1
|
Kamaraj B, C GPD. Theoretical investigation of AKT1 mutations in breast cancer: a computational approach to structural and functional insights. J Comput Aided Mol Des 2025; 39:23. [PMID: 40343619 DOI: 10.1007/s10822-025-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
Breast cancer is a complex disease primarily driven by genetic mutations that disrupt crucial signaling pathways, with the AKT1 gene playing a central role in its progression. This study explores the impact of AKT1 mutations using Whole Exome Sequencing (WES), bioinformatics, and computational modeling. Using WES, we identified and prioritized significant mutations in patient samples, specifically D3N, V337M, and D3N-E169G. Comprehensive sequence and structural analyses were conducted to understand how these mutations affect specific functional domains of the AKT1 protein. To investigate the molecular consequences, molecular docking studies were performed to assess the binding affinity of AKT1 mutations with MK2206, a known allosteric inhibitor of AKT1. The docking results revealed substantial differences in interaction energies, indicating impaired inhibitor binding due to these mutations. Additionally, molecular dynamics simulations over a 500-nanosecond trajectory provided detailed insights into the structural perturbations caused by these mutations. This integrated study, combining genomic and computational approaches, offers a comprehensive understanding of how AKT1 mutations contribute to BC pathogenesis. These findings enhance our knowledge of the molecular mechanisms underlying the disease and support the development of targeted therapies to address the altered behavior of mutated AKT1, advancing personalized treatment strategies for BC.
Collapse
Affiliation(s)
- Balu Kamaraj
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - George Priya Doss C
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Sun J, Yang D, Huang Y, Jiao Z, Yu S, Liu Y, Gong K, Zhao G. The discovery of novel N-heterocyclic-based AKT inhibitors with potential efficacy against prostate cancer. Eur J Med Chem 2025; 289:117435. [PMID: 40020427 DOI: 10.1016/j.ejmech.2025.117435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
AKT, a serine/threonine protein kinase that plays a pivotal role in the PI3K/AKT/mTOR pathway, is overexpressed or hyperactivated in various cancers, including prostate, breast, and lung cancers. A series of novel nitrogen-containing aromatic heterocyclic compounds were designed, synthesized, and evaluated for AKT inhibition and anticancer activities. Among these, JL16 and JL18 emerged as potent inhibitors of AKT1 kinase, with IC50 values of 7.1 ± 1.2 nM and 8.8 ± 1.3 nM, respectively. Both compounds also demonstrated significant antiproliferative effects against PC-3 prostate cancer cells, with IC50 values of 2.9 ± 0.7 μM (JL16) and 3.0 ± 0.6 μM (JL18). Mechanistic studies revealed that JL16 and JL18 reduced phosphorylated GSK3β levels, confirming AKT target engagement in cells. Notably, JL18 exhibited favorable pharmacokinetic properties in mice, including rapid oral absorption (Tmax = 0.5 h) and 41 % bioavailability. These findings highlight JL16 and JL18 as promising AKT inhibitors for further preclinical development.
Collapse
Affiliation(s)
- Jinxiao Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Dezhi Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yongmi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Zhihao Jiao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Shangzhe Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yiru Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Kexin Gong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
3
|
Kananivand M, Nouri F, Yousefi MH, Pajouhi A, Ghorbani H, Afkhami H, Razavi ZS. Mesenchymal stem cells and their exosomes: a novel approach to skin regeneration via signaling pathways activation. J Mol Histol 2025; 56:132. [PMID: 40208456 DOI: 10.1007/s10735-025-10394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Accelerating wound healing is a crucial objective in surgical and regenerative medicine. The wound healing process involves three key stages: inflammation, cell proliferation, and tissue repair. Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in promoting tissue regeneration, particularly by enhancing epidermal cell migration and proliferation. However, the precise molecular mechanisms underlying MSC-mediated wound healing remain unclear. This review highlights the pivotal role of MSCs and their exosomes in wound repair, with a specific focus on critical signaling pathways, including PI3K/Akt, WNT/β-catenin, Notch, and MAPK. These pathways regulate essential cellular processes such as proliferation, differentiation, and angiogenesis. Moreover, in vitro and in vivo studies reveal that MSCs accelerate wound closure, enhance collagen deposition, and modulate immune responses, contributing to improved tissue regeneration. Understanding these mechanisms provides valuable insights into MSC-based therapeutic strategies for enhancing wound healing.
Collapse
Affiliation(s)
- Maryam Kananivand
- Medical Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Ali Pajouhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hakimeah Ghorbani
- Department of Sciences, Faculty of Biological Sciences, Tabriz University of Sciences, Tabriz, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran.
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Zhang S, Li X, Xiahou Z, Chen A, Sun R, Liu C, Yuan J. Discovering the Potential Role of the C2 DUSP2+ MCs Subgroup in Lung Adenocarcinoma. Transl Oncol 2025; 54:102295. [PMID: 40014976 PMCID: PMC11910677 DOI: 10.1016/j.tranon.2025.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVE In both industrialized and developing nations worldwide, lung adenocarcinoma is one of the deadliest malignant tumors and the primary cause of cancer-related deaths. Its cellular heterogeneity is unclear to the fullest extent, although in recent years, its prevalence in younger individuals has increased. Therefore, it is urgent to deepen the understanding of lung adenocarcinoma and explore new therapeutic methods. METHODS CytoTRACE, Monocle, SCENIC, and enrichment analysis were used to analyze the single cell RNA data, we characterized the biological characteristics of mast cells (MCs) in lung adenocarcinoma patient samples. CellChat was used to analyze and validate the interaction between MCs and tumor cells in lung adenocarcinoma. Prognostic models were used to evaluate and predict the development trend and outcome of a patient's disease, such as the survival time of cancer patients. The python package SCENIC was used to evaluate the enrichment of transcription factors and the activity of regulators in lung adenocarcinoma cell subgroups. CCK-8 assay could validate the activity of a specific cell subgroup sequenced in single cell sequencing to confirm the role of this cell subgroup in tumor proliferation. RESULTS Our analysis identified seven major cell types, further grouping MCs within them and identifying four distinct subgroups, including MCs with high DUSP2 expression, which showed some tumor-related characteristics. In addition, we identified the key signaling receptor EGFR and validated it through in vitro knockdown experiments, demonstrating its role in promoting cancer. In addition, we established an independent prognostic indicator, the DUSP2+ MCs risk score, which showed an association between groups with high risk scores and poor outcomes. CONCLUSION These findings shed light on the complex interactions in the lung adenocarcinoma tumor microenvironment and suggest that targeting specific MCs subgroups, particularly through the EGFR signaling pathway, may provide new therapeutic strategies.
Collapse
Affiliation(s)
- Shengyi Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
| | - Xinhan Li
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
| | - Ailing Chen
- Quality Control Department, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
| | - Renfang Sun
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
| | - Chao Liu
- Department of Orthopaedics, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Yuan
- Sijing Town Community Healthcare Center, Shanghai, China.
| |
Collapse
|
5
|
Etikyala U, Reddyrajula R, Vani T, Kuchana V, Dalimba U, Manga V. An in silico approach to identify novel and potential Akt1 (protein kinase B-alpha) inhibitors as anticancer drugs. Mol Divers 2025; 29:1009-1032. [PMID: 38796797 DOI: 10.1007/s11030-024-10887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Akt1 (protein kinase B) has become a major focus of attention due to its significant functionality in a variety of cellular processes and the inhibition of Akt1 could lead to a decrease in tumour growth effectively in cancer cells. In the present work, we discovered a set of novel Akt1 inhibitors by using multiple computational techniques, i.e. pharmacophore-based virtual screening, molecular docking, binding free energy calculations, and ADME properties. A five-point pharmacophore hypothesis was implemented and validated with AADRR38. The obtained R2 and Q2 values are in the acceptable region with the values of 0.90 and 0.64, respectively. The generated pharmacophore model was employed for virtual screening to find out the potential Akt1 inhibitors. Further, the selected hits were subjected to molecular docking, binding free energy analysis, and refined using ADME properties. Also, we designed a series of 6-methoxybenzo[b]oxazole analogues by comprising the structural characteristics of the hits acquired from the database. Molecules D1-D10 were found to have strong binding interactions and higher binding free energy values. In addition, Molecular dynamic simulation was performed to understand the conformational changes of protein-ligand complex.
Collapse
Affiliation(s)
- Umadevi Etikyala
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, 500076, India
| | - Rajkumar Reddyrajula
- Central Research Facility, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
| | - T Vani
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, 500076, India
| | - Vinutha Kuchana
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, 500076, India
| | - Udayakumar Dalimba
- Organic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
| | - Vijjulatha Manga
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, 500076, India.
| |
Collapse
|
6
|
Teruel CF, Cullberg M, González-García I, Schiavon G, Zhou D. An exposure-safety analysis to support the dosage of the novel AKT inhibitor capivasertib. Cancer Chemother Pharmacol 2025; 95:48. [PMID: 40153000 PMCID: PMC11953117 DOI: 10.1007/s00280-025-04775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/18/2025] [Indexed: 03/30/2025]
Abstract
PURPOSE This study aimed to evaluate capivasertib exposure-response relationships for clinical safety events to support dosage selection. METHODS Data from 277 patients with solid tumors participating in three phase 1 studies were analyzed. Capivasertib 80-800 mg was administered as monotherapy orally twice daily (BID) on continuous or intermittent (4 days on, 3 days off [4/3] or 2 days on, 5 days off [2/5]) schedules. Relationships between exposure related metrics (dose, weekly dose, AUC, AUCPWD, Cmax, and Cmin) and probability of safety endpoints (adverse event [AE] leading to dose discontinuation, AE leading to dose modification, serious AE [SAE], AE grade ≥ 3, AE grade ≥ 1, diarrhea AE grade ≥ 2, rash AE grade ≥ 2, hyperglycemia AE grade ≥ 3 and increased blood glucose > 13.9 mmol/L) were evaluated by logistic regression. RESULTS Significant exposure-response relationships were identified for all safety endpoints evaluated, except for AE grade ≥ 1. The analysis suggested that most of the safety endpoints are driven by the total weekly exposure, whereas glucose elevations are driven by the exposure achieved within a dosing interval. The probability of experiencing an AE leading to dose discontinuation, AE leading to dose modification, SAE, AE grade ≥ 3, diarrhea or rash were lower with the 480 mg BID [4/3] schedule than with the 320 mg BID continuous schedule. CONCLUSION Significant exposure-response relationships were identified for safety endpoints when capivasertib was administered to patients with solid tumors suggesting that the intermittent [4/3] schedule is better tolerated than the continuous schedule due to lower total weekly exposure.
Collapse
Affiliation(s)
- Carlos Fernandez Teruel
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Marie Cullberg
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ignacio González-García
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Gaia Schiavon
- Late Development Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Diansong Zhou
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA.
| |
Collapse
|
7
|
Chen K, Wang S, Fu S, Kim J, Park P, Liu R, Lei K. 4(3 H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery. Int J Mol Sci 2025; 26:2473. [PMID: 40141117 PMCID: PMC11941892 DOI: 10.3390/ijms26062473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019-2024), and comprehensively give a summary of the target recognition, structure-activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research.
Collapse
Affiliation(s)
- Ke Chen
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Shumin Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Shuyue Fu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Junehyun Kim
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Phumbum Park
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Rui Liu
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Kang Lei
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| |
Collapse
|
8
|
Wu S, Weng J, Pan Y, Wen Z, Zeng J, Lou Y, Tong S, Liao P, Li N, Yu Z, Xia J. Disulfiram/Cu targeting FOXO6 modulates sensitivity of hepatocellular carcinoma to lenvatinib via disrupt choline metabolic. Cell Signal 2025; 127:111563. [PMID: 39694126 DOI: 10.1016/j.cellsig.2024.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Disulfiram/Cu(DSF/Cu) has a known pharmacokinetic and safety profile, exerting a strong antitumor effect. Oral tyrosine kinase inhibitors including lenvatinib are approved as first-line therapy for treating advanced unresectable hepatocellular carcinoma (HCC). These patients still have limited survival due to drug resistance. Disulfiram/Cu and lenvatinib are the promising antitumor treatments. In this study, we studied whether Disulfiram/Cu increased lenvatinib sensitivity in HCC cells. Moreover, the potential drug targets of Disulfiram/Cu and associated mechanisms were explored. We mainly investigated Autophagic flux was determined via immunofluorescence analysis and confocal microscopy. p-PI3K, p-AKT, p62, LC3B, FOXO6, and CHKA proteins associated with autophagy were detected by immunoblotting. In addition, antitumour activity of Disulfiram/Cu in combination with lenvatinib was examined in vivo through construction of the nude mouse transplant tumor model. Furthermore, our results show disulfiram/Cu combined with lenvatinib exerted the synergistic impact on treating HCC in vitro. Mechanistically, transcriptome combined with metabolome reveals Disulfiram/Cu targeting FOXO6 induction of autophagy mediated inhibits cell growth in hepatocellular carcinoma by downregulating CHKα for inhibiting AKT pathway activation while blocking choline metabolic reprogramming in HCC. These effects mostly explain the tumor-promoting effect of FOXO6 on HCC. In general, the results illustrate the mechanistic associations between metabolites and tumor cell malignant phenotype, contributing to developing new anti-HCC pharmacological treatments by Inhibiting FOXO6 for disrupting choline metabolic pathway.
Collapse
Affiliation(s)
- Shiyi Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Jialu Weng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yating Pan
- Department of Respiratory Medicine, Yongkang First People's Hospital, Yongkang 321300, China
| | - Zhikai Wen
- Department of Liver and Gall Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jing Zeng
- Department of Otorhinolaryngology, Hanshou County Hospital of Traditional Chinese Medicine, Changdei 415900, China
| | - Yunwei Lou
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Songjian Tong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Pan Liao
- The School of Medicine, Nankai University 94 Weijin Road, Tianjin 300071, China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Zhijie Yu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jinglin Xia
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
9
|
Elhinnawi MA, Okita Y, Shigematsu K, Abdelaziz M, Shiratani R, Kawanishi K, Hengphasatporn K, Dang Cao TL, Shigeta Y, Kato M. GPNMB is a novel binding partner of FGFR1 that affects tumorigenic potential through AKT phosphorylation in TNBC. Cancer Sci 2025; 116:432-443. [PMID: 39609108 PMCID: PMC11786315 DOI: 10.1111/cas.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer is a heterogeneous disease and is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) is a relatively aggressive subtype of breast cancer, which is difficult to treat. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein that is overexpressed in various types of cancers, including breast cancer, especially TNBC. In this study, bioinformatic analyses revealed enhanced fibroblast growth factor receptor 1 (FGFR1) signaling in patients with invasive breast cancer, and the GPNMBhigh/FGFR1high group exhibited a lower probability of relapse-free survival (RFS) than the GPNMBlow/FGFR1low group. Additionally, we observed that GPNMB and FGFR1 were essential for sphere formation, cellular migration, and epithelial-mesenchymal transition (EMT)-like changes in TNBC cells. To explore the mutual interaction between these two molecules, we conducted in silico protein-protein docking studies and molecular dynamics simulations. The results revealed that GPNMB isoform b exhibits high binding affinity for FGFR1 isoform c (FGFR1c), which correlates with cancer aggressiveness. We also confirmed the interaction between GPNMB and FGFR1 in TNBC cells. Furthermore, our study demonstrated that GPNMB is essential for AKT phosphorylation at T308 following FGF2 stimulation, resulting in high affinity for FGFR1c. Inhibition of AKT phosphorylation substantially reduces the tumorigenic potential of TNBC cells.
Collapse
Affiliation(s)
- Manar A. Elhinnawi
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Hormones DepartmentMedical Research and Clinical Studies Institute, National Research CentreGizaEgypt
- Stem Cells Lab Center of Excellence for Advanced SciencesNational Research CentreCairoEgypt
| | - Yukari Okita
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Division of Cell Dynamics, Transborder Medical Research CenterUniversity of TsukubaIbarakiJapan
| | - Katsunobu Shigematsu
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
| | - Mohammed Abdelaziz
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Department of Pathology, Faculty of MedicineSohag UniversitySohagEgypt
| | - Rie Shiratani
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
| | - Kunio Kawanishi
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Department of Anatomy, School of MedicineShowa UniversityTokyoJapan
| | | | - Thuy Linh Dang Cao
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
| | - Yasuteru Shigeta
- Center for Computational SciencesUniversity of TsukubaIbarakiJapan
| | - Mitsuyasu Kato
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Division of Cell Dynamics, Transborder Medical Research CenterUniversity of TsukubaIbarakiJapan
| |
Collapse
|
10
|
Baek K. The Dual Role of Survival Genes in Neurons and Cancer Cells: a Strategic Clinical Application of DX2 in Neurodegenerative Diseases and Cancer. Biomol Ther (Seoul) 2025; 33:75-85. [PMID: 39711064 PMCID: PMC11704411 DOI: 10.4062/biomolther.2024.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/24/2024] Open
Abstract
In cancer cells, survival genes contribute to uncontrolled growth and the survival of malignant cells, leading to tumor progression. Neurons are post-mitotic cells, fully differentiated and non-dividing after neurogenesis and survival genes are essential for cellular longevity and proper functioning of the nervous system. This review explores recent research findings regarding the role of survival genes, particularly DX2, in degenerative neuronal tissue cells and cancer cells. Survival gene DX2, an exon 2-deleted splice variant of AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), was found to be overexpressed in various cancer types. The potential of DX2 inhibitors as an anti-cancer drug arises from its unique ability to interact with various oncoproteins, such as KRAS and HSP70. Meanwhile, AIMP2 has been reported as a multifunctional cell death-inducing gene, and survival gene DX2 directly and indirectly inhibits AIMP2-induced cell death. DX2 plays multifaceted survival roles in degenerating neurons via various signaling pathways, including PARP 1, TRAF2, and p53 pathways. It is noteworthy that genes that were previously classified as oncogenes, such as AKT and XBP1, are now being considered as curative transgenes for targeting neurodegenerative diseases. A strategic direction for clinical application of survival genes in neurodegenerative disease and in cancer is justified.
Collapse
Affiliation(s)
- Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Generoath Ltd, Seoul 04168, Republic of Korea
| |
Collapse
|
11
|
Zhang X, Shi L, Xing M, Li C, Ma F, Ma Y, Ma Y. Interplay between lncRNAs and the PI3K/AKT signaling pathway in the progression of digestive system neoplasms (Review). Int J Mol Med 2025; 55:15. [PMID: 39513614 PMCID: PMC11573320 DOI: 10.3892/ijmm.2024.5456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Long non‑coding RNA (lncRNA) is a class of non‑coding RNA molecules located in the cytoplasm or nucleus, which can regulate chromosome structure and function by interacting with DNA, RNA, proteins and other molecules; binding to mRNA bases in a complementary manner, affecting the splicing, stabilization, translation and degradation of mRNA; acting as competing endogenous RNA competitively binds to microRNAs to regulate gene expression and participate in the regulation of various vital activities of the body. The PI3K/AKT signalling pathway plays a key role in numerous biological and cellular processes, such as cell proliferation, invasion, migration and angiogenesis. It has been found that the lncRNA/PI3K/AKT axis regulates the expression of cancer‑related genes and thus tumour progression. The abnormal regulation of lncRNA expression in the lncRNA/PI3K/AKT axis is clearly associated with clinicopathological features and plays an important role in regulating biological functions. In the present review, the expression and biological functions of PI3K/AKT‑related lncRNAs both in vitro and in vivo over recent years, were comprehensively summarized and analyzed. Their correlation with clinicopathological features was also evaluated, with the objective of furnishing a solid theoretical foundation for clinical diagnosis and the monitoring of efficacy in digestive system neoplasms. The present review aimed to provide a comprehensive overview of the expression and biological functions of PI3K/AKT‑related lncRNAs in digestive system neoplasms and to assess their correlation with clinicopathological features. This endeavor seeks to establish a solid theoretical foundation for the clinical diagnosis and efficacy monitoring of digestive system tumors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
12
|
Stevenson L, Cairns L, Li X, Jammula S, Taylor H, Douglas R, McCabe N, Gavory G, Jacq X, Fitzgerald RC, Kennedy RD, Harrison T, Turkington RC. Inhibition of AKT enhances chemotherapy efficacy and synergistically interacts with targeting of the Inhibitor of apoptosis proteins in oesophageal adenocarcinoma. Sci Rep 2024; 14:32121. [PMID: 39739112 PMCID: PMC11686190 DOI: 10.1038/s41598-024-83912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
The incidence of oesophageal adenocarcinoma (OAC) has risen six-fold in western countries over the last forty years but survival rates have only marginally improved. Hyperactivation of the PI3K-AKT-mTOR pathway is a common occurrence in OAC, driving cell survival, proliferation and resistance to chemotherapeutic agents. Inhibition of AKT has been explored as a treatment strategy with limited success and current inhibitors have failed to progress through clinical trials. Our study, describes a novel allosteric AKT inhibitor, ALM301, and demonstrates an enhancement of the efficacy of conventional chemotherapy when combined with ALM301 in OAC. Reduced sensitivity to ALM301 is associated with high expression of the Inhibitor of Apoptosis (IAP) family of proteins, particularly XIAP. Combined AKT and IAP inhibition synergistically enhanced OAC cell death and successfully re-sensitized ALM301 and chemotherapy resistant cell lines. A high degree of synergism was also observed in patient-derived OAC organoids indicating the potential clinical relevance of the combination. This study demonstrates the role for dual AKT/IAP inhibition in OAC and provides a strong rationale for the further investigation of this highly efficacious combination strategy.
Collapse
Affiliation(s)
- Leanne Stevenson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Lauren Cairns
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Xiaodun Li
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sriganesh Jammula
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Harriet Taylor
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Rosalie Douglas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Niamh McCabe
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | | | - Xavier Jacq
- Almac Discovery Ltd, Craigavon, Northern Ireland
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | | | | | - Richard C Turkington
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
13
|
Hillis AL, Martin TD, Manchester HE, Högström J, Zhang N, Lecky E, Kozlova N, Lee J, Persky NS, Root DE, Brown M, Cichowski K, Elledge SJ, Muranen T, Fruman DA, Barry ST, Clohessy JG, Madsen RR, Toker A. Targeting Cholesterol Biosynthesis with Statins Synergizes with AKT Inhibitors in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3250-3266. [PMID: 39024548 PMCID: PMC11443248 DOI: 10.1158/0008-5472.can-24-0970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is responsible for a disproportionate number of breast cancer patient deaths due to extensive molecular heterogeneity, high recurrence rates, and lack of targeted therapies. Dysregulation of the phosphoinositide 3-kinase (PI3K)/AKT pathway occurs in approximately 50% of TNBC patients. Here, we performed a genome-wide CRISPR/Cas9 screen with PI3Kα and AKT inhibitors to find targetable synthetic lethalities in TNBC. Cholesterol homeostasis was identified as a collateral vulnerability with AKT inhibition. Disruption of cholesterol homeostasis with pitavastatin synergized with AKT inhibition to induce TNBC cytotoxicity in vitro in mouse TNBC xenografts and in patient-derived estrogen receptor (ER)-negative breast cancer organoids. Neither ER-positive breast cancer cell lines nor ER-positive organoids were sensitive to combined AKT inhibitor and pitavastatin. Mechanistically, TNBC cells showed impaired sterol regulatory element-binding protein 2 (SREBP-2) activation in response to single-agent or combination treatment with AKT inhibitor and pitavastatin, which was rescued by inhibition of the cholesterol-trafficking protein Niemann-Pick C1 (NPC1). NPC1 loss caused lysosomal cholesterol accumulation, decreased endoplasmic reticulum cholesterol levels, and promoted SREBP-2 activation. Taken together, these data identify a TNBC-specific vulnerability to the combination of AKT inhibitors and pitavastatin mediated by dysregulated cholesterol trafficking. These findings support combining AKT inhibitors with pitavastatin as a therapeutic modality in TNBC. Significance: Two FDA-approved compounds, AKT inhibitors and pitavastatin, synergize to induce cell death in triple-negative breast cancer, motivating evaluation of the efficacy of this combination in clinical trials.
Collapse
Affiliation(s)
- Alissandra L. Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Timothy D. Martin
- Division of Genetics, Department of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts.
| | - Haley E. Manchester
- Genetics Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Jenny Högström
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Na Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Emmalyn Lecky
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Nina Kozlova
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Jonah Lee
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| | | | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Stephen J. Elledge
- Division of Genetics, Department of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts.
| | - Taru Muranen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California.
| | - Simon T. Barry
- Bioscience, Discovery, Oncology Research and Development, AstraZeneca, Cambridge, Massachusetts.
| | - John G. Clohessy
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| | - Ralitsa R. Madsen
- MRC-Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
14
|
Nussinov R, Jang H. The value of protein allostery in rational anticancer drug design: an update. Expert Opin Drug Discov 2024; 19:1071-1085. [PMID: 39068599 PMCID: PMC11390313 DOI: 10.1080/17460441.2024.2384467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies. AREAS COVERED The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject. EXPERT OPINION To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Chen X, Ma R, Wu W, Gao R, Shu Y, Dong M, Guo M, Tang D, Li D, Ji S. Wighteone, a prenylated flavonoid from licorice, inhibits growth of SW480 colorectal cancer cells by allosteric inhibition of Akt. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118195. [PMID: 38641080 DOI: 10.1016/j.jep.2024.118195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xiaofei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ruili Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Weiguo Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ran Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yikang Shu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Mingxin Dong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510640, China.
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Danhua Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
16
|
Doi T, Takahashi S, Aoki D, Yonemori K, Hara H, Hasegawa K, Takehara K, Harano K, Yunokawa M, Nomura H, Shimoi T, Horie K, Ogasawara A, Okame S. A first-in-human phase I study of TAS-117, an allosteric AKT inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2024; 93:605-616. [PMID: 38411735 PMCID: PMC11129975 DOI: 10.1007/s00280-023-04631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE TAS-117 is a highly potent and selective, oral, allosteric pan-AKT inhibitor under development for advanced/metastatic solid tumors. The safety, clinical pharmacology, pharmacogenomics and efficacy were investigated. METHODS This phase I, open-label, non-randomized, dose-escalating, first-in-human study enrolled patients with advanced/metastatic solid tumors and comprised three phases (dose escalation phase [DEP], regimen modification phase [RMP], and safety assessment phase [SAP]). The SAP dose and regimen were determined in the DEP and RMP. Once-daily and intermittent dosing (4 days on/3 days off, 21-day cycles) were investigated. The primary endpoints were dose-limiting toxicities (DLTs) in Cycle 1 of the DEP and RMP and incidences of adverse events (AEs) and adverse drug reactions (ADRs) in the SAP. Secondary endpoints included pharmacokinetics, pharmacodynamics, pharmacogenomics, and antitumor activity. RESULTS Of 66 enrolled patients, 65 received TAS-117 (DEP, n = 12; RMP, n = 10; SAP, n = 43). No DLTs were reported with 24-mg/day intermittent dosing, which was selected as a recommended dose in SAP. In the SAP, 98.5% of patients experienced both AEs and ADRs (grade ≥ 3, 67.7% and 60.0%, respectively). In the dose range tested (8 to 32 mg/day), TAS-117 pharmacokinetics were dose proportional, and pharmacodynamic analysis showed a reduction of phosphorylated PRAS40, a direct substrate of AKT. Four patients in the SAP had confirmed partial response. CONCLUSION Oral doses of TAS-117 once daily up to 16 mg/day and intermittent dosing of 24 mg/day were well tolerated. TAS-117 pharmacokinetics were dose proportional at the doses evaluated. Antitumor activity may occur through AKT inhibition. TRIAL REGISTRATION jRCT2080222728 (January 29, 2015).
Collapse
Affiliation(s)
- Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Japan.
| | - Shunji Takahashi
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Aoki
- Keio University School of Medicine, Tokyo, Japan
- Akasaka Sannou Medical Center, Tokyo, Japan
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | | | | | - Kosei Hasegawa
- Saitama Medical University International Medical Center, Hidaka, Japan
| | | | | | - Mayu Yunokawa
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Nomura
- Keio University School of Medicine, Tokyo, Japan
- Fujita Health University, Toyoake, Japan
| | | | - Koji Horie
- Saitama Cancer Center, Kita-Adachi, Japan
| | - Aiko Ogasawara
- Saitama Medical University International Medical Center, Hidaka, Japan
| | | |
Collapse
|
17
|
Su R, Shao Y, Huang M, Liu D, Yu H, Qiu Y. Immunometabolism in cancer: basic mechanisms and new targeting strategy. Cell Death Discov 2024; 10:236. [PMID: 38755125 PMCID: PMC11099033 DOI: 10.1038/s41420-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Maturing immunometabolic research empowers immune regulation novel approaches. Progressive metabolic adaptation of tumor cells permits a thriving tumor microenvironment (TME) in which immune cells always lose the initial killing capacity, which remains an unsolved dilemma even with the development of immune checkpoint therapies. In recent years, many studies on tumor immunometabolism have been reported. The development of immunometabolism may facilitate anti-tumor immunotherapy from the recurrent crosstalk between metabolism and immunity. Here, we discuss clinical studies of the core signaling pathways of immunometabolism and their inhibitors or agonists, as well as the specific functions of these pathways in regulating immunity and metabolism, and discuss some of the identified immunometabolic checkpoints. Understanding the comprehensive advances in immunometabolism helps to revise the status quo of cancer treatment. An overview of the new landscape of immunometabolism. The PI3K pathway promotes anabolism and inhibits catabolism. The LKB1 pathway inhibits anabolism and promotes catabolism. Overactivation of PI3K/AKT/mTOR pathway and IDO, IL4I1, ACAT, Sirt2, and MTHFD2 promote immunosuppression of TME formation, as evidenced by increased Treg and decreased T-cell proliferation. The LKBI-AMPK pathway promotes the differentiation of naive T cells to effector T cells and memory T cells and promotes anti-tumor immunity in DCs.
Collapse
Affiliation(s)
- Ranran Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Donghui Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
18
|
Rajendran P, Sekar R, Dhayasankar PS, Ali EM, Abdelsalam SA, Balaraman S, Chellappan BV, Metwally AM, Abdallah BM. PI3K/AKT Signaling Pathway Mediated Autophagy in Oral Carcinoma - A Comprehensive Review. Int J Med Sci 2024; 21:1165-1175. [PMID: 38774756 PMCID: PMC11103401 DOI: 10.7150/ijms.94566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/13/2024] [Indexed: 05/24/2024] Open
Abstract
Oral cancer is the most heterogeneous cancer at clinical and histological levels. PI3K/AKT/mTOR pathway was identified as one of the most commonly modulated signals in oral cancer, which regulates major cellular and metabolic activity of the cell. Thus, various proteins of PI3K/AKT/mTOR pathway were used as therapeutic targets for oral cancer, to design more specific drugs with less off-target toxicity. This review sheds light on the regulation of PI3K/AKT/mTOR, and its role in controlling autophagy and associated apoptosis during the progression and metastasis of oral squamous type of malignancy (OSCC). In addition, we reviewed in detail the upstream activators and the downstream effectors of PI3K/AKT/mTOR signaling as potential therapeutic targets for oral cancer treatment.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
- Department of Oral Pathology & Oral Microbiology, Meenakshi Ammal Dental College and Hospital, MAHER, Alapakkam Main Road, Maduravoyal, Chennai-600095, India
| | - Prabhu Shankar Dhayasankar
- Department of Oral and Maxillofacial Surgery, Meenakshi Ammal Dental College and Hospital, MAHER, Alapakkam Main Road, Maduravoyal, Chennai-600095, India
| | - Enas M Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Sabarinath Balaraman
- Department of Oral Pathology & Oral Microbiology, Meenakshi Ammal Dental College and Hospital, MAHER, Alapakkam Main Road, Maduravoyal, Chennai-600095, India
| | | | - Ashraf M. Metwally
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Basem M Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
19
|
Li Z, Napolitano A, Fedele M, Gao X, Napolitano F. AI identifies potent inducers of breast cancer stem cell differentiation based on adversarial learning from gene expression data. Brief Bioinform 2024; 25:bbae207. [PMID: 38701411 PMCID: PMC11066897 DOI: 10.1093/bib/bbae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells within tumors that exhibit stem-like properties and represent a potentially effective therapeutic target toward long-term remission by means of differentiation induction. By leveraging an artificial intelligence approach solely based on transcriptomics data, this study scored a large library of small molecules based on their predicted ability to induce differentiation in stem-like cells. In particular, a deep neural network model was trained using publicly available single-cell RNA-Seq data obtained from untreated human-induced pluripotent stem cells at various differentiation stages and subsequently utilized to screen drug-induced gene expression profiles from the Library of Integrated Network-based Cellular Signatures (LINCS) database. The challenge of adapting such different data domains was tackled by devising an adversarial learning approach that was able to effectively identify and remove domain-specific bias during the training phase. Experimental validation in MDA-MB-231 and MCF7 cells demonstrated the efficacy of five out of six tested molecules among those scored highest by the model. In particular, the efficacy of triptolide, OTS-167, quinacrine, granisetron and A-443654 offer a potential avenue for targeted therapies against breast CSCs.
Collapse
Affiliation(s)
- Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Antonella Napolitano
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via De Amicis, 95 - 80131 Napoli, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via De Amicis, 95 - 80131 Napoli, Italy
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Francesco Napolitano
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Department of Science and Technology, University of Sannio, Via dei Mulini 74, 82100 Benevento, Italy
| |
Collapse
|
20
|
Tang K, Lin W, Wang D, Hu X, Chen Z, Chen J, Liang B, Zhang L, Qin P, Wu D. Potential Role of MAP3K14 in Hepatocellular Carcinoma: A Study Based on Comprehensive Bioinformatical Analysis and Validation. J Cancer 2024; 15:2731-2745. [PMID: 38577603 PMCID: PMC10988307 DOI: 10.7150/jca.95322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
According to reports, MAP3K14 is considered an oncogene and is aberrantly expressed in various types of tumor cells. Its abnormal expression is closely associated with the occurrence and progression of various cancers. MAP3K14 also plays a significant role in the development of non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma and its connection to tumor stem cells. The prognostic value of MAP3K14 in HCC, as well as its potential functions and roles, requires further elucidation. We evaluated the potential role of MAP3K14 in HCC based on data mining from a range of public databases. The bioinformatics analysis of TCGA, GEO, TIMER, cBioportal, Kaplan-Meier plotter, MethSurv, ENCORI and CellMiner databases was carried out. The expression of MAP3K14 protein in HCC was detected by immunohistochemical method. The mRNA and protein expression levels of MAP3K14 in tumor tissues were higher than those in normal tissues (p < 0.05). The expression of MAP3K14 was correlated with Pathologic T stage (p=0.026), Pathologic stage (p=0.032), Tumor status (p=0.024) and AFP (p=0.002). HCC patients with high expression of MAP3K14 had poor overall survival (OS), progression free survival (PFS) and recurrence free survival (RFS). Multivariate Cox regression analysis showed that the Pathologic stage (p < 0.001) and MAP3K14 expression levels (p < 0.05) is an independent prognostic factor affecting the survival of patients with liver cancer. GO/KEGG analysis suggested that key biological processes (PI3K-Akt signaling pathway) may be the mechanism promoting HCC development. In addition, MAP3K14 was significantly correlated with the infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (p < 0.05). MAP3K14 is up-regulated in HCC and is closely related to the prognosis of HCC patients. MAP3K14 may serve as a potential biomarker for poor prognosis of HCC.
Collapse
Affiliation(s)
- Ke Tang
- School of Public Health, Guangdong Medical University, Dongguan City, 523808, China
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, 510440, China
| | - Weiquan Lin
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, 510440, China
| | - Dedong Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, 510440, China
| | - Xiangzhi Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou City, 510632, China
| | - Zhitao Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou City, 510632, China
| | - Jinbin Chen
- Guangzhou key laboratory for clinical rapid diagnosis and early warning of infectious diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou City, 510180, China
| | - Boheng Liang
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, 510440, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, 510440, China
| | - Pengzhe Qin
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, 510440, China
| | - Di Wu
- School of Public Health, Guangdong Medical University, Dongguan City, 523808, China
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, 510440, China
- The State Key Lab of Respiratory Disease, School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| |
Collapse
|
21
|
Fujita H, Arai S, Arakawa H, Hamamoto K, Kato T, Arai T, Nitta N, Hotta K, Hosokawa N, Ohbayashi T, Takahashi C, Inokuma Y, Tamai I, Yano S, Kunishima M, Watanabe Y. Drug-drug conjugates of MEK and Akt inhibitors for RAS-mutant cancers. Bioorg Med Chem 2024; 102:117674. [PMID: 38457912 DOI: 10.1016/j.bmc.2024.117674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Controlling RAS mutant cancer progression remains a significant challenge in developing anticancer drugs. Whereas Ras G12C-covalent binders have received clinical approval, the emergence of further mutations, along with the activation of Ras-related proteins and signals, has led to resistance to Ras binders. To discover novel compounds to overcome this bottleneck, we focused on the concurrent and sustained blocking of two major signaling pathways downstream of Ras. To this end, we synthesized 25 drug-drug conjugates (DDCs) by combining the MEK inhibitor trametinib with Akt inhibitors using seven types of linkers with structural diversity. The DDCs were evaluated for their cell permeability/accumulation and ability to inhibit proliferation in RAS-mutant cell lines. A representative DDC was further evaluated for its effects on signaling proteins, induction of apoptosis-related proteins, and the stability of hepatic metabolic enzymes. These in vitro studies identified a series of DDCs, especially those containing a furan-based linker, with promising properties as agents for treating RAS-mutant cancers. Additionally, in vivo experiments in mice using the two selected DDCs revealed prolonged half-lives and anticancer efficacies comparable to those of trametinib. The PK profiles of trametinib and the Akt inhibitor were unified through the DDC formation. The DDCs developed in this study have potential as drug candidates for the broad inhibition of RAS-mutant cancers.
Collapse
Affiliation(s)
- Hikaru Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kana Hamamoto
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshiyuki Kato
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tsubasa Arai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Nanaka Nitta
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuki Hotta
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Natsuko Hosokawa
- Department of Rheumatology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Takako Ohbayashi
- Department of Rheumatology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Chiaki Takahashi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628 Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021 Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| | - Yoshihiro Watanabe
- Innovative Clinical Research Center, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan.
| |
Collapse
|
22
|
D’Orazi G, Cirone M. Cancer Chemotherapy: Combination with Inhibitors (Volume I). Cancers (Basel) 2024; 16:607. [PMID: 38339356 PMCID: PMC10854667 DOI: 10.3390/cancers16030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer is one of the major causes of death globally, accounting for 10 million deaths in 2020 [...].
Collapse
Affiliation(s)
- Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research, IRCCS Regina Elena Cancer National Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio, 00131 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, University of Rome La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy;
| |
Collapse
|
23
|
Parkman GL, Holmen SL. A Paradoxical AKT: Exploring the Promise and Challenges of PI3K/AKT/mTOR Targeted Therapies. JOURNAL OF CANCER IMMUNOLOGY 2024; 6:92-99. [PMID: 39381117 PMCID: PMC11460539 DOI: 10.33696/cancerimmunol.6.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Gennie L. Parkman
- Department of Zoology, Weber State University, Ogden, Utah 84408, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Sheri L. Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| |
Collapse
|
24
|
Zhang G, Mi W, Wang C, Li J, Zhang Y, Liu N, Jiang M, Jia G, Wang F, Yang G, Zhang L, Wang J, Fu Y, Zhang Y. Targeting AKT induced Ferroptosis through FTO/YTHDF2-dependent GPX4 m6A methylation up-regulating and degradating in colorectal cancer. Cell Death Discov 2023; 9:457. [PMID: 38102129 PMCID: PMC10724184 DOI: 10.1038/s41420-023-01746-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Ferroptosis is a new type of iron-dependent programmed cell death induced by lipid peroxidation. However, the underlying mechanisms and function in tumor therapy still remain undisclosed especially in post-transcription regulation. Here, we found that targeting AKT significantly induced GPX4 dependent ferroptosis and suppressed colorectal cancer growth both in vitro and in vivo. During this process, demethylase FTO was downregulated, which increased the m6A methylation level of GPX4, subsequently recognized by YTHDF2 and degraded. Prediction results showed that there are three potential methylated sites (193/647/766), and 193 site was identified as the right one, which was demethylated by FTO and read by YTHDF2. In parallel, AKT inhibition caused the accumulation of ROS which had a negative feedback on GPX4 expression. In addition, protective autophagy was initiated by MK2206 stimulation, while blocking autophagy further increased ferroptosis and markedly enhanced the anti-tumor activity of MK2206. In a word, inhibiting AKT activated ferroptosis through FTO/YTHDF2/GPX4 axis to suppress colon cancer progression, which raised FTO/GPX4 as potential biomarkers and targets in colorectal cancer therapy.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Wunan Mi
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chuyue Wang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jiehan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yizheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Nannan Liu
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Meimei Jiang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Guiyun Jia
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Feng Wang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, 200072, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yingjie Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
25
|
Hayashi D, Shirai T, Terauchi R, Tsuchida S, Mizoshiri N, Mori Y, Shimomura S, Mazda O, Takahashi K. A Natural Organic Compound "Decursin" Has Both Antitumor and Renal Protective Effects: Treatment for Osteosarcoma. JOURNAL OF ONCOLOGY 2023; 2023:5445802. [PMID: 38130464 PMCID: PMC10735716 DOI: 10.1155/2023/5445802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Osteosarcoma is a rare malignant tumor that commonly occurs in children. Anticancer drugs, for example, cisplatin, aid in postsurgery recovery but induce side effects such as renal damage, affecting the life prognosis of patients. Decursin which is one of the bioactive components has been reported for its anti-inflammatory, antioxidant, and antitumor effects, but the effect on osteosarcoma is unexplained. In this study, the research theme was to examine the sensitizing effect of decursin and its influence on cisplatin-induced nephrotoxicity. The cell viability and half maximal inhibitory concentration (IC50), apoptosis induction, and effect on cell cycle and Akt pathways were examined. In vivo, we examine the effects of decursin on tumors and mice bodies. Additionally, the effects of the cisplatin-decursin combination were evaluated in vitro and in vivo. Decursin suppressed cell viability and induced apoptosis via the cell cycle. Decursin also inhibited the Akt pathway by suppressing the phosphorylation of Akt. It enhanced apoptosis induction and lowered cell viability in combination with cisplatin. The increasing tumor volume was suppressed in the decursin-administrated group with further suppression in combination with cisplatin compared to sole cisplatin administration. The decrease in renal function and renal epithelial cell damage caused by cisplatin was improved by the combinatorial treatment with decursin. Therefore, decursin demonstrated an antitumor effect on the osteosarcoma cells and a renal protective effect in combination with cisplatin. Therefore, decursin is a prospective therapeutic agent against osteosarcoma.
Collapse
Affiliation(s)
- Daichi Hayashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiharu Shirai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryu Terauchi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinji Tsuchida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Naoki Mizoshiri
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuki Mori
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Seiji Shimomura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
26
|
Karunakaran K, Muniyan R. Identification of allosteric inhibitor against AKT1 through structure-based virtual screening. Mol Divers 2023; 27:2803-2822. [PMID: 36522517 DOI: 10.1007/s11030-022-10582-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
AKT (serine/threonine protein kinase) is a potential therapeutic target for many types of cancer as it plays a vital role in cancer progression. Many AKT inhibitors are already in practice under single and combinatorial therapy. However, most of these inhibitors are orthosteric / pan-AKT that are non-selective and non-specific to AKT kinase and their isoforms. Hence, researchers are searching for novel allosteric inhibitors that bind in the interface between pH and kinase domain. In this study, we performed structure-based virtual screening from the afroDB (a diverse natural compounds library) to find the potential inhibitor targeting the AKT1. These compounds were filtered through Lipinski, ADMET properties, combined with a molecular docking approach to obtain the 8 best compounds. Then we performed molecular dynamics simulation for apoprotein, AKT1 with 8 complexes, and AKT1 with the positive control (Miransertib). Molecular docking and simulation analysis revealed that Bianthracene III (hit 1), 10-acetonyl Knipholonecyclooxanthrone (hit 2), Abyssinoflavanone VII (hit 5) and 8-c-p-hydroxybenzyldiosmetin (hit 6) had a better binding affinity, stability, and compactness than the reference compound. Notably, hit 1, hit 2 and hit 5 had molecular features required for allosteric inhibition.
Collapse
Affiliation(s)
- Keerthana Karunakaran
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
27
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
28
|
Ye M, Liu T, Miao L, Zou S, Ji H, Zhang J, Zhu X. The Role of ZNF275/AKT Pathway in Carcinogenesis and Cisplatin Chemosensitivity of Cervical Cancer Using Patient-Derived Xenograft Models. Cancers (Basel) 2023; 15:5625. [PMID: 38067329 PMCID: PMC10705782 DOI: 10.3390/cancers15235625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 07/04/2024] Open
Abstract
Zinc finger protein 275 (ZNF275) is a C2H2-type transcription factor that is localized on chromosome Xq28. Whether ZNF275 participates in modulating the biological behaviors of cervical cancer has not been determined to our knowledge. The present study employed CCK-8, BrdU, flow cytometry, and a transwell assay to investigate the cell viability, proliferation, apoptosis, migration, and invasion of cervical cancer cells. The application of Western blotting and immunohistochemistry (IHC) aims to assess ZNF275 protein expression and identify the signaling pathway relevant to ZNF275-mediated effects on cervical cancer. The therapeutic impact of the combined therapy of the AKT inhibitor triciribine and cisplatin was evaluated on cervical cancer patient-derived xenograft (PDX) models expressing high ZNF275. The current research illustrated that cervical cancer tissue exhibited a higher expression of ZNF275 in contrast to the surrounding normal cervical tissue. The downregulation of ZNF275 suppressed cell viability, migration, and invasion, and facilitated the apoptosis of SiHa and HeLa cells via weakening AKT/Bcl-2 signaling pathway. Moreover, triciribine synergized with cisplatin to reduce cell proliferation, migration, and invasion, and enhanced the apoptosis of SiHa cells expressing high ZNF275. In addition, the combination treatment of triciribine and cisplatin was more effective in inducing tumor regression than single agents in cervical cancer PDX models expressing high ZNF275. Collectively, the current findings demonstrated that ZNF275 serves as a sufficiently predictive indicator of the therapeutic effectiveness of the combined treatment of triciribine and cisplatin on cervical cancer. Combining triciribine with cisplatin greatly broadens the therapeutic options for cervical cancer expressing high ZNF275, but further research is needed to confirm these results.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian’an Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; (M.Y.)
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; (M.Y.)
| |
Collapse
|
29
|
Li R, Zhou Q, Liu G, Zhu F, Liu Z, Bo H, Fan L. CSNK1G2-AS1 promotes metastasis, colony formation and serves as a biomarker in testicular germ cell tumor cells. J Cancer 2023; 14:2771-2783. [PMID: 37781070 PMCID: PMC10539554 DOI: 10.7150/jca.85640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 10/03/2023] Open
Abstract
Background/Aim: Some long non-coding RNAs (lncRNAs) have been found to significantly participate in the progression of TGCTs. In comparison to the normal testis, the TGCT tissues showed significantly decreased CSNK1G2-AS1 expression, however, its effect on TGCTs and its mechanism are still unclear. The aim of this study is to investigate the effect of CSNK1G2-AS1 on TGCTs and explore the mechanism underlying its effect on TGCTs. Materials and Methods: In this study, to evaluate the expression of CSNK1G2-AS1 in tissue samples from TGCTs, the UCSC and GEPIA databases were applied and qRT-PCR was conducted. The Kaplan-Meier Plotter was applied to analyze the correlation between CSNK1G2-AS1 methylation levels and the prognosis of TGCTs patients. The assays of MTS, clone formation, transwell, and flow cytometry were performed to investigate the effect of CSNK1G2-AS1 overexpression on the proliferation, metastasis, and apoptosis of TGCT cells, respectively. Finally, western blotting was conducted to determine the expressions of the proteins associated with EMT and AKT. Results: Our study first found that, compared to the normal testis, TGCTs tissue showed significantly decreased CSNK1G2-AS1 expression, and hypomethylation of CSNK1G2-AS1 was significantly correlated with a better prognosis with TGCTs patients. In vitro, we found that overexpression of CSNK1G2-AS1 dramatically promoted the clone formation, invasion, and migration of TGCT cells, but inhibited apoptosis. And CSNK1G2-AS1 overexpression significantly decreased the expression of EMT-associated proteins ZO-1 but increased the expression and phosphorylation of AKT. Conclusions: CSNK1G2-AS1 may play an essential role in the pathogenesis and metastasis of TGCTs through the EMT- and AKT-mediated signal pathways.
Collapse
Affiliation(s)
- Ruixue Li
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
| | - Qianyin Zhou
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
| | - Guangmin Liu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
| | - Zhizhong Liu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, People's Republic of China
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, People's Republic of China
| |
Collapse
|
30
|
Pan YR, Wu CE, Jung SM, Huang SC, Lin SH, Chou WC, Chang YC, Chen MH, Hung TH, Yu AL, Huang WK, Yeh CN. Mucin 4 Confers Gemcitabine Resistance and an Unfavorable Prognosis in Patients with Cholangiocarcinoma via AKT Activation. Int J Biol Sci 2023; 19:2772-2786. [PMID: 37324940 PMCID: PMC10266071 DOI: 10.7150/ijbs.79126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) exhibits aggressive biological behavior and a poor prognosis. Gemcitabine (GEM)-based chemotherapy is the first-line chemotherapy for advanced CCA but has a response rate of only 20-30%. Therefore, investigating treatments to overcome GEM resistance in advanced CCA is crucial. Among mucin (MUC) family members, MUC4 showed the greatest increase in the resistant versus parental sublines. MUC4 was upregulated in whole-cell lysates and conditioned media from gemcitabine-resistant (GR) CCA sublines. MUC4 mediated GEM resistance by activating AKT signaling in GR CCA cells. The MUC4-AKT axis induced BAX S184 phosphorylation to inhibit apoptosis and downregulated GEM transporter human equilibrative nucleoside transporter 1 (hENT1) expression. The combination of AKT inhibitors and GEM or afatinib overcame GEM resistance in CCA. In vivo, capivasertib (an AKT inhibitor) increased GEM sensitivity in GR cells. MUC4 promoted EGFR and HER2 activation to mediate GEM resistance. Finally, MUC4 expression in patient plasma correlated with MUC4 expression. Paraffin-embedded specimens from non-responders expressed significantly more MUC4 than did those from responders, and this upregulation was associated with poor progression-free survival and overall survival. In GR CCA, high MUC4 expression promotes sustained EGFR/HER2 signaling and AKT activation. The combination of AKT inhibitors with GEM or afatinib might overcome GEM resistance.
Collapse
Affiliation(s)
- Yi-Ru Pan
- Department of Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Shih-Chiang Huang
- Department of Pathology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Sheng-Hsuan Lin
- Department of Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Chi Chou
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Huang Chen
- Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taiwan
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, CA 92103, USA
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan 333, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
31
|
Amiran MR, Taghdir M, Joozdani FA. Molecular insights into the behavior of the allosteric and ATP-competitive inhibitors in interaction with AKT1 protein: A molecular dynamics study. Int J Biol Macromol 2023; 242:124853. [PMID: 37172698 DOI: 10.1016/j.ijbiomac.2023.124853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
AKT1 is a family of serine/threonine kinases that play a key role in regulating cell growth, proliferation, metabolism, and survival. Two significant classes of AKT1 inhibitors (allosteric and ATP-competitive) are used in clinical development, and both of them could be effective in specific conditions. In this study, we investigated the effect of several different inhibitors on two conformations of the AKT1 by computational approach. We studied the effects of four inhibitors, including MK-2206, Miransertib, Herbacetin, and Shogaol, on the inactive conformation of AKT1 protein and the effects of four inhibitors, Capivasertib, AT7867, Quercetin, and Oridonin molecules on the active conformation of AKT1 protein. The results of simulations showed that each inhibitor creates a stable complex with AKT1 protein, although AKT1/Shogaol and AKT1/AT7867 complexes showed less stability than other complexes. Based on RMSF calculations, the fluctuation of residues in the mentioned complexes is higher than in other complexes. As compared to other complexes in either of its two conformations, MK-2206 has a stronger binding free energy affinity in the inactive conformation, -203.446 kJ/mol. MM-PBSA calculations showed that the van der Waals interactions contribute more than the electrostatic interactions to the binding energy of inhibitors to AKT1 protein.
Collapse
Affiliation(s)
- Mohammad Reza Amiran
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran.
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| |
Collapse
|
32
|
Alam M, Hasan GM, Eldin SM, Adnan M, Riaz MB, Islam A, Khan I, Hassan MI. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023; 161:114452. [PMID: 36878052 DOI: 10.1016/j.biopha.2023.114452] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common malignancy worldwide. The signaling cascades are stimulated via genetic modifications in upstream signaling molecules, which affect apoptotic, proliferative, and differentiation pathways. Dysregulation of these signaling cascades causes cancer-initiating cell proliferation, cancer development, and drug resistance. Numerous efforts in the treatment of NSCLC have been undertaken in the past few decades, enhancing our understanding of the mechanisms of cancer development and moving forward to develop effective therapeutic approaches. Modifications of transcription factors and connected pathways are utilized to develop new treatment options for NSCLC. Developing designed inhibitors targeting specific cellular signaling pathways in tumor progression has been recommended for the therapeutic management of NSCLC. This comprehensive review provided deeper mechanistic insights into the molecular mechanism of action of various signaling molecules and their targeting in the clinical management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Muhammad Bilal Riaz
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdnask, Poland; Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
33
|
Wang X, Xiao Y, Dong Y, Wang Z, Yi J, Wang J, Wang X, Zhou H, Zhang L, Shi Y. A20 interacts with mTORC2 to inhibit the mTORC2/Akt/Rac1 signaling axis in hepatocellular carcinoma cells. Cancer Gene Ther 2023; 30:424-436. [PMID: 36411371 DOI: 10.1038/s41417-022-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
A20 acts as a tumor suppressor in hepatocellular carcinoma, especially inhibiting metastasis of the malignant cells. However, the mechanisms whereby A20 plays the inhibitory roles are not understood completely. Rac1 signaling is essential for cell migration in hepatocellular carcinoma metastasis. Nevertheless, it is not known whether and how A20 inhibits Rac1 signaling to suppress the migration of hepatocellular carcinoma cell. Thereby, we analyzed the relationship between A20 and Rac1 activation, as well as the activity of Akt and mTORC2, two signaling components upstream of Rac1, using gain and loss of function experiments. We found that the overexpression of A20 repressed, while the knockdown or knockout of A20 promoted, the activation of Rac1, Akt and mTORC2 in hepatocellular carcinoma cells. Moreover, the inhibitory effect of A20 on the mTORC2/Akt/Rac1 signaling axis was due to the interaction between A20 and mTORC2 complex. The binding of A20 to mTORC2 was mediated by the ZnF7 domain of A20 and M1 ubiquitin chain in the mTORC2 complex. Furthermore, A20 inhibited metastasis of hepatocellular carcinoma cells via restraining mTORC2 in a hepatocellular carcinoma xenograft mouse model. These findings revealed the relationship between A20 and mTORC2, and explained the molecular mechanisms of A20 in inhibition of hepatocellular carcinoma metastasis.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Xiao
- Laboratory of Cellular and Molecular Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanlei Dong
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhida Wang
- Department of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, China
| | - Jing Yi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
34
|
AKT inhibitor Hu7691 induces differentiation of neuroblastoma cells. Acta Pharm Sin B 2023; 13:1522-1536. [PMID: 37139432 PMCID: PMC10150122 DOI: 10.1016/j.apsb.2023.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 01/08/2023] [Indexed: 02/05/2023] Open
Abstract
While neuroblastoma accounts for 15% of childhood tumor-related deaths, treatments against neuroblastoma remain scarce and mainly consist of cytotoxic chemotherapeutic drugs. Currently, maintenance therapy of differentiation induction is the standard of care for neuroblastoma patients in clinical, especially high-risk patients. However, differentiation therapy is not used as a first-line treatment for neuroblastoma due to low efficacy, unclear mechanism, and few drug options. Through compound library screening, we accidently found the potential differentiation-inducing effect of AKT inhibitor Hu7691. The protein kinase B (AKT) pathway is an important signaling pathway for regulating tumorigenesis and neural differentiation, yet the relation between the AKT pathway and neuroblastoma differentiation remains unclear. Here, we reveal the anti-proliferation and neurogenesis effect of Hu7691 on multiple neuroblastoma cell lines. Further evidence including neurites outgrowth, cell cycle arrest, and differentiation mRNA marker clarified the differentiation-inducing effect of Hu7691. Meanwhile, with the introduction of other AKT inhibitors, it is now clear that multiple AKT inhibitors can induce neuroblastoma differentiation. Furthermore, silencing AKT was found to have the effect of inducing neuroblastoma differentiation. Finally, confirmation of the therapeutic effects of Hu7691 is dependent on inducing differentiation in vivo, suggesting that Hu7691 is a potential molecule against neuroblastoma. Through this study, we not only define the key role of AKT in the progression of neuroblastoma differentiation but also provide potential drugs and key targets for the application of differentiation therapies for neuroblastoma clinically.
Collapse
|
35
|
Huang PH, Duan XB, Tang ZZ, Zou ZX, Song WM, Gao G, Li D, Nie FQ, Yan X, Fu YX, Guo R, Xu YY. Betulinaldehyde exhibits effective anti-tumor effects in A549 cells by regulating intracellular autophagy. Sci Rep 2023; 13:743. [PMID: 36639415 PMCID: PMC9839726 DOI: 10.1038/s41598-023-27580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
It is of great significance to find new effective drugs for an adjuvant therapy targeting lung cancer to improve the survival rate and prognosis of patients with the disease. Previous studies have confirmed that certain Chinese herbal extracts have clear anti-tumor effects, and in our preliminary study, betulinaldehyde was screened for its potential anti-tumor effects. The current study thus aimed to confirm the anti-tumor effect of betulinaldehyde, using in vitro experiments to explore its underlying molecular mechanism. It was found that betulinaldehyde treatment significantly inhibited the viability, proliferation, and migration of A549 cells in a dose-dependent manner. In addition, betulinaldehyde inhibited the activation of Akt, MAPK, and STAT3 signaling pathways in A549 cells in a time-dependent manner. More importantly, betulinaldehyde also decreased the expression level of SQSTM1 protein, increased the expression level of LC3 II, and increased the autophagy flux in A549 cells. The pretreatment of A549 cells with the autophagy inhibitor, 3-methyladenine, could partially negate the anti-tumor effects of betulinaldehyde. These findings suggest that betulinaldehyde could significantly inhibit the oncological activity of A549 cells by regulating the intracellular autophagy level, making it a potentially effective option for the adjuvant therapy used to treat lung cancer in the future.
Collapse
Affiliation(s)
- Pan-Hao Huang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiang-Bing Duan
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Medical Laboratory Science, Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Zi-Zhao Tang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wen-Min Song
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Medical Laboratory Science, Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Dai Li
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China
| | - Fang-Qin Nie
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xin Yan
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yang-Xia Fu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China. .,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Yan-Ying Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
36
|
Kurma K, Zeybek Kuyucu A, Roth GS, Sturm N, Mercey-Ressejac M, Abbadessa G, Yu Y, Lerat H, Marche PN, Decaens T, Macek Jilkova Z. Effect of Novel AKT Inhibitor Vevorisertib as Single Agent and in Combination with Sorafenib on Hepatocellular Carcinoma in a Cirrhotic Rat Model. Int J Mol Sci 2022; 23:ijms232416206. [PMID: 36555845 PMCID: PMC9784348 DOI: 10.3390/ijms232416206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The AKT pathway is often activated in HCC cases, and a longer exposure to tyrosine kinase inhibitors such as sorafenib may lead to over-activation of the AKT pathway, leading to HCC resistance. Here, we studied the efficacy of a new generation of allosteric AKT inhibitor, vevorisertib, alone or in combination with sorafenib. To identify specific adverse effects related to the background of cirrhosis, we used a diethylnitrosamine (DEN)-induced cirrhotic rat model. Vevorisertib was tested in vitro on Hep3B, HepG2, HuH7 and PLC/PRF cell lines. Rats were treated weekly with intra-peritoneal injections of DEN for 14 weeks to obtain cirrhosis with fully developed HCC. After that, rats were randomized into four groups (n = 7/group): control, sorafenib, vevorisertib and the combination of vevorisertib + sorafenib, and treated for 6 weeks. Tumor progression was followed by MRI. We demonstrated that the vevorisertib is a highly potent treatment, blocking the phosphorylation of AKT. The tumor progression in the rat liver was significantly reduced by treatment with vevorisertib + sorafenib (49.4%) compared to the control group (158.8%, p < 0.0001). Tumor size, tumor number and tumor cell proliferation were significantly reduced in both the vevorisertib group and vevorisertib + sorafenib groups compared to the control group. Sirius red staining showed an improvement in liver fibrosis by vevorisertib and the combination treatment. Moreover, vevorisertib + sorafenib treatment was associated with a normalization in the liver vasculature. Altogether, vevorisertib as a single agent and its combination with sorafenib exerted a strong suppression of tumor progression and improved liver fibrosis. Thus, results provide a rationale for testing vevorisertib in clinical settings and confirm the importance of targeting AKT in HCC.
Collapse
Affiliation(s)
- Keerthi Kurma
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
| | - Ayca Zeybek Kuyucu
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
| | - Gaël S. Roth
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
| | - Nathalie Sturm
- Pathology and Cytology Department, CHU Grenoble Alpes, 38700 Grenoble, France
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, 38700 La Tronche, France
| | - Marion Mercey-Ressejac
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
| | | | - Yi Yu
- ArQule Inc., Burlington, MA 01803, USA
| | - Herve Lerat
- Unité Mixte de Service hTAG, Grenoble Alpes University, Inserm US046, CNRS UAR2019, 38700 La Tronche, France
| | - Patrice N. Marche
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
| | - Thomas Decaens
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
| | - Zuzana Macek Jilkova
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
- Correspondence:
| |
Collapse
|
37
|
Orujova T, Ece A, Akalın Çiftçi G, Özdemir A, Altıntop MD. A new series of thiazole‐hydrazone hybrids for Akt‐targeted therapy of non‐small cell lung cancer. Drug Dev Res 2022; 84:185-199. [PMID: 36469421 DOI: 10.1002/ddr.22022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
In an attempt to identify potent antitumor agents for the fight against non-small cell lung cancer, new thiazolyl hydrazones (2a-n) were synthesized and examined for their in vitro cytotoxic effects on A549 human lung adenocarcinoma and L929 mouse embryonic fibroblast cells by means of the MTT assay. Furthermore, the effects of the most potent anticancer agents on apoptosis and Akt inhibition were investigated. 2-[2-((Isoquinolin-5-yl)methylene)hydrazinyl]-4-(4-methylsulfonylphenyl)thiazole (2k) (IC50 = 1.43 ± 0.12 µM) and 2-[2-((isoquinolin-5-yl)methylene)hydrazinyl]-4-(1,3-benzodioxol-5-yl)thiazole (2l) (IC50 = 1.75 ± 0.07 µM) displayed more pronounced anticancer activity than cisplatin (IC50 = 3.90 ± 0.10 µM) on A549 cell lines; 2-[2-((isoquinolin-5-yl)methylene)hydrazinyl]-4-(4-methoxyphenyl)thiazole (2j) (IC50 = 3.93 ± 0.06 µM) showed anticancer activity close to cisplatin. These compounds were found to induce apoptosis in A549 cells. Compound 2j (IC50 = 3.55 ± 0.64 µM) showed stronger Akt inhibitory activity than GSK690693 (IC50 = 4.93 ± 0.06 µM), while compounds 2k and 2l did not cause Akt inhibition at IC50 concentrations (1.43 and 1.75 µM, respectively). To comprehensively elucidate the binding pose of compound 2j and to provide a detailed understanding on the ligand' binding mechanism, induced-fit docking calculations were also conducted. Both in vitro and in silico studies suggest that compound 2j shows its cytotoxic and apoptotic effects on A549 cell lines via Akt inhibition. However, it is understood that compounds 2k and 2l exert their strong anticancer effects on A549 cells through different pathways.
Collapse
Affiliation(s)
- Turana Orujova
- Graduate School of Health Sciences Anadolu University Eskişehir Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Biruni University Istanbul Turkey
| | - Gülşen Akalın Çiftçi
- Graduate School of Health Sciences Anadolu University Eskişehir Turkey
- Department of Biochemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Mehlika D. Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| |
Collapse
|
38
|
Yamazoe M, Ozasa H, Tsuji T, Funazo T, Yoshida H, Hashimoto K, Hosoya K, Ogimoto T, Ajimizu H, Yoshida H, Itotani R, Sakamori Y, Kuninaga K, Aoki W, Hirai T. Yes-associated protein 1 mediates initial cell survival during lorlatinib treatment through AKT signaling in ROS1-rearranged lung cancer. Cancer Sci 2022; 114:546-560. [PMID: 36285485 PMCID: PMC9899615 DOI: 10.1111/cas.15622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) that target the ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) gene have shown dramatic therapeutic effects in patients with ROS1-rearranged non-small-cell lung cancer (NSCLC). Nevertheless, advanced ROS1-rearranged NSCLC is rarely cured as a portion of the tumor cells can survive the initial stages of ROS1-TKI treatment, even after maximum tumor shrinkage. Therefore, understanding the mechanisms underlying initial cell survival during ROS1-TKI treatment is necessary to prevent cell survival and achieve a cure for ROS1-rearranged NSCLC. In this study, we clarified the initial survival mechanisms during treatment with lorlatinib, a ROS1 TKI. First, we established a patient-derived ezrin gene-ROS1-rearranged NSCLC cell line (KTOR71). Then, following proteomic analysis, we focused on yes-associated protein 1 (YAP1), which is a major mediator of the Hippo pathway, as a candidate factor involved in cell survival during early lorlatinib treatment. Yes-associated protein 1 was activated by short-term lorlatinib treatment both in vitro and in vivo. Genetic inhibition of YAP1 using siRNA, or pharmacological inhibition of YAP1 function by the YAP1-inhibitor verteporfin, enhanced the sensitivity of KTOR71 cells to lorlatinib. In addition, the prosurvival effect of YAP1 was exerted through the reactivation of AKT. Finally, combined therapy with verteporfin and lorlatinib was found to achieve significantly sustained tumor remission compared with lorlatinib monotherapy in vivo. These results suggest that YAP1 could mediate initial cell resistance to lorlatinib in KTOR71 cells. Thus, combined therapy targeting both YAP1 and ROS1 could potentially improve the outcome of ROS1-rearranged NSCLC.
Collapse
Affiliation(s)
- Masatoshi Yamazoe
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takahiro Tsuji
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan,Department of Anatomy and Molecular Cell Biology, Graduate School of MedicineNagoya UniversityNagoyaJapan
| | - Tomoko Funazo
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroshi Yoshida
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kentaro Hashimoto
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazutaka Hosoya
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Tatsuya Ogimoto
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hitomi Ajimizu
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryo Itotani
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yuichi Sakamori
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kiyomitsu Kuninaga
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
39
|
Yu X, Xu J, Cahuzac KM, Xie L, Shen Y, Chen X, Liu J, Parsons RE, Jin J. Novel Allosteric Inhibitor-Derived AKT Proteolysis Targeting Chimeras (PROTACs) Enable Potent and Selective AKT Degradation in KRAS/BRAF Mutant Cells. J Med Chem 2022; 65:14237-14260. [PMID: 36197750 PMCID: PMC9613624 DOI: 10.1021/acs.jmedchem.2c01454] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AKT is an important target for cancer therapeutics. Significant advancements have been made in developing ATP-competitive and allosteric AKT inhibitors. Recently, several AKT proteolysis targeting chimeras (PROTACs) derived from ATP-competitive AKT inhibitors have been reported, including MS21. While MS21 potently degraded AKT and inhibited the growth in tumor cells harboring PI3K/PTEN pathway mutation, it was largely ineffective in degrading AKT in KRAS/BRAF mutated cells as a single agent. To overcome the AKT degradation resistance in KRAS/BRAF mutated cells, we developed novel AKT PROTACs derived from an AKT allosteric inhibitor, including degrader 62 (MS15). 62 displayed potent and selective AKT degradation activity and potent antiproliferative activity in KRAS/BRAF mutated cancer cells, in addition to PI3K/PTEN mutated cancer cells. Furthermore, 62 was bioavailable in mice through intraperitoneal administration. Overall, 62 is a valuable chemical tool to degrade AKT in cells harboring KRAS/BRAF mutation and expands the tool box for pharmacologically modulating AKT.
Collapse
Affiliation(s)
- Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jia Xu
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kaitlyn M. Cahuzac
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ramon E. Parsons
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
40
|
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y, Fan S. Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer 2022; 13:3434-3443. [PMID: 36313041 PMCID: PMC9608206 DOI: 10.7150/jca.77619] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of immune checkpoints has been well known to provide novel clues for cancer treatments. Immunotherapy against the programmed cell death protein-1 (PD-1) /programmed death-ligand-1 (PD-L1), one of the most popular auxiliary treatments in recent years, has been applied in various tumor treatments, including non-small cell lung cancer (NSCLC). However, inevitable issues such as side effects and drug resistance emerge following the use of immune checkpoint inhibitors. The PI3K/AKT/mTOR pathway may participate in the regulation of PD-L1 expression. Abnormal PI3K/AKT/mTOR pathway activation results in increased PD-L1 protein translation, whereas PD-L1 overexpression can activate the PI3K/AKT/mTOR pathway inversely. Via downstream proteins, including 4E-BP1, STAT3, NF-κB, c-MYC, and AMPK in aberrant energy status, the PI3K/AKT/mTOR pathway can regulate PD-L1 post-transcription and translation. Besides, the regulation of the PI3K pathway by the PD-1/PD-L1 axis involves both tumor cells and the tumor immune microenvironment. Inhibitors targeting the PD-1/PD-L1 have been successfully applied in the treatment of gastrointestinal cancer and breast cancer. Meanwhile, drug resistance from alternative pathway activation also evidently affects clinical progress. To achieve a better therapeutic effect and quality of survival, the combination of multiple treatment modalities presents great research value. Here we reviewed the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in the progression and treatment of NSCLC and summarized its clinical implications. The intracellular interactions between PD-1/PD-L1 and the PI3K/AKT/mTOR pathway indicate that PD-1/PD-L1 inhibitors have a wide range of potential applications. And we presented the mechanism for combining therapy with monoclonal antibody PD-1/PD-L1 and PI3K/AKT/mTOR inhibitors in this review, to broaden the therapies for NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songqing Fan
- ✉ Corresponding author: Songqing Fan, Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. E-mail address:
| |
Collapse
|
41
|
Xu F, Zhang X, Chen Z, He S, Guo J, Yu L, Wang Y, Hou C, Ai-Furas H, Zheng Z, Smaill JB, Patterson AV, Zhang ZM, Chen L, Ren X, Ding K. Discovery of Isoform-Selective Akt3 Degraders Overcoming Osimertinib-Induced Resistance in Non-Small Cell Lung Cancer Cells. J Med Chem 2022; 65:14032-14048. [PMID: 36173763 DOI: 10.1021/acs.jmedchem.2c01246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
EGFR inhibitor therapies have brought significant benefit to NSCLC patients. However, all patients gradually progress to acquired resistance via diverse mechanisms. Akt3 overexpression but not Akt1/2 is one of the found molecular events that mediate osimertinib (1) resistance in NSCLC patients. Here, we report 12l as the first bona fide isoform-selective Akt3 degrader which potently induced proteasomal degradation of the target both in vitro and in vivo, whereas its effects on Akt1/2 were minimal. Using 12l as a tool, non-canonical function of Akt3 was validated to contribute greatly to survival of 1-resistant H1975OR NSCLC cells. Degrader 12l potently suppressed the growth of H1975OR as well as several NSCLC cell lines with low nanomolar IC50 values and demonstrated promising in vivo antitumor efficacy in nude mice bearing H1975OR or PC9 NSCLC xenograft models. Selective degradation of Akt3 may be considered as a novel strategy for human cancer therapy.
Collapse
Affiliation(s)
- Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Xin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Zhipeng Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Sheng He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yongjin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Caiyun Hou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hawaa Ai-Furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zongyao Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaomei Ren
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| |
Collapse
|
42
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
43
|
Chandrasekera P, Perfetto M, Lu C, Zhuo M, Bahudhanapati H, Li J, Chen WC, Kulkarni P, Christian L, Liu J, Yien YY, Yu C, Wei S. Metalloprotease ADAM9 cleaves ephrin-B ligands and differentially regulates Wnt and mTOR signaling downstream of Akt kinase in colorectal cancer cells. J Biol Chem 2022; 298:102225. [PMID: 35780836 PMCID: PMC9358476 DOI: 10.1016/j.jbc.2022.102225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Ephrin-B signaling has been implicated in many normal and pathological processes, including neural crest development and tumor metastasis. We showed previously that proteolysis of ephrin-B ligands by the disintegrin metalloprotease ADAM13 is necessary for canonical Wnt signal activation and neural crest induction in Xenopus, but it was unclear if these mechanisms are conserved in mammals. Here, we report that mammalian ADAM9 cleaves ephrin-B1 and ephrin-B2 and can substitute for Xenopus ADAM13 to induce the neural crest. We found that ADAM9 expression is elevated in human colorectal cancer (CRC) tissues and that knockdown (KD) of ADAM9 inhibits the migration and invasion of SW620 and HCT116 CRC cells by reducing the activity of Akt kinase, which is antagonized by ephrin-Bs. Akt is a signaling node that activates multiple downstream pathways, including the Wnt and mTOR pathways, both of which can promote CRC cell migration/invasion. Surprisingly, we also found that KD of ADAM9 downregulates Wnt signaling but has negligible effects on mTOR signaling in SW620 cells; in contrast, mTOR activity is suppressed while Wnt signaling remains unaffected by ADAM9 KD in HCT116 cells. These results suggest that mammalian ADAM9 cleaves ephrin-Bs to derepress Akt and promote CRC migration and invasion; however, the signaling pathways downstream of Akt are differentially regulated by ADAM9 in different CRC cell lines, reflecting the heterogeneity of CRC cells in responding to manipulations of upstream Akt regulators.
Collapse
Affiliation(s)
| | - Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Biology, West Virginia University, Morgantown, West Virginia, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Congyu Lu
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Minghui Zhuo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | | | - Jiejing Li
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA; Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wei-Chih Chen
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Pallavi Kulkarni
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Laura Christian
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Jun Liu
- Department of Biochemistry and Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
44
|
Zhu CL, Luo X, Tian T, Rao Z, Wang H, Zhou Z, Mi T, Chen D, Xu Y, Wu Y, Che J, Zhou Y, Li J, Dong X. Structure-based rational design enables efficient discovery of a new selective and potent AKT PROTAC degrader. Eur J Med Chem 2022; 238:114459. [DOI: 10.1016/j.ejmech.2022.114459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
|
45
|
Spriano F, Sartori G, Tarantelli C, Barreca M, Golino G, Rinaldi A, Napoli S, Mascia M, Scalise L, Arribas AJ, Cascione L, Zucca E, Stathis A, Gaudio E, Bertoni F. Pharmacologic screen identifies active combinations with BET inhibitors and LRRK2 as a novel putative target in lymphoma. EJHAEM 2022; 3:764-774. [PMID: 36051080 PMCID: PMC9422027 DOI: 10.1002/jha2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Inhibitors of the Bromo- and Extra-Terminal domain (BET) family proteins have strong preclinical antitumor activity in multiple tumor models, including lymphomas. Limited single-agent activity has been reported in the clinical setting. Here, we have performed a pharmacological screening to identify compounds that can increase the antitumor activity of BET inhibitors in lymphomas. The germinal center B-cell like diffuse large B-cell lymphoma (DLBCL) cell lines OCI-LY-19 and WSU-DLCL2 were exposed to 348 compounds given as single agents at two different concentrations and in combination with the BET inhibitor birabresib. The combination partners included small molecules targeting important biologic pathways such as PI3K/AKT/MAPK signaling and apoptosis, approved anticancer agents, kinase inhibitors, epigenetic compounds. The screening identified a series of compounds leading to a stronger antiproliferative activity when given in combination than as single agents: the histone deacetylase (HDAC) inhibitors panobinostat and dacinostat, the mTOR (mechanistic target of rapamycin) inhibitor everolimus, the ABL/SRC (ABL proto-oncogene/SRC proto oncogene) inhibitor dasatinib, the AKT1/2/3 inhibitor MK-2206, the JAK2 inhibitor TG101209. The novel finding was the benefit given by the addition of the LRRK2 inhibitor LRRK2-IN-1, which was validated in vitro and in vivo. Genetic silencing demonstrated that LRRK2 sustains the proliferation of lymphoma cells, a finding paired with the association between high expression levels and inferior outcome in DLBCL patients. We identified combinations that can improve the response to BET inhibitors in lymphomas, and LRRK2 as a gene essential for lymphomas and as putative novel target for this type of tumors.
Collapse
Affiliation(s)
- Filippo Spriano
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Giulio Sartori
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Chiara Tarantelli
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Marilia Barreca
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Gaetanina Golino
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Andrea Rinaldi
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Sara Napoli
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Michele Mascia
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Lorenzo Scalise
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Alberto J. Arribas
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Luciano Cascione
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Emanuele Zucca
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- Department of OncologyOncology Institute of Southern SwitzerlandEnte Ospedaliero CantonaleBellinzonaSwitzerland
| | - Anastasios Stathis
- Department of OncologyOncology Institute of Southern SwitzerlandEnte Ospedaliero CantonaleBellinzonaSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
| | - Eugenio Gaudio
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Francesco Bertoni
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- Department of OncologyOncology Institute of Southern SwitzerlandEnte Ospedaliero CantonaleBellinzonaSwitzerland
| |
Collapse
|
46
|
Guha L, Bhat IA, Bashir A, Rahman JU, Pottoo FH. Nanotechnological Approaches for the Treatment of Triple-Negative Breast Cancer: A Comprehensive Review. Curr Drug Metab 2022; 23:781-799. [PMID: 35676850 DOI: 10.2174/1389200223666220608144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, S.A.S Nagar, Punjab 160062, India
| | - Ishfaq Ahmad Bhat
- Northern Railway Hospital, Sri Mata Vaishno Devi, Katra, Reasi 182320, India
| | - Aasiya Bashir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
47
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
48
|
Zhang B, Liu G, Wang X, Hu X. Identification of Molecular Targets and Potential Mechanisms of Yinchen Wuling San Against Head and Neck Squamous Cell Carcinoma by Network Pharmacology and Molecular Docking. Front Genet 2022; 13:914646. [PMID: 35873484 PMCID: PMC9306494 DOI: 10.3389/fgene.2022.914646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents one of the most malignant and heterogeneous tumors, and the patients have low 5-year survival. Traditional Chinese medicine (TCM) has been demonstrated as an effective complementary and/or alternative therapy for advanced malignancies including HNSCC. It has been noted that several herbs that are used for preparing Yinchen Wuling San (YWLS) have anti-tumor activities, whereas their mechanisms of action remain elusive. In this study, network pharmacology and molecular docking studies were employed to explore the underlying mechanisms of action of YWLS against HNSCC. The 58 active ingredients from six herbs used for YWLS and their 506 potential targets were screened from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and SwissTargetPrediction database. A total of 2,173 targets associated with HNSCC were mainly identified from the DisGeNET and GeneCards databases. An active components-targets-disease network was constructed in the Cytoscape. Top 20 hub targets, such as AKT1, EGFR, TNF, ESR1, SRC, HSP90AA1, MAPK3, ERBB2, and CCND1, were identified by a degree in the protein–protein interaction (PPI) network. Gene functional enrichment analysis showed that PI3K-AKT, MAPK, Ras, TNF, and EGFR were the main signaling pathways of YWLS in treating HNSCC. There were 48 intersected targets such as EGFR, AKT1, and TNF that were associated with patients’ outcomes by the univariate Cox analysis, and most of them had increased expression in the tumor as compared to normal tissues. The area under curves of receiver operating characteristic indicated their diagnostic potential. Inhibition of these survival-related targets and/or combination with EGFR or AKT inhibitors were promising therapeutic options in HNSCC. The partial active components of YWLS exhibited good binding with the hub targets, and ADME analysis further evaluated the drug-likeness of the active components. These compounds and targets identified in this study might provide novel treatment strategies for HNSCC patients, and the subsequent work is essential to verify the underlying mechanisms of YWLS against HNSCC.
Collapse
Affiliation(s)
- Biyu Zhang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Genyan Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Xin Wang
- School of Medicine, Jiujiang University, Jiujiang, China
| | - Xuelei Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
49
|
AKT1 Transcriptomic Landscape in Breast Cancer Cells. Cells 2022; 11:cells11152290. [PMID: 35892586 PMCID: PMC9332453 DOI: 10.3390/cells11152290] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Overexpression and hyperactivation of the serine/threonine protein kinase B (AKT) pathway is one of the most common cellular events in breast cancer progression. However, the nature of AKT1-specific genome-wide transcriptomic alterations in breast cancer cells and breast cancer remains unknown to this point. Here, we delineate the impact of selective AKT1 knock down using gene-specific siRNAs or inhibiting the AKT activity with a pan-AKT inhibitor VIII on the nature of transcriptomic changes in breast cancer cells using the genome-wide RNA-sequencing analysis. We found that changes in the cellular levels of AKT1 lead to changes in the levels of a set of differentially expressed genes and, in turn, imply resulting AKT1 cellular functions. In addition to an expected positive relationship between the status of AKT1 and co-expressed cellular genes, our study unexpectedly discovered an inherent role of AKT1 in inhibiting the expression of a subset of genes in both unstimulated and growth factor stimulated breast cancer cells. We found that depletion of AKT1 leads to upregulation of a subset of genes—many of which are also found to be downregulated in breast tumors with elevated high AKT1 as well as upregulated in breast tumors with no detectable AKT expression. Representative experimental validation studies in two breast cancer cell lines showed a reasonable concurrence between the expression data from the RNA-sequencing and qRT-PCR or data from ex vivo inhibition of AKT1 activity in cancer patient-derived cells. In brief, findings presented here provide a resource for further understanding of AKT1-dependent modulation of gene expression in breast cancer cells and broaden the scope and significance of AKT1 targets and their functions.
Collapse
|
50
|
Abid R, Ghazanfar S, Farid A, Sulaman SM, Idrees M, Amen RA, Muzammal M, Shahzad MK, Mohamed MO, Khaled AA, Safir W, Ghori I, Elasbali AM, Alharbi B. Pharmacological Properties of 4', 5, 7-Trihydroxyflavone (Apigenin) and Its Impact on Cell Signaling Pathways. Molecules 2022; 27:4304. [PMID: 35807549 PMCID: PMC9267958 DOI: 10.3390/molecules27134304] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | | | - Maryam Idrees
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Muhammad Khurram Shahzad
- Biotechnology and Bioinformatics Department, International Islamic University, Islamabad 44100, Pakistan;
| | | | | | - Waqas Safir
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Ifra Ghori
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan;
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory, College of Applied Medical Science, University of Hail, Hail 81481, Saudi Arabia;
| |
Collapse
|