1
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
2
|
Pandey A, Karmous I. Exploring the Potential of Plant-Based Nanotechnology in Cancer Immunotherapy: Benefits, Limitations, and Future Perspectives. Biol Trace Elem Res 2025; 203:1746-1763. [PMID: 38862749 DOI: 10.1007/s12011-024-04266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Reconceptualizing cancer immunotherapy can be improved if combined with plant production systems and nanotechnology. This review aims to contribute to the knowledge of plant use in nanomedicine and cancer immunotherapy. In the foreground, we outlined each of these approaches; nanomedicine, green synthesis, and immunotherapy. The benefits of plant-based nanoparticles in mending the immune systems were subsequently analyzed, with reference to the literature. The combining effects of biological and therapeutic properties of some phytochemicals and their derivatives, with targeted nanoparticles and selective immunotherapy, can enhance the delivery of drugs and antibodies, and induce antitumor immune responses, via activation of functions of neutrophils, lymphocyte cells, and natural killer cells, and macrophages, resulting in induced apoptosis and phagocytosis of tumor cells, which can improve designing immunotherapeutic strategies targeting cancer, with a larger spectrum compared to the current cytotoxic anticancer drugs commonly used in clinics. This study uncovers the mechanistic drivers of cancer immunoengineering in cancer therapy using plant-based nanomaterials, enhancing therapeutic benefits while minimizing toxic and side effects.
Collapse
Affiliation(s)
- Ashish Pandey
- Department of Radiology, Tech4Health Institute, NYU Langone Health, New York, NY, USA
| | - Ines Karmous
- Biology and Environmental Department, Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Gabes, Tunisia.
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, University of Carthage, Carthage, Tunisia.
| |
Collapse
|
3
|
Martins Fernandes Pereira K, de Carvalho AC, Ventura Fernandes BH, Dos Santos Grecco S, Rodrigues E, da Silva Fernandes MJ, de Carvalho LRS, Nakamura MU, Guo S, Hernández RB. Systems toxicology studies reveal important insights about chronic exposure of zebrafish to Kalanchoe pinnata (Lam.) Pers leaf - KPL: Implications for medicinal use. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119044. [PMID: 39532221 DOI: 10.1016/j.jep.2024.119044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of depression and anxiety is high during pregnancy. Several traditional medicines use the plant Kalanchoe pinnata (Lam.) Pers. (KP) to treat emotional disorders, inflammation, and to prevent preterm delivery, but the effects on the exposed offspring and the mechanism behind these events remain unknown. AIM OF THE STUDY In this work, integrated systems toxicology (INSYSTA) was used to investigate traditional toxicological outcomes and behavioral performance in zebrafish larvae after chronic exposure (from 2 to 96 hpf) to K. pinnata leaf extracts (KPL). MATERIALS AND METHODS We investigated light/dark preference, thigmotaxis and locomotor activity parameters, followed by gene expression and systems biology approaches to discover the mechanisms behind toxicological endpoint and phenomics. RESULTS The embryos exposed to 700 mg/L KPL showed retarded development including hatching delay. Larvae exposed to 500 mg/L KPL resulted in decreased dark avoidance and increased locomotor activity, while 700 mg/L showed opposite effects. The INSYSTA revealed sixteen genes down-regulated after KPL chronic treatment; they are involved in folding, sorting, and degradation of proteins as well as DNA replication and repair mechanisms. This may result in deregulation of the organismal functions, including those of immune and endocrine systems. These physiological changes appear to make embryos more sensitive to infections and disorders that resemble 47 human diseases. CONCLUSION These findings suggest that the medicinal use of plant extracts requires strict toxicological, pharmacological, and medical supervision. At the same time, it suggests a polypharmacological pathway for KPL extract that goes beyond preventing premature delivery and controlling anxiety.
Collapse
Affiliation(s)
- Kássia Martins Fernandes Pereira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04021-001, São Paulo, SP, Brazil.
| | | | - Bianca H Ventura Fernandes
- Technical Directorate of Support for Teaching, Research and Innovation at the Faculty of Medicine of the University of São Paulo, São Paulo, SP, Brazil.
| | - Simone Dos Santos Grecco
- Department of Chemistry, Universidade Federal de São Paulo, 09972-270, Diadema, SP, Brazil; Triplet Biotechnology Solutions, São Paulo, Brazil.
| | - Eliana Rodrigues
- Center for Ethnobotanical and Ethnopharmacological Studies, Department of Environmental Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Maria José da Silva Fernandes
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04021-001, São Paulo, SP, Brazil.
| | - Luciani Renata Silveira de Carvalho
- Technical Directorate of Support for Teaching, Research and Innovation at the Faculty of Medicine of the University of São Paulo, São Paulo, SP, Brazil; Discipline of Endocrinology, Laboratory of Hormones and Molecular Genetics-LIM42, Hospital das Clínicas of the University of São Paulo, São Paulo, SP, Brazil.
| | - Mary Uchiyama Nakamura
- Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, SP, 04021-001, Brazil.
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158-2811, USA.
| | - Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Department of Exact and Earth Sciences, Universidade Federal de São Paulo, 09972-270, Diadema, SP, Brazil.
| |
Collapse
|
4
|
Zhao Z, Wang J, Kong W, Fang Z, Coleman MF, Milne GL, Burkett WC, Newton MA, Lara O, Lee D, Deng B, Shen X, Suo H, Sun W, Hursting SD, Zhou C, Bae-Jump VL. Intermittent energy restriction inhibits tumor growth and enhances paclitaxel response in a transgenic mouse model of endometrial cancer. Gynecol Oncol 2024; 186:126-136. [PMID: 38669767 PMCID: PMC11216885 DOI: 10.1016/j.ygyno.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE Overweight/obesity is the strongest risk factor for endometrial cancer (EC), and weight management can reduce that risk and improve survival. We aimed to establish the differential benefits of intermittent energy restriction (IER) and low-fat diet (LFD), alone and in combination with paclitaxel, to reverse the procancer effects of high-fat diet (HFD)-induced obesity in a mouse model of EC. METHODS Lkb1fl/flp53fl/fl mice were fed HFD or LFD to generate obese and lean phenotypes, respectively. Obese mice were maintained on a HFD or switched to a LFD (HFD-LFD) or IER (HFD-IER). Ten weeks after induction of endometrial cancer, mice in each group received paclitaxel or placebo for 4 weeks. Body and tumor weights; tumoral transcriptomic, metabolomic and oxylipin profiles; and serum metabolic hormones and chemocytokines were assessed. RESULTS HFD-IER and HFD-LFD, relative to HFD, reduced body weight; reversed obesity-induced alterations in serum insulin, leptin and inflammatory factors; and decreased tumor incidence and mass, often to levels emulating those associated with continuous LFD. Concurrent paclitaxel, versus placebo, enhanced tumor suppression in each group, with greatest benefit in HFD-IER. The diets produced distinct tumoral gene expression and metabolic profiles, with HFD-IER associated with a more favorable (antitumor) metabolic and inflammatory environment. CONCLUSION In Lkb1fl/flp53fl/fl mice, IER is generally more effective than LFD in promoting weight loss, inhibiting obesity-related endometrial tumor growth (particularly in combination with paclitaxel), and reversing detrimental obesity-related metabolic effects. These findings lay the foundation for further investigations of IER as an EC prevention and treatment strategies in overweight/obesity women.
Collapse
Affiliation(s)
- Ziyi Zhao
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
| | - Weimin Kong
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
| | - Ziwei Fang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ginger L Milne
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Wesley C Burkett
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith A Newton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia Lara
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Boer Deng
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaochang Shen
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongyan Suo
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Wu X, Xu H, Zeng N, Li H, Yao G, Liu K, Yan C, Wu L. Luteolin alleviates depression-like behavior by modulating glycerophospholipid metabolism in the hippocampus and prefrontal cortex of LOD rats. CNS Neurosci Ther 2024; 30:e14455. [PMID: 37715585 PMCID: PMC10916417 DOI: 10.1111/cns.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Late-onset depression (LOD) is defined as primary depression that first manifests after the age of 65. Luteolin (LUT) is a natural flavonoid that has shown promising antidepressant effects and improvement in neurological function in previous studies. AIMS In this study, we utilized UPLC-MS/MS non-targeted metabolomics techniques, along with molecular docking technology and experimental validation, to explore the mechanism of LUT in treating LOD from a metabolomics perspective. RESULTS The behavioral results of our study demonstrate that LUT significantly ameliorated anxiety and depression-like behaviors while enhancing cognitive function in LOD rats. Metabolomic analysis revealed that the effects of LUT on LOD rats were primarily mediated through the glycerophospholipid metabolic pathway in the hippocampus and prefrontal cortex. The levels of key lipid metabolites, phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), in the glycerophospholipid metabolic pathway were significantly altered by LUT treatment, with PC and PE showing significant correlations with behavioral indices. Molecular docking analysis indicated that LUT had strong binding activity with phosphatidylserine synthase 1 (PTDSS1), phosphatidylserine synthase 2 (PTDSS2), and phosphatidylserine decarboxylase (PISD), which are involved in the transformation and synthesis of PC, PE, and PS. Lastly, our study explored the reasons for the opposing trends of PC, PE, and PS in the hippocampus and prefrontal cortex from the perspective of autophagy, which may be attributable to the bidirectional regulation of autophagy in distinct brain regions. CONCLUSIONS Our results revealed significant alterations in the glycerophospholipid metabolism pathways in both the hippocampus and prefrontal cortex of LOD rats. Moreover, LUT appears to regulate autophagy disorders by specifically modulating glycerophospholipid metabolism in different brain regions of LOD rats, consequently alleviating depression-like behavior in these animals.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Hanfang Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Ningxi Zeng
- Department of Rehabilitation Medicine, The People's Hospital of Longhua DistrictShenzhenChina
| | - Huizhen Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive DysfunctionJiangxi University of Chinese MedicineNanchangChina
| | - Gaolei Yao
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Kaige Liu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Lili Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
6
|
Zhao Z, Wang J, Kong W, Fang Z, Coleman M, Milne G, Burkett WC, Newton MA, Lee D, Deng B, Shen X, Suo H, Sun W, Hursting S, Zhou C, Bae-Jump VL. Intermittent energy restriction inhibits tumor growth and enhances paclitaxel response in a transgenic mouse model of endometrial cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578679. [PMID: 38370796 PMCID: PMC10871198 DOI: 10.1101/2024.02.02.578679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Objective Overweight/obesity is the strongest risk factor for endometrial cancer (EC), and weight management can reduce that risk and improve survival. We aimed to establish the differential abilities of intermittent energy restriction (IER) and low-fat diet (LFD), alone and in combination with paclitaxel, to reverse the procancer effects of high-fat diet (HFD)-induced obesity in a mouse model of EC. Methods Lkb1 fl/fl p53 fl/fl mice were fed high-fat diet (HFD) or LFD to generate obese and lean phenotypes, respectively. Obese mice were maintained on HFD or switched to LFD (HFD-LFD) or IER (HFD-IER). Ten weeks after induction of endometrial tumor, mice in each group received paclitaxel or placebo for 4 weeks. Body and tumor weights; tumoral transcriptomic, metabolomic and oxylipin profiles; and serum metabolic hormones and chemocytokines were assessed. Results HFD-IER and HFD-LFD, relative to HFD, reduced body weight; reversed obesity-induced alterations in serum insulin, leptin and inflammatory factors; and decreased tumor incidence and mass, often to levels emulating those associated with continuous LFD. Concurrent paclitaxel, versus placebo, enhanced tumor suppression in each group, with greatest benefit in HFD-IER. The diets produced distinct tumoral gene expression and metabolic profiles, with HFD-IER associated with a more favorable (antitumor) metabolic and inflammatory environment. Conclusion In Lkb1 fl/fl p53 fl/fl mice, IER is generally more effective than LFD in promoting weight loss, inhibiting obesity-related endometrial tumor growth (particularly in combination with paclitaxel), and reversing detrimental obesity-related metabolic effects. These findings lay the foundation for further investigations of IER as a EC prevention strategy in women with overweight/obesity.
Collapse
|
7
|
Yan J, Zhu J, Li X, Yang R, Xiao W, Huang C, Zheng C. Blocking LTB 4 signaling-mediated TAMs recruitment by Rhizoma Coptidis sensitizes lung cancer to immunotherapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154968. [PMID: 37531900 DOI: 10.1016/j.phymed.2023.154968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Immune checkpoint blockade (ICB) induces durable immune responses across a spectrum of advanced cancers and revolutionizes the oncology field. However, only a subset of patients achieves long-lasting clinical benefits. Tumor-associated macrophages (TAMs) usually secrete immunosuppressive cytokines and contribute to the failure of ICB therapy. Therefore, it is crucial to mechanically manipulate the abundance and function of TAMs in the tumor microenvironment (TME), which can offer a promising molecular basis to improve the clinical response efficacy of ICB in cancer patients. PURPOSE This study aims to investigate TAMs in the immunosuppressive microenvironment to identify new therapeutic targets, improve the ability to predict and guide responses to clinical immunotherapy, and develop new strategies for immunotherapy of lung tumors. METHODS Lewis lung carcinoma (LLC) xenograft-bearing mouse models were established to analyze the antitumor activity of Rhizoma Coptidis (RC) in vivo. A systems pharmacology strategy was used to predict the correlation between RC and M2 macrophages. The effect of RC on the abundance of M2 macrophages was analyzed by flow cytometry of murine samples. Western blot was performed to analyze the expression of Leukotriene A4 hydrolase (LTA4H) and LTB4 receptor 1 (BLT1) in harvested lung cancer tissues. The impact of blocking leukotriene B4 (LTB4) signaling by RC on the recruitment of M2 macrophages was assessed in vitro and in vivo. Transwell migration assays were conducted to clarify the inhibition of macrophage migration by blocking LTB4. Lta4h-/- mice were used to investigate the sensitivity of immunotherapy to lung cancer by blocking the LTB4 signaling. RESULTS Here, we report that RC, an herbal medicine from the family Ranunculaceae, suppresses the recruitment and immunosuppressive function of TAMs, which in turn sensitizes lung cancer to ICB therapy. Firstly, a systems pharmacology strategy was proposed to identify combinatorial drugs for ICB therapy with a systems biology perspective of drug-target-pathway-TME phenotype. We predicted and verified that RC significantly inhibits tumor growth and the infiltration of M2-TAMs into TME of LLC tumor-bearing mice. Then, RC inhibits the recruitment of macrophages to the tumor TME via blocking LTB4 signaling, and suppresses the expression of immunosuppressive factors (IL-10, TGF-β and VEGF). As a result, RC enables CD8+ T cells to retain their proliferative and infiltrative abilities within the TME. Ultimately, these events promote cytotoxic T-cell-mediated clearance of tumor cells, which is further enhanced by the addition of anti-PD-L1 therapy. Furthermore, we employed LTA4H deficient mice (Lta4h-/- mice) to evaluate the antitumor efficiency, the results showed that the efficacy of immunotherapy was enhanced due to the synergistic effect of LTB4 signaling blockage and ICB inhibition, leading to remarkable inhibition of tumor growth in a mouse model of lung adenocarcinoma. CONCLUSIONS Taken together, these findings suggest that RC enhances antitumor immunity, providing a rationale for combining RC with immunotherapies as a potential anti-cancer treatment strategy.
Collapse
Affiliation(s)
- Jiangna Yan
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Jinglin Zhu
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiaolan Li
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Ruijie Yang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Chao Huang
- School of Basic Medical Sciences, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China.
| | - Chunli Zheng
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| |
Collapse
|
8
|
Zhang Y, Barupal DK, Fan S, Gao B, Zhu C, Flenniken AM, McKerlie C, Nutter LMJ, Lloyd KCK, Fiehn O. Sexual Dimorphism of the Mouse Plasma Metabolome Is Associated with Phenotypes of 30 Gene Knockout Lines. Metabolites 2023; 13:947. [PMID: 37623890 PMCID: PMC10456929 DOI: 10.3390/metabo13080947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Although metabolic alterations are observed in many monogenic and complex genetic disorders, the impact of most mammalian genes on cellular metabolism remains unknown. Understanding the effect of mouse gene dysfunction on metabolism can inform the functions of their human orthologues. We investigated the effect of loss-of-function mutations in 30 unique gene knockout (KO) lines on plasma metabolites, including genes coding for structural proteins (11 of 30), metabolic pathway enzymes (12 of 30) and protein kinases (7 of 30). Steroids, bile acids, oxylipins, primary metabolites, biogenic amines and complex lipids were analyzed with dedicated mass spectrometry platforms, yielding 827 identified metabolites in male and female KO mice and wildtype (WT) controls. Twenty-two percent of 23,698 KO versus WT comparison tests showed significant genotype effects on plasma metabolites. Fifty-six percent of identified metabolites were significantly different between the sexes in WT mice. Many of these metabolites were also found to have sexually dimorphic changes in KO lines. We used plasma metabolites to complement phenotype information exemplified for Dhfr, Idh1, Mfap4, Nek2, Npc2, Phyh and Sra1. The association of plasma metabolites with IMPC phenotypes showed dramatic sexual dimorphism in wildtype mice. We demonstrate how to link metabolomics to genotypes and (disease) phenotypes. Sex must be considered as critical factor in the biological interpretation of gene functions.
Collapse
Affiliation(s)
- Ying Zhang
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Dinesh K. Barupal
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Sili Fan
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chao Zhu
- College of Medicine & Nursing, Dezhou University, Dezhou 253023, China
| | - Ann M. Flenniken
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada; (A.M.F.); (C.M.); (L.M.J.N.)
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada; (A.M.F.); (C.M.); (L.M.J.N.)
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lauryl M. J. Nutter
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada; (A.M.F.); (C.M.); (L.M.J.N.)
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kevin C. Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California Davis, Davis, CA 95616, USA;
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Vidal-Gutiérrez M, Torres-Moreno H, Arenas-Luna V, Loredo-Mendoza ML, Tejeda-Dominguez F, Velazquez C, Vilegas W, Hernández-Gutiérrez S, Robles-Zepeda RE. Standardized phytopreparations and cucurbitacin IIb from Ibervillea sonorae (S. Watson) greene induce apoptosis in cervical cancer cells by Nrf2 inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115606. [PMID: 35944738 DOI: 10.1016/j.jep.2022.115606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ibervillea sonorae (S. Watson) Greene is a plant from northwestern Mexico, known as "Wereke" or "Guareque", used by the Mayo ethnic group to treat diabetes and cancer. Cucurbitacin IIb (CIIb), isolated from I. sonorae has apoptotic and antitumor activity in a model of cervical cancer with the HeLa cell line. One pathway affected by cucurbitacins is Nrf2, a glutathione transferase (GST) transcription factor, important in the regulation of mitochondrial oxidative stress (MOS). A signal of MOS is the change in the mitochondrial membrane potential (ΔΨm), which has been detected in HeLa in the presence of CIIb. Fito-Ison-EtOH (Etanison) and Fito-Ison-EtOAc (Acetison) are phytopreparations from I. sonorae standardized according to their CIIb content (6.7 mg/g and 18.4 mg/g of CIIb, respectively). Etanison and Acetison have been reported to induce morphological changes in HeLa like those induced by CIIb. AIM OF THE STUDY To evaluate the apoptotic and Nrf2 inhibition activity of the phytopreparations Acetison and Etanison from Ibervillea Sonorae in the HeLa cervical cancer cell line. MATERIALS AND METHODS Antiproliferative activity was evaluated by the MTT method at 24, 48, and 72 h. For Acetison and Etanison, serial concentrations from 6.25 μg/mL to 100 μg/mL were tested, and for CIIb from 1.56 μg/mL to 50 μg/mL. The expression of Nrf2, caspase 3, and caspase 9 was evaluated by western blot, using concentrations of 30 μg/mL for Acetison, 50 μg/mL for Etanison, and 15 μg/mL for CIIb. Cisplatin was used as a positive control. RESULTS AND CONCLUSIONS Apoptotic activity of Etanison and Acetison was demonstrated in HeLa, due to the presence of caspase-9 and caspase-3 in western blot assays. Likewise, both the phytopreparations and CIIb showed inhibition of Nrf2, associating apoptotic activity with the inhibition of the GST transcription factor. In this sense, the phytopreparations of I. sonorae, as well as their derivatives, have the potential to obtain and develop anticancer products.
Collapse
Affiliation(s)
- Max Vidal-Gutiérrez
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, CP: 83000, Mexico; Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Rodovia Araraquara - Jaú, Km 1, Araraquara, São Paulo, CEP: 14800-903, Brazil
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora - Avenida Universidad e Irigoyen, Caborca Sonora, CP:83621, Mexico
| | - Víctor Arenas-Luna
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac, Ciudad de México, CP: 03920, Mexico
| | - María Lilia Loredo-Mendoza
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac, Ciudad de México, CP: 03920, Mexico
| | - Farid Tejeda-Dominguez
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac, Ciudad de México, CP: 03920, Mexico
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, CP: 83000, Mexico
| | - Wagner Vilegas
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Rodovia Araraquara - Jaú, Km 1, Araraquara, São Paulo, CEP: 14800-903, Brazil; Universidade Estadual Paulista (UNESP), Coastal Campus of São Vicente, Praça Infante Dom Henrique s/n, São Vicente, São Paulo, CEP 11330-205, Brazil
| | - Salomón Hernández-Gutiérrez
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac, Ciudad de México, CP: 03920, Mexico.
| | - Ramón E Robles-Zepeda
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, CP: 83000, Mexico.
| |
Collapse
|
10
|
Magalhães M, Domínguez-Martín EM, Jorge J, Gonçalves AC, Díaz-Lanza AM, Manadas B, Efferth T, Rijo P, Cabral C. Parvifloron D-based potential therapy for glioblastoma: Inducing apoptosis via the mitochondria dependent pathway. Front Pharmacol 2022; 13:1006832. [PMID: 36313298 PMCID: PMC9605735 DOI: 10.3389/fphar.2022.1006832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma (GB) is the most malignant and frequent primary tumor of the central nervous system. The lack of diagnostic tools and the poor prognosis associated with this tumor type leads to restricted and limited options of treatment, namely surgical resection and radio-chemotherapy. However, despite these treatments, in almost all cases, patients experience relapse, leading to survival rates shorter than 5 years (∼15-18 months after diagnosis). Novel therapeutic approaches are urgently required (either by discovering new medicines or by repurposing drugs) to surpass the limitations of conventional treatments and improve patients' survival rate and quality of life. In the present work, we investigated the antitumor potential of parvifloron D (ParvD), a drug lead of natural origin, in a GB cell line panel. This natural drug lead induced G2/M cell cycle arrest and apoptosis via activation of the intrinsic mitochondria-dependent pathway. Moreover, the necessary doses of ParvD to induce pronounced inhibitory effects were substantially lower than that of temozolomide (TMZ, first-line treatment) required to promote comparable effects. Therefore, ParvD may have the potential to overcome the resistance related to TMZ and contribute to the pursuit of hopeful treatments based on ParvD as a drug lead for future chemotherapeutics.
Collapse
Affiliation(s)
- Mariana Magalhães
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Eva María Domínguez-Martín
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisbon, Portugal
- Departamento de Ciencias Biomédicas, Facultad de Farmacia, Universidad de Alcalá de Henares, Madrid, Spain
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR, Group of Environment Genetics and Oncobiology (CIMAGO)—Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR, Group of Environment Genetics and Oncobiology (CIMAGO)—Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana María Díaz-Lanza
- Departamento de Ciencias Biomédicas, Facultad de Farmacia, Universidad de Alcalá de Henares, Madrid, Spain
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisbon, Portugal
- Faculty of Pharmacy, Instituto de Investigação do Medicamento (iMed.ULisboa), University of Lisbon, Lisbon, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Kuan CM, Liang CH, Chuang WH, Lin TY, Hsu PK. Ameliorating Effect of Crassocephalum rabens (Asteraceae) Extract on Skin Aging: A Randomized, Parallel, Double-Blind, and Placebo-Controlled Study. Nutrients 2022; 14:nu14132655. [PMID: 35807836 PMCID: PMC9268076 DOI: 10.3390/nu14132655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Crassocephalum rabens (Asteraceae) is a common herb used in Taiwanese folk medicine to treat inflammation-related syndromes. Pharmacological studies have revealed that galactolipids exhibit anti-oxidative, anti-inflammatory, and anti-hyaluronidase activities and improve skin wrinkles, moisture, and elasticity in healthy subjects. However, the anti-aging effects of C. rabens and its primary active compound, 1,2-di-O-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG), remain elusive. Here, we investigated whether C. rabens can improve skin conditions in healthy individuals using a double-blind approach. Forty enrolled volunteers were randomly and equally assigned to the control or treatment group and were required to take either a placebo or a C. rabens extract capsule daily for one month. Skin parameters were measured before and after the study. The results showed significant differences in skin elasticity, wrinkles, collagen content, brightness, and hydration between the baseline and week 4 in the treatment group. Particularly, compared with those in the placebo group, skin wrinkles (p < 0.05), brightness (p < 0.001), collagen content (p < 0.01), and UV spots (p < 0.05) were notably improved after treatment with the C. rabens extract. Our study successfully demonstrated the application of C. rabens in preventing skin aging. Further investigations will be conducted to study the underlying anti-aging mechanism of dLGG.
Collapse
Affiliation(s)
- Chen-Meng Kuan
- Department of Research and Development, Greenyn Biotechnology Co., Ltd., Taichung City 40768, Taiwan; (W.-H.C.); (T.-Y.L.); (P.-K.H.)
- Correspondence:
| | - Chia-Hua Liang
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan;
| | - Wei-Hsiu Chuang
- Department of Research and Development, Greenyn Biotechnology Co., Ltd., Taichung City 40768, Taiwan; (W.-H.C.); (T.-Y.L.); (P.-K.H.)
| | - Ting-Yu Lin
- Department of Research and Development, Greenyn Biotechnology Co., Ltd., Taichung City 40768, Taiwan; (W.-H.C.); (T.-Y.L.); (P.-K.H.)
| | - Pang-Kuei Hsu
- Department of Research and Development, Greenyn Biotechnology Co., Ltd., Taichung City 40768, Taiwan; (W.-H.C.); (T.-Y.L.); (P.-K.H.)
| |
Collapse
|
12
|
Liu H, Li X, Xie J, Lv C, Lian F, Zhang S, Duan Y, Zeng Y, Piao X. Gypenoside L and Gypenoside LI Inhibit Proliferation in Renal Cell Carcinoma via Regulation of the MAPK and Arachidonic Acid Metabolism Pathways. Front Pharmacol 2022; 13:820639. [PMID: 35370678 PMCID: PMC8964777 DOI: 10.3389/fphar.2022.820639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) has the highest mortality rate of all urological malignancies. Clear cell renal cell carcinoma (ccRCC) accounts for approximately 80% of all RCC cases and is often accompanied by the accumulation of lipid droplets. Growing evidence indicates that ccRCC is a metabolism-related disease. Gypenosides are commonly used for the clinical treatment of hyperlipidemia, and their antitumor activity has also been recognized. However, the potential inhibitory effects and mechanisms of action of gypenoside L (Gyp L) and gypenoside LI (Gyp LI) in ccRCC remain unclear. In this study, we confirmed that Gyp L and Gyp LI significantly inhibited proliferation and induced apoptosis in ccRCC cells in vitro. We performed network pharmacology and RNA-seq, and verified the results by Western blotting, RT-qPCR, and immunofluorescence experiments. Our results demonstrated that Gyp L and Gyp LI upregulate the expression of COX2 and downregulate the expression levels of cPLA2 and CYP1A1, resulting in reduced arachidonic acid and apoptosis. Gyp L and Gyp LI upregulated the protein levels of DUSP1, p-JUN, and p-JNK, and downregulated p-MEK1/2, p-ERK, and p-P38 levels. Moreover, gypenosides significantly inhibited tumor growth in vivo, and gypenosides significantly reduced cPLA2 and CYP1A1 expression. Furthermore, we performed absolute quantification of arachidonic acid (AA) content in ccRCC cells and tumor tissues by HPLC-MS, and found that the arachidonic acid content was significantly reduced after Gyp L, Gyp LI, and gypenoside intervention. In conclusion, our data suggest that Gyp L, Gyp LI, and gypenosides decrease the content of arachidonic acid in ccRCC cells and tumor tissues, but do not have cytotoxic effects on nude mice. Thus, Gyp L, Gyp LI, and total gypenosides extracted from Gynostemma pentaphyllum exhibited antitumor activities against ccRCC.
Collapse
Affiliation(s)
- Hui Liu
- Chengde Medical University, Chengde, China.,School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiuming Li
- Department of Urology, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Jinbo Xie
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Fangchao Lian
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Shouyi Zhang
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yu Duan
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xianglan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
13
|
Hsu PK, Tsai YT, Lin YC, Kuan CM. Assessment of the acute and sub-acute toxicity of the ethanolic extract of the aerial parts of Crassocephalum rabens (Asteraceae) in rats. Toxicol Rep 2022; 9:58-63. [PMID: 35004182 PMCID: PMC8717411 DOI: 10.1016/j.toxrep.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 01/03/2023] Open
Abstract
This pioneering study was to assess the acute and sub-acute toxicity of the ethanolic extract of the aerial parts of Crassocephalum rabens (Asteraceae) in rats. C. rabens is a common vegetable and herb for treating inflammation-related syndromes in Taiwan. Pharmacological studies have unveiled that the extracts of C. rabens have potential to become hepatoprotective, anti-inflammatory, or anti-cancer agents. The toxicological effects of the aerial parts of C. rabens in rodents are still elusive. For the acute toxicity study, rats were administrated with a single dose of 5,000 mg/kg body weight (BW) and observed for 14 days in accordance with the Organization for Economic Cooperation and Development (OECD) guideline No. 420. For the sub-acute toxicity study, animals were orally treated with daily doses of 0, 416.7, 833.3, and 1,666.7 mg/kg BW for 28 days based on the OECD guideline No. 407. The toxicity of the repeated dose was observed with anthropometric, hematological, and biochemical parameters as well as histology. The mortality and critical pathological and biochemical abnormalities were not observed in the acute and/or sub-acute toxicity studies. The oral median lethal dose (LD50) of the extract was greater than 5000 mg/kg BW. The no-observed-adverse-effect-level (NOAEL) in male and female rats was greater than 1,666.7 mg/kg BW. As such, the extract of the aerial parts of C. rabens is considered a non-toxic substance.
Collapse
Affiliation(s)
- Pang-Kuei Hsu
- Greenyn Biotechnology Co., Ltd., Taichung City, 42881, Taiwan
| | - Yueh-Ting Tsai
- Greenyn Biotechnology Co., Ltd., Taichung City, 42881, Taiwan.,Testing Center, Super Laboratory Inc., New Taipei City, 24890, Taiwan.,Institute of Food Science and Technology, National Taiwan University, Taipei City, 10617, Taiwan
| | - Yu-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei City, 10617, Taiwan
| | - Chen-Meng Kuan
- Greenyn Biotechnology Co., Ltd., Taichung City, 42881, Taiwan
| |
Collapse
|
14
|
Köksal Karayildirim Ç, Nalbantsoy A, Karabay Yavaşoğlu NÜ. Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes. Mol Biol Rep 2021; 48:7251-7259. [PMID: 34599704 DOI: 10.1007/s11033-021-06719-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Urinary bladder cancer (UBC) is considered one of the most prevalent malignant tumors worldwide. Complementary and integrative approaches for the treatment of bladder cancer, such as the intake of isoflavonoid phytoestrogens, are of increasing interest due to the risk of mortality and long-term morbidity associated with surgical procedures. The biological effects of prunetin, one of the less-studied phytoestrogens, have not yet been examined in this respect. Therefore, this study aimed to explore the efficacy of prunetin on UBC cells (RT-4). METHODS AND RESULTS: The cytotoxicity and nitric oxide synthase activities of prunetin were determined in cell cultures. The expression of apoptosis-related genes was determined with RT-PCR. Cell cycle assays were performed using a flow cytometer and cellular apoptotic rate was measured. The results suggested that prunetin has cytotoxic effects at 21.11 µg/mL on RT-4 cells. Flow cytometry analysis showed that prunetin induced apoptosis and arrested th cell cycle in the G0/G1 phase. Prunetin exposure was associated with increases in CASP3 and TNF-α gene expression in RT-4 cells at doses of 21.11 and 42.22 µg/mL, respectively. Strong nitric oxide inhibition was observed at IC50 of 5.18 µg/mL under macrophage mediated inflammatory circumstances. CONCLUSIONS Prunetin possesses anti-cancer properties and may be a candidate compound for the prevention of UBC. This is the first study that evaluated prunetin for its in vitro antitumor activities, clarified its possible apoptotic molecular mechanism and provided novel insights into its anti-inflammatory nature and effects on the expression of related key genes.
Collapse
Affiliation(s)
| | - Ayşe Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | | |
Collapse
|
15
|
Herrero de la Parte B, Rodeño-Casado M, Iturrizaga Correcher S, Mar Medina C, García-Alonso I. Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats. Biomedicines 2021; 9:biomedicines9091183. [PMID: 34572369 PMCID: PMC8467247 DOI: 10.3390/biomedicines9091183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background: New therapeutic approaches are an essential need for patients suffering from colorectal cancer liver metastases. Curcumin, a well-known plant-derived polyphenol, has been shown to play a role in the modulation of multiple signaling pathways involved in the development and progression of certain cancer cells in vitro. This study aims to assess the anti-tumor effect of curcumin on CC531 colorectal cancer cells, both in vitro and in vivo. Methods: On CC531 cultures, the cell viability and cell migration capacity were analyzed (wound healing test) 24, 48, and 72 h after treatment with curcumin (15, 20, 25, or 30 µM). Additionally, in WAG/RijHsd tumor-bearing rats, the total and individual liver lobe tumor volume was quantified in untreated and curcumin-treated animals (200 mg/kg/day, oral). Furthermore, serum enzyme measurements (GOT, GPT, glucose, bilirubin, etc.) were carried out to assess the possible effects on the liver function. Results: In vitro studies showed curcumin’s greatest effects 48h after application, when all of the tested doses reduced cell proliferation by more than 30%. At 72 h, the highest doses of curcumin (25 and 30 µM) reduced cell viability to less than 50%. The wound healing test also showed that curcumin inhibits migration capacity. In vivo, curcumin slowed down the tumor volume of liver implants by 5.6-fold (7.98 ± 1.45 vs. 1.41 ± 1.33; p > 0.0001). Conclusions: Curcumin has shown an anti-tumor effect against liver implants from colorectal cancer, both in vitro and in vivo, in this experimental model.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
- Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
- Correspondence:
| | - Mikel Rodeño-Casado
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
| | - Sira Iturrizaga Correcher
- Department of Clinical Analyses, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Carmen Mar Medina
- Department of Clinical Analyses, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
- Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
| |
Collapse
|
16
|
Gao Y, Peng H, Li L, Wang F, Meng J, Huang H, Wang S, Li PCH, Sun Y. Screening of high-efficiency and low-toxicity antitumor active components in Macleaya cordata seeds based on the competitive effect of drugs on double targets by a new laminar flow chip. Analyst 2021; 146:4934-4944. [PMID: 34254080 DOI: 10.1039/d1an00754h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is urgent to obtain targeted drugs that selectively bind to pathological targets rather than physiological targets in the early stage of drug screening. G-Quadruplex has become one of the important targets in the development of anti-tumor drugs. However, drugs that target quadruplexes may also bind to dsDNA, which may lead to adverse reactions. In this study, a new three-phase laminar flow chip was constructed to enable the multi-components of a traditional Chinese medicine extract to dynamically and competitively bind with G-quadruplex DNA (on target) and double-stranded DNA (off target), so as to select high-efficiency and low-toxicity anti-tumor drugs. The results showed that there were five compounds in the extracts of Macleaya cordata seeds that exhibited obvious differences in binding to the two targets. Furthermore, the binding constants and modes of four identified alkaloids as they bound to two DNA targets were verified by fluorescence spectra and molecular docking methods. The toxicity to HepG2 and LO2 cells from the four alkaloids was also compared. The results showed that sanguinarine and chelerythrine could be used as candidate drugs with stronger binding to HT24 than DNA26. The chip can also be used for other types of double-target screening of other traditional Chinese medicine extracts or compound libraries.
Collapse
Affiliation(s)
- Yan Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rostock M, Saller R. [Phytotherapie und "Herbal Medicine"]. Complement Med Res 2021; 28:281-283. [PMID: 34350879 DOI: 10.1159/000518339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Matthias Rostock
- Universitäres Cancer Center Hamburg, Hubertus Wald Tumorzentrum, Universitätsklinik Hamburg-Eppendorf, Hamburg, Deutschland
| | | |
Collapse
|
18
|
Rana P, Shrama A, Mandal CC. Molecular insights into phytochemicals-driven break function in tumor microenvironment. J Food Biochem 2021; 45:e13824. [PMID: 34219240 DOI: 10.1111/jfbc.13824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Advanced knowledge about the role of tumor microenvironment (TME) in cancer progression has opened various ways to target the vast signaling pathways for cancer treatment. Failures of the currently used drugs have raised out the need to look for novel drugs which can target various crucial aspects of cancer progression (e.g., angiogenesis, uncontrolled cell division, and metastasis). Phytochemicals behaving as potent anticancer agents shows promise as therapeutics. Various phytochemicals, such as curcumin, Epigallocatechin Gallate (EGCG), resveratrol, plumbagin, genistein, and others, have been identified with modulatory effect on TME. These phytochemicals often target the molecular pathways that reside in the tumor vicinity associated with endothelial cells, cancer-associated fibroblasts, immune cells, mesenchymal stem cells, other cell types, vascular and lymphatic networks, and extracellular matrix which are important for tumor progression and development. Some phytochemicals also target the internal signaling pathways, including STAT3, NF-қB, ERK-1/2, and PI3K/Akt signaling of noncancer cell, residing in the microenvironment, and thus inhibiting the supportive effect from these cells in tumor development. However, much information needs to be acquired before using these phytochemicals in cancer treatment. The primary objective of this review is to provide a better knowledge about the role of TME in cancer progression and development, focusing on the different targets which can be used for therapeutic approach, and then to give a brief account on some known phytochemicals to date, which have shown remarkable TME modulatory effects. PRACTICAL APPLICATIONS: For the use of phytochemicals as therapeutics, it is highly recommended that their precise target should be known; therefore studies should be encouraged such that the effects of these phytochemicals can be evaluated on the individual cellular level like how the phytochemical is targeting the tumor-associated macrophage, or any other cell residing in the tumor microenvironment (TME), and the compound should target a specific component of TME to avoid off target effects.
Collapse
Affiliation(s)
- Priyanshi Rana
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amarjeet Shrama
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
19
|
Vidal-Gutiérrez M, Torres-Moreno H, Hernández-Gutiérrez S, Velazquez C, Robles-Zepeda RE, Vilegas W. Antiproliferative activity of standardized phytopreparations from Ibervillea sonorae (S. Watson) Greene. Steroids 2021; 169:108824. [PMID: 33727120 DOI: 10.1016/j.steroids.2021.108824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Ibervillea sonorae (Cucurbitaceae) is a medicinal plant utilized in Northwest Mexico against Diabetes and cancer. This natural product is taken orally, its presentation is capsules containing the plant's dried and powdered caudices. There is no regulation or standardized dosage that allows reproducibility of its pharmacological effects. Cucurbitacins are the main group of compounds found in I. sonorae and are known for their antiproliferative activity in cancer cells. Cucurbitacin IIb (CIIb), one of the compounds present in I. sonorae, has demonstrated in experimental models with HeLa cervical cancer cells an apoptotic and anti-tumoral activity. The objective of this study is to obtain and standardize two phytopreparations of I. sonorae based on their CIIb content, evaluate their antiproliferative activity in cancer cell lines, and compare the results with those obtained with CIIb; expecting to find phytopreparations with anti-cancer potential. APCI-IT-MSn is utilized for the identification of cucurbitacins, FT-ICR-MS/MS for the quantification of CIIb, and the MTT assay for the evaluation of the antiproliferative activity. The CIIb content was 0.67% for Fito-Ison-EtOH and 1.84% for Fito-Ison-EtOAc. In both phytopreparations, six cucurbitacins have been identified, and a seventh one not previously identified. Phytopreparations were more effective against HeLa, with IC50 of 30.0 and 18.6 µg/mL for Fito-Ison-EtOH and Fito-Ison-EtOAc, respectively. This effect is lower than observed on CIIb in HeLa (5.8 µg/mL). There are no significant differences (p > 0.05) in the antiproliferative activity between Fito-Ison-EtOAc and CIIb in A549, LS180, and MDA-MB-231 cells. Phytopreparations of I. sonorae have potential for the development of anti-cancer products.
Collapse
Affiliation(s)
- Max Vidal-Gutiérrez
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara - São Paulo, Brasil. Rodovia Araraquara - Jaú, Km 1 - CEP: 14800-903; Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, México - CP: 83000
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora - Avenida Universidad e Irigoyen, Caborca Sonora, México - CP:83621
| | - Salomón Hernández-Gutiérrez
- Departamento de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac. Ciudad de México - CP: 03920
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, México - CP: 83000
| | - Ramón E Robles-Zepeda
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, México - CP: 83000.
| | - Wagner Vilegas
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara - São Paulo, Brasil. Rodovia Araraquara - Jaú, Km 1 - CEP: 14800-903; Universidade Estadual Paulista (UNESP), Coastal Campus of São Vicente, São Vicente, SP Praça Infante Dom Henrique s/n, CEP 11330-205.
| |
Collapse
|
20
|
Chemoprevention and therapeutic role of essential oils and phenolic compounds: Modeling tumor microenvironment in glioblastoma. Pharmacol Res 2021; 169:105638. [PMID: 33933637 DOI: 10.1016/j.phrs.2021.105638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Current treatments available for GBM entails surgical resection followed by temozolomide chemotherapy and/or radiotherapy, which are associated with multidrug resistance and severe side effects. While this treatment could yield good results, in almost all cases, patients suffer from relapse, which leads to reduced survival rates. Thus, therapeutic approaches with improved efficiency and reduced off-target risks are needed to overcome these problems. Regarding this, natural products appear as a safe and attractive strategy as chemotherapeutic agents or adjuvants in the treatment of GBM. Besides the increasing role of natural compounds for chemoprevention of GBM, it has been proposed to prevent carcinogenesis and metastasis of GBM. Numerous investigations showed that natural products are able to inhibit proliferation and angiogenesis, to induce apoptosis, and to target GBM stem cells, which are associated with tumor development and recurrence. This review gives a timely and comprehensive overview of the current literature regarding chemoprevention and therapy of GBM by natural products with a focus on essential oils and phenolic compounds and their molecular mechanisms.
Collapse
|
21
|
Guevara L, Domínguez-Anaya MÁ, Ortigosa A, González-Gordo S, Díaz C, Vicente F, Corpas FJ, Pérez del Palacio J, Palma JM. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper ( Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). Int J Mol Sci 2021; 22:ijms22094476. [PMID: 33922964 PMCID: PMC8123290 DOI: 10.3390/ijms22094476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and analgesic activities have been reported in the literature. Due to the potential interest in pepper metabolites for human use, in this project, we carried out an investigation to identify new bioactive compounds of this crop. To achieve this, we applied a metabolomic approach, using an HPLC (high-performance liquid chromatography) separative technique coupled to metabolite identification by high resolution mass spectrometry (HRMS). After chromatographic analysis and data processing against metabolic databases, 12 differential bioactive compounds were identified in sweet pepper fruits, including quercetin and its derivatives, L-tryptophan, phytosphingosin, FAD, gingerglycolipid A, tetrahydropentoxylin, blumenol C glucoside, colnelenic acid and capsoside A. The abundance of these metabolites varied depending on the ripening stage of the fruits, either immature green or ripe red. We also studied the variation of these 12 metabolites upon treatment with exogenous nitric oxide (NO), a free radical gas involved in a good number of physiological processes in higher plants such as germination, growth, flowering, senescence, and fruit ripening, among others. Overall, it was found that the content of the analyzed metabolites depended on the ripening stage and on the presence of NO. The metabolic pattern followed by quercetin and its derivatives, as a consequence of the ripening stage and NO treatment, was also corroborated by transcriptomic analysis of genes involved in the synthesis of these compounds. This opens new research perspectives on the pepper fruit’s bioactive compounds with nutraceutical potentiality, where biotechnological strategies can be applied for optimizing the level of these beneficial compounds.
Collapse
Affiliation(s)
- Lucía Guevara
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - María Ángeles Domínguez-Anaya
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Alba Ortigosa
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Caridad Díaz
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisca Vicente
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisco J. Corpas
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - José Pérez del Palacio
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - José M. Palma
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
- Correspondence: ; Tel.: +34-958-181-1600; Fax: +34-958-181-609
| |
Collapse
|
22
|
Bahadori MH, Azari Z, Zaminy A, Dabirian S, Mehrdad SM, Kondori BJ. Anti-proliferative and apoptotic effects of hull-less pumpkin extract on human papillary thyroid carcinoma cell line. Anat Cell Biol 2021; 54:104-111. [PMID: 33504684 PMCID: PMC8017459 DOI: 10.5115/acb.20.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 11/27/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common cancers of the endocrine system. Previous studies have shown that the extract of hull-less pumpkin seed (HLPS) has a significant anti-cancer effect. The aim of this study was to evaluate the effect of this plant extract on the proliferation of PTC cells. In this study, an extract of this plant was prepared by soxhlet extraction method and analyzed by Gas Chromatography-Mass Spectrometry. The cytotoxicity of PTX and plant extract was investigated using the methylthiazol tetrazolium (MTT) method. For careful investigation of morphological alteration, we used hematoxylin and eosin and Giemsa stinging. Based on MTT assay test, the IC50 value of paclitaxel (PTX) was significantly less than the hydro-alcoholic extract of HLPS at all of the incubation time. Our results of histological staining showed that HLPS and PTX induced significant morphological alteration in the PTC cultured cell that consistent with cell death. Comparing the groups treated by PTX or HLPS with control group showed significant differences. It seems that HLPS extract has an apparent effect on treatment of PTC, at least in laboratory condition, albeit for realistic decision about the effect of HLPS on PTC, more molecular investigations are necessary.
Collapse
Affiliation(s)
- Mohammad Hadi Bahadori
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zoleikha Azari
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Zaminy
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Dabirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Huang C, Li Z, Zhu J, Chen X, Hao Y, Yang R, Huang R, Zhou J, Wang Z, Xiao W, Zheng C, Wang Y. Systems pharmacology dissection of Epimedium targeting tumor microenvironment to enhance cytotoxic T lymphocyte responses in lung cancer. Aging (Albany NY) 2021; 13:2912-2940. [PMID: 33460401 PMCID: PMC7880341 DOI: 10.18632/aging.202410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
The clinical notably success of immunotherapy fosters an enthusiasm in developing drugs by enhancing antitumor immunity in the tumor microenvironment (TME). Epimedium, is a promising herbal medicine for tumor immunotherapy due to the pharmacological actions in immunological function modulation and antitumor. Here, we developed a novel systems pharmacology strategy to explore the polypharmacology mechanism of Epimedium involving in targeting TME of non-small cell lung cancer (NSCLC). This strategy integrates the active compounds screening, target predicting, network pharmacology analysis and onco-immune interacting to predict the potential active compounds that trigger the antitumor immunity. Icaritin (ICT), a major active ingredient of Epimedium, was predicted to have good drug-like properties and target immune microenvironment in NSCLC via regulating multiple targets and pathways. Then, we evidenced that the ICT effectively inhibited tumor growth in LLC tumor-bearing mice and increases the infiltration of CD8+ T cells in TME. In addition, we demonstrated that ICT promotes infiltration of CD8+ T cells in TME by downregulating the immunosuppressive cytokine (TNF-α, IL10, IL6) and upregulating chemotaxis (CXCL9 and CXCL10). Overall, the systems pharmacology strategy offers an important paradigm to understand the mechanism of polypharmacology of natural products targeting TME.
Collapse
Affiliation(s)
- Chao Huang
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhihua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xuetong Chen
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ruijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ruifei Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jun Zhou
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical, Co., Ltd., Lianyungang 222001, China
| | - Zhenzhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical, Co., Ltd., Lianyungang 222001, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical, Co., Ltd., Lianyungang 222001, China
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yonghua Wang
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
24
|
Henry DP, Ranjan J, Murugan RK, Sivanantham A, Alagumuthu M. Exploration of anti-breast cancer effects of Terminalia chebula extract on DMBA-induced mammary carcinoma in Sprague Dawley rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Plant extracts are effectively acting as the natural medicinal cocktail, non-side effective, efficacious, and freely available. The present study aimed to unveil the pharmacological and medicinal effects of Terminalia chebula plant extract in 7,12-dimethylbenzanthracene (DMBA)-induced mammary carcinoma in Sprague Dawley rats. The plant extract obtained was subjected to in vivo antioxidant and anticancer studies in various concentrations after an analytical technique such as FTIR, GCMS, and HPLC-based chemo-profiling in Sprague Dawley rats.
Results
Apart from the antiproliferative effect on breast cancer cell line (MCF-7) and normal breast epithelial cells (MCF-10a), we have measured the changes in body weight, along with other tumor parameters such as tumor volume, tumor incidence, tumor weight, tumor burden, serum biochemical parameters, and histopathological findings of breast tissue. As the oxidative stress further enhances the development of cancer, the antioxidant property of the plant extract demonstrates its use against cancer treatment. One hundred fifty milligrams per milliliter (IC50 250 μg/mL) concentration of the ethanolic extract was vital for the proliferation of MCF-7 cell lines (Fig. 7a). Meanwhile, 300 μg/mL (IC50 150 μg/mL) was an effective dose to attain a maximum HDAC inhibition of 78%. Also, the normal liver and kidney functioning revealed the non-toxicity nature of the plant.
Conclusion
Terminalia chebula could be one of the effective naturally obtained anti-breast cancer medications. Isolation and characterization of individual bioactive compounds of T. chebula would be the future perspective.
Collapse
|
25
|
Li C, Xue VW, Wang QM, Lian GY, Huang XR, Lee TL, To KF, Tang PMK, Lan HY. The Mincle/Syk/NF-κB Signaling Circuit Is Essential for Maintaining the Protumoral Activities of Tumor-Associated Macrophages. Cancer Immunol Res 2020; 8:1004-1017. [PMID: 32532809 DOI: 10.1158/2326-6066.cir-19-0782] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/08/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023]
Abstract
Tumor-associated macrophages (TAM) have important roles in cancer progression, but the signaling behind the formation of protumoral TAM remains understudied. Here, by single-cell RNA sequencing, we revealed that the pattern recognition receptor Mincle was highly expressed in TAM and significantly associated with mortality in patients with non-small cell lung cancer. Cancer cells markedly induced Mincle expression in bone marrow-derived macrophages (BMDM), thus promoting cancer progression in invasive lung carcinoma LLC and melanoma B16F10 in vivo and in vitro Mincle was predominately expressed in the M2-like TAM in non-small cell lung carcinoma and LLC tumors, and silencing of Mincle unexpectedly promoted M1-like phenotypes in vitro Mechanistically, we discovered a novel Mincle/Syk/NF-κB signaling pathway in TAM needed for executing their TLR4-independent protumoral activities. Adoptive transfer of Mincle-silenced BMDM significantly suppressed TAM-driven cancer progression in the LLC-bearing NOD/SCID mice. By modifying our well-established ultrasound microbubble-mediated gene transfer protocol, we demonstrated that tumor-specific silencing of Mincle effectively blocked Mincle/Syk/NF-κB signaling, therefore inhibiting the TAM-driven cancer progression in the syngeneic mouse cancer models. Thus, our findings highlight the function of Mincle as a novel immunotherapeutic target for cancer via blocking the Mincle/Syk/NF-κB circuit in TAM.
Collapse
Affiliation(s)
- Chunjie Li
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Qing-Ming Wang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Guang-Yu Lian
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Tin-Lap Lee
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
26
|
Liu Y, Xie X, Hou X, Shen J, Shi J, Chen H, He Y, Wang Z, Feng N. Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. J Nanobiotechnology 2020; 18:83. [PMID: 32473632 PMCID: PMC7260741 DOI: 10.1186/s12951-020-00638-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer lung metastasis occurs in more than 60% of all patients with breast cancer, and most of those afflicted by it eventually die of recurrence. The tumor microenvironment plays vital roles in metastasis. Modulating the tumor microenvironment via multiple pathways could efficiently prevent or inhibit lung metastasis. Silibinin and cryptotanshinone are natural plant products that demonstrate anti-metastasis effects and modulate the tumor microenvironment via different pathways. However, they have poor aqueous solubility, membrane permeability, and oral bioavailability. Oral drug administration may help improve the quality of life and compliance of patients with breast cancer, primarily under long-term and/or follow-up therapy. Herein, we developed poly-N-(2-hydroxypropyl) methacrylamide (pHPMA)-coated wheat germ agglutinin-modified lipid-polymer hybrid nanoparticles, co-loaded with silibinin and cryptotanshinone (S/C-pW-LPNs). We assessed their oral bioavailability, and evaluated their anti-metastasis efficacy in a 4T1 breast cancer tumor-bearing nude mouse model. Results An in vitro mucus diffusion study revealed that pHPMA enhanced W-LPN mucus penetration. After oral administration, pHPMA enhanced nanoparticle distribution in rat jejunum and substantially augmented oral bioavailability. S/C-W-LPNs markedly increased 4T1 cell toxicity and inhibited cell invasion and migration. Compared to LPNs loaded with either silibinin or cryptotanshinone alone, S/C-pW-LPNs dramatically slowed tumor progression in 4T1 tumor-bearing nude mice. S/C-pW-LPNs presented with the most robust anti-metastasis activity on smooth lung surfaces and mitigated lung metastasis foci. They also downregulated tumor microenvironment biomarkers such as CD31, TGF-β1, and MMP-9 that promote metastasis. Conclusions Silibinin- and cryptotanshinone-co-loaded pW-LPNs efficiently penetrate intestinal barriers, thereby enhancing the oral bioavailability of the drug loads. These nanoparticles exhibit favorable anti-metastasis effects in breast cancer-bearing nude mice. Hence, S/C-pW-LPNs are promising oral drug nanocarriers that inhibit breast cancer lung metastasis.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Xingmei Xie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Xuefeng Hou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Junyi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jiangpei Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Haizhen Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Yuanzhi He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Zhi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
27
|
Sui Y, Li S, Zhao Y, Liu Q, Qiao Y, Feng L, Li S. Identification of a natural compound, sesamin, as a novel TRPM8 antagonist with inhibitory effects on prostate adenocarcinoma. Fitoterapia 2020; 145:104631. [PMID: 32439453 DOI: 10.1016/j.fitote.2020.104631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a calcium ion-permeable cation channel that is used as a prognostic marker and therapeutic target for different tumor types. To identify natural selective TRPM8 antagonists, we tested 158 traditional Chinese medicine (TCM) compounds for the ability to inhibit TRPM8. Calcium mobilization assays were used to evaluate the 158 TCM compound components in HEK293 cells stably expressing TRPM8. An identified putative TRPM8 antagonist, sesamin, was further evaluated. Publicly available cancer OMICS data were used to explore the expression of TRPM8, its gene regulatory network, and the survival of patients with prostate adenocarcinoma (PRAD). The cytotoxicity and specificity of sesamin to TRPM8 were tested in HEK293/TRPM8 cells. The effect of sesamin on cell proliferation in PRAD cell lines was assessed. Sesamin selectively inhibited TRPM8 in HEK293/TRPM8 cells (IC50: 9.78 μM), and a molecular docking study confirmed the binding of sesamin to TRPM8. TRPM8 was highly overexpressed in PRAD, and high TRPM8 expression was associated with poor survival of PRAD patients. Functional network analysis suggested that TRPM8 has key effects on proliferation, survival, and invasion of prostate cancer cells. Cell proliferation assays supported these findings and showed that sesamin inhibited the proliferation of PRAD cell lines DU145 and LNCaP cells. These data revealed that abnormal TRPM8 expression is associated with PRAD and that sesamin is a new anti-PRAD candidate drug, exerting inhibitory effects on TRPM8.
Collapse
Affiliation(s)
- Yutong Sui
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shiyou Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100021, China
| | - Yahui Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yanjiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Li Feng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Sheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
28
|
Mok SWF, Wong VKW, Lo HH, de Seabra Rodrigues Dias IR, Leung ELH, Law BYK, Liu L. Natural products-based polypharmacological modulation of the peripheral immune system for the treatment of neuropsychiatric disorders. Pharmacol Ther 2020; 208:107480. [DOI: 10.1016/j.pharmthera.2020.107480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
|
29
|
Turner A, Bond DR, Vuong QV, Chalmers A, Beckett EL, Weidenhofer J, Scarlett CJ. Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro. Mol Biol Rep 2020; 47:2073-2084. [PMID: 32065323 DOI: 10.1007/s11033-020-05307-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Abstract
Treatment options for pancreatic cancer (PC) are severely limited due to late diagnosis, early metastasis and the inadequacy of chemotherapy and radiotherapy to combat the aggressive biology of the disease. In recent years, plant-derived bioactive compounds have emerged as a source of novel, anti-cancer agents. Used in traditional medicine worldwide, Elaeocarpus species have reported anti-inflammatory, antioxidant and anti-cancer properties. This study aimed to isolate and identify potential anti-PC compounds in the fruit of Elaeocarpus reticulatus Sm. A 50% acetone crude extract significantly decreased the viability of four pancreatic cell lines (≥ 10 µg/mL for BxPC-3 cells) and induced apoptosis in BxPC-3 and HPDE cells. Analysis by HPLC identified the triterpenoid Cucurbitacin I as a likely component of the extract. Furthermore, treatment with Cucurbitacin I significantly reduced the viability of HPDE and BxPC-3 cells, with results comparable to the same concentration of gemcitabine. Interestingly, attempts to isolate bioactive compounds revealed that the crude extract was more effective at reducing PC-cell viability than the fractionated extracts. This study provides initial insight into the bioactive constituents of E. reticulatus fruits.
Collapse
Affiliation(s)
- Alexandria Turner
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.
| | - Danielle R Bond
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.,Hunter Medical Research Institute, New Lambton Heights, 2305, Australia
| | - Quan V Vuong
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| | - Anita Chalmers
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| | - Emma L Beckett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.,Hunter Medical Research Institute, New Lambton Heights, 2305, Australia
| | - Judith Weidenhofer
- Hunter Medical Research Institute, New Lambton Heights, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, 2258, Australia
| | - Christopher J Scarlett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| |
Collapse
|
30
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
31
|
Liu R, Pei Q, Shou T, Zhang W, Hu J, Li W. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int J Nanomedicine 2019; 14:4091-4103. [PMID: 31239669 PMCID: PMC6556565 DOI: 10.2147/ijn.s203222] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/03/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction: Curcuma wenyujin is a plant which belongs to the family of Zingiberaceae, found in South Asia and China. C. wenyujin is a major constituent in Chinese traditional medicine and is used to treat liver diseases, blood clots, and is also prescribed as a painkiller. C. wenyujin possesses antioxidant, antiproliferative, and antitumorogenic properties, and many researchers have proved the efficacy of C. wenyujin against various types of cancer. The major drawback of this historical drug is it's low bioavailability. Methods: This study synthesized gold nanoparticles using C. wenyujin and assessed its potency against in vitro renal cancer cells. The biosynthesized C. wenyujin gold nanoparticles (CWAuNPs) were characterized using UV-Spec, DLS, FTIR, SAED, TEM, EDAX, and Atomic Force analysis. The cytotoxicity of CWAuNPs against renal cancer cell lines A498 and SW-156 was assessed with MTT assay. The induction of apoptosis by CWAuNPs in A498 cell was measured using apoptotic staining DAPI, Rhodamine 123, and H2DCFDA. The apoptotic activity of CWAuNPs was further confirmed with flow cytometric analysis. The molecular mechanism of CWAuNPs was analyzed with qPCR and immunoblotting analysis of caspases, proapoptotic, and antiapoptotic proteins. Results: The characterization of results of synthesized CWAuNPs satisfy the distinctive properties of a potent nanodrug. The results of apoptotic staining techniques confirm the induction of CWAuNPs in A498 by increasing the apoptotic Caspase 3,9, Bid, and Bad, and decreasing the antiapoptotic protein Bcl-2, Bcl-xl expressions, which is authentically proven by the qPCR and immunoblotting analysis. Conclusion: In conclusion, these results confirmed that biosynthesized CWAuNPs is a potent anticancer agent which induces apoptosis in the A498 renal carcinoma cell line.
Collapse
Affiliation(s)
- Rui Liu
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| | - Qiang Pei
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| | - Tao Shou
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| | - Wenjing Zhang
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| | - Jing Hu
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| | - Wei Li
- Department of Urinary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| |
Collapse
|
32
|
A TCM formula comprising Sophorae Flos and Lonicerae Japonicae Flos alters compositions of immune cells and molecules of the STAT3 pathway in melanoma microenvironment. Pharmacol Res 2019; 142:115-126. [DOI: 10.1016/j.phrs.2019.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
33
|
Yang Y, Zhang L, La X, Li Z, Li H, Guo S. Salvianolic acid A inhibits tumor-associated angiogenesis by blocking GRP78 secretion. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:467-480. [DOI: 10.1007/s00210-018-1585-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
|
34
|
Yang CC, Chang CK, Chang MT, Shyur LF. Plant galactolipid dLGG suppresses lung metastasis of melanoma through deregulating TNF-α-mediated pulmonary vascular permeability and circulating oxylipin dynamics in mice. Int J Cancer 2018; 143:3248-3261. [PMID: 29978476 DOI: 10.1002/ijc.31663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/04/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
Abstract
This study demonstrates the bioefficacy and gives mechanistic insights into a plant galactolipid 1,2-di-O-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) against metastatic melanoma using a syngeneic mouse model implanted with B16COX-2/Luc melanoma. dLGG-20 (p.o. dLGG 20 mg/kg) and anti-cancer drug CP-2 (i.p. cisplatin 2 mg/kg) treatment significantly inhibited lung metastasis of melanoma in mice 91 and 57%, respectively, as determined by bioluminescence intensity. Moreover, dLGG-20 and CP-2 treatment prolonged mouse mean survival time. dLGG-20 treatment significantly inhibited the expression levels of several molecular markers, that is, PCNA, MMP2, COX-2, VEGF, vimentin, snail, TGF-β, β-catenin, TNF-α, PD-1 and PD-L1 in mouse lung tissues compared to tumor control mice. Significant inhibition of macrophage and neutrophil infiltration and promotion of CD8 + Tc cell recruitment in the lung microenvironment was observed in dLGG-20-treated mice. A LC/MS-based comparative oxylipin metabolomics study showed that dLGG-20 treatment significantly induced (5.0- to 12.8-fold) the 12/15-LOX catalyzed oxylipin products in mouse serum including 17-HDHA from DHA, 15-HEPE from EPA, 8- and 12-HETEs from AA, and CYP450-derived 20-HETE from AA. CP-2 treatment increased 12/15-LOX derived 8-, 11- and 12-HETEs from AA, and CYP450 derived 11,12-EET from AA ad 9,10-DHOME from LA by 5.3- to 8.1-fold. Of note, dLGG and 17-HDHA were more effective than CP in preventing B16 melanoma cell-induced pulmonary vascular permeability in mice through inhibition of TNF-α production, up-regulation of tight junction proteins claudin1 and ZO-2 and deregulation of Src activation. In conclusion, this study shows the novel therapeutic effect of phytoagent dLGG and suggests its potential as a therapeutic agent for metastatic melanoma.
Collapse
Affiliation(s)
- Chung-Chih Yang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Kuei Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Meng-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Lie-Fen Shyur
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
35
|
Junior WAR, Gomes DB, Zanchet B, Schönell AP, Diel KA, Banzato TP, Ruiz AL, Carvalho JE, Neppel A, Barison A, Santos CAM. Antiproliferative effects of pinostrobin and 5,6-dehydrokavain isolated from leaves of Alpinia zerumbet. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Li LC, Xu L, Hu Y, Cui WJ, Cui WH, Zhou WC, Kan LD. Astragaloside IV Improves Bleomycin-Induced Pulmonary Fibrosis in Rats by Attenuating Extracellular Matrix Deposition. Front Pharmacol 2017; 8:513. [PMID: 28848434 PMCID: PMC5550738 DOI: 10.3389/fphar.2017.00513] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary fibrosis is a devastating lung disorder with mysterious pathogenesis and limited treatment options. It is well-recognized that the uncontrolled proliferation of lung fibroblasts and differentiation of fibroblasts into myofibroblasts excessively produce extracellular matrix (ECM) proteins which contribute to the fibrosis change of the lungs. Thus, blocking ECM accumulation would delay fibrosis progression. In this study, we observed the effects of astragaloside IV (ASV) (10 mg/kg/d) on ECM proteins in bleomycin (BLM, 5 mg/kg)-treated rats. Our results showed that ASV not only ameliorated BLM-induced body weight loss, lung coefficient increase, histological changes and collagen secretion, but also reduced the levels of type III collagen (Col-III) in lung homogenate, laminin (LN) and hyaluronic acid (HA) in serum, as well as hydroxyproline (HYP) in lung tissue. Besides, ASV significantly down-regulated the levels of high-mobility group box1 (HMGB1) in serum and lung tissue, and inhibited the up-regulated expression of α-SMA (marker of myofibroblasts) in the lungs. Taken together, these findings indicate that ASV attenuates BLM-induced ECM deposition, supporting its use as a promising candidate to treat lung fibrosis.
Collapse
Affiliation(s)
- Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Liang Xu
- The First Affiliated Hospital of Anhui Medical UniversityHefei, China
| | - Yan Hu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Wen-Jie Cui
- Department of Emergency Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Wen-Hui Cui
- School of Pharmacy, Anhui Medical UniversityHefei, China
| | - Wen-Cheng Zhou
- School of Pharmacy, Anhui Medical UniversityHefei, China
| | - Lian-Di Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| |
Collapse
|
37
|
Yin SY, Yang NS, Lin TJ. Phytochemicals Approach for Developing Cancer Immunotherapeutics. Front Pharmacol 2017; 8:386. [PMID: 28674499 PMCID: PMC5474465 DOI: 10.3389/fphar.2017.00386] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
Phytochemicals or their derived compounds are being increasingly recognized as potentially potent complementary treatments for cancer. Among them, some phytochemicals are being actively evaluated for use as adjuvants in anticancer therapies. For instance, shikonin and hypericin were found to induce immunogenic cell death of specific cancer cells, and this effect was able to further activate the recognition activity of tumor cells by the host immune system. On the other hand, some derivatives of phytochemicals, such as dihydrobenzofuran lignan (Q2-3) have been found to induce the secretion of an endogenous anticancer factor, namely IL-25, from non-malignant cells. These findings suggest that phytochemicals or their derivatives confer a spectrum of different pharmacological activities, which contrasts with the current cytotoxic anticancer drugs commonly used in clinics. In this review, we have collected together pertinent information from recent studies about the biochemical and cellular mechanisms through which specific phytochemicals regulate target immune systems in defined tumor microenvironments. We have further highlighted the potential application of these immunotherapeutic modifiers in cell-based cancer vaccine systems. This knowledge provides useful technological support and know how for future applications of phytochemicals in cancer immunotherapy.
Collapse
Affiliation(s)
- Shu-Yi Yin
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Ning-Sun Yang
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Tien-Jen Lin
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan.,Graduate Institute of Injury Prevention and Control, Taipei Medical UniversityTaipei, Taiwan.,Department of Neurosurgery, Taipei Medical University-Wan Fang HospitalTaipei, Taiwan
| |
Collapse
|
38
|
Awadasseid A, Hou J, Gamallat Y, Xueqi S, Eugene KD, Musa Hago A, Bamba D, Meyiah A, Gift C, Xin Y. Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus Versicolor. PLoS One 2017; 12:e0171270. [PMID: 28178285 PMCID: PMC5298263 DOI: 10.1371/journal.pone.0171270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/17/2017] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of deaths worldwide. Herein, we report an efficient natural anticancer glucan (CVG) extracted from Coriolus Versicolar (CV). CVG was extracted by the hot water extraction method followed by ethanol precipitation and purified using gas exclusion chromatography. Structural analysis revealed that CVG has a linear α-glucan chain composed of only (1→ 6)-α-D-Glcp. The antitumor activity of CVG on Sarcoma-180 cells was investigated in vitro and in vivo. Mice were treated with three doses of CVG (40, 100, 200 mg/kg body weight) for 9 days. Tumor weight, relative spleen, thymus weight, and lymphocyte proliferation were studied. A significant increase (P< 0.01) in relative spleen and thymus weight and a decrease (P< 0.01) in tumor weight at the doses of 100 and 200 mg/kg were observed. The results obtained demonstrate CVG has antitumor activity towards Sarcoma-180 cells by its immunomodulation activity.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
- Department of Biochemistry and Molecular Biology, Northeast Normal University, Changchun, P.R. China
- Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid, The Republic of Sudan
| | - Jie Hou
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Yaser Gamallat
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Shang Xueqi
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Kuugbee D. Eugene
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Ahmed Musa Hago
- Department of pathology and pathophysiology, Dalian Medical University, Dalian, P.R. China
| | - Djibril Bamba
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Abdo Meyiah
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Chiwala Gift
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
- * E-mail:
| |
Collapse
|
39
|
Cheng YT, Yang CC, Shyur LF. Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol Res 2016; 114:128-143. [PMID: 27794498 DOI: 10.1016/j.phrs.2016.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022]
Abstract
In spite of the current advances and achievements in systems biology and translational medicinal research, the current strategies for cancer therapy, such as radiotherapy, targeted therapy, immunotherapy and chemotherapy remain palliative or unsatisfactory due to tumor metastasis or recurrence after surgery/therapy, drug resistance, adverse side effects, and so on. Oxidative stress (OS) plays a critical role in chronic/acute inflammation, carcinogenesis, tumor progression, and tumor invasion/metastasis which is also attributed to the dynamic and complex properties and activities in the tumor microenvironment (TME). Re-educating or reprogramming tumor-associated stromal or immune cells in the TME provides an approach for restoring immune surveillance impaired by disease in cancer patients to increase overall survival and reduce drug resistance. Herbal medicines or plant-derived natural products have historically been a major source of anti-cancer drugs. Delving into the lore of herbal medicine may uncover new leads for anti-cancer drugs. Phytomedicines have been widely documented to directly or indirectly target multiple signaling pathways and networks in cancer cells. A combination of anti-cancer drugs and polypharmacological plant-derived extracts or compounds may offer a significant advantage in sensitizing the efficacy of monotherapy and overcoming drug-induced resistance in cancer patients. This review introduces several phytochemicals and phytoextracts derived from medicinal plants or dietary vegetables that have been studied for their efficacy in preclinical cancer models. We address the underlying modes of action of induction of OS and deregulation of TME-associated stromal cells, mediators and signaling pathways, and reference the related clinical investigations that look at the single or combination use of phytochemicals and phytoextracts to sensitize anti-cancer drug effects and/or overcome drug resistance.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
40
|
Salvianolic Acid A, as a Novel ETA Receptor Antagonist, Shows Inhibitory Effects on Tumor in Vitro. Int J Mol Sci 2016; 17:ijms17081244. [PMID: 27490540 PMCID: PMC5000642 DOI: 10.3390/ijms17081244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022] Open
Abstract
Endothelin-1 (ET-1) autocrine and paracrine signaling modulate cell proliferation of tumor cells by activating its receptors, endothelin A receptor (ETAR) and endothelin B receptor (ETBR). Dysregulation of ETAR activation promotes tumor development and progression. The potential of ETAR antagonists and the dual-ETAR and ETBR antagonists as therapeutic approaches are under preclinical and clinical studies. Salvianolic acid A (Sal A) is a hydrophilic polyphenolic derivative isolated from Salvia miltiorrhiza Bunge (Danshen), which has been reported as an anti-cancer and cardio-protective herbal medicine. In this study, we demonstrate that Sal A inhibits ETAR activation induced by ET-1 in both recombinant and endogenous ETAR expression cell lines. The IC50 values were determined as 5.7 µM in the HEK293/ETAR cell line and 3.14 µM in HeLa cells, respectively. Furthermore, our results showed that Sal A suppressed cell proliferation and extended the doubling times of multiple cancer cells, including HeLa, DU145, H1975, and A549 cell lines. In addition, Sal A inhibited proliferation of DU145 cell lines stimulated by exogenous ET-1 treatment. Moreover, the cytotoxicity and cardio-toxicity of Sal A were assessed in human umbilical vein endothelial cells (HUVEC) and Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), which proved that Sal A demonstrates no cytotoxicity or cardiotoxicity. Collectively, our findings indicate that Sal A is a novel anti-cancer candidate through targeting ETAR.
Collapse
|