1
|
Lv L, Zhang H, Tan J, Wang C. Neuroprotective role and mechanistic insights of DJ-1 dimerization in Parkinson's disease. Cell Commun Signal 2025; 23:129. [PMID: 40065349 PMCID: PMC11892234 DOI: 10.1186/s12964-025-02136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder primarily driven by the degeneration of dopaminergic neurons, with limited therapeutic interventions currently available. Among the critical factors in PD pathogenesis, DJ-1, a multifunctional protein, has emerged as a key neuroprotective agent against oxidative stress-a major contributor to the disease. Recent research has emphasized the pivotal role of DJ-1 dimerization in enhancing its neuroprotective capabilities. This review provides an in-depth analysis of the molecular mechanisms underlying DJ-1 dimerization and its relevance to PD. Specifically, we specifically explore how dimerization stabilizes DJ-1, enhances its antioxidative properties, improves mitochondrial function, and modulates key cellular pathways essential for neuronal survival. Furthermore, we discuss the molecular determinants governing DJ-1 dimerization, highlighting its potential both as a biomarker for PD diagnosis and a promising therapeutic target. By synthesizing current advancements, we propose that targeting DJ-1 dimerization may offer innovative strategies to slow PD progression and bolster neuronal health. This review positions DJ-1 as a central focus in PD research, paving the way for future studies aimed at developing neuroprotective therapies.
Collapse
Affiliation(s)
- Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Medical Genetics, Hunan Province Clinical Medical Research Center for Genetic Birth Defects and Rare Diseases, The Second Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
| |
Collapse
|
2
|
Ji YW, Wen XY, Tang HP, Jin ZS, Su WT, Zhou L, Xia ZY, Xia ZY, Lei SQ. DJ-1: Potential target for treatment of myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 179:117383. [PMID: 39232383 DOI: 10.1016/j.biopha.2024.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Ischemic heart disease (IHD) is a significant global health concern, resulting in high rates of mortality and disability among patients. Although coronary blood flow reperfusion is a key treatment for IHD, it often leads to acute myocardial ischemia-reperfusion injury (IRI). Current intervention strategies have limitations in providing adequate protection for the ischemic myocardium. DJ-1, originally known as a Parkinson's disease related protein, is a highly conserved cytoprotective protein. It is involved in enhancing mitochondrial function, scavenging reactive oxygen species (ROS), regulating autophagy, inhibiting apoptosis, modulating anaerobic metabolism, and exerting anti-inflammatory effects. DJ-1 is also required for protective strategies, such as ischemic preconditioning, ischemic postconditioning, remote ischemic preconditioning and pharmacological conditioning. Therefore, DJ-1 emerges as a potential target for the treatment of myocardial IRI. Our comprehensive review delves into its protective mechanisms in myocardial IRI and the structural foundations underlying its functions.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen-Shuai Jin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation. Biomedicines 2024; 12:1369. [PMID: 38927577 PMCID: PMC11201753 DOI: 10.3390/biomedicines12061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-β/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Collapse
Affiliation(s)
- Yu Ling Tan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Sue Ping Eng
- NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia;
| | - Mohamad Nasir Shafiee
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| |
Collapse
|
4
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
5
|
Ni X, Yu S, Jiang X, Wu F, Zhou J, Mao D, Wang H, Tao Y, Liu Y, Jin F. Celastrus orbiculatus Thunb. extract targeting DJ-1 inhibits non-small cell lung cancer invasion and metastasis through mitochondrial-induced ROS accumulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116944. [PMID: 37480966 DOI: 10.1016/j.jep.2023.116944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Celastrus orbiculatus Thunb. is an ancient traditional Chinese herb with a long history of medicinal use. The ethyl acetate extract of Celastrus orbiculatus Thunb. (COE) has been shown to have anti-tumor effects in various preclinical studies. However, the anti-invasive and metastatic efficacy of COE in non-small cell lung cancer (NSCLC) and the mechanism by which COE regulates cellular oxidation levels are yet to be elucidated. AIM To study the anti-dissemination effect of COE on NSCLC and to elucidate the molecular mechanism of COE in regulating cellular oxidation levels and its effect on lung cancer invasion and metastasis. METHODS CCK-8 assay was used to detect the toxic effects of COE on NSCLC. Transwell assay and high-content imaging was used to detect the Motility of NSCLC. Transmission electron microscopy and three-dimensional (3D) imaging of mitochondrial fluorescence were employed to detect the number and structure of mitochondria. JC-1 probe was used to detect the level of mitochondrial membrane potential. Firefly luciferase assay was used to detect the level of total intracellular ATP. MitoSox probe and DCFH-DA probe were applied to detect the level of reactive oxygen species (ROS) inside the mitochondria and the total intracellular ROS, respectively. Immunohistochemistry was used to detect protein expression in xenograft tumors. RESULTS COE inhibited motility and induced DJ-1 downregulation in NSCLC at low toxic concentrations, and the antiseptic effect of COE was reduced significantly after the overexpression of DJ-1. COE induced structural disruption of mitochondria in NSCLC and accumulation of superoxide compounds, decreased the volume of membrane potential depolarization, and impaired energy production, ultimately leading to a large accumulation of ROS at the cellular level. The antioxidant acetylcysteine (NAC) significantly reversed the antiseptic capacity of COE. In a xenograft tumor model, protein expression of DJ-1, E-cadherin, N-cadherin, and MMP-2 in COE group was significantly changed compared to the model group. CONCLUSION In the present study, COE inhibited NSCLC invasion and metastasis and was associated with the downregulation of DJ-1 and elevated ROS. COE-mediated downregulation of DJ-1 may be the primary cause of mitochondrial structural and functional dysfunction in NSCLC, eventually leading to ROS accumulation.
Collapse
Affiliation(s)
- Xiaochen Ni
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Shilong Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| | - Xiaomin Jiang
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Defang Mao
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.
| | - Haibo Wang
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Yujian Tao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Yanqing Liu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.
| | - Feng Jin
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
6
|
Lin J, Zheng X, Xiong Z, Xiang Q, Zhao Y, Jiang S, Sun Z, Fan D, Sun C, Li W. DJ-1-mediated p62 degradation delays intervertebral disc degeneration by inhibiting apoptosis of nucleus pulposus cells. Apoptosis 2023; 28:1357-1371. [PMID: 37300741 DOI: 10.1007/s10495-023-01862-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Intervertebral disc degeneration (IDD) is the most important pathological basis of degenerative spinal diseases, for which effective interventions are still lacking. Oxidative stress is considered to be one of the leading pathological mechanisms contributing to IDD. However, the exact role of DJ-1 as an essential member of the antioxidant defense system in IDD is still unclear. Therefore, the aim of this study was to investigate the role played by DJ-1 in IDD and to reveal its potential molecular mechanisms. Western blot and immunohistochemical staining assays were performed to detect the expression of DJ-1 in degenerative nucleus pulposus cells (NPCs). After overexpression of DJ-1 in NPCs by lentiviral transfection, DCFH-DA and MitoSOX fluorescent probes were used to evaluate the levels of reactive oxygen species (ROS); while western blot, TUNEL staining, and Caspase-3 activity were used to assess apoptosis. Immunofluorescence staining was used to demonstrate the relationship between DJ-1 and p62. After inhibition of lysosomal degradation function with chloroquine, p62 degradation and apoptosis in DJ-1 overexpressing NPCs were further examined. In vivo, we assessed the therapeutic effect of upregulated DJ-1 on IDD by X-ray, MRI and Safranin O-Fast green staining. The protein expression of DJ-1 was significantly decreased in degenerated NPCs, accompanied by increased apoptosis. However, overexpression of DJ-1 significantly inhibited the elevated ROS levels and apoptosis in NPCs under oxidative stress. Mechanistically, our results showed that upregulation of DJ-1 promoted p62 degradation via the autophagic lysosomal pathway and that the protective effect of DJ-1 on NPCs under oxidative stress was partially mediated by promoting lysosomal pathway degradation of p62. Moreover, intradiscal injection of adeno-associated virus for overexpression of DJ-1 mitigated the progression of IDD in rats. This study reveals that DJ-1 maintains the homeostasis of NPCs by promoting the degradation of p62 through the autophagic lysosomal pathway, suggesting that DJ-1 is a promising new target for IDD intervention.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Zhencheng Xiong
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
7
|
Extracellular vesicles DJ-1 derived from hypoxia-conditioned hMSCs alleviate cardiac hypertrophy by suppressing mitochondria dysfunction and preventing ATRAP degradation. Pharmacol Res 2023; 187:106607. [PMID: 36509316 DOI: 10.1016/j.phrs.2022.106607] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND As a pathological myocardial remodeling process in a variety of cardiovascular diseases, cardiac hypertrophy still has no effective treatment. Human mesenchymal stem cells (hMSCs) derived extracellular vesicles (EVs) has been recognized as a promising treatment strategy for cardiac disease. METHODS In this study, the inhibitory effects on cardiac hypertrophy are compared between normoxia-conditioned hMSC-derived EVs (Nor-EVs) and hypoxia-conditioned hMSC-derived EVs (Hypo-EVs) in neonatal rat cardiomyocytes (NRCMs) after angiotensin II (Ang II) stimulation and in a mouse model of transverse aortic constriction (TAC). RESULTS We demonstrate that Hypo-EVs exert an increased inhibitory effect on cardiac hypertrophy compared with Nor-EVs. Parkinson disease protein 7 (PARK7/DJ-1) is identify as a differential protein between Nor-EVs and Hypo-EVs by quantitative proteomics analysis. Results show that DJ-1, which is rich in Hypo-EVs, alleviates mitochondrial dysfunction and excessive mitochondrial reactive oxygen species (mtROS) production as an antioxidant. Mechanistic studies demonstrate for the first time that DJ-1 may suppress cardiac hypertrophy by inhibiting the activity of proteasome subunit beta type 10 (PSMB10) through a direct physical interaction. This interaction can inhibit angiotensin II type 1 receptor (AT1R)-mediated signaling pathways resulting in cardiac hypertrophy through alleviating ubiquitination degradation of AT1R-associated protein (ATRAP). CONCLUSIONS When taken together, our study suggests that Hypo-EVs have significant potential as a novel therapeutic agent for the treatment of cardiac hypertrophy.
Collapse
|
8
|
Han Z, Wang L, Wang D, Zhang L, Bi Y, Zheng X, Liu W, Bai G, Wang Z, Wan W, Ma Y, Cai X, Liu T, Jia Q. DJ-1 promotes osteosarcoma progression through activating CDK4/RB/E2F1 signaling pathway. Front Oncol 2022; 12:1036401. [PMID: 36408174 PMCID: PMC9671360 DOI: 10.3389/fonc.2022.1036401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of the bone characterized by poor prognosis due to chemotherapy resistance and high recurrence rates. DJ-1 (PARK7) is known as an oncogene and its abnormal expression is related to the poor prognosis of various types of malignant tumors. It was found in this study that upregulated expression of DJ-1 was closely correlated with the prognosis of OS patients by promoting the proliferation, migration and chemotherapy resistance of OS cells in vitro through regulating the activity of CDK4 but not through the oxidation mechanism or AKT pathway. The combination of DJ-1 and CDK4 promoted RB phosphorylation, leading to the dissociation of E2F1 into the nucleus to regulate the expression of cell cycle-related genes. The tumor xenograft mouse model demonstrated that DJ-1 knockout suppressed tumor growth in vivo. All these findings indicate that DJ-1 can affect the occurrence and progression of OS by regulating the CDK/RB/E2F1axis, suggesting a novel therapeutic opportunity for OS patients.
Collapse
Affiliation(s)
- Zhitao Han
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongshuo Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Luosheng Zhang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yifeng Bi
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinlei Zheng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weibo Liu
- Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guangjian Bai
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Wan
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yong Ma
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaopan Cai
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tielong Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qi Jia
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Peng S, Hou Y, Chen Z. Hispolon alleviates oxidative damage by stimulating the Nrf2 signaling pathway in PC12 cells. Arch Biochem Biophys 2022; 727:109303. [PMID: 35660410 DOI: 10.1016/j.abb.2022.109303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Natural products derived from the daily diet are garnering increasing attention for neurodegenerative disease (ND) treatment. Hispolon (His), a small molecule from Phellinus linteus, has been reported to have various pharmacological activities. Here, we evaluated its protective effect on a neuron-like rat pheochromocytoma cell line (PC12). Results showed that His could restore cell death induced by oxidative damage. Nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) plays a significant role in maintaining cellular redox homeostasis. After treatment with His, some Nrf2-governed antioxidant genes were upregulated in a dose-dependent manner. However, the protective effect of His on PC12 cells was easily terminated by Nrf2 knockdown, demonstrating that Nrf2 is a critical component in this cytoprotective process. Taken together, our study showed that His was not only an effective activator of Nrf2 but also a promising candidate for ND treatment.
Collapse
Affiliation(s)
- Shoujiao Peng
- Department of General Surgery, Xiangya Hospital, Central South University (CSU), Changsha, Hunan, China; State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University (CSU), Changsha, Hunan, China.
| |
Collapse
|
10
|
Asgari M, Salehi I, Ranjbar K, Khosravi M, Zarrinkalam E. Interval training and Crataegus persica ameliorate diabetic nephropathy via miR-126/Nrf-2 mediated inhibition of stress oxidative in rats with diabetes after myocardial ischemia-reperfusion injury. Biomed Pharmacother 2022; 153:113411. [PMID: 36076481 DOI: 10.1016/j.biopha.2022.113411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Myocardial disorders are the most common cause of renal failure and mortality in diabetic patients, but the molecular mechanism of this process is not yet clear. The reduction of nuclear Erythroid2-related factor-2 (Nrf-2) and positive regulators of Nrf-2 proteins, such as DJ-1 and microRNA-126 (miR-126), after hypoxia and the promotion of reactive oxygen species, might be an intervention indicator in renal failure after myocardial ischemia-reperfusion. Therefore, this study evaluates the renoprotective effect of exercise training and Crataegus persica extract (CE) on myocardial ischemia-reperfusion-induced kidney injury in diabetic rats. Fifty rats were divided into five groups: healthy sedentary control (Con), sedentary diabetic (D), interval trained diabetic (TD), diabetic plus Crataegus persica extract treatment (CD), and interval trained diabetic plus Crataegus persica extract treatment (TCD) groups. The rats in the exercise groups were subjected to moderate-intensity interval training five days per week for ten weeks. The rats in CD and TCD groups received 300 mg/kg of Crataegus persica through gavage for ten weeks. Then, the subjects underwent 30 min of myocardial ischemia and subsequently reperfusion for 24 h. At the end of the experiment, insulin sensitivity, oxidative stress, renal function, histopathology of the kidney, Nrf-2, miR-126, and DJ-1 gene expression levels were evaluated. The results show that the treatments decreased elevated levels of renal oxidative stress, glomerular filtration rate, insulin sensitivity, and pathological score in diabetic rats. Also, the expression of Nrf-2 and miR-126, unlike DJ-1, decreased in diabetic rats due to interval training. Due to the results, diabetes aggravates acute myocardial ischemia-reperfusion-induced kidney injury, while moderate-intensity interval training and Crataegus persica treatment simultaneously ameliorate myocardial ischemia-reperfusion-induced renal injury via miR-126/Nrf-2 pathway and improve insulin sensitivity and renal function in type 1 diabetic rats.
Collapse
Affiliation(s)
- Masoumeh Asgari
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Iraj Salehi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamedan University of Medical Sciences, Hamedan, Islamic Republic of Iran.
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Islamic Republic of Iran.
| | - Maryam Khosravi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Ebrahim Zarrinkalam
- Department of Physical Education and Sport Science, Hamedan Branch, Islamic Azad University, Hamedan, Islamic Republic of Iran
| |
Collapse
|
11
|
Cheng NN, Zhang LH, Ge R, Feng XE, Li QS. Triphenylpyrazoline ketone chlorophenols as potential candidate compounds against Parkinson’s disease: design, synthesis, and biological evaluation. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Awan MUN, Yan F, Mahmood F, Bai L, Liu J, Bai J. The Functions of Thioredoxin 1 in Neurodegeneration. Antioxid Redox Signal 2022; 36:1023-1036. [PMID: 34465198 DOI: 10.1089/ars.2021.0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Thioredoxin 1 (Trx1) is a ubiquitous protein that is found in organisms ranging from prokaryotes to eukaryotes. Trx1 acts as reductases in redox regulation and protects proteins from oxidative aggregation and inactivation. Trx1 helps the cells to cope with various environmental stresses and inhibits programmed cell death. It is beneficial to neuroregeneration and resistance against oxidative stress-associated neuron damage. Trx1 also plays important roles in suppressing neurodegenerative disorders. Recent Advances: Trx1 is a redox regulating protein involved in neuronal protection. According to a previous study, Trx1 expression is increased by nerve growth factor (NGF) and necessary for neurite outgrowth of PC12 cells. Trx1 has been shown to promote the growth of neurons. Trx1 knockout or knockdown has the worse impact on cell viability and survival. Critical Issues: Trx1 has functions in central nervous system. Trx1 plays the defensive roles against oxidative stress in neurodegenerative diseases. Future Directions: In this review, we focus on the structure of Trx1 and basic functions of Trx1. Trx1 plays a neuroprotective role by suppressing endoplasmic reticulum stress in Parkinson's disease. Neurodegenerative diseases have no cure and carry a high cost to the health care system and patient's families. Trx1 may be taken as a new target for neurodegenerative disorder therapy. Further studies of the Trx1 roles and mechanisms on neurodegenerative diseases are needed. Antioxid. Redox Signal. 36, 1023-1036.
Collapse
Affiliation(s)
- Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Faisal Mahmood
- Laboratory of Molecular Neurobiology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jingyu Liu
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Potential Effects of Nrf2 in Exercise Intervention of Neurotoxicity Caused by Methamphetamine Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4445734. [PMID: 35480870 PMCID: PMC9038420 DOI: 10.1155/2022/4445734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Methamphetamine can cause oxidative stress-centered lipid peroxidation, endoplasmic reticulum stress, mitochondrial dysfunction, excitatory neurotoxicity, and neuroinflammation and ultimately lead to nerve cell apoptosis, abnormal glial cell activation, and dysfunction of blood-brain barrier. Protecting nerve cells from oxidative destroy is a hopeful strategy for treating METH use disorder. Nrf2 is a major transcriptional regulator that activates the antioxidant, anti-inflammatory, and cell-protective gene expression through endogenous pathways that maintains cell REDOX homeostasis and is conducive to the survival of neurons. The Nrf2-mediated endogenous antioxidant pathway can also prevent neurodegenerative effects and functional defects caused by METH oxidative stress. Moderate exercise activates this endogenous antioxidant system, which involves in many diseases, including neurodegenerative diseases. Based on evidence from existing literature, we argue that appropriate exercise can play an endogenous antioxidant regulatory role in the Nrf2 signaling pathway to reduce a number of issues caused by METH-induced oxidative stress. However, more experimental evidence is needed to support this idea. In addition, further exploration is necessary about the different effects of various parameters of exercise intervention (such as exercise mode, time, and intensity) on the Nrf2 signaling pathway intervention. Whether there are synergistic effects between exercise and plant-derived Nrf2 activators is worth further investigation.
Collapse
|
14
|
Chen J, Xiong GZ, Luo DY, Zou QQ, Wang YYJ, Bi GS. Daxx ameliorates abdominal aortic aneurysm through inhibiting the TGF-β1-mediated PI3K/AKT/ID2 signaling pathway. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221091532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular abnormality, that, if ruptured, is almost universally fatal without repair, and is associated with up to 50% mortality even if repaired in hospital. To date, there is no drug therapy that has clinically proven benefit to reduce or prevent expansion of AAA. The aim of this study was to investigate whether Daxx could affect AAA through inhibiting the PI3K/AKT/ID2 signaling pathway mediated by transforming growth factor β-1 (TGFβ1). Methods The AAA model was constructed by injecting angiotensin Ⅱ (Ang-Ⅱ) into rats, and the Daxx lentivirus vector was constructed. Hematoxylin and eosin (HE) staining was used to detect the wall thickness of the abdominal aorta in rats. The gene and protein expressions in abdominal aortic tissues were detected utilizing western blot, immunohistochemistry (IHC) and fluorescence quantitative real-time polymerase chain reaction (qRT-PCR). Finally, the concentration of TGF-β1 in abdominal aortic tissue was determined by ELISA. Results The abdominal aortic wall thickness was decreased in the Daxx expression group (by HE staining), and Daxx overexpression markedly reduced the protein expression levels of MMP2 and MMP9. Proteins related to the PI3K/AKT/ID2 signaling pathway were highly enhanced in the aneurysm wall of rats, but were reduced following Daxx addition. Moreover, Daxx reduced the damage to elastin (by IHC), and the expression levels of α-SMA and SM22α were up-regulated by Daxx (by qRT-PCR). The concentration of TGF-β1 was correlated with the activation of the PI3K/AKT/ID2 signaling pathway (by ELISA), whereas AKT overexpression weakened the inhibitory effect of Daxx. Conclusion Daxx ameliorated several mechanisms that contributed to expansion of AAA suppressing the tissue concentration of TGF-β1, thereby inhibiting the activation of the PI3K/AKT/ID2 signaling pathway. This evidence might form the basis to develop a therapeutic target for AAA.
Collapse
Affiliation(s)
- Jie Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Guo-zuo Xiong
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Dong-yang Luo
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Qing-qing Zou
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Yang-yi-jing Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Guo-shan Bi
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
15
|
Quesada I, de Paola M, Alvarez MS, Hapon MB, Gamarra-Luques C, Castro C. Antioxidant and Anti-atherogenic Properties of Prosopis strombulifera and Tessaria absinthioides Aqueous Extracts: Modulation of NADPH Oxidase-Derived Reactive Oxygen Species. Front Physiol 2021; 12:662833. [PMID: 34335290 PMCID: PMC8322988 DOI: 10.3389/fphys.2021.662833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 12/05/2022] Open
Abstract
Despite popular usage of medicinal plants, their effects as cardiovascular protective agents have not been totally elucidated. We hypothesized that treatment with aqueous extract from Prosopis strombulifera (AEPs) and Tessaria absinthioides (AETa), Argentinian native plants, produces antioxidant effects on vascular smooth muscle cells (VSMCs) and attenuates atherogenesis on apolipoprotein E-knockout (ApoE-KO) mice. In VSMCs, both extracts (5–40 μg/ml) inhibited 10% fetal calf serum-induced cell proliferation, arrested cell in G2/M phase, reduced angiotensin II-induced reactive oxygen species (ROS) generation, and decreased NADPH oxidase subunit expression. In ApoE-KO mice, extracts significantly reduced triglycerides and lipid peroxidation [plasma thiobarbituric acid reactive substances (TBARS)], increased plasma total antioxidant status (TAS), and improved glutathione peroxidase activity in the liver. Under high-fat diet (HFD), both extracts were able to inhibit O2– generation in the aortic tissue and caused a significant regression of atheroma plaques (21.4 ± 1.6% HFD group vs. 10.2 ± 1.2%∗ AEPs group and 14.3 ± 1.0%∗ AETa group; ∗p < 0.01). Consumption of AEPs and AETa produces antioxidant/antimitogenic/anti-atherosclerotic effects, and their use may be beneficial as a complementary strategy regarding cardiovascular disease therapies.
Collapse
Affiliation(s)
- Isabel Quesada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Matilde de Paola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Soledad Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina
| | - María Belén Hapon
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Castro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
16
|
Jiang L, Chen XB, Wu Q, Zhu HY, Du CY, Ying MD, He QJ, Zhu H, Yang B, Cao J. The C terminus of DJ-1 determines its homodimerization, MGO detoxification activity and suppression of ferroptosis. Acta Pharmacol Sin 2021; 42:1150-1159. [PMID: 33024240 PMCID: PMC8209194 DOI: 10.1038/s41401-020-00531-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023]
Abstract
DJ-1 is a multifunctional protein associated with cancers and autosomal early-onset Parkinson disease. Besides the well-documented antioxidative stress activity, recent studies show that DJ-1 has deglycation enzymatic activity and anti-ferroptosis effect. It has been shown that DJ-1 forms the homodimerization, which dictates its antioxidative stress activity. In this study, we investigated the relationship between the dimeric structure of DJ-1 and its newly reported activities. In HEK293T cells with Flag-tagged and Myc-tagged DJ-1 overexpression, we performed deletion mutations and point mutations, narrowed down the most critical motif at the C terminus. We found that the deletion mutation of the last three amino acids at the C terminus of DJ-1 (DJ-1 ΔC3) disrupted its homodimerization with the hydrophobic L187 residue being of great importance for DJ-1 homodimerization. In addition, the ability in methylglyoxal (MGO) detoxification and deglycation was almost abolished in the mutation of DJ-1 ΔC3 and point mutant L187E compared with wild-type DJ-1 (DJ-1 WT). We also showed the suppression of erastin-triggered ferroptosis in DJ-1-/- mouse embryonic fibroblast cells was abolished by ΔC3 and L187E, but partially diminished by V51C. Thus, our results demonstrate that the C terminus of DJ-1 is crucial for its homodimerization, deglycation activity, and suppression of ferroptosis.
Collapse
Affiliation(s)
- Li Jiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Bing Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Wu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Ying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cheng-Yong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China
- Cancer center of Zhejiang University, Hangzhou, 310058, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China.
- Cancer center of Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Li Z, Zhao H, Wang J. Metabolism and Chronic Inflammation: The Links Between Chronic Heart Failure and Comorbidities. Front Cardiovasc Med 2021; 8:650278. [PMID: 34026868 PMCID: PMC8131678 DOI: 10.3389/fcvm.2021.650278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) patients often suffer from multiple comorbidities, such as diabetes, atrial fibrillation, depression, chronic obstructive pulmonary disease, and chronic kidney disease. The coexistance of comorbidities usually leads to multi morbidity and poor prognosis. Treatments for HF patients with multi morbidity are still an unmet clinical need, and finding an effective therapy strategy is of great value. HF can lead to comorbidity, and in return, comorbidity may promote the progression of HF, creating a vicious cycle. This reciprocal correlation indicates there may be some common causes and biological mechanisms. Metabolism remodeling and chronic inflammation play a vital role in the pathophysiological processes of HF and comorbidities, indicating metabolism and inflammation may be the links between HF and comorbidities. In this review, we comprehensively discuss the major underlying mechanisms and therapeutic implications for comorbidities of HF. We first summarize the potential role of metabolism and inflammation in HF. Then, we give an overview of the linkage between common comorbidities and HF, from the perspective of epidemiological evidence to the underlying metabolism and inflammation mechanisms. Moreover, with the help of bioinformatics, we summarize the shared risk factors, signal pathways, and therapeutic targets between HF and comorbidities. Metabolic syndrome, aging, deleterious lifestyles (sedentary behavior, poor dietary patterns, smoking, etc.), and other risk factors common to HF and comorbidities are all associated with common mechanisms. Impaired mitochondrial biogenesis, autophagy, insulin resistance, and oxidative stress, are among the major mechanisms of both HF and comorbidities. Gene enrichment analysis showed the PI3K/AKT pathway may probably play a central role in multi morbidity. Additionally, drug targets common to HF and several common comorbidities were found by network analysis. Such analysis has already been instrumental in drug repurposing to treat HF and comorbidity. And the result suggests sodium-glucose transporter-2 (SGLT-2) inhibitors, IL-1β inhibitors, and metformin may be promising drugs for repurposing to treat multi morbidity. We propose that targeting the metabolic and inflammatory pathways that are common to HF and comorbidities may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Pagliarone AC, Castañeda ED, Santana JPP, de Oliveira CAB, Robeldo TA, Teixeira FR, Borra RC. Mitochondrial heat shock protein mortalin as potential target for therapies based on oxidative stress. Photodiagnosis Photodyn Ther 2021; 34:102256. [PMID: 33737220 DOI: 10.1016/j.pdpdt.2021.102256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Treatments based on production of reactive oxygen species for bladder cancer such as photodynamic therapy (PDT) have been marginalized due to low specificity and the existence of resistance mainly associated with the up-regulation of Heat Shock Proteins (HSPs). To overcome these barriers, the establishment of strategies combining PDTs with HSP inhibitors may be promising and the identification of HSPs involved with oxidative stress from bladder tumors in animal models represents a key step in this direction. MATERIALS Thus, the present study aims to identify cytosolic and mitochondrial HSPs up expressed in murine bladder tumors and in the urothelial carcinoma cell line MB49 by qRT-PCR screening, and to analyze the importance of the activity of the HSPs associated with oxidative stress protection in the survival of the MB49 using strategy of inhibition in vitro. RESULTS Results showed that both tumor tissues and MB49 cells in culture had significant overexpression of the mitochondrial HSPA9 (mortalin) and HSP60 mRNAs, while the cytosolic HSP90 was overexpressed only in the tumor. The effect of mortalin in the MB49 cells survival under oxidative stress was evaluated in vitro in presence of the specific inhibitor MKT-077 and H2O2. The findings showed that MB49 viability was permanently reduced by the MKT-077 in a dose-dependent manner by inducing apoptosis or necrosis, mainly under oxidative stress conditions. CONCLUSION Results suggest that mortalin is preferentially expressed in the MB49 cancer model and plays a key role in tumoral survival, especially under oxidative stress, making this HSP a potential target for an alternative treatment combining PDT with HSP inhibitors.
Collapse
Affiliation(s)
- Ana Carolina Pagliarone
- Lab. of Applied Immunology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Edwin David Castañeda
- Lab. of Applied Immunology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Jhonne Pedro Pedott Santana
- Lab. of Applied Immunology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Thaiane Alcarde Robeldo
- Lab. of Applied Immunology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Felipe Roberti Teixeira
- Lab. of Cellular Biochemistry, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Ricardo Carneiro Borra
- Lab. of Applied Immunology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Gopurappilly R. Pluripotent Stem Cell Derived Neurons as In Vitro Models for Studying Autosomal Recessive Parkinson's Disease (ARPD): PLA2G6 and Other Gene Loci. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:115-133. [PMID: 33990932 PMCID: PMC7612166 DOI: 10.1007/5584_2021_643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative motor disorder which is largely sporadic; however, some familial forms have been identified. Genetic PD can be inherited by autosomal, dominant or recessive mutations. While the dominant mutations mirror the prototype of PD with adult-onset and L-dopa-responsive cases, autosomal recessive PD (ARPD) exhibit atypical phenotypes with additional clinical manifestations. Young-onset PD is also very common with mutations in recessive gene loci. The main genes associated with ARPD are Parkin, PINK1, DJ-1, ATP13A2, FBXO7 and PLA2G6. Calcium dyshomeostasis is a mainstay in all types of PD, be it genetic or sporadic. Intriguingly, calcium imbalances manifesting as altered Store-Operated Calcium Entry (SOCE) is suggested in PLA2G6-linked PARK 14 PD. The common pathways underlying ARPD pathology, including mitochondrial abnormalities and autophagic dysfunction, can be investigated ex vivo using induced pluripotent stem cell (iPSC) technology and are discussed here. PD pathophysiology is not faithfully replicated by animal models, and, therefore, nigral dopaminergic neurons generated from iPSC serve as improved human cellular models. With no cure to date and treatments aiming at symptomatic relief, these in vitro models derived through midbrain floor-plate induction provide a platform to understand the molecular and biochemical pathways underlying PD etiology in a patient-specific manner.
Collapse
Affiliation(s)
- Renjitha Gopurappilly
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| |
Collapse
|
20
|
Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N. The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants (Basel) 2020; 9:E1151. [PMID: 33228209 PMCID: PMC7699519 DOI: 10.3390/antiox9111151] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer remains an elusive, highly complex disease and a global burden. Constant change by acquired mutations and metabolic reprogramming contribute to the high inter- and intratumor heterogeneity of malignant cells, their selective growth advantage, and their resistance to anticancer therapies. In the modern era of integrative biomedicine, realizing that a personalized approach could benefit therapy treatments and patients' prognosis, we should focus on cancer-driving advantageous modifications. Namely, reactive oxygen species (ROS), known to act as regulators of cellular metabolism and growth, exhibit both negative and positive activities, as do antioxidants with potential anticancer effects. Such complexity of oxidative homeostasis is sometimes overseen in the case of studies evaluating the effects of potential anticancer antioxidants. While cancer cells often produce more ROS due to their increased growth-favoring demands, numerous conventional anticancer therapies exploit this feature to ensure selective cancer cell death triggered by excessive ROS levels, also causing serious side effects. The activation of the cellular NRF2 (nuclear factor erythroid 2 like 2) pathway and induction of cytoprotective genes accompanies an increase in ROS levels. A plethora of specific targets, including those involved in thioredoxin (TRX) and glutathione (GSH) systems, are activated by NRF2. In this paper, we briefly review preclinical research findings on the interrelated roles of the NRF2 pathway and TRX and GSH systems, with focus given to clinical findings and their relevance in carcinogenesis and anticancer treatments.
Collapse
Affiliation(s)
| | | | | | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (L.M.); (S.B.S.)
| |
Collapse
|
21
|
Mitochondrial Translocation of DJ-1 Is Mediated by Grp75: Implication in Cardioprotection of Resveratrol Against Hypoxia/Reoxygenation-Induced Oxidative Stress. J Cardiovasc Pharmacol 2020; 75:305-313. [PMID: 32040033 DOI: 10.1097/fjc.0000000000000805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Resveratrol (Res) was recently reported to ameliorate hypoxia/reoxygenation (H/R)-caused oxidative stress in H9c2 cardiomyocytes through promoting the mitochondrial translocation of DJ-1 protein and subsequently preserving the activity of mitochondrial complex I. However, it is noteworthy that DJ-1 possesses no mitochondria-targeting sequence. Therefore, how Res induces DJ-1 mitochondrial translocation is an important and interesting question for further exploration. Glucose-regulated protein 75 (Grp75), whose N-terminus contains a 51-amino acid long mitochondrial-targeting signal peptide, is a cytoprotective chaperone that partakes in mitochondrial import of several proteins. Here, the contribution of Grp75 to mitochondrial import of DJ-1 by Res was investigated in a cellular model of H/R. Our results showed that Res upregulated the expression of DJ-1 protein, enhanced the interaction of DJ-1 and Grp75, and promoted DJ-1 translocation to mitochondria from cytosol in H9c2 cardiomyocytes undergoing H/R. Importantly, knockdown of Grp75 markedly reduced the interaction of DJ-1 with Grp75 and subsequent DJ-1 mitochondrial translocation induced by Res. Furthermore, Res pretreatment promoted the association of DJ-1 with ND1 and NDUFA4 subunits of complex I, preserved the activity of complex I, decreased mitochondria-derived reactive oxygen species production, and eventually ameliorated H/R-caused oxidative stress damage. Intriguingly, these effects were largely prevented also by small interfering RNA targeting Grp75. Overall, these results suggested that Grp75 interacts with DJ-1 to facilitate its translocation from cytosol to mitochondria, which is required for Res-mediated preservation of mitochondria complex I and cardioprotection from H/R-caused oxidative stress injury.
Collapse
|
22
|
Shanmugam G, Wang D, Gounder SS, Fernandes J, Litovsky SH, Whitehead K, Radhakrishnan RK, Franklin S, Hoidal JR, Kensler TW, Dell'Italia L, Darley-Usmar V, Abel ED, Jones DP, Ping P, Rajasekaran NS. Reductive Stress Causes Pathological Cardiac Remodeling and Diastolic Dysfunction. Antioxid Redox Signal 2020; 32:1293-1312. [PMID: 32064894 PMCID: PMC7247052 DOI: 10.1089/ars.2019.7808] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Redox homeostasis is tightly controlled and regulates key cellular signaling pathways. The cell's antioxidant response provides a natural defense against oxidative stress, but excessive antioxidant generation leads to reductive stress (RS). This study elucidated how chronic RS, caused by constitutive activation of nuclear erythroid related factor-2 (caNrf2)-dependent antioxidant system, drives pathological myocardial remodeling. Results: Upregulation of antioxidant transcripts and proteins in caNrf2-TG hearts (TGL and TGH; transgenic-low and -high) dose dependently increased glutathione (GSH) redox potential and resulted in RS, which over time caused pathological cardiac remodeling identified as hypertrophic cardiomyopathy (HCM) with abnormally increased ejection fraction and diastolic dysfunction in TGH mice at 6 months of age. While the TGH mice exhibited 60% mortality at 18 months of age, the rate of survival in TGL was comparable with nontransgenic (NTG) littermates. Moreover, TGH mice had severe cardiac remodeling at ∼6 months of age, while TGL mice did not develop comparable phenotypes until 15 months, suggesting that even moderate RS may lead to irreversible damages of the heart over time. Pharmacologically blocking GSH biosynthesis using BSO (l-buthionine-SR-sulfoximine) at an early age (∼1.5 months) prevented RS and rescued the TGH mice from pathological cardiac remodeling. Here we demonstrate that chronic RS causes pathological cardiomyopathy with diastolic dysfunction in mice due to sustained activation of antioxidant signaling. Innovation and Conclusion: Our findings demonstrate that chronic RS is intolerable and adequate to induce heart failure (HF). Antioxidant-based therapeutic approaches for human HF should consider a thorough evaluation of redox state before the treatment.
Collapse
Affiliation(s)
- Gobinath Shanmugam
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ding Wang
- Department of Physiology, NIH BD2K Center of Excellence for Biomedical Computing at UCLA, University of California, Los Angeles, California, USA
| | - Sellamuthu S Gounder
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Silvio H Litovsky
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin Whitehead
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Rajesh Kumar Radhakrishnan
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah Franklin
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John R Hoidal
- Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | - Louis Dell'Italia
- Comprehensive Cardiovascular Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Peipei Ping
- Department of Physiology, NIH BD2K Center of Excellence for Biomedical Computing at UCLA, University of California, Los Angeles, California, USA.,Department of Medicine/Cardiology, NHLBI Integrated Cardiovascular Data Science Training Program at UCLA, Bioinformatics and Medical Informatics, and Scalable Analytics Institute (ScAi) at UCLA School of Engineering, Los Angeles, California, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Li L, Zhang C, Li Y, Zhang Y, Lei Y. DJ-1 promotes epithelial-to-mesenchymal transition via enhancing FGF9 expression in colorectal cancer. Biol Open 2020; 9:bio051680. [PMID: 32366371 PMCID: PMC7325429 DOI: 10.1242/bio.051680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/08/2020] [Indexed: 01/14/2023] Open
Abstract
Tumor metastasis is the main contributor to high recurrence and mortality in colorectal cancer (CRC). In a previous study, we found that DJ-1 plays an important role in CRC metastasis, and is the main target in Ciclopirox olamine (CPX)-treated CRC. However, the mechanism underlying DJ-1-induced CRC metastasis remains elusive. In the present study, our results showed that DJ-1 could activate Wnt signaling resulting in enhanced invasive potential and epithelial-to-mesenchymal transition (EMT) in CRC cells. RNA-seq and bioinformatics analysis reveals that the DJ-1/Wnt signaling pathway may promote CRC cells' EMT by regulating fibroblast growth factor 9 (FGF9) expression. Molecular validation showed that expression of FGF9 was upregulated by the DJ-1/Wnt signaling pathway and decreasing FGF9-expression impeded DJ-1-induced CRC invasive ability and EMT, suggesting that FGF9 is involved in DJ-1-enhanced CRC metastasis. In addition, we show that FGF9 was overexpressed in CRC human specimens and was significantly associated with tumor differentiation. High FGF9 expression was correlated with worse overall survival, and a correlation exhibited between FGF9 and EMT markers (E-cadherin and Vimentin) in CRC samples. Together, our results determined that FGF9 was involved in DJ-1-induced invasion and EMT in CRC cells, and may represent a promising therapeutic candidate for CRC anti-metastatic strategies.
Collapse
Affiliation(s)
- Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
24
|
Smith RE. The Effects of Dietary Supplements that Overactivate the Nrf2/ARE System. Curr Med Chem 2020; 27:2077-2094. [DOI: 10.2174/0929867326666190517113533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 01/31/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Background:
Inflammation is one of the most misunderstood aspects of human
health. People have been encouraged to eat foods that have a high antioxidant capacity, and in
vitro tests for total antioxidant capacity emerged. They were based on measuring the destruction
of oxidized test compounds in direct reactions with the antioxidants in foods. Many dietary
supplements arrived in the market. They contained purified antioxidants, such as resveratrol
and EGCG that were and still are widely assumed by many to be quite healthy at any
dose.
Methods:
The literature on inflammation and the Nrf2/ARE antioxidant system was searched
systematically. Articles from prestigious, peer-reviewed journals were obtained and read. The
information obtained from them was used to write this review article.
Results:
Over 150 articles and books were read. The information obtained from them showed
that very few dietary antioxidants exert their effects by reacting directly with Reactive Oxygen
and Nitrogen Species (RONS). Instead, most of the effective antioxidants activate the endogenous
Nrf2/ARE antioxidant system. This helps prevent smoldering inflammation and the
diseases that it can cause. However, when overactivated or activated constitutively, the
Nrf2/ARE antioxidant system can cause some of these diseases, including many types of
multidrug resistant cancer, autoimmune, neurodegenerative and cardiovascular diseases.
Conclusion:
Even though green tea, as well as many fruits, vegetables and spices are quite
healthy, dietary supplements that deliver much higher doses of antioxidants may not be. People
who are diagnosed with cancer and plan to start chemotherapy and/or radiotherapy should
probably avoid such supplements. This is because multidrug resistant tumors can hijack and
overactivate the Nrf2/ARE antioxidant system.
Collapse
|
25
|
Jin F, Wang H, Li D, Fang C, Li W, Shi Q, Diao Y, Ding Z, Dai X, Tao L, Sunagawa M, Wu F, Qian Y, Liu Y. DJ‑1 promotes cell proliferation and tumor metastasis in esophageal squamous cell carcinoma via the Wnt/β‑catenin signaling pathway. Int J Oncol 2020; 56:1115-1128. [PMID: 32319588 PMCID: PMC7115355 DOI: 10.3892/ijo.2020.5005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
DJ‑1, an oncogene, has been reported to be an independent prognostic indicator of poor survival in patients with esophageal squamous cell carcinoma (ESCC). The aim of the present study was to investigate the role of DJ‑1 in tumor cell proliferation and invasion in ESCC and its underlying mechanisms. It was observed that the expression level of DJ‑1 was upregulated and positively associated with EMT biomarkers in 84 human ESCC tissue specimens. Overexpression and knockdown experiments demonstrated that DJ‑1 was involved in proliferation, migration, invasion and EMT in ECA‑109 cells in vitro and extensive peritoneal seeding in a peritoneal dissemination mice model. Furthermore, the present data revealed that DJ‑1 could activate the Wnt/β‑catenin signaling pathway, which mediates the EMT and metastasis in ESCC. In conclusions, DJ‑1 promoted proliferation, invasion, metastasis and the EMT in ESCC via activation of the Wnt/β‑catenin signal pathway. The present results suggested DJ‑1 could represent a promising therapeutic target for the prevention and treatment of ESCC‑related metastasis.
Collapse
Affiliation(s)
- Feng Jin
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Haibo Wang
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dan Li
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Chuanchi Fang
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Wenyuan Li
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Qingtong Shi
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yali Diao
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Zhiyan Ding
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaojun Dai
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Li Tao
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Feng Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yayun Qian
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yanqing Liu
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
26
|
Zhou Q, Wu X, Liu Y, Wang X, Ling X, Ge H, Zhang J. Curcumin improves asthenozoospermia by inhibiting reactive oxygen species reproduction through nuclear factor erythroid 2-related factor 2 activation. Andrologia 2020; 52:e13491. [PMID: 31797403 PMCID: PMC7216926 DOI: 10.1111/and.13491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023] Open
Abstract
We conducted this study for the purpose of evaluating the protective mechanisms of curcumin against oxidative stress in asthenozoospermic individuals. Asthenozoospermic individuals were grouped into AS group, curcumin treatment group and brusatol + curcumin treatment group. The sperm motility was measured by computer-aided sperm analysis. We conducted flow cytometry and spectrophotometry to assess the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Chlortetracycline (CTC) was used to examine the acrosomal reaction of spermatozoa. Also, Western blotting was carried to measure antioxidant gene Nrf2 (nuclear factor erythroid 2-related factor) expression level. As our results shown, treatment with curcumin significantly decreased ROS formation and MDA production, compared with spermatozoa of AS group; however, Nrf2 inhibitor, Brusatol, inhibited Nrf2 expression and sperm function. Our results have shown that curcumin might protect spermatozoa by regulating Nrf2 level.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Reproductionthe Affiliated Obstetrics and Gynecology Hospital Nanjing Maternity and Child Health Care HospitalNanjing Medical University NanjingChina
| | - Xun Wu
- Department of Reproductionthe Affiliated Obstetrics and Gynecology Hospital Nanjing Maternity and Child Health Care HospitalNanjing Medical University NanjingChina
| | - Yingmin Liu
- Department of Reproductionthe Affiliated Obstetrics and Gynecology Hospital Nanjing Maternity and Child Health Care HospitalNanjing Medical University NanjingChina
| | - Xin Wang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xiufeng Ling
- Department of Reproductionthe Affiliated Obstetrics and Gynecology Hospital Nanjing Maternity and Child Health Care HospitalNanjing Medical University NanjingChina
| | - Hongshan Ge
- Department of Obstetrics and GynecologyCenter for Reproductive MedicineTaizhou People's HospitalTaizhouChina
| | - Junqiang Zhang
- Department of Reproductionthe Affiliated Obstetrics and Gynecology Hospital Nanjing Maternity and Child Health Care HospitalNanjing Medical University NanjingChina
| |
Collapse
|
27
|
Molecular Mechanism Underlying Hypoxic Preconditioning-Promoted Mitochondrial Translocation of DJ-1 in Hypoxia/Reoxygenation H9c2 Cells. Molecules 2019; 25:molecules25010071. [PMID: 31878239 PMCID: PMC6983240 DOI: 10.3390/molecules25010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
Abstract
DJ-1 was recently reported to be involved in the cardioprotection of hypoxic preconditioning (HPC) against hypoxia/reoxygenation (H/R)-induced oxidative stress damage, by preserving mitochondrial complex I activity and, subsequently, inhibiting mitochondrial reactive oxygen species (ROS) generation. However, the molecular mechanism by which HPC enables mitochondrial translocation of DJ-1, which has no mitochondria-targeting sequence, to preserve mitochondrial complex I, is largely unknown. In this study, co-immunoprecipitation data showed that DJ-1 was associated with glucose-regulated protein 75 (Grp75), and this association was significantly enhanced after HPC. Immunofluorescence imaging and Western blot analysis showed that HPC substantially enhanced the translocation of DJ-1 from cytosol to mitochondria in H9c2 cells subjected to H/R, which was mimicked by DJ-1 overexpression induced by pFlag-DJ-1 transfection. Importantly, knockdown of Grp75 markedly reduced the mitochondrial translocation of DJ-1 induced by HPC and pFlag-DJ-1 transfection. Moreover, HPC promoted the association of DJ-1 with mitochondrial complex I subunits ND1 and NDUFA4, improved complex I activity, and inhibited mitochondria-derived ROS production and subsequent oxidative stress damage after H/R, which was also mimicked by pFlag-DJ-1 transfection. Intriguingly, these effects of HPC and pFlag-DJ-1 transfection were also prevented by Grp75 knockdown. In conclusion, these results indicated that HPC promotes the translocation of DJ-1 from cytosol to mitochondria in a Grp75-dependent manner and Grp75 is required for DJ-1-mediated protection of HPC on H/R-induced mitochondrial complex I defect and subsequent oxidative stress damage.
Collapse
|
28
|
Cui W, Zhan Y, Shao X, Fu W, Xiao D, Zhu J, Qin X, Zhang T, Zhang M, Zhou Y, Lin Y. Neuroprotective and Neurotherapeutic Effects of Tetrahedral Framework Nucleic Acids on Parkinson’s Disease in Vitro. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32787-32797. [PMID: 31424187 DOI: 10.1021/acsami.9b10308] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yuxi Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wei Fu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Tianyi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yi Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
29
|
Zhou J, Zhang L, Wang M, Zhou L, Feng X, Yu L, Lan J, Gao W, Zhang C, Bu Y, Huang C, Zhang H, Lei Y. CPX Targeting DJ-1 Triggers ROS-induced Cell Death and Protective Autophagy in Colorectal Cancer. Am J Cancer Res 2019; 9:5577-5594. [PMID: 31534504 PMCID: PMC6735393 DOI: 10.7150/thno.34663] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
Rationale: Colorectal cancer (CRC) is one of the most common cancers worldwide. Ciclopirox olamine (CPX) has recently been identified to be a promising anticancer candidate; however, novel activities and detailed mechanisms remain to be uncovered. Methods: The cytotoxic potential of CPX towards CRC cells was examined in vitro and in vivo. The global gene expression pattern, ROS levels, mitochondrial function, autophagy, apoptosis, etc. were determined between control and CPX-treated CRC cells. Results: We found that CPX inhibited CRC growth by inhibiting proliferation and inducing apoptosis both in vitro and in vivo. The anti-cancer effects of CPX involved the downregulation of DJ-1, and overexpression of DJ-1 could reverse the cytotoxic effect of CPX on CRC cells. The loss of DJ-1 resulted in mitochondrial dysfunction and ROS accumulation, thus leading to CRC growth inhibition. The cytoprotective autophagy was provoked simultaneously, and blocking autophagy pharmacologically or genetically could further enhance the anti-cancer efficacy of CPX. Conclusion: Our study demonstrates that DJ-1 loss-induced ROS accumulation plays a pivotal role in CPX-mediated CRC inhibition, providing a further understanding for CRC treatment via modulating compensatory protective autophagy.
Collapse
|
30
|
Lin CR, Bahmed K, Tomar D, Marchetti N, Criner GJ, Bolla S, Wilson MA, Madesh M, Kosmider B. The relationship between DJ-1 and S100A8 in human primary alveolar type II cells in emphysema. Am J Physiol Lung Cell Mol Physiol 2019; 317:L791-L804. [PMID: 31313618 DOI: 10.1152/ajplung.00494.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary emphysema is characterized by alveolar type II (ATII) cell death, destruction of alveolar wall septa, and irreversible airflow limitation. Cigarette smoke induces oxidative stress and is the main risk factor for this disease development. ATII cells isolated from nonsmokers, smokers, and patients with emphysema were used for this study. ATII cell apoptosis in individuals with this disease was detected. DJ-1 and S100A8 have cytoprotective functions against oxidative stress-induced cell injury. Reduced DJ-1 and S100A8 interaction was found in ATII cells in patients with emphysema. The molecular function of S100A8 was determined by an analysis of the oxidation status of its cysteine residues using chemoselective probes. Decreased S100A8 sulfination was observed in emphysema patients. In addition, its lower levels correlated with higher cell apoptosis induced by cigarette smoke extract in vitro. Cysteine at position 106 within DJ-1 is a central redox-sensitive residue. DJ-1 C106A mutant construct abolished the cytoprotective activity of DJ-1 against cell injury induced by cigarette smoke extract. Furthermore, a molecular and complementary relationship between DJ-1 and S100A8 was detected using gain- and loss-of-function studies. DJ-1 knockdown sensitized cells to apoptosis induced by cigarette smoke extract, and S100A8 overexpression provided cytoprotection in the absence of DJ-1. DJ-1 knockout mice were more susceptible to ATII cell apoptosis induced by cigarette smoke compared with wild-type mice. Our results indicate that the impairment of DJ-1 and S100A8 function may contribute to cigarette smoke-induced ATII cell injury and emphysema pathogenesis.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Karim Bahmed
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, Pennsylvania
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Sudhir Bolla
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Mark A Wilson
- Redox Biology Center and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Muniswamy Madesh
- Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, Pennsylvania
| | - Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania.,Department of Physiology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Peng S, Hou Y, Yao J, Fang J. Neuroprotection of mangiferin against oxidative damage via arousing Nrf2 signaling pathway in PC12 cells. Biofactors 2019; 45:381-392. [PMID: 30633833 DOI: 10.1002/biof.1488] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
Accumulating evidence demonstrates that oxidative stress is involved in the pathogenesis and progression of neurodegeneration. As NF-E2-related factor 2 (Nrf2) plays a crucial role in maintaining cellular redox homeostasis, small molecules with the ability in activation of Nrf2 pathway are promising neuroprotective agents. Mangiferin (Mg) is a xanthone glucoside extracted from mangoes and papayas, and has been reported to possess multiple pharmacological activities. In this study, we investigated neuroprotective effects of Mg in the neuron-like rat pheochromocytoma cell line (PC12 cells). Mg scavenges different kinds of free radicals in vitro and attenuates hydrogen peroxide- or 6-hydroxydopamine-induced cell death. After treatment with Mg, a range of antioxidant genes governed by Nrf2 were upregulated, and the expressions and activities of these gene products were also elevated. Moreover, knockdown of Nrf2 antagonized the protective effect of Mg, indicating that Nrf2 is an essential factor in this cytoprotective process. In summary, our study demonstrates that Mg is a potent antioxidant that can provide neuroprotection against oxidative stress-mediated damage of PC12 cells. © 2019 BioFactors, 45(3):381-392, 2019.
Collapse
Affiliation(s)
- Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Gao W, Wang W, Peng Y, Deng Z. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metab Brain Dis 2019; 34:485-494. [PMID: 30762138 DOI: 10.1007/s11011-019-0389-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Kaempferol (KFL), the major constituent of various fruits and vegetables, could attenuate oxidaitve stress and inflammation. The aims of the present study were to explore the ameliorative abilities of KFL on the depressive-like behaviors in a chronic social defeat stress (CSDS) mouse model, and to determine the potential mechanisms on oxidative stress, neuroinflammation, and AKT/β-catenin signaling pathway. Three behavioral tests, sucrose preference test (SPT), social interaction test (SIT), and tail suspension test (TST), were used to evaluate the antidepressive effects of KFL in CSDS mice. Activity levels of antioxidant enzyme, superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione s-transferase (GST), and concentrations of malonaldehyde (MDA) and protein carbonylation in the prefrontal cortex were assessed by commercial kits, respectively. Elisa was used to detect the levels of interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α). Q-PCR was used to determine the mRNA level of CD-11b. Furthermore, activity level of AKT/β-catenin signaling in the prefrontal cortex of CSDS mice was investigated by western blot. In addition, LY294002, a PI3-K inhibitor, was used to investigate the role of AKT/β-catenin signaling in the antidepressant effects of KFL. Social defeat stress reduced the bodyweights, sucrose consumptions, social interaction times, and the tail suspension mobility times in mice. CSDS mice were also exhibited remarkablely increased levels in oxidative stress markers, inflammatory mediators, and decreased activity of AKT/β-catenin cascade in the prefrontal cortex, which were reversed by treatment with KFL. Interestingly, LY294002 appeared to partly inhibit the overall KFL-mediated protective effects in the CSDS mice. These results confirmed that KFL exerted antidepressive effects, which might be mediated, at least in part, by enhanced antioxidant abilities and anti-inflammation effects via up-regulation AKT/β-catenin cascade activity in the prefrontal cortex of CSDS mice. Thus, KFL might be a promising, effective, and safe food medicine for depression treatment.
Collapse
Affiliation(s)
- Wenqi Gao
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Wei Wang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Yan Peng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
| | - Zhifang Deng
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
33
|
Persike DS, Marques-Carneiro JE, Stein MLDL, Yacubian EMT, Centeno R, Canzian M, Fernandes MJDS. Altered Proteins in the Hippocampus of Patients with Mesial Temporal Lobe Epilepsy. Pharmaceuticals (Basel) 2018; 11:ph11040095. [PMID: 30274397 PMCID: PMC6316307 DOI: 10.3390/ph11040095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is usually associated with drug-resistant seizures and cognitive deficits. Efforts have been made to improve the understanding of the pathophysiology of MTLE for new therapies. In this study, we used proteomics to determine the differential expression of proteins in the hippocampus of patients with MTLE compared to control samples. By using the two-dimensional electrophoresis method (2-DE), the proteins were separated into spots and analyzed by LC-MS/MS. Spots that had different densitometric values for patients and controls were selected for the study. The following proteins were found to be up-regulated in patients: isoform 1 of serum albumin (ALB), proton ATPase catalytic subunit A (ATP6V1A), heat shock protein 70 (HSP70), dihydropyrimidinase-related protein 2 (DPYSL2), isoform 1 of myelin basic protein (MBP), and dihydrolipoamide S-acethyltransferase (DLAT). The protein isoform 3 of the spectrin alpha chain (SPTAN1) was down-regulated while glutathione S-transferase P (GSTP1) and protein DJ-1 (PARK7) were found only in the hippocampus of patients with MTLE. Interactome analysis of the nine proteins of interest revealed interactions with 20 other proteins, most of them involved with metabolic processes (37%), presenting catalytic activity (37%) and working as hydrolyses (25%), among others. Our results provide evidence supporting a direct link between synaptic plasticity, metabolic disturbance, oxidative stress with mitochondrial damage, the disruption of the blood–brain barrier and changes in CNS structural proteins with cell death and epileptogenesis in MTLE. Besides this, the presence of markers of cell survival indicated a compensatory mechanism. The over-expression of GSTP1 in MTLE could be related to drug-resistance.
Collapse
Affiliation(s)
- Daniele Suzete Persike
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo⁻UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil.
- Department of Medicinal Chemistry, College of Pharmacy, University of Dohuk-UoD, Kurdistan Region 1006AJ, Iraq.
| | - Jose Eduardo Marques-Carneiro
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo⁻UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil.
- INSERM U1114, Neuropsychologie Cognitive et Physiopathologie de la Schizophrenie, 1 pl de l'Hopital, 67091 Strasbourg, France.
| | - Mariana Leão de Lima Stein
- Departamento de Micro-Imuno-Parasito, Disciplina de Biologia Celular, Escola Paulista de Medicina, UNIFESP, São Paulo 04039-032, Brasil.
| | - Elza Marcia Targas Yacubian
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo⁻UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil.
| | - Ricardo Centeno
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo⁻UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil.
| | - Mauro Canzian
- Instituto do Coração (INCOR), Departamento de Anatomia Patológica, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo 04039-032, Brasil.
| | - Maria José da Silva Fernandes
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo⁻UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil.
| |
Collapse
|
34
|
Natkańska U, Skoneczna A, Skoneczny M. Oxidative stress triggers aggregation of GFP-tagged Hsp31p, the budding yeast environmental stress response chaperone, and glyoxalase III. Cell Stress Chaperones 2018; 23:595-607. [PMID: 29264711 PMCID: PMC6045530 DOI: 10.1007/s12192-017-0868-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae Hsp31p protein belongs to the ubiquitous DJ-1/ThiJ/PfpI family. The most prominent member of this family is human DJ-1; defects of this protein are associated with Parkinson's disease pathogenesis. Numerous recent findings reported by our group and others have revealed the importance of Hsp31p for survival in the post-diauxic phase of cell growth and under diverse environmental stresses. Hsp31p was shown to possess glutathione-independent glyoxalase III activity and to function as a protein chaperone, suggesting that it has multiple cellular roles. Our previous work also revealed that HSP31 gene expression was controlled by multiple stress-related transcription factors, which mediated HSP31 promoter responses to oxidative, osmotic, and thermal stresses, toxic products of glycolysis, and the diauxic shift. Nevertheless, the exact role of Hsp31p within budding yeast cells remains elusive. Here, we aimed to obtain insights into the function of Hsp31p based on its intracellular localization. We have demonstrated that the Hsp31p-GFP fusion protein is localized to the cytosol under most environmental conditions and that it becomes particulate in response to oxidative stress. However, the particles do not colocalize with other granular subcellular structures present in budding yeast cells. The observed particulate localization does not seem to be important for Hsp31p functionality. Instead, it is likely the result of oxidative damage, as the particle abundance increases when Hsp31p is nonfunctional, when the cellular oxidative stress response is affected, or when cellular maintenance systems that optimize the state of the proteome are compromised.
Collapse
Affiliation(s)
- Urszula Natkańska
- Institute of Biochemistry and Biophysics, Department of Genetics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Laboratory of Mutagenesis and DNA Repair, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Department of Genetics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland.
| |
Collapse
|
35
|
Kasnak G, Firatli E, Könönen E, Olgac V, Zeidán-Chuliá F, Gursoy UK. Elevated levels of 8-OHdG and PARK7/DJ-1 in peri-implantitis mucosa. Clin Implant Dent Relat Res 2018; 20:574-582. [PMID: 29787640 DOI: 10.1111/cid.12619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reactive oxygen species contribute to periodontal tissue homeostasis under control of anti-oxidative responses. Disruption in this balance induces severe inflammation and extended tissue degradation. PURPOSE Aim of this study was to identify the expression levels of nuclear factor, erythroid 2 like 2 (NFE2L2/NRF2), Parkinsonism associated deglycase (PARK7/DJ-1), kelch-like ECH associated protein 1 (KEAP1), and 8-hydroxy-deoxyguanosine (8-OHdG) in peri-implant mucosal tissues affected by peri-implantitis, and to compare the levels to those of periodontally diseased and healthy tissue samples. METHODS Tissue biopsies were collected from systemically healthy, non-smoking 12 peri-implantitis patients, 13 periodontitis patients, and 13 periodontally healthy controls. Expression levels of NFE2L2/NRF2, PARK7/DJ-1, KEAP1, and 8-OHdG in tissue samples were analyzed immunohistochemically. Statistical analysis was performed by one-way ANOVA with Tukey's HSD test. RESULTS Inflammatory cell infiltration in the connective tissue and loss of architecture in the spinous layer of the epithelium were prominent in peri-implantitis. Proportions of 8-OHdG and PARK7/DJ-1 expressing cells were elevated in both peri-implantitis (P = .025 for 8-OHdG and P = .014 for PARK7/DJ-1) and periodontitis (P = .038 for 8-OHdG and P = .012 for PARK7/DJ-1) groups in comparison with controls. Staining intensities of 8-OHdG and PARK7/DJ-1 were higher in the periodontitis and peri-implantitis groups than in the control (P < .01) groups. There was no difference in the expression levels of NFE2L2/NRF2 between the groups. KEAP1 was not observed in any tissue sample. CONCLUSIONS Peri-implantitis is characterized by severe inflammation and architectural changes in the epithelium and connective tissue. The expressions of 8-OHdG and PARK7/DJ-1 are elevated in both peri-implantitis and periodontitis.
Collapse
Affiliation(s)
- Gökhan Kasnak
- Institute of Dentistry, University of Turku, Turku, Finland.,Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Erhan Firatli
- Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Vakur Olgac
- Institute of Oncology, Department of Tumor Pathology, Istanbul University, Istanbul, Turkey
| | | | | |
Collapse
|
36
|
Downregulation of DJ-1 Fails to Protect Mitochondrial Complex I Subunit NDUFS3 in the Testes and Contributes to the Asthenozoospermia. Mediators Inflamm 2018; 2018:6136075. [PMID: 29849492 PMCID: PMC5903298 DOI: 10.1155/2018/6136075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/29/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022] Open
Abstract
Asthenozoospermia (AS), an important cause of male infertility, is characterized by reduced sperm motility. Among the aetiologies of AS, inflammation seems to be the main cause. DJ-1, a conserved protein product of the PARK7 gene, is associated with male infertility and plays a role in oxidative stress and inflammation. Although our previous studies showed that a reduction in DJ-1 was accompanied by mitochondrial dysfunction in the sperm of patients with AS, the specific mechanism underlying this association remained unclear. In this study, we found that compared to the patients without AS, the expression of mitochondrial protein nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) Fe-S protein 3 (NDUFS3) was also significantly decreased in the sperm of patients with AS. Similarly, decreased expression of DJ-1 and NDUFS3 and reduced mitochondria complex I activity were evident in a rat model of AS. Moreover, we showed that the interaction between DJ-1 and NDUFS3 in rat testes was weakened by ORN treatment. These results suggest that the impaired mitochondrial activity could be due to the broken interaction between DJ-1 and NDUFS3 and that downregulation of DJ-1 in sperm and testes contributes to AS pathogenesis.
Collapse
|
37
|
Heterophyllin B Ameliorates Lipopolysaccharide-Induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages by Suppressing the PI3K/Akt Pathways. Molecules 2018; 23:molecules23040717. [PMID: 29561811 PMCID: PMC6017815 DOI: 10.3390/molecules23040717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 12/25/2022] Open
Abstract
Heterophyllin B (HB), an active cyclic peptide, is a compound existing in the ethyl acetate extract of Pseudostellaria heterophylla (Miq.) Pax and exhibited the activity of inhibiting the production of NO and cytokines, such as IL-1β and IL-6, in LPS-stimulated RAW 264.7 macrophages. In addition, HB suppressed the production of ROS and the apoptosis induced by LPS in RAW 264.7 macrophages. The underlying mechanism was investigated in the LPS-induced RAW 264.7 cells. The results showed that HB decreased the level of IL-1β and IL-6 expression by qRT-PCR analysis. HB up-regulated the relative ratio of p-AKT/AKT and p-PI3K/PI3K as indicated by western blot analysis. In summary, HB inhibited the LPS-induced inflammation and apoptosis through the PI3K/Akt signaling pathways and represented a potential therapeutic target for treatment of inflammatory diseases.
Collapse
|
38
|
Zhang S, Mukherjee S, Fan X, Salameh A, Mujoo K, Huang Z, Li L, To'a Salazar G, Zhang N, An Z. Novel association of DJ-1 with HER3 potentiates HER3 activation and signaling in cancer. Oncotarget 2018; 7:65758-65769. [PMID: 27582551 PMCID: PMC5323190 DOI: 10.18632/oncotarget.11613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023] Open
Abstract
HER3/ErbB3 has emerged as a new therapeutic target for cancer. Currently, more than a dozen anti-HER3 antibodies are in clinical trials for treatment of various cancers. However, limited understanding of the complex HER3 signaling in cancer and lack of established biomarkers have made it challenging to stratify cancer patients who can benefit from HER3 targeted therapies. In this study, we identified DJ-1/PARK7 (Parkinson Protein 7) as a novel interaction partner of HER3 and demonstrated the potential of DJ-1 as a biomarker for anti-HER3 cancer therapy. DJ-1 association with HER3 protects HER3 from ubiquitination and degradation through the proteasomal pathway in breast cancer cells. However, neuregulin 1 (NRG-1) mediated HER3 activation results in a reduced association of DJ-1 with HER3. DJ-1 shRNA knockdown in cancer cells resulted in decreased levels of HER3 and its downstream signaling through the PI3K/AKT and Ras/Raf/ERK pathways. DJ-1 shRNA knockdown cancer cells significantly reduced cell proliferation and migration in vitro and tumor growth in vivo. Conversely, overexpression of DJ-1 increased HER3 levels and promoted cancer cell proliferation in vitro and tumor growth in vivo. Notably, cancer cells with high DJ-1 expression showed more sensitivity than DJ-1 knockdown cells to anti-HER3 antibody inhibition. In addition, there was a significant co-expression of HER3 and DJ-1 in tumor tissues of breast cancer patients. Taken together, these results suggest that high DJ-1 expression in breast cancer cells predicts elevated HER3 signaling and may therefore serve as a biomarker for HER3 targeted antibody cancer therapies.
Collapse
Affiliation(s)
- Shu Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Current address: Clinical Research Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Seema Mukherjee
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xuejun Fan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ahmad Salameh
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kalpana Mujoo
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Current address: Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas, USA
| | - Zhao Huang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Current address: Stemcentrx, Inc., South San Francisco, California, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Georgina To'a Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
39
|
Ding H, Xu XW, Wang H, Xiao L, Zhao L, Duan GL, Li XR, Ma ZX, Chen HP. DJ-1 plays an obligatory role in the cardioprotection of delayed hypoxic preconditioning against hypoxia/reoxygenation-induced oxidative stress through maintaining mitochondrial complex I activity. Cell Biochem Funct 2018; 36:147-154. [DOI: 10.1002/cbf.3326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Ding
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Xing-Wang Xu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Huan Wang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Lin Xiao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Le Zhao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Guang-Ling Duan
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Xiao-Ran Li
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Zhao-Xia Ma
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - He-Ping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| |
Collapse
|
40
|
Liu C, Liu X, Qi J, Pant OP, Lu CW, Hao J. DJ-1 in Ocular Diseases: A Review. Int J Med Sci 2018; 15:430-435. [PMID: 29559831 PMCID: PMC5859765 DOI: 10.7150/ijms.23428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
Protein deglycase DJ-1 (Parkinson disease protein 7) is a 20 kDa protein encoded by PARK7 gene. It is also known as a redox-sensitive chaperone and sensor that protect cells against oxidative stress-induced cell death in many human diseases. Though increasing evidence implicates that DJ-1 may also participate in ocular diseases, the overview of DJ-1 in ocular diseases remains elusive. In this review, we discuss the role as well as the underlying molecular mechanisms of DJ-1 in ocular diseases, including Fuchs endothelial corneal dystrophy (FECD), age-related macular degeneration (AMD), cataracts, and ocular neurodegenerative diseases, highlighting that DJ-1 may serve as a very striking therapeutic target for ocular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Cheng-wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Jilong Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
41
|
Foulger RE, Denny P, Hardy J, Martin MJ, Sawford T, Lovering RC. Using the Gene Ontology to Annotate Key Players in Parkinson's Disease. Neuroinformatics 2018; 14:297-304. [PMID: 26825309 PMCID: PMC4896971 DOI: 10.1007/s12021-015-9293-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Gene Ontology (GO) is widely recognised as the gold standard bioinformatics resource for summarizing functional knowledge of gene products in a consistent and computable, information-rich language. GO describes cellular and organismal processes across all species, yet until now there has been a considerable gene annotation deficit within the neurological and immunological domains, both of which are relevant to Parkinson’s disease. Here we introduce the Parkinson’s disease GO Annotation Project, funded by Parkinson’s UK and supported by the GO Consortium, which is addressing this deficit by providing GO annotation to Parkinson’s-relevant human gene products, principally through expert literature curation. We discuss the steps taken to prioritise proteins, publications and cellular processes for annotation, examples of how GO annotations capture Parkinson’s-relevant information, and the advantages that a topic-focused annotation approach offers to users. Building on the existing GO resource, this project collates a vast amount of Parkinson’s-relevant literature into a set of high-quality annotations to be utilized by the research community.
Collapse
Affiliation(s)
- R E Foulger
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK.
| | - P Denny
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - J Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - M J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - T Sawford
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - R C Lovering
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
42
|
Bonilha VL. Oxidative Stress Regulation and DJ-1 Function in the Retinal Pigment Epithelium: Implications for AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:3-9. [PMID: 29721921 DOI: 10.1007/978-3-319-75402-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the retina, oxidative stress can initiate a cascade of events that ultimately leads to a focal loss of RPE cells and photoreceptors, a major contributing factor in geographic atrophy. Despite these implications, the molecular regulation of RPE oxidative metabolism under physiological and pathological conditions remains largely unknown. DJ-1 functions as an antioxidant, redox-sensitive molecular chaperone, and transcription regulator, which protected cells from oxidative stress. Here we discuss our progress toward characterization of the DJ-1 function in the protection of RPE to oxidative stress.
Collapse
Affiliation(s)
- Vera L Bonilha
- Cole Eye Institute (i31), Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| |
Collapse
|
43
|
Yan BC, Shen H, Zhang Y, Zhu X, Wang J, Xu P, Jiang D, Yu X. The antiepileptic drug levetiracetam promotes neuroblast differentiation and expression of superoxide dismutase in the mouse hippocampal dentate gyrus via PI3K/Akt signalling. Neurosci Lett 2017; 662:84-90. [PMID: 29024726 DOI: 10.1016/j.neulet.2017.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023]
Abstract
Levetiracetam (LEV), a second-generation antiepileptic drug, is commonly prescribed to treat certain types of seizures. Few studies have investigated the effects of LEV on hippocampal neurogenesis and its related mechanisms. In the present study, we investigated the effects of LEV on cell proliferation and neuronal differentiation in the mouse hippocampal dentate gyrus (DG). We here demonstrate a dose-dependent increase in Ki-67-immunoreactive cells in the subgranular zone of the DG in LEV-treated mice, and doublecortin-immunoreactive cells were also significantly increased in the hippocampal DG of mice treated with LEV. The above results indicate that LEV could improve cell proliferation and neuroblast differentiation in the hippocampus. In addition, we also found that LEV treatment improved superoxide dismutase (SOD)2, catalase and Gpx-1 levels and increased phosphatidylinositol 3-kinase (PI3K) and phosphorylated Akt protein levels in the hippocampus. Further investigation of the molecular mechanisms underlying these effects revealed that PC12 cell was blocked by a pharmacological inhibitor of PI3K (LY294002), and that LEV treatment rapidly activated PI3K/Akt and SOD2, catalase and Gpx-1. In brief, our results indicate that LEV enhanced cell proliferation and neuroblast differentiation by increasing the expression of antioxidants and PI3K and the level of phosphorylated Akt in the mouse hippocampus.
Collapse
Affiliation(s)
- Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China; Department of Neurology, Affiliated Hospital, Yangzhou University, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| | - Hui Shen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China
| | - Yuanyuan Zhang
- Department of Neurology, Affiliated Hospital, Yangzhou University, 225001, PR China
| | - Xiaolu Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China
| | - Jie Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China
| | - Pei Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China
| | - Dan Jiang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China
| | - Xing Yu
- Department of Pharmacy, Yangzhou Maternal and Child Care Service Center, Yangzhou, 225002, PR China
| |
Collapse
|
44
|
miR-128 Is Implicated in Stress Responses by Targeting MAFG in Skeletal Muscle Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9308310. [PMID: 29138682 PMCID: PMC5613631 DOI: 10.1155/2017/9308310] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
MAFG (v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog G) is a bZIP-type transcriptional regulator that belongs to the small MAF (sMAFs) protein family. By interacting with other bZIP transcription factors, sMAFs can form homo- and heterodimers governing either repressive or activating transcriptional functions. As heterodimeric partner of Nrf2, MAFG positively influences the ARE-dependent antioxidant/xenobiotic pathways, at least in condition of a correct MAFG:Nrf2 balance. MicroRNAs (miRs) participate to different regulatory networks being involved as fine-tuning regulators of gene expression. However, the connections between cellular surveillance to stresses mediated by MAFG:Nrf2 and miR regulations are not well understood. Here, we explored the impact of miR-128 in expression of genes related to stress response. Bioinformatic predictions coupled with functional analysis revealed the presence of miR-128 binding site in the 3′UTR of MAFG. Ectopic miR-128 expression correlated with reduced expression of endogenous MAFG-dependent genes and negatively affected ARE-mediated molecular phenotype based on Nrf2 activity. Indeed, miR-128 impairs redox-dependent pathways induced in response to oxidative stress. Moreover, in condition of hypoxia, MAFG induction correlated with reduced levels of miR-128. This lead to increased mRNA levels of HMOX-1 and x-CT for blunting stress. Overall, these findings identify MAFG as novel direct target of miR-128.
Collapse
|
45
|
Sun Q, Shen ZY, Duan WN, Meng QT, Xia ZY. Mechanism of myocardial ischemia/reperfusion-induced acute kidney injury through DJ-1/Nrf2 pathway in diabetic rats. Exp Ther Med 2017; 14:4201-4207. [PMID: 29104636 PMCID: PMC5658721 DOI: 10.3892/etm.2017.5095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 06/02/2017] [Indexed: 01/28/2023] Open
Abstract
The objective of the present study was to investigate acute kidney injury (AKI) induced by myocardial ischemia/reperfusion (MIR) in diabetic rats and elucidate its underlying mechanism. A rat model of MIR was established by left anterior descending coronary artery occlusion for 30 min, followed by reperfusion for 2 h. Rats were randomly divided into four groups: i) Sham group, ii) sham + MIR group, iii) diabetic group and iv) diabetes + MIR group. Myocardial injury was detected by plasma creatine kinase isoenzyme MB and lactate dehydrogenase assays. AKI induced by MIR in diabetic rats was characterized by increases in cystatin C and β2-microglobulin levels. Oxidative stress injury was accompanied by an increase of malondialdehyde levels and a decrease of total antioxidative capacity in the renal tissues. Immunohistochemistry and western blot analysis demonstrated that the expression of DJ-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) were significantly increased in the diabetes + MIR group compared with that in the sham + MIR and diabetic groups. Taken together, these results suggested that AKI induced by MIR in diabetic rats may be associated with activation of the DJ-1/Nrf2 pathway.
Collapse
Affiliation(s)
- Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zi-Ying Shen
- Department of Anesthesiology, The Affiliated Hospital of The Medical College of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wei-Na Duan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
46
|
Dani SU, Walter GF. Chronic arsenic intoxication diagnostic score (CAsIDS). J Appl Toxicol 2017; 38:122-144. [DOI: 10.1002/jat.3512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sergio Ulhoa Dani
- Medawar Institute for Medical and Environmental Research; Acangau Foundation; Paracatu MG Brazil
- Department of General Internal Medicine; St. Gallen Cantonal Hospital; Switzerland
- PizolCare Praxis Wartau; Trübbach Switzerland
| | | |
Collapse
|
47
|
Abstract
Alzheimer's disease and Parkinson's disease are the two most common, progressive central neurodegenerative diseases affecting the population over the age of 60 years. Apart from treatments that temporarily improve symptoms, there is no medicine currently available to inhibit or reverse the progression of Alzheimer's disease and Parkinson's disease. In traditional Chinese medicine, the root of Scutellaria baicalensis Georgi is a classic compatible component in the decoction of herbal medicine used for treating central nervous system diseases. Modern pharmacokinetic studies have confirmed that baicalein (5,6,7-trihydroxyflavone) is a major bioactive flavone constituent root of S. baicalensis Georgi. Studies showed that baicalein possesses a range of key pharmacological properties, such as reducing oxidative stress, anti-inflammatory properties, inhibiting aggregation of disease-specific amyloid proteins, inhibiting excitotoxicity, stimulating neurogenesis and differentiation action, and anti-apoptosis effects. Based on these properties, baicalein shows therapeutic potential for Alzheimer's disease and Parkinson's disease. In this review, we summarize the pharmacological protective actions of baicalein that make it suitable for the treatment of Alzheimer's disease and Parkinson's disease, and discuss the potential mechanisms underlying the effects.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Human Anatomy, Medical College, Shaoyang University, Xueyuan Road Qiliping Campus, Shaoyang, 422000, Hunan, People's Republic of China.
| | - Jinying Zhao
- Department of Human Anatomy, Medical College, Shaoyang University, Xueyuan Road Qiliping Campus, Shaoyang, 422000, Hunan, People's Republic of China
| | - Christian Hölscher
- Biomedical and Life Science, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
48
|
Finelli MJ, Oliver PL. TLDc proteins: new players in the oxidative stress response and neurological disease. Mamm Genome 2017; 28:395-406. [PMID: 28707022 PMCID: PMC5614904 DOI: 10.1007/s00335-017-9706-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) arises from an imbalance in the cellular redox state, which can lead to intracellular damage and ultimately cell death. OS occurs as a result of normal ageing, but it is also implicated as a common etiological factor in neurological disease; thus identifying novel proteins that modulate the OS response may facilitate the design of new therapeutic approaches applicable to many disorders. In this review, we describe the recent progress that has been made using a range of genetic approaches to understand a family of proteins that share the highly conserved TLDc domain. We highlight their shared ability to prevent OS-related cell death and their unique functional characteristics, as well as discussing their potential application as new neuroprotective factors. Furthermore, with an increasing number of pathogenic mutations leading to epilepsy and hearing loss being discovered in the TLDc protein TBC1D24, understanding the function of this family has important implications for a range of inherited neurological diseases.
Collapse
Affiliation(s)
- Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
49
|
Oxidative inactivation of the endogenous antioxidant protein DJ-1 by the food contaminants 3-MCPD and 2-MCPD. Arch Toxicol 2017; 92:289-299. [DOI: 10.1007/s00204-017-2027-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023]
|
50
|
Scott L, Dawson VL, Dawson TM. Trumping neurodegeneration: Targeting common pathways regulated by autosomal recessive Parkinson's disease genes. Exp Neurol 2017; 298:191-201. [PMID: 28445716 DOI: 10.1016/j.expneurol.2017.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/13/2017] [Accepted: 04/22/2017] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Most PD cases are sporadic; however, rare familial forms have been identified. Autosomal recessive PD (ARPD) results from mutations in Parkin, PINK1, DJ-1, and ATP13A2, while rare, atypical juvenile ARPD result from mutations in FBXO7, DNAJC6, SYNJ1, and PLA2G6. Studying these genes and their function has revealed mitochondrial quality control, protein degradation processes, and oxidative stress responses as common pathways underlying PD pathogenesis. Understanding how aberrancy in these common processes leads to neurodegeneration has provided the field with numerous targets that may be therapeutically relevant to the development of disease-modifying treatments.
Collapse
Affiliation(s)
- Laura Scott
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.
| |
Collapse
|