
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Ru Wang
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Ni-Hong Pang
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital , National Center of Gerontology , 100000 Beijing , PR China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| |
Collapse
|
41
|
Xu ZY, Li JL. Comparative review of drug-drug interactions with epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small-cell lung cancer. Onco Targets Ther 2019; 12:5467-5484. [PMID: 31371986 PMCID: PMC6636179 DOI: 10.2147/ott.s194870] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
The development of small-molecule tyrosine kinase inhibitors (TKIs) that target the epidermal growth factor receptor (EGFR) has revolutionized the management of non-small-cell lung cancer (NSCLC). Because these drugs are commonly used in combination with other types of medication, the risk of clinically significant drug–drug interactions (DDIs) is an important consideration, especially for patients using multiple drugs for coexisting medical conditions. Clinicians need to be aware of the potential for clinically important DDIs when considering therapeutic options for individual patients. In this article, we describe the main mechanisms underlying DDIs with the EGFR-TKIs that are currently approved for the treatment of NSCLC, and, specifically, the potential for interactions mediated via effects on gastrointestinal pH, cytochrome P450-dependent metabolism, uridine diphosphate-glucuronosyltransferase, and transporter proteins. We review evidence of such DDIs with the currently approved EGFR-TKIs (gefitinib, erlotinib, afatinib, osimertinib, and icotinib) and discuss several information sources that are available online to aid clinical decision-making. We conclude by summarizing the most clinically relevant DDIs with these EFGR-TKIs and provide recommendations for managing, minimizing, or avoiding DDIs with the different agents.
Collapse
Affiliation(s)
- Zi-Yi Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jun-Ling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
42
|
Current Biomedical Applications of 3D Printing and Additive Manufacturing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081713] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Additive manufacturing (AM) has emerged over the past four decades as a cost-effective, on-demand modality for fabrication of geometrically complex objects. The ability to design and print virtually any object shape using a diverse array of materials, such as metals, polymers, ceramics and bioinks, has allowed for the adoption of this technology for biomedical applications in both research and clinical settings. Current advancements in tissue engineering and regeneration, therapeutic delivery, medical device fabrication and operative management planning ensure that AM will continue to play an increasingly important role in the future of healthcare. In this review, we outline current biomedical applications of common AM techniques and materials.
Collapse
|
43
|
Rottenberg Y, Zick A, Levine H. Temporal trends of geographic variation in mortality following cancer diagnosis: a population-based study. BMC Public Health 2019; 19:22. [PMID: 30616619 PMCID: PMC6322286 DOI: 10.1186/s12889-018-6353-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Background Inequalities among the western population, combined with the introduction of new treatment options for cancer, have challenged endeavors to provide equal care to patients with cancer. Israel’s highly developed healthcare system and mandatory National Health Insurance afforded an opportunity to study geographic variation over time in mortality following cancer diagnosis. Methods This historical prospective cohort study included a nationally representative cohort that was assessed by the Israeli Central Bureau of Statistics 1995 census and followed until 2011. The cancer incidence (1995–2009) was ascertained by the Israel National Cancer Registry. We analyzed the effect on patient outcome of living in a given district, according to the Israeli Central Bureau of Statistics classification. Patients were stratified by the year of diagnosis (1995–1997, 1998–2000, etc.), and associations were adjusted for age, ethnicity, and districts. We excluded patients with malignancies associated with screening program (breast, prostate, colon, and cervical cancers). Results This study included 26,173 patients living in 13 residential districts. During the last years (2007–2009) of the study, the hazard ratio (HR) for risk of death was high in 8/13 districts (61.5%), compared to 4/13 (30.7%) during 2004–2006, and 0/13 (0%) during 2001–2003. Districts that were less likely to be associated with increased risk of death were located in the center of Israel and in metropolitan areas, compared to the peripheral regions. Furthermore, HRs were substantially higher in the last years of the study (2007–2009, HRs rose to 1.69, 95%CI: 1.38–2.08) compared to the earlier years (2004–2006, HRs rose to 1.35, 95%CI: 1.13–1.62). Conclusion Our findings suggested that geographic variation for mortality following cancer diagnosis have increased over time. Our results provide policy makers with vital information regarding the need for targeted interventions, mainly in peripheral regions. Electronic supplementary material The online version of this article (10.1186/s12889-018-6353-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yakir Rottenberg
- The Department of Oncology, Hadassah-Hebrew University Medical Center, and Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel. .,The Jerusalem Institute of Aging Research, Hadassah-Hebrew University Medical Center, Mount Scopus, and Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel.
| | - Aviad Zick
- The Department of Oncology, Hadassah-Hebrew University Medical Center, and Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Hagai Levine
- Hebrew University-Hadassah Braun School of Public Health and Community Medicine, Ein Kerem, 91120, Jerusalem, Israel
| |
Collapse
|
44
|
Noda S, Yoshida T, Hira D, Murai R, Tomita K, Tsuru T, Kageyama S, Kawauchi A, Ikeda Y, Morita SY, Terada T. Exploratory Investigation of Target Pazopanib Concentration Range for Patients With Renal Cell Carcinoma. Clin Genitourin Cancer 2018; 17:e306-e313. [PMID: 30598361 DOI: 10.1016/j.clgc.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/15/2018] [Accepted: 12/02/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Severe adverse events frequently occur in patients treated with pazopanib, necessitating dose reduction and discontinuation. However, information on the exposure-toxicity relationship is limited. PATIENTS AND METHODS For this retrospective and observational clinical study, we examined 27 patients with renal cell carcinoma treated with pazopanib and enrolled between October 2014 and March 2018. The primary goal was to evaluate the association between trough pazopanib concentration and occurrence of grade ≥ 3 toxicities, and secondarily, to estimate the association between trough pazopanib concentration and objective response rate. RESULTS Mean trough pazopanib concentration was significantly higher in the grade ≥ 3 toxicity group (n = 9) than in the grade ≤ 2 toxicity group (n = 18). Based on the receiver operating characteristic curve, the threshold value of trough pazopanib concentration for predicting grade ≥ 3 toxicities was 50.3 μg/mL (area under the curve, 0.85; 95% confidence interval, 0.70-0.99; P < .05). In the pazopanib < 20.5 μg/mL group (n = 3), no patient experienced an objective response. Objective response rates between patients with 20.5 to 50.3 μg/mL pazopanib (n = 11) and patients with ≥ 50.3 μg/mL (n = 13) were similar (45.5% vs. 46.2%). CONCLUSION From results of this study, the target trough pazopanib concentration range may be 20.5 to 50.3 μg/mL for patients with renal cell carcinoma.
Collapse
Affiliation(s)
- Satoshi Noda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Tetsuya Yoshida
- Department of Urology, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Daiki Hira
- Department of Pharmacy, Shiga University of Medical Science Hospital, Shiga, Japan; College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Ryosuke Murai
- Department of Urology, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Keiji Tomita
- Department of Urology, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Teruhiko Tsuru
- Department of Urology, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Shiga, Japan.
| |
Collapse
|
45
|
Amor D, Goutal S, Marie S, Caillé F, Bauer M, Langer O, Auvity S, Tournier N. Impact of rifampicin-inhibitable transport on the liver distribution and tissue kinetics of erlotinib assessed with PET imaging in rats. EJNMMI Res 2018; 8:81. [PMID: 30116910 PMCID: PMC6095934 DOI: 10.1186/s13550-018-0434-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Erlotinib is an epidermal growth factor receptor (EGFR)-targeting tyrosine kinase inhibitor approved for treatment of non-small cell lung cancer. The wide inter-individual pharmacokinetic (PK) variability of erlotinib may impact treatment outcome and/or toxicity. Recent in vivo studies reported a nonlinear uptake transport of erlotinib into the liver, suggesting carrier-mediated system(s) to mediate its hepatobiliary clearance. Erlotinib has been identified in vitro as a substrate of organic anion-transporting polypeptide (OATP) transporters which expression does not restrict to hepatocytes and may impact the tissue uptake of erlotinib in vivo. Results The impact of rifampicin (40 mg/kg), a potent OATP inhibitor, on the liver uptake and exposure to tissues of 11C-erlotinib was investigated in rats (4 animals per group) using positron emission tomography (PET) imaging. Tissue pharmacokinetics (PK) and corresponding exposure (area under the curve, AUC) were assessed in the liver, kidney cortex, abdominal aorta (blood pool) and the lungs. The plasma PK of parent 11C-erlotinib was also measured using arterial blood sampling to estimate the transfer rate constant (kuptake) of 11C-erlotinib from plasma into different tissues. PET images unveiled the predominant distribution of 11C-erlotinib-associated radioactivity to the liver, which gradually moved to the intestine, thus highlighting hepatobiliary clearance. 11C-erlotinib also accumulated in the kidney cortex. Rifampicin did not impact AUCaorta but reduced kuptake, liver (p < 0.001), causing a significant 27.3% decrease in liver exposure (p < 0.001). Moreover, a significant decrease in kuptake, kidney with a concomitant decrease in AUCkidney (− 30.4%, p < 0.001) were observed. Rifampicin neither affected kuptake, lung nor AUClung. Conclusions Our results suggest that 11C-erlotinib is an in vivo substrate of rOATP transporters expressed in the liver and possibly of rifampicin-inhibitable transporter(s) in the kidneys. Decreased 11C-erlotinib uptake by elimination organs did not translate into changes in systemic exposure and exposure to the lungs, which are a target tissue for erlotinib therapy.
Collapse
Affiliation(s)
- Dorra Amor
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Sébastien Goutal
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Solène Marie
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Fabien Caillé
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Sylvain Auvity
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France. .,CEA, DRF, JOLIOT, Service Hospitalier Frédéric Joliot, F-91401, Orsay, France.
| |
Collapse
|
46
|
Correlation of plasma erlotinib trough concentration with skin rash in Chinese NSCLC patients harboring exon 19 deletion mutation. Cancer Chemother Pharmacol 2018; 82:551-559. [DOI: 10.1007/s00280-018-3642-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
|
47
|
|
48
|
In-vivo relation between plasma concentration of sorafenib and its safety in Chinese patients with metastatic renal cell carcinoma: a single-center clinical study. Oncotarget 2018; 8:43458-43469. [PMID: 28404979 PMCID: PMC5522161 DOI: 10.18632/oncotarget.16465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
This single-center, observational study analyzed the association between plasma concentration of sorafenib and its safety and efficacy in Chinese patients with metastatic renal cell carcinoma (mRCC). Adult patients with RCC (n = 94), treated with sorafenib were enrolled between January 2014 and January 2015. Sorafenib plasma concentrations were measured by liquid chromatography-tandem mass spectrometry. Safety and efficacy variables were evaluated using National Cancer Institute-Common Toxicity Criteria for Adverse Events and Response Evaluation Criteria in Solid Tumors criteria. Association of plasma concentration with safety and efficacy was analyzed. The steady state plasma concentration of sorafenib after 2 weeks of treatment ranged from 881 to 12,526 ng/mL. Major adverse reactions (ADRs) included diarrhea (76.5%), hand-foot syndrome (HFS; 68.99%) and fatigue (55.32%). Significant association was reported between plasma concentration and all the ADRs except rash. At 6 weeks, complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD) was reported in 3.1%, 13.82%, 52.2% and 13.82% patients, respectively. Objective response and disease control rates were 17.02% and 69.14%. Plasma concentration of sorafenib was >10,000 ng/mL in patients with severe ADRs, which decreased with reduction in dose or discontinuation of treatment. After 21.2 weeks follow-up, median progression free survival was 12.3 months. CR, PR, SD and PD were reported in 1%, 46%, 33% and 19% patients. In conclusion, plasma concentration of sorafenib was associated with its safety and efficacy in Chinese patients with mRCC.
Collapse
|
49
|
Bajaj G, Gupta M, Wang HH, Barrett JS, Tan M, Rupalla K, Bertz R, Sheng J. Challenges and Opportunities With Oncology Drug Development in China. Clin Pharmacol Ther 2018; 105:363-375. [DOI: 10.1002/cpt.1017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
|
50
|
Béchade D, Chakiba C, Desjardin M, Bécouarn Y, Fonck M. [Hepatotoxicity of tyrosine kinase inhibitors: Mechanisms involved and practical implications]. Bull Cancer 2018; 105:290-298. [PMID: 29471963 DOI: 10.1016/j.bulcan.2017.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are used for the targeted treatment of solid cancers. TKIs produce a variable incidence of liver adverse events (5-25%) which can progress to severe liver injury in a minority of patients if treatment is maintained despite ongoing injury. This risk requires careful patient management to maintain treatment benefit without harm. This review highlights the various mechanisms of idiosyncratic hepatotoxicity, the formation of reactive metabolites and how this leads to toxicity. These critical events depend of the drug-specific characteristics of each TKI and the patient risk factors, especially genetic characterization. With improved understanding of the mechanisms leading to hepatotoxicity, several strategies have been adopted to prevent or treat this side effect. Recommendations on liver function liver test monitoring have been proposed according to each TKI.
Collapse
Affiliation(s)
- Dominique Béchade
- Institut Bergonié, département d'oncologie médicale, 229, cours de l'Argonne, 33076 Bordeaux cedex, France.
| | - Camille Chakiba
- Institut Bergonié, département d'oncologie médicale, 229, cours de l'Argonne, 33076 Bordeaux cedex, France
| | - Marie Desjardin
- Institut Bergonié, département d'oncologie médicale, 229, cours de l'Argonne, 33076 Bordeaux cedex, France
| | - Yves Bécouarn
- Institut Bergonié, département d'oncologie médicale, 229, cours de l'Argonne, 33076 Bordeaux cedex, France
| | - Marianne Fonck
- Institut Bergonié, département d'oncologie médicale, 229, cours de l'Argonne, 33076 Bordeaux cedex, France
| |
Collapse
|