1
|
Schroeter T, Lapham K, Varma MVS, Obach RS. Positioning Enzyme- and Transporter-Based Precipitant Drug-Drug Interaction Studies in Drug Design. J Med Chem 2025; 68:1021-1032. [PMID: 39762221 DOI: 10.1021/acs.jmedchem.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In vitro assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design. Herein, simplified criteria and methodologies amenable to high-throughput screening are defined to enable drug design to address DDI risk. A strategy is proposed that focuses on the most important enzymes and transporters: namely, cytochrome P450 (CYP) 3A4, CYP2C9, and CYP2D6, organic anion transporting polypeptide (OATP) 1B1, and breast cancer resistant protein (BCRP).
Collapse
Affiliation(s)
- Thomas Schroeter
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Kimberly Lapham
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Manthena V S Varma
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - R Scott Obach
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
2
|
Sinokki A, Miinalainen A, Kiander W, Kidron H. Preincubation-dependent inhibition of organic anion transporting polypeptide 2B1. Eur J Pharm Sci 2024; 200:106852. [PMID: 39019347 DOI: 10.1016/j.ejps.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Preincubation with inhibitor in organic anion transporting polypeptide (OATP) in vitro assays may increase the inhibition potency of inhibitors compared to conventional inhibition assays with only short inhibitor coincubation with substrate. The decrease in IC50 may affect prediction of drug-drug interactions (DDI) involving these transporters and inhibitors. Only few drugs, however, have been assessed for the preincubation-dependent inhibition of the OATP2B1 transporter. Therefore, we studied the effect of preincubation on OATP2B1 inhibition with five known OATP2B1 inhibitors (atorvastatin, erlotinib, ezetimibe, ticagrelor and simeprevir) in HEK293 cells transiently overexpressing OATP2B1. IC50 values were determined with and without inhibitor preincubation for 20 min with three different OATP2B1 substrates (dibromofluorescein, DBF; 5-carboxyfluorescein, 5-CF; estrone sulfate). Atorvastatin, ezetimibe, and simeprevir displayed more than 2-fold lower IC50 values after preincubation with at least one of the tested substrates. Altogether, 4 out of 15 inhibitor/substrate combinations exhibited more than 2-fold potentiation of IC50 after inhibitor preincubation. In addition, preincubation by itself, without inhibitor present with the substrate, resulted in more than 50% inhibition of OATP2B1-mediated uptake of DBF and/or 5-CF by atorvastatin, ticagrelor and simeprevir. Thus, erlotinib was the only inhibitor with no indication of potentiation of inhibition by preincubation with any of the tested substrates. In conclusion, preincubation resulted in inhibitor- and substrate-dependent inhibition of OATP2B1. These results support the conclusion that to reduce the risk of false negative DDI prediction, preincubation should be considered also in OATP2B1 inhibition assays.
Collapse
Affiliation(s)
- Alli Sinokki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Annika Miinalainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Wilma Kiander
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
3
|
Asano S, Kurosaki C, Mori Y, Shigemi R. Quantitative prediction of transporter-mediated drug-drug interactions using the mechanistic static pharmacokinetic (MSPK) model. Drug Metab Pharmacokinet 2024; 54:100531. [PMID: 38064927 DOI: 10.1016/j.dmpk.2023.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 02/06/2024]
Abstract
Guidance/guidelines on drug-drug interactions (DDIs) have been issued in Japan, the United States, and Europe. These guidance/guidelines provide decision trees for conducting metabolizing enzyme-mediated clinical DDI studies; however, the decision trees for transporter-mediated DDIs lack quantitative prediction methods. In this study, the accuracy of a net-effect mechanistic static pharmacokinetics (MSPK) model containing the fraction transported (ft) of transporters was examined to predict transporter-mediated DDIs. This study collected information on 25 oral drugs with new active reagents that were used in clinical DDI studies as perpetrators (42 cases) from drugs approved in Japan between April 2016 and June 2020. The AUCRs (AUC ratios with and without perpetrators) of victim drugs were predicted using the net-effect MSPK model. As a result, 83 and 95% of the predicted AUCRs were within 1.5- and 2-fold error in the observed AUCRs, respectively. In cases where the victims were statins in which pharmacokinetics several transporters are involved, 70 and 91% of the predicted AUCRs were within 1.5- and 2-fold errors, respectively. Therefore, the net-effect MSPK model was applicable for predicting the AUCRs of victims, which are substrates for multiple transporters.
Collapse
Affiliation(s)
- Satoshi Asano
- Japan Pharmaceutical Manufacturers Association, Nihonbashi Life Science Bldg, 2-3-11 Nihonbashi-honcho, Chuo-Ku, Tokyo, Japan; Teijin Pharma Limited, Toxicology & DMPK Development Research Group, 4-3-2, Asahigaoka, Hino, Tokyo, 191-8512, Japan.
| | - Chie Kurosaki
- Japan Pharmaceutical Manufacturers Association, Nihonbashi Life Science Bldg, 2-3-11 Nihonbashi-honcho, Chuo-Ku, Tokyo, Japan; FUJIFILM Toyama Chemical Co., Ltd, ADME-Tox Group, Bioanalytical Sciences Research Department, Toyama Research and Development Center, 4-1, Shimo-Okui 2-chome, Toyama-shi, Toyama, Japan
| | - Yuko Mori
- Japan Pharmaceutical Manufacturers Association, Nihonbashi Life Science Bldg, 2-3-11 Nihonbashi-honcho, Chuo-Ku, Tokyo, Japan; Pfizer R&D Japan, Clinical Pharmacology and Bioanalytics, Shinjuku Bunka Quint Bldg., 3-22-7, Yoyogi, Shibuya-ku, Tokyo, Japan
| | - Ryota Shigemi
- Japan Pharmaceutical Manufacturers Association, Nihonbashi Life Science Bldg, 2-3-11 Nihonbashi-honcho, Chuo-Ku, Tokyo, Japan; Bayer Yakuhin, Ltd, Preclinical Development, Breeze Tower, 2-4-9, Umeda, Kita-ku, Osaka, Japan
| |
Collapse
|
4
|
Kikuchi R, Chothe PP, Chu X, Huth F, Ishida K, Ishiguro N, Jiang R, Shen H, Stahl SH, Varma MVS, Willemin ME, Morse BL. Utilization of OATP1B Biomarker Coproporphyrin-I to Guide Drug-Drug Interaction Risk Assessment: Evaluation by the Pharmaceutical Industry. Clin Pharmacol Ther 2023; 114:1170-1183. [PMID: 37750401 DOI: 10.1002/cpt.3062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Drug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptides 1B1/1B3 (OATP1B) can be substantial, however, challenges remain for predicting interaction risk. Emerging evidence suggests that endogenous biomarkers, particularly coproporphyrin-I (CP-I), can be used to assess in vivo OATP1B activity. The present work under the International Consortium for Innovation and Quality in Pharmaceutical Development was aimed primarily at assessing CP-I as a biomarker for informing OATP1B DDI risk. Literature and unpublished CP-I data along with pertinent in vitro and clinical DDI information were collected to identify DDIs primarily involving OATP1B inhibition and assess the relationship between OATP1B substrate drug and CP-I exposure changes. Static models to predict changes in exposure of CP-I, as a selective OATP1B substrate, were also evaluated. Significant correlations were observed between CP-I area under the curve ratio (AUCR) or maximum concentration ratio (Cmax R) and AUCR of substrate drugs. In general, the CP-I Cmax R was equal to or greater than the CP-I AUCR. CP-I Cmax R < 1.25 was associated with absence of OATP1B-mediated DDIs (AUCR < 1.25) with no false negative predictions. CP-I Cmax R < 2 was associated with weak OATP1B-mediated DDIs (AUCR < 2). A correlation was identified between CP-I exposure changes and OATP1B1 static DDI predictions. Recommendations for collecting and interpreting CP-I data are discussed, including a decision tree for guiding DDI risk assessment. In conclusion, measurement of CP-I is recommended to inform OATP1B inhibition potential. The current analysis identified changes in CP-I exposure that may be used to prioritize, delay, or replace clinical DDI studies.
Collapse
Affiliation(s)
- Ryota Kikuchi
- Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois, USA
| | - Paresh P Chothe
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Felix Huth
- PK Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Kazuya Ishida
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Rongrong Jiang
- Drug Metabolism and Pharmacokinetics, Eisai Inc., Cambridge, Massachusetts, USA
| | - Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Simone H Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Marie-Emilie Willemin
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bridget L Morse
- Department of Drug Disposition, Eli Lilly, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Fujita K, Zhu Q, Arakawa H, Shirasaka Y, Tamai I. Potentiation of the Uricosuric Effect of Dotinurad by Trans-Inhibition of the Uric Acid Reabsorptive Transporter 1. Drug Metab Dispos 2023; 51:1527-1535. [PMID: 37643882 DOI: 10.1124/dmd.123.001412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Urate transporter 1 (URAT1) is a transporter responsible for uric acid (UA) reabsorption by renal proximal tubules and a pharmacological target of uricosuric agents. Probenecid and benzbromarone have been used as uricosuric agents, while dotinurad was recently approved in Japan. Notably, the in vitro IC 50 of dotinurad on URAT1 is not strong enough to explain its in vivo uricosuric effect estimated based on clinical unbound plasma concentrations, suggesting the presence of mechanisms other than competition with UA uptake at the extracellular domain of URAT1 (cis-inhibition). In this study, trans-inhibition was hypothesized as the mechanism underlying URAT1 inhibition by dotinurad, wherein intracellularly accumulated dotinurad inactivates URAT1. In URAT1-expressing Madin-Darby Canine Kidney-II cells and Xenopus oocytes, pre-incubation with dotinurad potentiated the inhibitory effect more than co-incubation alone, but this effect was not observed with benzbromarone or probenecid. Under co-incubation, dotinurad inhibited UA uptake in a competitive manner (cis-inhibition). When we pre-injected dotinurad directly into oocytes and immediately measured [14C]UA uptake without coincubation (only trans-inhibition), dotinurad noncompetitively inhibited UA uptake. URAT1 is an exchange transporter for UA and monocarboxylates such as nicotinic acid (NA). Pre-injected dotinurad and extracellular UA attenuated and facilitated efflux of [3H]NA, respectively, whereas pre-injection of benzbromarone or probenecid did not affect it, suggesting that dotinurad exhibits trans-inhibition by attenuating URAT1-mediated efflux of monocarboxylates, which is a driving force for UA uptake by URAT1. Accordingly, dotinurad ameliorates URAT1-mediated UA reabsorption by both cis- and trans-inhibition, explaining its clinically stronger uricosuric effect than that estimated by the in vitro IC50 value. SIGNIFICANCE STATEMENT: The uricosuric agent dotinurad inhibits uric acid reabsorptive transporter (URAT) 1 with a clinical potency stronger than that estimated from IC 50 obtained by in vitro URAT1 inhibition. This in vivo-in vitro discrepancy was explained by the trans-inhibition effect of dotinurad on URAT1. Trans-inhibition was due to the attenuation of monocarboxylates efflux via URAT1, which is a driving force for URAT1-mediated exchange transport of uric acid. Overall, this is the first study to experimentally demonstrate trans-inhibition mechanism of URAT1.
Collapse
Affiliation(s)
- Kazuki Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Qiunan Zhu
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Chothe PP, Mitra P, Nakakariya M, Ramsden D, Rotter CJ, Sandoval P, Tohyama K. Drug transporters in drug disposition - the year 2022 in review. Drug Metab Rev 2023; 55:343-370. [PMID: 37644867 DOI: 10.1080/03602532.2023.2252618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
On behalf of all the authors, I am pleased to share our third annual review on drug transporter science with an emphasis on articles published and deemed influential in signifying drug transporters' role in drug disposition in the year 2022. As the drug transporter field is rapidly evolving several key findings were noted including promising endogenous biomarkers, rhythmic activity, IVIVE approaches in transporter-mediated clearance, new modality interaction, and transporter effect on gut microbiome. As identified previously (Chothe et Cal. 2021, 2022) the goal of this review is to highlight key findings without a comprehensive overview of each article and to this end, each coauthor independently selected 1-3 peer-reviewed articles published or available online in the year 2022 (Table 1). Each article is summarized in synopsis and commentary with unbiased viewpoints by each coauthor. We strongly encourage readers to consult original articles for specifics of the study. Finally, I would like to thank all coauthors for their continued support in writing this annual review on drug transporters and invite anyone interested in contributing to future versions of this review.
Collapse
Affiliation(s)
- Paresh P Chothe
- Department of Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Pallabi Mitra
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Diane Ramsden
- Department of Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Charles J Rotter
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), San Diego, CA, USA
| | - Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
7
|
Tastet V, Le Vée M, Kerhoas M, Zerdoug A, Jouan E, Bruyère A, Fardel O. Interactions of organophosphate flame retardants with human drug transporters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115348. [PMID: 37597291 DOI: 10.1016/j.ecoenv.2023.115348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé), France.
| |
Collapse
|
8
|
Nozaki Y, Izumi S. Preincubation Time-Dependent, Long-Lasting Inhibition of Drug Transporters and Impact on the Prediction of Drug-Drug Interactions. Drug Metab Dispos 2023; 51:1077-1088. [PMID: 36854606 DOI: 10.1124/dmd.122.000970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Transporter-mediated drug-drug interaction (DDI) is of clinical concern, and the quantitative prediction of DDIs is an indispensable part of drug development. Cell-based inhibition assays, in which a representative probe substrate and a potential inhibitor are coincubated, are routinely performed to assess the inhibitory potential of new molecular entities on drug transporters. However, the inhibitory effect of cyclosporine A (CsA) on organic anion transporting polypeptide (OATP) 1B1 is substantially potentiated with CsA preincubation, and this effect is both long-lasting and dependent on the preincubation time. This phenomenon has also been reported with transporters other than OATP1Bs, but it is considered more prevalent among OATP1Bs and organic cation transporters. Regulatory agencies have also noted this preincubation effect and have recommended that pharmaceutical companies consider inhibitor preincubation when performing in vitro OATP1B1 and OATP1B3 inhibition studies. Although the underlying mechanisms responsible for the preincubation effect are not fully understood, a trans-inhibition mechanism was recently demonstrated for OATP1B1 inhibition by CsA, in which CsA inhibited OATP1B1 not only extracellularly (cis-inhibition) but also intracellularly (trans-inhibition). Furthermore, the trans-inhibition potency of CsA was much greater than that of cis-inhibition, suggesting that trans-inhibition might be a key driver of clinical DDIs of CsA with OATP1B substrate drugs. Although confidence in transporter-mediated DDI prediction is generally considered to be low, the predictability might be further improved by incorporating the trans-inhibition mechanism into static and dynamic models for preincubation-dependent inhibitors of OATP1Bs and perhaps other transporters. SIGNIFICANCE STATEMENT: Preincubation time-dependent, long-lasting inhibition has been observed for OATP1B1 and other solute carrier transporters in vitro. Recently, a trans-inhibition mechanism for the preincubation effect of CsA on OATP1B1 inhibition was identified, with the trans-inhibition potency being greater than that of cis-inhibition. The concept of trans-inhibition may allow us to further understand the mechanism of transporter-mediated DDIs not only for OATP1B1 but also for other transporters and to improve the accuracy and confidence of DDI predictions.
Collapse
Affiliation(s)
- Yoshitane Nozaki
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki, 300-2635, Japan (Y.N., S.I.)
| | - Saki Izumi
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki, 300-2635, Japan (Y.N., S.I.)
| |
Collapse
|
9
|
Sugiyama Y, Aoki Y. A 20-Year Research Overview: Quantitative Prediction of Hepatic Clearance Using the In Vitro-In Vivo Extrapolation Approach Based on Physiologically Based Pharmacokinetic Modeling and Extended Clearance Concept. Drug Metab Dispos 2023; 51:1067-1076. [PMID: 37407092 DOI: 10.1124/dmd.123.001344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Understanding the extended clearance concept and establishing a physiologically based pharmacokinetic (PBPK) model are crucial for investigating the impact of changes in transporter and metabolizing enzyme abundance/functions on drug pharmacokinetics in blood and tissues. This mini-review provides an overview of the extended clearance concept and a PBPK model that includes transporter-mediated uptake processes in the liver. In general, complete in vitro and in vivo extrapolation (IVIVE) poses challenges due to missing factors that bridge the gap between in vitro and in vivo systems. By considering key in vitro parameters, we can capture in vivo pharmacokinetics, a strategy known as the top-down or middle-out approach. We present the latest progress, theory, and practice of the Cluster Gauss-Newton method, which is used for middle-out analyses. As examples of poor IVIVE, we discuss "albumin-mediated hepatic uptake" and "time-dependent inhibition" of OATP1Bs. The hepatic uptake of highly plasma-bound drugs is more efficient than what can be accounted for by their unbound concentration alone. This phenomenon is referred to as "albumin-mediated" hepatic uptake. IVIVE was improved by measuring hepatic uptake clearance in vitro in the presence of physiologic albumin concentrations. Lastly, we demonstrate the application of Cluster Gauss-Newton method-based analysis to the target-mediated drug disposition of bosentan. Incorporating saturable target binding and OATP1B-mediated hepatic uptake into the PBPK model enables the consideration of nonlinear kinetics across a wide dose range and the prediction of receptor occupancy over time. SIGNIFICANCE STATEMENT: There have been multiple instances where researchers' endeavors to unravel the underlying mechanism of poor in vitro-in vivo extrapolation have led to the discovery of previously undisclosed truths. These include 1) albumin-mediated hepatic uptake, 2) the target-mediated drug disposition in small molecules, and 3) the existence of a trans-inhibition mechanism by inhibitors for OATP1B-mediated hepatic uptake of drugs. Consequently, poor in vitro-in vivo extrapolation and the subsequent inquisitiveness of scientists may serve as a pivotal gateway to uncover hidden mechanisms.
Collapse
Affiliation(s)
- Yuichi Sugiyama
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Chiyoda-ku, Tokyo, Japan (Y.A., Y.S.); ShanghaiTech University, iHuman Institute, Pudong, Shanghai, China (Y.S.); and Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Y.A.)
| | - Yasunori Aoki
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Chiyoda-ku, Tokyo, Japan (Y.A., Y.S.); ShanghaiTech University, iHuman Institute, Pudong, Shanghai, China (Y.S.); and Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Y.A.)
| |
Collapse
|
10
|
Tátrai P, Temesszentandrási-Ambrus C, Varga T, Gáborik Z. The Inhibitor Preincubation Effect Is Universal to SLC Transporter Assays and Is Only Partially Eliminated in the Presence of Extracellular Protein. Drug Metab Dispos 2023; 51:982-994. [PMID: 37208186 DOI: 10.1124/dmd.122.001191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023] Open
Abstract
Variation in the methodology of in vitro transporter inhibition assays causes wide divergence in reported IC50/Ki data. Notably, although potentiation of transporter inhibition by preincubation (PTIP) has been described, current guidelines do not specifically recommend inhibitor preincubation; they only encourage sponsors to follow emerging literature. To clarify how generally preincubation should be considered in transporter inhibition studies and whether PTIP can be solely explained by protein binding of the respective inhibitors, we performed in vitro inhibition assays on solute carrier (SLC) and ATP-binding cassette transporters scarcely or not covered in prior research and examined the effect of extracellular protein in preincubation and washout experiments. In SLC assays without extracellular protein, a 30-minute preincubation caused significant > twofold change of IC50 in 21/33 transporter-inhibitor combinations involving 19 evolutionarily disparate transporters. The preincubation effect correlated with inhibitor properties like protein binding and aqueous solubility. In vesicular transport assays of multidrug resistance protein 1, breast cancer resistance protein, multidrug resistance-associated protein 2, and bile salt export pump, sizable PTIP was observed for only 2/23 combinations, and preincubation was practically inconsequential in breast cancer resistance protein or multidrug resistance protein 1 monolayer assays. In SLC assays, PTIP partly persisted in the presence of 5% albumin, indicating that the absence of extracellular protein does not fully explain PTIP. The presence of protein, however, complicated the interpretation of results. Overall, while preincubating without protein may overpredict inhibitory potency, adding protein compromises clarity, and omitting preincubation altogether may miss clinically relevant inhibitors. Therefore, we propose that protein-free preincubation should be considered in all SLC inhibition assays. ATP-binding cassette transporter inhibition seems less commonly affected by preincubation, but conclusions require further investigation. SIGNIFICANCE STATEMENT: Drugs may inhibit transporter proteins in the body, which may precipitate drug interactions. In vitro transporter inhibition assays help predict such drug interactions. Some inhibitors act more potently when preincubated with the transporter prior to the assay. Here we argue that this effect is not a mere in vitro artifact due to the lack of plasma proteins and should be considered in all uptake inhibition assays to model the worst-case scenario. Preincubation in efflux transporter inhibition assays is likely dispensable.
Collapse
Affiliation(s)
- Péter Tátrai
- SOLVO Biotechnology, Charles River Laboratories Hungary, Budapest, Hungary
| | | | - Tamás Varga
- SOLVO Biotechnology, Charles River Laboratories Hungary, Budapest, Hungary
| | - Zsuzsanna Gáborik
- SOLVO Biotechnology, Charles River Laboratories Hungary, Budapest, Hungary
| |
Collapse
|
11
|
Watanabe T, Tanaka R, Suzuki Y, Sato H, Negami J, Yoshijima C, Oda A, Ono H, Tatsuta R, Ohno K, Itoh H. Positive correlation between organic anion transporter 1B function indicated by plasma concentration of coproporphyrin-I and blood concentration of cyclosporin A in real-world patients. Br J Clin Pharmacol 2022; 89:1672-1681. [PMID: 36517987 DOI: 10.1111/bcp.15640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
AIMS Cyclosporin A (CyA) has potent inhibitory activity on organic anion transporting polypeptide 1B (OATP1B), causing drug-drug interactions with its substrate drugs. 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), a uraemic toxin, has also been suggested to inhibit OATP1B activity. Recent study has identified coproporphyrin-I (CP-I) as a specific endogenous substrate for OATP1B, which is useful to indicate OATP1B activity. We investigated the relationship of CP-I with CyA and CMPF concentrations in patients taking CyA. METHODS In total, 121 blood samples from 74 patients who took CyA and underwent routine therapeutic drug monitoring were divided into trough and peak samples. RESULTS CyA and CP-I concentrations were significantly higher in peak samples than in trough samples. A positive correlation between CP-I and CyA concentrations was found in all samples and in trough and peak samples, while no correlation was observed between CP-I and CMPF concentrations. Multiple regression analysis identified CyA and C-reactive protein concentrations as independent factors affecting CP-I concentration, with blood CyA concentration having markedly greater contribution to plasma CP-I concentration. CONCLUSION The present study suggests that CyA inhibits OATP1B activity in a concentration-dependent manner in clinical setting, and that dose adjustment of OATP1B substrate drugs coadministered with CyA according to plasma CMPF concentration may not be necessary.
Collapse
Affiliation(s)
- Takuma Watanabe
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| | - Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Haruki Sato
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Jun Negami
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Chisato Yoshijima
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Ayako Oda
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Hiroyuki Ono
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan
| |
Collapse
|
12
|
Elsby R, Atkinson H, Butler P, Riley RJ. Studying the right transporter at the right time: an in vitro strategy for assessing drug-drug interaction risk during drug discovery and development. Expert Opin Drug Metab Toxicol 2022; 18:619-655. [PMID: 36205497 DOI: 10.1080/17425255.2022.2132932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transporters are significant in dictating drug pharmacokinetics, thus inhibition of transporter function can alter drug concentrations resulting in drug-drug interactions (DDIs). Because they can impact drug toxicity, transporter DDIs are a regulatory concern for which prediction of clinical effect from in vitro data is critical to understanding risk. AREA COVERED The authors propose in vitro strategies to assist mitigating/removing transporter DDI risk during development by frontloading specific studies, or managing patient risk in the clinic. An overview of clinically relevant drug transporters and observed DDIs are provided, alongside presentation of key considerations/recommendations for in vitro study design evaluating drugs as inhibitors or substrates. Guidance on identifying critical co-medications, clinically relevant disposition pathways and using mechanistic static equations for quantitative prediction of DDI is compiled. EXPERT OPINION The strategies provided will facilitate project teams to study the right transporter at the right time to minimise development risks associated with DDIs. To truly alleviate or manage clinical risk, the industry will benefit from moving away from current qualitative basic static equation approaches to transporter DDI hazard assessment towards adopting the use of mechanistic models to enable quantitative DDI prediction, thereby contextualising risk to ascertain whether a transporter DDI is simply pharmacokinetic or clinically significant requiring intervention.
Collapse
Affiliation(s)
- Robert Elsby
- Drug Transporter Sciences, Cyprotex Discovery Ltd (an Evotec company), Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Hayley Atkinson
- Drug Transporter Sciences, Cyprotex Discovery Ltd (an Evotec company), Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Philip Butler
- ADME Sciences, Cyprotex Discovery Ltd (an Evotec company), Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Robert J Riley
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxfordshire, United Kingdom
| |
Collapse
|
13
|
Schnegelberger RD, Steiert B, Sandoval PJ, Hagenbuch B. Using a competitive counterflow assay to identify novel cationic substrates of OATP1B1 and OATP1B3. Front Physiol 2022; 13:969363. [PMID: 36160869 PMCID: PMC9493024 DOI: 10.3389/fphys.2022.969363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022] Open
Abstract
OATP1B1 and OATP1B3 are two drug transporters that mediate the uptake of multiple endo- and xenobiotics, including many drugs, into human hepatocytes. Numerous inhibitors have been identified, and for some of them, it is not clear whether they are also substrates. Historically radiolabeled substrates or LC-MS/MS methods were needed to test for transported substrates, both of which can be limiting in time and money. However, the competitive counterflow (CCF) assay originally described for OCT2 and, more recently, for OCT1, OATP2B1, and OATP1A2 does not require radiolabeled substrates or LC-MS/MS methods and, as a result, is a more cost-effective approach to identifying substrates of multidrug transporters. We used a CCF assay based on the stimulated efflux of the common model substrate estradiol-17β-glucuronide (E17βG) and tested 30 compounds for OATP1B1- and OATP1B3-mediated transport. Chinese Hamster Ovary (CHO) cells stably expressing OATP1B1 or OATP1B3 were preloaded with 10 nM [3H]-estradiol-17β-glucuronide. After the addition of known substrates like unlabeled estradiol-17β-glucuronide, estrone-3-sulfate, bromosulfophthalein, protoporphyrin X, rifampicin, and taurocholate to the outside of the preloaded CHO cells, we observed efflux of [3H]-estradiol-17β-glucuronide due to exchange with the added compounds. Of the tested 30 compounds, some organic cation transporter substrates like diphenhydramine, metformin, and salbutamol did not induce [3H]-estradiol-17β-glucuronide efflux, indicating that the two OATPs do not transport them. However, 22 (for OATP1B1) and 16 (for OATP1B3) of the tested compounds resulted in [3H]-estradiol-17β-glucuronide efflux, suggesting that they are OATP substrates. Among these compounds, we further tested clarithromycin, indomethacin, reserpine, and verapamil and confirmed that they are substrates of the two OATPs. These results demonstrate that the substrate spectrum of the well-characterized organic anion transporting polypeptides includes several organic cations. Furthermore, as for other drug uptake transporters, the CCF assay is an easy-to-use screening tool to identify novel OATP substrates.
Collapse
|
14
|
Mochizuki T, Zamek-Gliszczynski MJ, Yoshida K, Mao J, Taskar K, Hirabayashi H, Chu X, Lai Y, Takashima T, Rockich K, Yamaura Y, Fujiwara K, Mizuno T, Maeda K, Furihata K, Sugiyama Y, Kusuhara H. Effect of Cyclosporin A and Impact of Dose Staggering on OATP1B1/1B3 Endogenous Substrates and Drug Probes for Assessing Clinical Drug Interactions. Clin Pharmacol Ther 2022; 111:1315-1323. [PMID: 35292967 PMCID: PMC9325410 DOI: 10.1002/cpt.2584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
This study was designed to assess the quantitative performance of endogenous biomarkers for organic anion transporting polypeptide (OATP) 1B1/1B3‐mediated drug‐drug interactions (DDIs). Ten healthy volunteers orally received OATP1B1/1B3 probe cocktail (0.2 mg pitavastatin, 1 mg rosuvastatin, and 2 mg valsartan) and an oral dose of cyclosporin A (CysA, 20 mg and 75 mg) separated by a 1‐hour interval (20 mg (−1 hour), and 75 mg (−1 hour)). CysA 75 mg was also given with a 3‐hour interval (75 mg (−3 hours)) to examine the persistence of OATP1B1/1B3 inhibition. The area under the plasma concentration‐time curve ratios (AUCRs) were 1.63, 3.46, and 2.38 (pitavastatin), 1.39, 2.16, and 1.81 (rosuvastatin), and 1.42, 1.77, and 1.85 (valsartan), at 20 mg, 75 mg (−1 hour) and 75 mg (−3 hours) of CysA, respectively. CysA effect on OATP1B1/1B3 was unlikely to persist at the dose examined. Among 26 putative OATP1B1/1B3 biomarkers evaluated, AUCR and maximum concentration ratio (CmaxR) of CP‐I showed the highest Pearson’s correlation coefficient with CysA AUC (0.94 and 0.93, respectively). Correlation between AUCR of pitavastatin, and CmaxR or AUCR of CP‐I were consistent between this study and our previous study using rifampicin as an OATP1B1/1B3 inhibitor. Nonlinear regression analysis of AUCR−1 of pitavastatin and CP‐I against CysA Cmax yielded Ki,OATP1B1/1B3,app (109 ± 35 and 176 ± 42 nM, respectively), similar to the Ki,OATP1B1/1B3 estimated by our physiologically‐based pharmacokinetic model analysis described previously (107 nM). The endogenous OATP1B1/1B3 biomarkers, particularly CmaxR and AUCR of CP‐I, corroborates OATP1B1/1B3 inhibition and yields valuable information that improve accurate DDI predictions in drug development, and enhance our understanding of interindividual variability in the magnitude of DDIs.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Jialin Mao
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Kunal Taskar
- Drug Metabolism and Disposition, GlaxoSmithKline, Stevenage, UK
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | | | - Yurong Lai
- Drug Metabolism Department, Gilead Sciences Inc., Foster City, California, USA
| | - Tadayuki Takashima
- Laboratory for Safety Assessment & ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kevin Rockich
- Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Incyte Research Institute, Wilmington, Delaware, USA
| | - Yoshiyuki Yamaura
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Kaku Fujiwara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Krishnan S, Ramsden D, Ferguson D, Stahl SH, Wang J, McGinnity DF, Hariparsad N. Challenges and Opportunities for Improved Drug-Drug Interaction Predictions for Renal OCT2 and MATE1/2-K Transporters. Clin Pharmacol Ther 2022; 112:562-572. [PMID: 35598119 DOI: 10.1002/cpt.2666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
Transporters contribute to renal elimination of drugs; therefore drug disposition can be impacted if transporters are inhibited by comedicant drugs. Regulatory agencies have provided guidelines to assess potential drug-drug interaction (DDI) risk for renal organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 and 2-K (MATE1/2-K) transporters. Despite this, there are challenges with translating in vitro data using currently available tools to obtain a quantitative assessment of DDI risk in the clinic. Given the high number of drugs and new molecular entities showing in vitro inhibition toward OCT2 and/or MATE1/2-K and the lack of translation to clinically significant effects, it is reasonable to question whether the current in vitro assay design and modeling practice has led to unnecessary clinical evaluation. The aim of this review is to assess and discuss available in vitro and clinical data along with prediction models intended to provide clinical context of risk, including static models proposed by regulatory agencies and physiologically-based pharmacokinetic models, in order to identify best practices and areas of future opportunity. This analysis highlights that different in vitro assay designs, including substrate and cell systems used, strongly influence the derived concentration of drug producing 50% inhibition values and contribute to high variability observed across laboratories. Furthermore, the lack of sensitive index substrates coupled with specific inhibitors for individual transporters necessitates the use of complex models to evaluate clinical DDI risk.
Collapse
Affiliation(s)
- Srinivasan Krishnan
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| | - Diane Ramsden
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| | - Douglas Ferguson
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| | - Simone H Stahl
- Cardiovascular, Renal, and Metabolism Safety, Clinical Pharmacology and Safety Sciences, Research & Development, AstraZeneca, Cambridge, UK
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Dermot F McGinnity
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Cambridge, UK
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Izumi S, Nozaki Y, Lee W, Sugiyama Y. Experimental and Modeling Evidence Supporting the Trans-Inhibition Mechanism for Preincubation Time-Dependent, Long-Lasting Inhibition of Organic Anion Transporting Polypeptide 1B1 by Cyclosporine A. Drug Metab Dispos 2022; 50:541-551. [PMID: 35241487 DOI: 10.1124/dmd.121.000783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Cyclosporine A (CsA) and rifampin are potent inhibitors of organic anion transporting polypeptide (OATP) 1B1 and are widely used to assess the risk for drug-drug interactions. CsA displays preincubation time-dependent, long-lasting inhibition of OATP1B1 in vitro and in rats in vivo, and a proposed mechanism is the trans-inhibition by which CsA inhibits OATP1B1 from the inside of cells. The current study aimed to experimentally validate the proposed mechanism using human embryonic kidney 293 cells stably expressing OATP1B1. The uptake of CsA reached a plateau following an approximate 60-minute incubation, with the cell-to-buffer concentration ratio of 3930, reflective of the high-affinity, high-capacity intracellular binding of CsA. The time course of CsA uptake was analyzed to estimate the kinetic parameters for permeability clearance and intracellular binding. When the OATP1B1-mediated uptake of [3H]estradiol-17β-glucuronide was measured following preincubation with CsA for 5 to 120 minutes, apparent Ki values became lower with longer preincubation. Our kinetic modeling incorporated the two reversible inhibition constants [Ki,trans and Ki,cis for the inhibition from inside (trans-inhibition) and outside (cis-inhibition) of cells, respectively] and estimated Ki,trans value of CsA was smaller by 48-fold than the estimated Ki,cis value. Rifampin also displayed preincubation time-dependent inhibition of OATP1B1, albeit the extent of enhancement was only twofold. The current study provides experimental evidence for the preincubation time-dependent shift of apparent Ki values and a mechanistic basis for physiologically based pharmacokinetic modeling that incorporates permeability clearance, extensive intracellular binding, and asymmetry of Ki values between the inside and outside of cells. SIGNIFICANCE STATEMENT: In vitro data and kinetic modeling support that preincubation time-dependent, long-lasting inhibition of OATP1B1 by CsA can be explained by the extensive intracellular binding and reversible OATP1B1 inhibition intracellularly (trans-inhibition) as well as extracellularly (cis-inhibition). For inhibitors to display time-dependency, the following factors were found important: time to reach a steady-state cellular concentration, trans-inhibition potency relative to cis-inhibition, and the degree of cellular inhibitor accumulation. This study would aid in the accurate prediction of drug-drug interactions mediated by OATP1B1 inhibition.
Collapse
Affiliation(s)
- Saki Izumi
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co. Ltd., Tsukuba, Japan (S.I., Y.N.); College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (W.L.); and Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.S.)
| | - Yoshitane Nozaki
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co. Ltd., Tsukuba, Japan (S.I., Y.N.); College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (W.L.); and Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.S.)
| | - Wooin Lee
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co. Ltd., Tsukuba, Japan (S.I., Y.N.); College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (W.L.); and Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.S.)
| | - Yuichi Sugiyama
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co. Ltd., Tsukuba, Japan (S.I., Y.N.); College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (W.L.); and Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.S.)
| |
Collapse
|
17
|
Brouwer KLR, Evers R, Hayden E, Hu S, Li CY, Meyer Zu Schwabedissen HE, Neuhoff S, Oswald S, Piquette-Miller M, Saran C, Sjöstedt N, Sprowl JA, Stahl SH, Yue W. Regulation of Drug Transport Proteins-From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:461-484. [PMID: 35390174 PMCID: PMC9398928 DOI: 10.1002/cpt.2605] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/20/2022] [Indexed: 12/14/2022]
Abstract
Membrane transport proteins are involved in the absorption, disposition, efficacy, and/or toxicity of many drugs. Numerous mechanisms (e.g., nuclear receptors, epigenetic gene regulation, microRNAs, alternative splicing, post‐translational modifications, and trafficking) regulate transport protein levels, localization, and function. Various factors associated with disease, medications, and dietary constituents, for example, may alter the regulation and activity of transport proteins in the intestine, liver, kidneys, brain, lungs, placenta, and other important sites, such as tumor tissue. This white paper reviews key mechanisms and regulatory factors that alter the function of clinically relevant transport proteins involved in drug disposition. Current considerations with in vitro and in vivo models that are used to investigate transporter regulation are discussed, including strengths, limitations, and the inherent challenges in predicting the impact of changes due to regulation of one transporter on compensatory pathways and overall drug disposition. In addition, translation and scaling of in vitro observations to in vivo outcomes are considered. The importance of incorporating altered transporter regulation in modeling and simulation approaches to predict the clinical impact on drug disposition is also discussed. Regulation of transporters is highly complex and, therefore, identification of knowledge gaps will aid in directing future research to expand our understanding of clinically relevant molecular mechanisms of transporter regulation. This information is critical to the development of tools and approaches to improve therapeutic outcomes by predicting more accurately the impact of regulation‐mediated changes in transporter function on drug disposition and response.
Collapse
Affiliation(s)
- Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | - Elizabeth Hayden
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shuiying Hu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | | | - Chitra Saran
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Simone H Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Wei Yue
- College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
18
|
Chu X, Chan GH, Houle R, Lin M, Yabut J, Fandozzi C. In Vitro Assessment of Transporter Mediated Perpetrator DDIs for Several Hepatitis C Virus Direct-Acting Antiviral Drugs and Prediction of DDIs with Statins Using Static Models. AAPS J 2022; 24:45. [DOI: 10.1208/s12248-021-00677-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
|
19
|
Chen J, Xue Y, Shuai X, Ni C, Fang Z, Ye L, Hong M. Effect of major components of Tripterygium wilfordii Hook. f on the uptake function of organic anion transporting polypeptide 1B1. Toxicol Appl Pharmacol 2021; 435:115848. [PMID: 34958783 DOI: 10.1016/j.taap.2021.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022]
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1), which is specifically expressed at the basolateral membrane of human hepatocytes, is well recognized as the key determinant in the pharmacokinetics of a wide variety of drugs and considered as an important drug-drug interaction (DDI) site. Triptergium wilfordii Hook. f. (TWHF) is a traditional Chinese medicine that has a long history in treating diseases and more pharmacological effects were demonstrated recently. Components of TWHF mainly belong to the groups of alkaloids, diterpenoids, and triterpenoids. However, whether TWHF constituents are involved in herb-drug interaction (HDI) remains largely unknown. In the present study, we investigated the effect of four major components of TWHF, i.e. Triptolide (TPL), Celastrol (CL), and two alkaloids Wilforine (WFR) and Wilforgine (WFG) on the function of OATP1B1. It was found that co-incubation of these compounds greatly inhibited the uptake function of OATP1B1, with WFG (IC50 = 3.63 ± 0.61 μM) and WFR (IC50 = 3.91 ± 0.30 μM) showing higher inhibitory potency than TPL (IC50 = 184 ± 36 μM) and CL (IC50 = 448 ± 81 μM). Kinetic analysis revealed that co-incubation of WFG or WFR led to the reduction of both Km and Vmax of the DCF uptake. On the other hand, pre-incubation of WFG or WFR increased Km value of OATP1B1; while CL affected both Km and Vmax. In conclusion, co- and pre-incubation of the tested TWHF components inhibited OATP1B1 activity in different manners. Although co-incubation of WFG and WFR did not seem to directly compete with the substrates, pre-incubation of these alkaloids may alter the substrate-transporter interaction.
Collapse
Affiliation(s)
- Jieru Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yuanping Xue
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Shuai
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chunxu Ni
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zihui Fang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ling Ye
- Guangdong Provincial Key Laboratory of New Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
20
|
Farasyn T, Pahwa S, Xu C, Yue W. Pre-incubation with OATP1B1 and OATP1B3 inhibitors potentiates inhibitory effects in physiologically relevant sandwich-cultured primary human hepatocytes. Eur J Pharm Sci 2021; 165:105951. [PMID: 34311070 PMCID: PMC11005446 DOI: 10.1016/j.ejps.2021.105951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 are liver-specific transport proteins that express on the basolateral membrane of human hepatocytes and mediate hepatic uptake of many drugs, including statins. They are important determinants of transporter-mediated drug-drug interactions (DDIs). It has been reported that pre-incubation with some OATP1B1 and OATP1B3 inhibitors potentiates the inhibitory effects, yielding reduced IC50 values. The US FDA draft guidance has recently recommended to use the lower IC50 values after inhibitor-preincubation to assess OATP1B1 and OATP1B3-mediated DDIs. However, it remains unknown whether the potentiation effects of inhibitor-preincubation on IC50 values occur in a physiologically relevant cell model. The current study was designed to determine the IC50 values of OATP1B1 and OATP1B3 inhibitors everolimus (EVR), sirolimus (SIR), and dasatinib against OATP1B substrates in physiologically relevant primary human hepatocytes with or without inhibitor-preincubation and to compare the OATP-mediated DDI prediction using data from primary human hepatocytes and that reported previously in transporter-expressing cell lines. Primary human hepatocytes were cultured in a sandwich configuration. Accumulation of [3H]-CCK-8 (1 µM, 1.5 min), [3H]-rosuvastatin (0.5 µM, 2 min) and [3H]-pitavastatin (1 µM, 0.5 min) was determined in human sandwich-cultured hepatocytes (SCH) in the presence of vehicle control or an inhibitor with or without inhibitor-preincubation at designated concentrations, and was utilized to determine the IC50 values for these inhibitors. R-value models were used to predict OATP-mediated DDIs. Pre-incubation with EVR at a clinically relevant concentration of 0.2 µM significantly reduced accumulation of [3H]-CCK-8 and [3H]-rosuvastatin even after washing. Reduced IC50 values following inhibitor pre-incubation were observed for all three inhibitors using [3H]-CCK-8 and [3H]-rosuvastatin as substrates in human SCH. The IC50 values after inhibitor-preincubation were lower or comparable in transporter-expressing cell lines compared with that in human SCH. For dasatinib, R-values from both cell lines and human SCH were greater than the US FDA cut-off value of 1.1. For EVR, R values from cell lines were 1.23 and were lowered to near 1.1 (1.08-1.09) in human SCH. For SIR, R values from either cell type were less than the cut-off values of 1.1. In conclusion, the current study is the first to report that pre-incubation with OATP1B inhibitors potentiates inhibitory effects in physiologically relevant primary human hepatocytes, supporting the rationale of the current US FDA draft guidance of including an inhibitor-preincubation step when assessing OATP-mediated DDIs in vitro. IC50 values after inhibitor-preincubation in transporter-expressing cell lines may be used for DDI prediction for the purpose of mitigating false-negative OATP-mediated DDI prediction.
Collapse
Affiliation(s)
| | | | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK US
| | - Wei Yue
- Department of Pharmaceutical Sciences, US.
| |
Collapse
|
21
|
Chothe PP, Nakakariya M, Rotter CJ, Sandoval P, Tohyama K. Recent Advances in Drug Transporter Sciences: Highlights From the Year 2020. Drug Metab Rev 2021; 53:321-349. [PMID: 34346798 DOI: 10.1080/03602532.2021.1963270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug Metabolism Reviews has an impressive track record of providing scientific reviews in the area of xenobiotic biotransformation over 47 years. It has consistently proved to be resourceful to many scientists from pharmaceutical industry, academia, regulatory agencies working in diverse areas including enzymology, pharmacology, pharmacokinetics and toxicology. Over the last 5 years Drug metabolism Reviews has annually published an industry commentary aimed to highlight novel insights and approaches that have made significant impacts on the field of biotransformation (led by Cyrus Khojasteh). We hope to continue this tradition by providing an overview of advances made in the field of drug transporters during 2020. The field of drug transporters is rapidly evolving as they play an essential role in drug absorption, distribution, clearance and elimination. In this review we have selected outstanding drug transporter articles that have significantly contributed to moving forward the field of transporter science with respect to translation and improved understanding of diverse aspects including uptake clearance, clinical biomarkers, induction, proteomics, emerging transporters and tissue targeting.The theme of this review consists of synopsis that summarizes each article followed by our commentary. The objective of this work is not to provide a comprehensive review but rather exemplify novel insights and state-of-the-art highlights of recent research that have advanced our understanding of drug transporters in drug disposition. We are hopeful that this effort will prove useful to the scientific community and as such request feedback, and further extend an invitation to anyone interested in contributing to future reviews.
Collapse
Affiliation(s)
- Paresh P Chothe
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chrome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Charles J Rotter
- Global Drug Metabolism and Pharmacokinetics, Takeda California Incorporated, 9625 Towne Centre Drive, San Diego, California, 92121, USA
| | - Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Kimio Tohyama
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
22
|
Xiang Y, Okochi H, Kozachenko I, Sodhi JK, Frassetto LA, Benet LZ. Effects of Single Dose Rifampin on the Pharmacokinetics of Fluvastatin in Healthy Volunteers. Clin Pharmacol Ther 2021; 110:480-485. [PMID: 33880760 PMCID: PMC9648157 DOI: 10.1002/cpt.2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 11/12/2022]
Abstract
The objective of this study was to determine the effects of the OATP inhibitor rifampin on pharmacokinetic of Biopharmaceutics Drug Disposition Classification System Class 1 compound fluvastatin. A crossover study was carried out in 10 healthy subjects who were randomized to 2 phases to receive fluvastatin 20 mg orally alone and following a 30-minute 600 mg i.v. infusion of rifampin. The results demonstrated that i.v. rifampin increased the mean area under the plasma fluvastatin concentration-time curve (AUC0-∞ ) by 255%, mean peak plasma concentration (Cmax ) by 254%, decreased oral volume of distribution by 71%, whereas the mean elimination terminal half-life (T1/2 ), mean absorption time (MAT), and time to peak concentration (Tpeak ) of fluvastatin did not significantly change. The study demonstrated that rifampin exhibited a significant drug interaction with fluvastatin. The mechanism of the increased plasma concentrations is likely due to inhibition of OATP transporters in hepatocytes.
Collapse
Affiliation(s)
- Yue Xiang
- School of Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Hideaki Okochi
- Division of HIV, Infection Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ivan Kozachenko
- School of Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Jasleen K. Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lynda A. Frassetto
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Leslie Z. Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
24
|
Alim K, Bruyère A, Lescoat A, Jouan E, Lecureur V, Le Vée M, Fardel O. Interactions of janus kinase inhibitors with drug transporters and consequences for pharmacokinetics and toxicity. Expert Opin Drug Metab Toxicol 2021; 17:259-271. [PMID: 33292029 DOI: 10.1080/17425255.2021.1862084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Janus kinase inhibitors (JAKinibs) constitute an emerging and promising pharmacological class of anti-inflammatory or anti-cancer drugs, used notably for the treatment of rheumatoid arthritis and some myeloproliferative neoplasms.Areas covered: This review provides an overview of the interactions between marketed JAKinibs and major uptake and efflux drug transporters. Consequences regarding pharmacokinetics, drug-drug interactions and toxicity are summarized.Expert opinion: JAKinibs interact in vitro with transporters in various ways, as inhibitors or as substrates of transporters or as regulators of transporter expression. This may theoretically result in drug-drug interactions (DDIs), with JAKinibs acting as perpetrators or as victims, or in toxicity, via impairment of thiamine transport. Clinical significance in terms of DDIs for JAKinib-transporter interactions remains however poorly documented. In this context, the in vivo unbound concentration of JAKinibs is likely a key parameter to consider for evaluating the clinical relevance of JAKinibs-mediated transporter inhibition. Additionally, the interplay with drug metabolism as well as possible interactions with transporters of emerging importance and time-dependent inhibition have to be taken into account. The role drug transporters may play in controlling cellular JAKinib concentrations and efficacy in target cells is also an issue of interest.
Collapse
Affiliation(s)
- Karima Alim
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Alain Lescoat
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Valérie Lecureur
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
25
|
Lowjaga KAAT, Kirstgen M, Müller SF, Goldmann N, Lehmann F, Glebe D, Geyer J. Long-term trans-inhibition of the hepatitis B and D virus receptor NTCP by taurolithocholic acid. Am J Physiol Gastrointest Liver Physiol 2021; 320:G66-G80. [PMID: 33174454 DOI: 10.1152/ajpgi.00263.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human hepatic bile acid transporter Na+/taurocholate cotransporting polypeptide (NTCP) represents the liver-specific entry receptor for the hepatitis B and D viruses (HBV/HDV). Chronic hepatitis B and D affect several million people worldwide, but treatment options are limited. Recently, HBV/HDV entry inhibitors targeting NTCP have emerged as promising novel drug candidates. Nevertheless, the exact molecular mechanism that NTCP uses to mediate virus binding and entry into hepatocytes is still not completely understood. It is already known that human NTCP mRNA expression is downregulated under cholestasis. Furthermore, incubation of rat hepatocytes with the secondary bile acid taurolithocholic acid (TLC) triggers internalization of the rat Ntcp protein from the plasma membrane. In the present study, the long-term inhibitory effect of TLC on transport function, HBV/HDV receptor function, and membrane expression of human NTCP were analyzed in HepG2 and human embryonic kidney (HEK293) cells stably overexpressing NTCP. Even after short-pulse preincubation, TLC had a significant long-lasting inhibitory effect on the transport function of NTCP, but the NTCP protein was still present at the plasma membrane. Furthermore, binding of the HBV/HDV myr-preS1 peptide and susceptibility for in vitro HDV infection were significantly reduced by TLC preincubation. We hypothesize that TLC rapidly accumulates in hepatocytes and mediates long-lasting trans-inhibition of the transport and receptor function of NTCP via a particular TLC-binding site at an intracellularly accessible domain of NTCP. Physiologically, this trans-inhibition might protect hepatocytes from toxic overload of bile acids. Pharmacologically, it provides an interesting novel NTCP target site for potential long-acting HBV/HDV entry inhibitors.NEW & NOTEWORTHY The hepatic bile acid transporter NTCP is a high-affinity receptor for hepatitis B and D viruses. This study shows that TLC rapidly accumulates in NTCP-expressing hepatoma cells and mediates long-lasting trans-inhibition of NTCP's transporter and receptor function via an intracellularly accessible domain, without substantially affecting its membrane expression. This domain is a promising novel NTCP target site for pharmacological long-acting HBV/HDV entry inhibitors.
Collapse
Affiliation(s)
- Kira A A T Lowjaga
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Michael Kirstgen
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Simon F Müller
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
26
|
Masuo Y, Fujita KI, Mishiro K, Seba N, Kogi T, Okumura H, Matsumoto N, Kunishima M, Kato Y. 6-Hydroxyindole is an endogenous long-lasting OATP1B1 inhibitor elevated in renal failure patients. Drug Metab Pharmacokinet 2020; 35:555-562. [PMID: 33191090 DOI: 10.1016/j.dmpk.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
The hepatic uptake transporter organic anion transporting polypeptide (OATP) 1B1 is inhibited by some uremic toxins; however, direct inhibition can only partially explain the delayed systemic elimination of substrate drugs in renal failure patients. This study aimed to examine the long-lasting inhibition of OATP1B1 by uremic toxins and their metabolites. Preincubation of HEK293/OATP1B1 cells with 21 uremic toxins resulted in almost no change in the uptake of a typical substrate [3H]estrone-3-sulfate (E1S), although some directly inhibited [3H]E1S uptake. In contrast, preincubation with an indole metabolite, 6-hydroxyindole, reduced [3H]E1S uptake, even after the inhibitor was washed out before [3H]E1S incubation. Such long-lasting inhibition by 6-hydroxyindole was time-dependent and recovered after a 3-h incubation without 6-hydroxyindole. Preincubation with 6-hydroxyindole increased the Km for [3H]E1S uptake with minimal change in Vmax. This was compatible with no change in the cell-surface expression of OATP1B1, as assessed by a biotinylation assay. Preincubation with 6-hydroxyindole reduced [3H]E1S uptake in human hepatocytes without changes in OATP1B1 mRNA. Plasma concentration of 6-hydroxyindole in renal failure patients increased as renal function decreased, but might be insufficient to exhibit potent OATP1B1 inhibition. In conclusion, 6-hydroxyindole is an endogenous long-lasting OATP1B1 inhibitor with elevated plasma concentrations in renal failure patients.
Collapse
Affiliation(s)
- Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ken-Ichi Fujita
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan
| | - Kenji Mishiro
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsumi Seba
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Kogi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidenori Okumura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsumi Matsumoto
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan
| | - Munetaka Kunishima
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
27
|
Park JE, Shitara Y, Lee W, Morita S, Sahi J, Toshimoto K, Sugiyama Y. Improved Prediction of the Drug-Drug Interactions of Pemafibrate Caused by Cyclosporine A and Rifampicin via PBPK Modeling: Consideration of the Albumin-Mediated Hepatic Uptake of Pemafibrate and Inhibition Constants With Preincubation Against OATP1B. J Pharm Sci 2020; 110:517-528. [PMID: 33058894 DOI: 10.1016/j.xphs.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
Pemafibrate (PMF) is highly albumin-bound (>99.8%) and a substrate for hepatic uptake transporters (OATP1B) and CYP enzymes. Here, we developed a PBPK model of PMF to capture drug-drug interactions (DDI) incurred by cyclosporine (CsA) and rifampicin (RIF), the two OATP1B inhibitors. Initial PBPK modeling of PMF utilized in vitro hepatic uptake clearance (PSinf) obtained in the absence of albumin, but failed in capturing the blood PMF pharmacokinetic (PK) profiles. Based on the results that in vitro PSinf of unbound PMF was enhanced in the presence of albumin, we applied the albumin-facilitated dissociation model and the resulting PSinf parameters improved the prediction of the blood PMF PK profiles. In refining our PBPK model toward improved prediction of the observed DDI data (PMF co-administered with single dosing of CsA or RIF; PMF following multiple RIF dosing), we adjusted the previously obtained in vivo OATP1B inhibition constants (Ki,OATP1B) of CsA or RIF for pitavastatin by correcting for substrate-dependency. We also incorporated the induction of OATP1B and CYP enzymes after multiple RIF dosing. Sensitivity analysis informed that the higher gastrointestinal absorption rate constant could further improve capturing the observed DDI data, suggesting the possible inhibition of intestinal ABC transporter(s) by CsA or RIF.
Collapse
Affiliation(s)
- Ji Eun Park
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshihisa Shitara
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Bldg 21 Rm 309, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, S. Korea
| | - Shigemichi Morita
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Jasminder Sahi
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi China, 1228 Yan'an Middle Road, Jing'an District, Shanghai, China
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
28
|
Sudsakorn S, Bahadduri P, Fretland J, Lu C. 2020 FDA Drug-drug Interaction Guidance: A Comparison Analysis and Action Plan by Pharmaceutical Industrial Scientists. Curr Drug Metab 2020; 21:403-426. [DOI: 10.2174/1389200221666200620210522] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022]
Abstract
Background:
In January 2020, the US FDA published two final guidelines, one entitled “In vitro Drug
Interaction Studies - Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry”
and the other entitled “Clinical Drug Interaction Studies - Cytochrome P450 Enzyme- and Transporter-Mediated
Drug Interactions Guidance for Industry”. These were updated from the 2017 draft in vitro and clinical DDI
guidance.
Methods:
This study is aimed to provide an analysis of the updates along with a comparison of the DDI guidelines
published by the European Medicines Agency (EMA) and Japanese Pharmaceuticals and Medical Devices Agency
(PMDA) along with the current literature.
Results:
The updates were provided in the final FDA DDI guidelines and explained the rationale of those changes
based on the understanding from research and literature. Furthermore, a comparison among the FDA, EMA, and
PMDA DDI guidelines are presented in Tables 1, 2 and 3.
Conclusion:
The new 2020 clinical DDI guidance from the FDA now has even higher harmonization with the
guidance (or guidelines) from the EMA and PMDA. A comparison of DDI guidance from the FDA 2017, 2020,
EMA, and PMDA on CYP and transporter based DDI, mathematical models, PBPK, and clinical evaluation of DDI
is presented in this review.
Collapse
Affiliation(s)
- Sirimas Sudsakorn
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Praveen Bahadduri
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Jennifer Fretland
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Chuang Lu
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| |
Collapse
|
29
|
Taguchi T, Masuo Y, Futatsugi A, Kato Y. Static Model-Based Assessment of OATP1B1-Mediated Drug Interactions with Preincubation-Dependent Inhibitors Based on Inactivation and Recovery Kinetics. Drug Metab Dispos 2020; 48:750-758. [PMID: 32616544 DOI: 10.1124/dmd.120.000020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/23/2020] [Indexed: 01/29/2023] Open
Abstract
Quantitative assessment of drug-drug interactions (DDIs) via organic anion transporting polypeptide (OATP) 1B1 is one of the key issues in drug development. Although OATP1B1 inhibition exhibits unique characteristics, including preincubation dependence for some inhibitors, a limited approach has been attempted based on the static model that considers such preincubation dependence in the prediction of DDIs via OATP1B1. The present study aimed to establish the prediction of DDIs via OATP1B1 using preincubation-dependent inhibitors based on the static model and incorporating both inactivation and recovery of OATP1B1 activity. Cyclosporine A was selected as a preincubation-dependent inhibitor, as well as five substrates that include probes and pharmaceuticals. The inhibition ratio (R value) calculated on the basis of a conventional static model, considering inhibition of OATP1B1 and contribution ratio of OATP1B1 to the overall hepatic uptake, was much lower than the reported AUC ratio, even when IC50 values were estimated after preincubation conditions. Conversely, the R value that was estimated by considering inactivation and recovery parameters was closer to the AUC ratio. The R value that was calculated assuming the complete contribution of OATP1B1 was much higher than the AUC ratio, avoiding false-negative prediction. The R value estimated by considering inactivation and recovery for another combination of a preincubation-dependent inhibitor, asunaprevir, and substrate drug, rosuvastatin, was also closer to the AUC ratio. Thus, R values calculated based on such OATP1B1 kinetics would be potential alternative indexes for the quantitative prediction of OATP1B1-mediated DDIs using preincubation-dependent inhibitors, although this prediction is affected by estimation of the contribution ratio of substrates. SIGNIFICANCE STATEMENT: Static model-based quantitative prediction of organic anion transporting polypeptide 1B1-mediated drug-drug interactions induced by preincubation-dependent inhibitors was newly proposed to avoid false-negative prediction.
Collapse
Affiliation(s)
- Takayuki Taguchi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan (T.T.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (T.T., Y.M., A.F., Y.K.)
| | - Yusuke Masuo
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan (T.T.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (T.T., Y.M., A.F., Y.K.)
| | - Azusa Futatsugi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan (T.T.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (T.T., Y.M., A.F., Y.K.)
| | - Yukio Kato
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan (T.T.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (T.T., Y.M., A.F., Y.K.)
| |
Collapse
|
30
|
Okunushi K, Furihata T, Morio H, Muto Y, Higuchi K, Kaneko M, Otsuka Y, Ohno Y, Watanabe Y, Reien Y, Nakagawa K, Sakamoto S, Wakashin H, Shimojo N, Anzai N. JPH203, a newly developed anti-cancer drug, shows a preincubation inhibitory effect on L-type amino acid transporter 1 function. J Pharmacol Sci 2020; 144:16-22. [PMID: 32653341 DOI: 10.1016/j.jphs.2020.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/26/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022] Open
Abstract
JPH203 is a novel anti-cancer drug targeting L-type amino acid transporter 1 (LAT1), which plays a primary role in the uptake of essential amino acids in tumor cells. Although a co-incubation inhibitory effect of JPH203 has been shown in a conventional uptake assay, its preincubation inhibitory effects have remained undetermined. Therefore, we aimed to characterize the preincubation inhibitory effects of JPH203 on LAT1 function using leucine uptake assays in LAT1-positive human colon cancer HT-29 cells. Preincubation of the cells with JPH203 (0.3 μM for 120 min) decreased the activity level to 30% of that in dimethylsulfoxide-treated cells. Similarly, in time-dependency analysis, preincubation of HT-29 cells with 10 μM JPH203 for 30, 60, and 120 min decreased the leucine uptake activity (42%, 32%, and 28% of that in control cells, respectively). Furthermore, the IC50 value of the combination of preincubation and co-incubation effects was lower than that of co-incubation inhibition alone (34.2 ± 3.6 nM vs. 99.2 ± 11.0 nM). In conclusion, we revealed that JPH203 has the capability to inhibit LAT1 function through preincubation effects. Moreover, preincubation synergistically enhances the co-incubation inhibitory effects. These findings provide a novel insight into the anti-cancer effects of JPH203 in cancer therapy.
Collapse
Affiliation(s)
- Kentaro Okunushi
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomomi Furihata
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hanae Morio
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuhide Muto
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kosuke Higuchi
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Meika Kaneko
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Otsuka
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuta Ohno
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuhiro Watanabe
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshie Reien
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kiyoshi Nakagawa
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidefumi Wakashin
- Department of Regulatory Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan.
| |
Collapse
|
31
|
Mori D, Ishida H, Mizuno T, Kusumoto S, Kondo Y, Izumi S, Nakata G, Nozaki Y, Maeda K, Sasaki Y, Fujita KI, Kusuhara H. Alteration in the Plasma Concentrations of Endogenous Organic Anion-Transporting Polypeptide 1B Biomarkers in Patients with Non-Small Cell Lung Cancer Treated with Paclitaxel. Drug Metab Dispos 2020; 48:387-394. [PMID: 32114508 DOI: 10.1124/dmd.119.089474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel has been considered to cause OATP1B-mediated drug-drug interactions at therapeutic doses; however, its clinical relevance has not been demonstrated. This study aimed to elucidate in vivo inhibition potency of paclitaxel against OATP1B1 and OATP1B3 using endogenous OATP1B biomarkers. Paclitaxel is an inhibitor of OATP1B1 and OATP1B3, with Ki of 0.579 ± 0.107 and 5.29 ± 3.87 μM, respectively. Preincubation potentiated its inhibitory effect on both OATP1B1 and OATP1B3, with Ki of 0.154 ± 0.031 and 0.624 ± 0.183 μM, respectively. Ten patients with non-small cell lung cancer who received 200 mg/m2 of paclitaxel by a 3-hour infusion were recruited. Plasma concentrations of 10 endogenous OATP1B biomarkers-namely, coproporphyrin I, coproporphyrin III, glycochenodeoxycholate-3-sulfate, glycochenodeoxycholate-3-glucuronide, glycodeoxycholate-3-sulfate, glycodeoxycholate-3-glucuronide, lithocholate-3-sulfate, glycolithocholate-3-sulfate, taurolithocholate-3-sulfate, and chenodeoxycholate-24-glucuronide-were determined in the patients with non-small cell lung cancer on the day before paclitaxel administration and after the end of paclitaxel infusion for 7 hours. Paclitaxel increased the area under the plasma concentration-time curve (AUC) of the endogenous biomarkers 2- to 4-fold, although a few patients did not show any increment in the AUC ratios of lithocholate-3-sulfate, glycolithocholate-3-sulfate, and taurolithocholate-3-sulfate. Therapeutic doses of paclitaxel for the treatment of non-small cell lung cancer (200 mg/m2) will cause significant OATP1B1 inhibition during and at the end of the infusion. This is the first demonstration that endogenous OATP1B biomarkers could serve as surrogate biomarkers in patients. SIGNIFICANCE STATEMENT: Endogenous biomarkers can address practical and ethical issues in elucidating transporter-mediated drug-drug interaction (DDI) risks of anticancer drugs clinically. We could elucidate a significant increment of the plasma concentrations of endogenous OATP1B biomarkers after a 3-hour infusion (200 mg/m2) of paclitaxel, a time-dependent inhibitor of OATP1B, in patients with non-small cell lung cancer. The endogenous OATP1B biomarkers are useful to assess the possibility of OATP1B-mediated DDIs in patients and help in appropriately designing a dosing schedule to avoid the DDIs.
Collapse
Affiliation(s)
- Daiki Mori
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Hiroo Ishida
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Sojiro Kusumoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Yusuke Kondo
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Saki Izumi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Genki Nakata
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Yoshitane Nozaki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Yasutsuna Sasaki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Ken-Ichi Fujita
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| |
Collapse
|
32
|
Nozaki Y, Izumi S. Recent advances in preclinical in vitro approaches towards quantitative prediction of hepatic clearance and drug-drug interactions involving organic anion transporting polypeptide (OATP) 1B transporters. Drug Metab Pharmacokinet 2020; 35:56-70. [DOI: 10.1016/j.dmpk.2019.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/29/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
|
33
|
Lu C, Di L. In vitro
and
in vivo
methods to assess pharmacokinetic drug– drug interactions in drug discovery and development. Biopharm Drug Dispos 2020; 41:3-31. [DOI: 10.1002/bdd.2212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Chuang Lu
- Department of DMPKSanofi Company Waltham MA 02451
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismPfizer Worldwide Research & Development Groton CT 06340
| |
Collapse
|
34
|
Taskar KS, Pilla Reddy V, Burt H, Posada MM, Varma M, Zheng M, Ullah M, Emami Riedmaier A, Umehara KI, Snoeys J, Nakakariya M, Chu X, Beneton M, Chen Y, Huth F, Narayanan R, Mukherjee D, Dixit V, Sugiyama Y, Neuhoff S. Physiologically-Based Pharmacokinetic Models for Evaluating Membrane Transporter Mediated Drug-Drug Interactions: Current Capabilities, Case Studies, Future Opportunities, and Recommendations. Clin Pharmacol Ther 2019; 107:1082-1115. [PMID: 31628859 PMCID: PMC7232864 DOI: 10.1002/cpt.1693] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling has been extensively used to quantitatively translate in vitro data and evaluate temporal effects from drug-drug interactions (DDIs), arising due to reversible enzyme and transporter inhibition, irreversible time-dependent inhibition, enzyme induction, and/or suppression. PBPK modeling has now gained reasonable acceptance with the regulatory authorities for the cytochrome-P450-mediated DDIs and is routinely used. However, the application of PBPK for transporter-mediated DDIs (tDDI) in drug development is relatively uncommon. Because the predictive performance of PBPK models for tDDI is not well established, here, we represent and discuss examples of PBPK analyses included in regulatory submission (the US Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the Pharmaceuticals and Medical Devices Agency (PMDA)) across various tDDIs. The goal of this collaborative effort (involving scientists representing 17 pharmaceutical companies in the Consortium and from academia) is to reflect on the use of current databases and models to address tDDIs. This challenges the common perceptions on applications of PBPK for tDDIs and further delves into the requirements to improve such PBPK predictions. This review provides a reflection on the current trends in PBPK modeling for tDDIs and provides a framework to promote continuous use, verification, and improvement in industrialization of the transporter PBPK modeling.
Collapse
Affiliation(s)
- Kunal S Taskar
- GlaxoSmithKline, DMPK, In Vitro In Vivo Translation, GSK R&D, Ware, UK
| | - Venkatesh Pilla Reddy
- AstraZeneca, Modelling and Simulation, Early Oncology DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Howard Burt
- Simcyp-Division, Certara UK Ltd., Sheffield, UK
| | | | | | - Ming Zheng
- Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | | | | | | | - Jan Snoeys
- Janssen Research and Development, Beerse, Belgium
| | | | - Xiaoyan Chu
- Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | | | - Yuan Chen
- Genentech, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Murata H, Ito S, Kusuhara H, Nomura Y, Taniguchi T. Proposal of a Parameter for OATP1B1 Inhibition Screening at the Early Drug Discovery Stage. J Pharm Sci 2019; 108:3898-3902. [DOI: 10.1016/j.xphs.2019.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 11/15/2022]
|
36
|
Taguchi T, Masuo Y, Sakai Y, Kato Y. Short-lasting inhibition of hepatic uptake transporter OATP1B1 by tyrosine kinase inhibitor pazopanib. Drug Metab Pharmacokinet 2019; 34:372-379. [PMID: 31703927 DOI: 10.1016/j.dmpk.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 01/17/2023]
Abstract
Risk assessment of organic anion transporting polypeptide 1B1 (OATP1B1)-mediated drug-drug interactions (DDIs) is an integral part of drug development, but the difficult aspects in DDI prediction include complex mechanism of OATP1B1 inhibition. Pazopanib, an orally available tyrosine kinase inhibitor, exhibits OATP1B1 inhibition and clinically interacts with some OATP1B1 substrates, although quantitative analysis of DDI potential has not yet been performed. The purpose of the present study was to characterize the inhibitory effect of pazopanib on OATP1B1-mediated transport. Inhibition by pazopanib of OATP1B1-mediated uptake of two typical substrates, [3H]estrone-3-sulfate (E1S) and [3H]estradiol-17β-glucuronide, assessed in HEK293/OATP1B1 cells, was more obvious after preincubation with pazopanib compared with no preincubation. The reduction in IC50 values was 3-7 times greater and was comparable with the preincubation effect of another long-lasting inhibitor, cyclosporine A (CsA). Preincubation with pazopanib and CsA tended to similarly reduce Vmax and increase Km values of E1S. However, the reduced OATP1B1 activity by preincubation with pazopanib was more rapidly recovered than CsA. In addition, R value, which predicts the maximum increase in the AUC ratio of victim drugs, was calculated to be 1.09. These results suggest that pazopanib is preincubation-dependent but a short-lasting inhibitor against OATP1B1 with low potential of OATP1B1-mediated DDIs.
Collapse
Affiliation(s)
- Takayuki Taguchi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan; Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1102, Japan.
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1102, Japan.
| | - Yoshiyuki Sakai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1102, Japan.
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1102, Japan.
| |
Collapse
|
37
|
Panfen E, Chen W, Zhang Y, Sinz M, Marathe P, Gan J, Shen H. Enhanced and Persistent Inhibition of Organic Cation Transporter 1 Activity by Preincubation of Cyclosporine A. Drug Metab Dispos 2019; 47:1352-1360. [PMID: 31427432 DOI: 10.1124/dmd.119.087197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/16/2019] [Indexed: 01/18/2023] Open
Abstract
Recent pharmacogenetic evidence indicates that hepatic organic cation transporter (OCT) 1 can serve as the locus of drug-drug interactions (DDIs) with significant pharmacokinetic and pharmacodynamic consequences. We examined the impact of preincubation on the extent of OCT1 inhibition in transfected human embryonic kidney 293 (HEK293) cells. Following 30-minute preincubation with an inhibitor, approximately 50-fold higher inhibition potency was observed for cyclosporine A (CsA) against OCT1-mediated uptake of metformin compared with coincubation, with IC50 values of 0.43 ± 0.12 and 21.6 ± 4.5 µM, respectively. By comparison, only small shifts (≤2-fold) in preincubation IC50 versus coincubation were observed for quinidine, pyrimethamine, ritonavir, and trimethoprim. The shift in CsA OCT1 IC50 was substrate dependent since it ranged from >1.2- to 50.2-fold using different experimental substrates. The inhibition potential of CsA toward OCT1 was confirmed by fenoterol hepatocyte uptake experiment. Furthermore, no shift in CsA IC50 was observed with HEK293 cells transfected with OCT2 and organic anion transporter (OAT) 1 and OAT3. Short exposure (30 minutes) to 10 µM CsA produced long-lasting inhibition (at least 120 minutes) of the OCT1-mediated uptake of metformin in OCT1-HEK293 cells, which was likely attributable to the retention of CsA in the cells, as shown by the fact that inhibitory cellular concentrations of CsA were maintained long after the removal of the compound from the incubation buffer. The potent and persistent inhibitory effect after exposure to CsA warrants careful consideration in the design and interpretation of clinical OCT1 DDI studies. SIGNIFICANCE STATEMENT: Preincubation of OATP1B1 and OATP1B3 with their inhibitor may result in the enhancement of the inhibitory potency in a cell-based assay. However, limited data are available on potentiation of OCT1 inhibition by preincubation, which is a clinically relevant drug transporter. For the first time, we observed a 50-fold increase in CsA inhibitory potency against OCT1-mediated transport of metformin following a preincubation step. The CsA preincubation effect on OCT1 inhibition is substrate dependent. Moreover, the inhibition potential of CsA toward OCT1 is confirmed by hepatocyte uptake experiment. This study delivers clear evidences about the potent and persistent inhibitory effect on OCT1 after exposure to CsA. Further studies are needed to assess the effect of CsA on OCT1 drug substrates in vivo.
Collapse
Affiliation(s)
- Erika Panfen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Weiqi Chen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Michael Sinz
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Jinping Gan
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|
38
|
Farasyn T, Crowe A, Hatley O, Neuhoff S, Alam K, Kanyo J, Lam TT, Ding K, Yue W. Preincubation With Everolimus and Sirolimus Reduces Organic Anion-Transporting Polypeptide (OATP)1B1- and 1B3-Mediated Transport Independently of mTOR Kinase Inhibition: Implication in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. J Pharm Sci 2019; 108:3443-3456. [PMID: 31047942 PMCID: PMC6759397 DOI: 10.1016/j.xphs.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 mediate hepatic uptake of many drugs including lipid-lowering statins. Current studies determined the OATP1B1/1B3-mediated drug-drug interaction (DDI) potential of mammalian target of rapamycin (mTOR) inhibitors, everolimus and sirolimus, using R-value and physiologically based pharmacokinetic models. Preincubation with everolimus and sirolimus significantly decreased OATP1B1/1B3-mediated transport even after washing and decreased inhibition constant values up to 8.3- and 2.9-fold for OATP1B1 and both 2.7-fold for OATP1B3, respectively. R-values of everolimus, but not sirolimus, were greater than the FDA-recommended cutoff value of 1.1. Physiologically based pharmacokinetic models predict that everolimus and sirolimus have low OATP1B1/1B3-mediated DDI potential against pravastatin. OATP1B1/1B3-mediated transport was not affected by preincubation with INK-128 (10 μM, 1 h), which does however abolish mTOR kinase activity. The preincubation effects of everolimus and sirolimus on OATP1B1/1B3-mediated transport were similar in cells before preincubation with vehicle control or INK-128, suggesting that inhibition of mTOR activity is not a prerequisite for the preincubation effects observed for everolimus and sirolimus. Nine potential phosphorylation sites of OATP1B1 were identified by phosphoproteomics; none of these are the predicted mTOR phosphorylation sites. We report the everolimus/sirolimus-preincubation-induced inhibitory effects on OATP1B1/1B3 and relatively low OATP1B1/1B3-mediated DDI potential of everolimus and sirolimus.
Collapse
Affiliation(s)
- Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Oliver Hatley
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jean Kanyo
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520
| | - TuKiet T Lam
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
39
|
Carter SJ, Ferecskó AS, King L, Ménochet K, Parton T, Chappell MJ. A mechanistic modelling approach for the determination of the mechanisms of inhibition by cyclosporine on the uptake and metabolism of atorvastatin in rat hepatocytes using a high throughput uptake method. Xenobiotica 2019; 50:415-426. [PMID: 31389297 DOI: 10.1080/00498254.2019.1652781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Determine the inhibition mechanism through which cyclosporine inhibits the uptake and metabolism of atorvastatin in fresh rat hepatocytes using mechanistic models applied to data generated using a high throughput oil spin method.Atorvastatin was incubated in fresh rat hepatocytes (0.05-150 nmol/ml) with or without 20 min pre-incubation with 10 nmol/ml cyclosporine and sampled over 0.25-60 min using a high throughput oil spin method. Micro-rate constant and macro-rate constant mechanistic models were ranked based on goodness of fit values.The best fitting model to the data was a micro-rate constant mechanistic model including non-competitive inhibition of uptake and competitive inhibition of metabolism by cyclosporine (Model 2). The association rate constant for atorvastatin was 150-fold greater than the dissociation rate constant and 10-fold greater than the translocation into the cell. The association and dissociation rate constants for cyclosporine were 7-fold smaller and 10-fold greater, respectively, than atorvastatin. The simulated atorvastatin-transporter-cyclosporine complex derived using the micro-rate constant parameter estimates increased in line with the incubation concentration of atorvastatin.The increased amount of data generated with the high throughput oil spin method, combined with a micro-rate constant mechanistic model helps to explain the inhibition of uptake by cyclosporine following pre-incubation.
Collapse
Affiliation(s)
- Simon J Carter
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | - Michael J Chappell
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
40
|
Tátrai P, Schweigler P, Poller B, Domange N, de Wilde R, Hanna I, Gáborik Z, Huth F. A Systematic In Vitro Investigation of the Inhibitor Preincubation Effect on Multiple Classes of Clinically Relevant Transporters. Drug Metab Dispos 2019; 47:768-778. [PMID: 31068368 DOI: 10.1124/dmd.118.085993] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 02/13/2025] Open
Abstract
Preincubation of a drug transporter with its inhibitor in a cell-based assay may result in the apparent enhancement of the inhibitory potency. Currently, limited data are available on potentiation of transporter inhibition by preincubation (PTIP) for clinically relevant solute-carrier transporters other than OATP1B1 and OATP1B3. Therefore, PTIP was examined systematically using OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, and MATE2-K cell lines. IC50 values of 30 inhibitors were determined with or without 3 hours of preincubation, and compounds with a PTIP ≥2.5× were further characterized by assessing the time course of transport inhibition potency and cellular concentration. For each compound, correlations were calculated between highest observed PTIP and physicochemical properties. PTIP was prevalent among organic cation transporters (OCTs) and organic anion-transporting polypeptides (OATPs) but not among organic anion transporters (OATs) or multidrug and toxin extrusion transporters (MATEs), and most instances of PTIP persisted after controlling for toxicity and nonspecific binding. Occasionally, preincubation in excess of 2 hours was required to attain full inhibitory potency. For four drugs examined, preincubation had the potential to change the in vitro drug-drug interaction risk prediction from "no risk" to "risk" on the basis of current regulatory criteria. Molecular weight and LogD7.4, as well as the ratio of passive cellular accumulation and cellular uptake rate correlated with PTIP; thus, low cellular permeation and a slow build-up of unbound intracellular inhibitor concentration may contribute to PTIP. Taken together, our data suggest that PTIP is partly determined by the physicochemical properties of the perpetrator drug, and preincubation may affect the in vitro predicted drug-drug interaction risk for OCTs as well as OATPs. SIGNIFICANCE STATEMENT: During the development of a novel pharmaceutical drug, in vitro studies are conducted to assess the risk of potential adverse interactions between existing medications a patient may already be taking and the novel compound. The exact way these in vitro assays are performed may influence the outcome of risk assessment. Here we suggest that the interaction risk may be underestimated unless specific assay protocols are modified to include an additional incubation step that allows the test drug to accumulate inside the cells, and demonstrate that adding this step is particularly important for large and hydrophobic drug molecules.
Collapse
Affiliation(s)
- Péter Tátrai
- Solvo Biotechnology, Budapest, Hungary (P.T., R.d.W., Z.G.); Novartis Institutes for Biomedical Research, Basel, Switzerland (P.S., B.P., N.D., F.H.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.)
| | - Patrick Schweigler
- Solvo Biotechnology, Budapest, Hungary (P.T., R.d.W., Z.G.); Novartis Institutes for Biomedical Research, Basel, Switzerland (P.S., B.P., N.D., F.H.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.)
| | - Birk Poller
- Solvo Biotechnology, Budapest, Hungary (P.T., R.d.W., Z.G.); Novartis Institutes for Biomedical Research, Basel, Switzerland (P.S., B.P., N.D., F.H.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.)
| | - Norbert Domange
- Solvo Biotechnology, Budapest, Hungary (P.T., R.d.W., Z.G.); Novartis Institutes for Biomedical Research, Basel, Switzerland (P.S., B.P., N.D., F.H.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.)
| | - Roelof de Wilde
- Solvo Biotechnology, Budapest, Hungary (P.T., R.d.W., Z.G.); Novartis Institutes for Biomedical Research, Basel, Switzerland (P.S., B.P., N.D., F.H.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.)
| | - Imad Hanna
- Solvo Biotechnology, Budapest, Hungary (P.T., R.d.W., Z.G.); Novartis Institutes for Biomedical Research, Basel, Switzerland (P.S., B.P., N.D., F.H.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.)
| | - Zsuzsanna Gáborik
- Solvo Biotechnology, Budapest, Hungary (P.T., R.d.W., Z.G.); Novartis Institutes for Biomedical Research, Basel, Switzerland (P.S., B.P., N.D., F.H.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.)
| | - Felix Huth
- Solvo Biotechnology, Budapest, Hungary (P.T., R.d.W., Z.G.); Novartis Institutes for Biomedical Research, Basel, Switzerland (P.S., B.P., N.D., F.H.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.)
| |
Collapse
|
41
|
Multiple circulating saponins from intravenous ShenMai inhibit OATP1Bs in vitro: potential joint precipitants of drug interactions. Acta Pharmacol Sin 2019; 40:833-849. [PMID: 30327544 DOI: 10.1038/s41401-018-0173-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022]
Abstract
ShenMai, an intravenous injection prepared from steamed Panax ginseng roots (Hongshen) and Ophiopogon japonicus roots (Maidong), is used as an add-on therapy for coronary artery disease and cancer; saponins are its bioactive constituents. Since many saponins inhibit human organic anion-transporting polypeptides (OATP)1B, this investigation determined the inhibition potencies of circulating ShenMai saponins on the transporters and the joint potential of these compounds for ShenMai-drug interaction. Circulating saponins and their pharmacokinetics were characterized in rats receiving a 30-min infusion of ShenMai at 10 mL/kg. Inhibition of human OATP1B1/1B3 and rat Oatp1b2 by the individual saponins was investigated in vitro; the compounds' joint inhibition was also assessed in vitro and the data was processed using the Chou-Talalay method. Plasma protein binding was assessed by equilibrium dialysis. Altogether, 49 saponins in ShenMai were characterized and graded into: 10-100 μmol/day (compound doses from ShenMai; 7 compounds), 1-10 μmol/day (17 compounds), and <1 μmol/day (25 compounds, including Maidong ophiopogonins). After dosing, circulating saponins were protopanaxadiol-type ginsenosides Rb1, Rb2, Rc, Rd, Ra1, Rg3, Ra2, and Ra3, protopanaxatriol-type ginsenosides Rg1, Re, Rg2, and Rf, and ginsenoside Ro. The protopanaxadiol-type ginsenosides exhibited maximum plasma concentrations of 2.1-46.6 μmol/L, plasma unbound fractions of 0.4-1.0% and terminal half-lives of 15.6-28.5 h (ginsenoside Rg3, 1.9 h), while the other ginsenosides exhibited 0.1-7.7 μmol/L, 20.8-99.2%, and 0.2-0.5 h, respectively. The protopanaxadiol-type ginsenosides, ginsenosides without any sugar attachment at C-20 (except ginsenoside Rf), and ginsenoside Ro inhibited OATP1B3 more potently (IC50, 0.2-3.5 µmol/L) than the other ginsenosides (≥22.6 µmol/L). Inhibition of OATP1B1 by ginsenosides was less potent than OATP1B3 inhibition. Ginsenosides Rb1, Rb2, Rc, Rd, Ro, Ra1, Re, and Rg2 likely contribute the major part of OATP1B3-mediated ShenMai-drug interaction potential, in an additive and time-related manner.
Collapse
|
42
|
Evaluation of Drug Biliary Excretion Using Sandwich-Cultured Human Hepatocytes. Eur J Drug Metab Pharmacokinet 2019; 44:13-30. [PMID: 30167999 DOI: 10.1007/s13318-018-0502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.
Collapse
|
43
|
Kimoto E, Vourvahis M, Scialis RJ, Eng H, Rodrigues AD, Varma MVS. Mechanistic Evaluation of the Complex Drug-Drug Interactions of Maraviroc: Contribution of Cytochrome P450 3A, P-Glycoprotein and Organic Anion Transporting Polypeptide 1B1. Drug Metab Dispos 2019; 47:493-503. [PMID: 30862625 DOI: 10.1124/dmd.118.085241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/04/2019] [Indexed: 02/13/2025] Open
Abstract
The aim of the present study was to quantitatively evaluate the drug-drug interactions (DDIs) of maraviroc (MVC) with various perpetrator drugs, including telaprevir (TVR), using an in vitro data-informed physiologically based pharmacokinetic (PBPK) model. MVC showed significant active uptake and biliary excretion in sandwich-cultured human hepatocytes, and biphasic organic anion transporting polypeptide (OATP)1B1-mediated uptake kinetics in transfected cells (high-affinity K m ∼5 µM). No measureable active uptake was noted in OATP1B3- and OATP2B1-transfceted cells. TVR inhibited OATP1B1-mediated MVC transport in vitro, and also exhibited CYP3A time-dependent inhibition in human hepatocytes (inactivation constant, K I = 2.24 µM, and maximum inactivation rate constant, k inact = 0.0112 minute-1). The inactivation efficiency (k inact/K I) was approximately 34-fold lower in human hepatocytes compared with liver microsomes. A PBPK model accounting for interactions involving CYP3A, P-glycoprotein (P-gp), and OATP1B1 was developed based on in vitro mechanistic data. MVC DDIs with ketoconazole (inhibition of CYP3A and P-gp), ritonavir (inhibition of CYP3A and P-gp), efavirenz (induction of CYP3A), rifampicin (induction of CYP3A and P-gp; inhibition of OATP1B1), and TVR (inhibition of CYP3A, P-gp, and OATP1B1) were well described by the PBPK model with optimized transporter K i values implying that OATP1B1-mediated uptake along with CYP3A metabolism determines the hepatic clearance of MVC, and P-gp-mediated efflux limits its intestinal absorption. In summary, MVC disposition involves intestinal P-gp/CYP3A and hepatic OATP1B1/CYP3A interplay, and TVR simultaneously inhibits these multiple mechanisms leading to a strong DDI-about 9.5-fold increase in MVC oral exposure.
Collapse
Affiliation(s)
- Emi Kimoto
- Pharmacokinetics, Pharmacodynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (E.K., R.J.S., H.E., A.D.R., M.V.S.V.); and Clinical Pharmacology, Pfizer Inc., New York, New York (M.V.)
| | - Manoli Vourvahis
- Pharmacokinetics, Pharmacodynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (E.K., R.J.S., H.E., A.D.R., M.V.S.V.); and Clinical Pharmacology, Pfizer Inc., New York, New York (M.V.)
| | - Renato J Scialis
- Pharmacokinetics, Pharmacodynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (E.K., R.J.S., H.E., A.D.R., M.V.S.V.); and Clinical Pharmacology, Pfizer Inc., New York, New York (M.V.)
| | - Heather Eng
- Pharmacokinetics, Pharmacodynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (E.K., R.J.S., H.E., A.D.R., M.V.S.V.); and Clinical Pharmacology, Pfizer Inc., New York, New York (M.V.)
| | - A David Rodrigues
- Pharmacokinetics, Pharmacodynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (E.K., R.J.S., H.E., A.D.R., M.V.S.V.); and Clinical Pharmacology, Pfizer Inc., New York, New York (M.V.)
| | - Manthena V S Varma
- Pharmacokinetics, Pharmacodynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (E.K., R.J.S., H.E., A.D.R., M.V.S.V.); and Clinical Pharmacology, Pfizer Inc., New York, New York (M.V.)
| |
Collapse
|
44
|
Tornio A, Filppula AM, Niemi M, Backman JT. Clinical Studies on Drug-Drug Interactions Involving Metabolism and Transport: Methodology, Pitfalls, and Interpretation. Clin Pharmacol Ther 2019; 105:1345-1361. [PMID: 30916389 PMCID: PMC6563007 DOI: 10.1002/cpt.1435] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Abstract
Many drug-drug interactions (DDIs) are based on alterations of the plasma concentrations of a victim drug due to another drug causing inhibition and/or induction of the metabolism or transporter-mediated disposition of the victim drug. In the worst case, such interactions cause more than tenfold increases or decreases in victim drug exposure, with potentially life-threatening consequences. There has been tremendous progress in the predictability and modeling of DDIs. Accordingly, the combination of modeling approaches and clinical studies is the current mainstay in evaluation of the pharmacokinetic DDI risks of drugs. In this paper, we focus on the methodology of clinical studies on DDIs involving drug metabolism or transport. We specifically present considerations related to general DDI study designs, recommended enzyme and transporter index substrates and inhibitors, pharmacogenetic perspectives, index drug cocktails, endogenous substrates, limited sampling strategies, physiologically-based pharmacokinetic modeling, complex DDIs, methodological pitfalls, and interpretation of DDI information.
Collapse
Affiliation(s)
- Aleksi Tornio
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne M Filppula
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
45
|
Malinen MM, Kauttonen A, Beaudoin JJ, Sjöstedt N, Honkakoski P, Brouwer KLR. Novel in Vitro Method Reveals Drugs That Inhibit Organic Solute Transporter Alpha/Beta (OSTα/β). Mol Pharm 2019; 16:238-246. [PMID: 30481467 PMCID: PMC6465078 DOI: 10.1021/acs.molpharmaceut.8b00966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug interactions with the organic solute transporter alpha/beta (OSTα/β) are understudied even though OSTα/β is an important transporter that is expressed in multiple human tissues including the intestine, kidneys, and liver. In this study, an in vitro method to identify novel OSTα/β inhibitors was first developed using OSTα/β-overexpressing Flp-In 293 cells. Incubation conditions were optimized using previously reported OSTα/β inhibitors. A method including a 10 min preincubation step with the test compound was used to screen for OSTα/β inhibition by 77 structurally diverse compounds and fixed-dose combinations. Seven compounds and one fixed-dose combination (100 μM final concentration) inhibited OSTα/β-mediated dehydroepiandrosterone sulfate (DHEAS) uptake by >25%. Concentration-dependent OSTα/β inhibition was evaluated for all putative inhibitors (atorvastatin, ethinylestradiol, fidaxomicin, glycochenodeoxycholate, norgestimate, troglitazone, and troglitazone sulfate). Ethinylestradiol, fidaxomicin, and troglitazone sulfate yielded a clear concentration-inhibition response with IC50 values <200 μM. Among all tested compounds, there was no clear association between physicochemical properties, the severity of hepatotoxicity, and the degree of OSTα/β inhibition. This study utilized a novel in vitro method to identify OSTα/β inhibitors and, for the first time, provided IC50 values for OSTα/β inhibition. These data provide evidence that several drugs, some of which are associated with cholestatic drug-induced liver injury, may impair the function of the OSTα/β transporter.
Collapse
Affiliation(s)
- Melina M. Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Antti Kauttonen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - James J. Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Chen Y, Zhu R, Ma F, Mao J, Chen EC, Choo EF, Sahasranaman S, Liu L. Assessment of OATP transporter-mediated drug-drug interaction using physiologically-based pharmacokinetic (PBPK) modeling - a case example. Biopharm Drug Dispos 2018; 39:420-430. [DOI: 10.1002/bdd.2159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Yuan Chen
- Drug Metabolism and Pharmacokinetics; Genentech Inc.; South San Francisco CA 94080 USA
| | - Rui Zhu
- Clinical Pharmacology; Genentech Inc.; South San Francisco CA 94080 USA
| | - Fang Ma
- Drug Metabolism and Pharmacokinetics; Genentech Inc.; South San Francisco CA 94080 USA
| | - Jialin Mao
- Drug Metabolism and Pharmacokinetics; Genentech Inc.; South San Francisco CA 94080 USA
| | - Eugene C. Chen
- Drug Metabolism and Pharmacokinetics; Genentech Inc.; South San Francisco CA 94080 USA
| | - Edna F. Choo
- Drug Metabolism and Pharmacokinetics; Genentech Inc.; South San Francisco CA 94080 USA
| | | | - Lichuan Liu
- Clinical Pharmacology; Genentech Inc.; South San Francisco CA 94080 USA
| |
Collapse
|
47
|
Yoshida K, Guo C, Sane R. Quantitative Prediction of OATP-Mediated Drug-Drug Interactions With Model-Based Analysis of Endogenous Biomarker Kinetics. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:517-524. [PMID: 29924471 PMCID: PMC6118294 DOI: 10.1002/psp4.12315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Quantitative prediction of the magnitude of transporter‐mediated clinical drug‐drug interactions (DDIs) solely from in vitro inhibition data remains challenging. The objective of the present work was to analyze the kinetic profile of an endogenous biomarker for organic anion‐transporting polypeptides 1B (OATP1B), coproporphyrin I (CPI), and to predict clinical DDIs with a probe OATP1B substrate (pravastatin) based on “in vivo” inhibition constants (Ki). The CPI kinetics in the presence and absence of strong and weak OATP1B inhibitors (rifampin and GDC‐0810) were described well with a one‐compartment model, and in vivo Ki were estimated. Clinical DDIs between pravastatin and these inhibitors were predicted using physiologically based pharmacokinetic (PBPK) models coupled with the estimated in vivo Ki and predicted magnitude matched well with the observed DDIs. In conclusion, model‐based analysis of the CPI profile has the potential to quantitatively predict liability of a new molecular entity (NME) as an OATP1B inhibitor early in drug development.
Collapse
Affiliation(s)
- Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA
| | - Cen Guo
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rucha Sane
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA
| |
Collapse
|
48
|
Takehara I, Yoshikado T, Ishigame K, Mori D, Furihata KI, Watanabe N, Ando O, Maeda K, Sugiyama Y, Kusuhara H. Comparative Study of the Dose-Dependence of OATP1B Inhibition by Rifampicin Using Probe Drugs and Endogenous Substrates in Healthy Volunteers. Pharm Res 2018; 35:138. [PMID: 29748935 DOI: 10.1007/s11095-018-2416-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/22/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To evaluate association of the dose-dependent effect of rifampicin, an OATP1B inhibitor, on the plasma concentration-time profiles among OATP1B substrates drugs and endogenous substrates. METHODS Eight healthy volunteers received atorvastatin (1 mg), pitavastatin (0.2 mg), rosuvastatin (0.5 mg), and fluvastatin (2 mg) alone or with rifampicin (300 or 600 mg) in a crossover fashion. The plasma concentrations of these OATP1B probe drugs, total and direct bilirubin, glycochenodeoxycholate-3-sulfate (GCDCA-S), and coproporphyrin I, were determined. RESULTS The most striking effect of 600 mg rifampicin was on atorvastatin (6.0-times increase) and GCDCA-S (10-times increase). The AUC0-24h of atorvastatin was reasonably correlated with that of pitavastatin (r2 = 0.73) and with the AUC0-4h of fluvastatin (r2 = 0.62) and sufficiently with the AUC0-24h of rosuvastatin (r2 = 0.32). The AUC0-24h of GCDCA-S was reasonably correlated with those of direct bilirubin (r2 = 0.74) and coproporphyrin I (r2 = 0.78), and sufficiently with that of total bilirubin (r2 = 0.30). The AUC0-24h of GCDCA-S, direct bilirubin, and coproporphyrin I were reasonably correlated with that of atorvastatin (r2 = 0.48-0.70) [corrected]. CONCLUSION These results suggest that direct bilirubin, GCDCA-S, and coproporphyrin I are promising surrogate probes for the quantitative assessment of potential OATP1B-mediated DDI.
Collapse
Affiliation(s)
- Issey Takehara
- Biomarker Department, Daiichi Sankyo Co. Ltd., Tokyo, Japan.,Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takashi Yoshikado
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 245-0066, Japan.,Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Keiko Ishigame
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Daiki Mori
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Nobuaki Watanabe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Osamu Ando
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
49
|
Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci 2018. [PMID: 29538325 PMCID: PMC5877716 DOI: 10.3390/ijms19030855] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|
50
|
Oh Y, Jeong YS, Kim MS, Min JS, Ryoo G, Park JE, Jun Y, Song YK, Chun SE, Han S, Bae SK, Chung SJ, Lee W. Inhibition of Organic Anion Transporting Polypeptide 1B1 and 1B3 by Betulinic Acid: Effects of Preincubation and Albumin in the Media. J Pharm Sci 2018; 107:1713-1723. [PMID: 29462635 DOI: 10.1016/j.xphs.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Betulinic acid (BA), a plant-derived pentacyclic triterpenoid, may interact with the members of the organic anion transporting polypeptide 1B subfamily. Here, we investigated the interactions of BA and its analogs with OATP1B1/3 and rat Oatp1b2 in vitro and in vivo. BA inhibited the activity of OATP1B1/3 and rat Oatp1b2 in vitro. Systemic exposure of atorvastatin was substantially altered with the intravenous co-administration of BA (20 mg/kg). Preincubation (incubation with inhibitors, followed by washout) with BA led to a sustained inhibition of OATP1B3, which recovered rapidly in the media containing 10% fetal bovine serum. The addition of albumin to the media decreased intracellular concentrations of BA and expedited the recovery of OATP1B3 activity following preincubation. For asunaprevir and cyclosporin A (previously known to inhibit OATP1B3 upon preincubation), the addition of albumin to the media shortened recovery time with asunaprevir, but not with cyclosporin A. Overall, our results showed that BA inhibits OATP1B transporters in vitro and may incur hepatic transporter-mediated drug interactions in vivo. Our results identify BA as another OATP1B3 inhibitor with preincubation effect and suggest that the preincubation effect and its duration is impacted by altered equilibrium of inhibitors between intracellular and extracellular space (e.g., albumin in the media).
Collapse
Affiliation(s)
- Yunseok Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yoo-Seong Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Min-Soo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, Korea
| | - Gongmi Ryoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yearin Jun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yoo-Kyung Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Se-Eun Chun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Songhee Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|