1
|
Liu Z, Lai K, Li P, Gong Y, Fu H, Dong H, Yang Z, Qin R, Guo L. Enhanced Anticancer Selectivity of Cyclometalated Imidazole/Pyrazole-Imine Iridium III Complexes Through the Switch from Cationic to Zwitterionic Forms. Inorg Chem 2025; 64:2837-2856. [PMID: 39895267 DOI: 10.1021/acs.inorgchem.4c04937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cyclometalated iridiumIII complexes have shown promising anticancer properties, with variations in charge and ligand substitution significantly influencing their biological activity. However, zwitterionic iridiumIII complexes remain scarcely explored. Herein, we report a series of zwitterionic cyclometalated imidazole/pyrazole-imine iridiumIII complexes and compare their biological activity to analogous cationic complexes with sulfonate counteranions. X-ray crystallography confirmed the structural differences between the cationic and zwitterionic forms. These complexes exhibited cytotoxicity against A549, HeLa, and HepG2 cancer cells, with IC50 values ranging from 14.35 to 69.12 μM. While cationic complexes showed higher cytotoxicity, zwitterionic complexes demonstrated enhanced selectivity for A549 cancer cells over BEAS-2B normal cells (selectivity index: 3.72-5.90 for zwitterionic forms vs 1.16-1.44 for cationic forms). This selectivity is attributed to distinct cellular uptake mechanisms: zwitterionic complexes use an energy-dependent pathway in cancer cells and an energy-independent pathway in normal cells, leading to differences in cellular accumulation and redox activity. Mechanistic studies revealed that both complex types induce ROS generation and mitochondrial membrane depolarization (MMP), with apoptosis as the primary cell death pathway.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ruixin Qin
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
2
|
Cao WH, Zhang YQ, Li XX, Zhang ZY, Li MH. Advances in immunotherapy for hepatitis B virus associated hepatocellular carcinoma patients. World J Hepatol 2024; 16:1158-1168. [PMID: 39474576 PMCID: PMC11514615 DOI: 10.4254/wjh.v16.i10.1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
Hepatitis B virus (HBV) infection plays an important role in the occurrence and development of hepatocellular carcinoma (HCC), and the rate of HBV infection in liver cancer patients in China is as high as 92.05%. Due to long-term exposure to chronic antigens from the gut, the liver needs to maintain a certain level of immune tolerance, both to avoid severe inflammation caused by non-pathogenic antigens and to maintain the possibility of rapid and violent responses to infection and tumors. Therefore, HBV infection interacts with the tumor microenvironment (TME) through a highly complex and intertwined signaling pathway, which results in a special TME in HCC. Due to changes in the TME, tumor cells can evade immune surveillance by inhibiting tumor-specific T cell function through cytotoxic T-lymphocy-associated protein-4 (CTLA-4) and programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1). Interferons, as a class of immune factors with strong biological activity, can improve the TME of HBV-HCC through various pathways. In recent years, the systematic treatment of HCC has gradually come out of the dilemma. In addition to the continuous emergence of new multi-target anti-vascular tyrosine kinase inhibitor drugs, immune checkpoint inhibitors have opened up a new avenue for the systematic treatment of HCC. At present, immunotherapy based on PD-1/L1 inhibitors has gradually become a new direction of systematic treatment for HCC, and the disease characteristics of patients included in global clinical studies are different from those of Chinese patients. Therefore, whether a group of HCC patients with HBV background and poor prognosis in China can also benefit from immunotherapy is an issue of wide concern. This review aims to elucidate the advances of immunotherapy for HBV related HCC patients with regard to: (1) Immunotherapy based on interferons; (2) Immunotherapy based on PD-1/L1 inhibitors; (3) Immunotherapy based on CTLA4 inhibitors; (4) Adoptive cell transfer; (5) Combination immunotherapy strategy; and (6) Shortcomings of immunotherapy.
Collapse
Affiliation(s)
- Wei-Hua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ya-Qin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xin-Xin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Zi-Yu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming-Hui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Peking University Ditan Teaching Hospital, Beijing 100015, China
| |
Collapse
|
3
|
Cao WH, Zhang YQ, Li XX, Zhang ZY, Li MH. Advances in immunotherapy for hepatitis B virus associated hepatocellular carcinoma patients. World J Hepatol 2024; 16:1338-1348. [DOI: 10.4254/wjh.v16.i10.1338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatitis B virus (HBV) infection plays an important role in the occurrence and development of hepatocellular carcinoma (HCC), and the rate of HBV infection in liver cancer patients in China is as high as 92.05%. Due to long-term exposure to chronic antigens from the gut, the liver needs to maintain a certain level of immune tolerance, both to avoid severe inflammation caused by non-pathogenic antigens and to maintain the possibility of rapid and violent responses to infection and tumors. Therefore, HBV infection interacts with the tumor microenvironment (TME) through a highly complex and intertwined signaling pathway, which results in a special TME in HCC. Due to changes in the TME, tumor cells can evade immune surveillance by inhibiting tumor-specific T cell function through cytotoxic T-lymphocy-associated protein-4 (CTLA-4) and programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1). Interferons, as a class of immune factors with strong biological activity, can improve the TME of HBV-HCC through various pathways. In recent years, the systematic treatment of HCC has gradually come out of the dilemma. In addition to the continuous emergence of new multi-target anti-vascular tyrosine kinase inhibitor drugs, immune checkpoint inhibitors have opened up a new avenue for the systematic treatment of HCC. At present, immunotherapy based on PD-1/L1 inhibitors has gradually become a new direction of systematic treatment for HCC, and the disease characteristics of patients included in global clinical studies are different from those of Chinese patients. Therefore, whether a group of HCC patients with HBV background and poor prognosis in China can also benefit from immunotherapy is an issue of wide concern. This review aims to elucidate the advances of immunotherapy for HBV related HCC patients with regard to: (1) Immunotherapy based on interferons; (2) Immunotherapy based on PD-1/L1 inhibitors; (3) Immunotherapy based on CTLA4 inhibitors; (4) Adoptive cell transfer; (5) Combination immunotherapy strategy; and (6) Shortcomings of immunotherapy.
Collapse
Affiliation(s)
- Wei-Hua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ya-Qin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xin-Xin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Zi-Yu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming-Hui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Peking University Ditan Teaching Hospital, Beijing 100015, China
| |
Collapse
|
4
|
Corti F, Brizzi MP, Amoroso V, Giuffrida D, Panzuto F, Campana D, Prinzi N, Milione M, Cascella T, Spreafico C, Randon G, Oldani S, Leporati R, Scotto G, Pulice I, Stocchetti BL, Porcu L, Coppa J, Di Bartolomeo M, de Braud F, Pusceddu S. Assessing the safety and activity of cabozantinib combined with lanreotide in gastroenteropancreatic and thoracic neuroendocrine tumors: rationale and protocol of the phase II LOLA trial. BMC Cancer 2023; 23:908. [PMID: 37752423 PMCID: PMC10523723 DOI: 10.1186/s12885-023-11287-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Well-differentiated (WD) neuroendocrine tumors (NETs) are a group of rare neoplasms with limited therapeutic options. Cabozantinib is an inhibitor of multiple tyrosine kinases with a pivotal role in NET pathogenesis, including c-MET and Vascular Endothelial Growth Factor Receptor 2 (VEGFR2). LOLA is the first prospective phase II trial aiming to assess the safety and activity of cabozantinib combined with lanreotide in WD NETs of gastroenteropancreatic (GEP), thoracic and of unknown origin. METHODS This is a multicenter, open-label, double-cohort, non comparative, non-randomized, three-stage phase II trial. Eligible patients have to meet the following inclusion criteria: diagnosis of advanced or metastatic, progressive, non-functioning WD thoracic NETs, GEP-NETs or NETs of unknown origin with Ki67 ≥ 10%; positive 68 Ga-PET uptake or somatostatin receptor 2 immunohistochemical (IHC) stain; maximum 1 prior systemic regimen for metastatic disease. Two cohorts will be considered: pNETs and carcinoids (typical or atypical lung and thymus NETs, gastro-intestinal NETs or NETs of unknown origin). In stage I, the primary objective is to find the optimal dose of cabozantinib in combination with lanreotide and to evaluate the safety of the combination (percentage of patients experiencing grade 3-5 toxicities according to NCI-CTCAE version 5.0). Starting dose of cabozantinib is 60 mg/day continuously, plus lanreotide 120 mg every 28 days. In stage II and III, co-primary endpoints are safety and overall response rate (ORR) according to RECIST version 1.1. The uninteresting antitumor activity is fixed in ORR ≤ 5%. Secondary endpoints are progression-free survival and overall survival. Exploratory objectives include the assessment of c-MET, AXL and VEGFR2 IHC expression, to identify predictive or prognostic tissue biomarkers. Enrolment started in July 2020, with an expected trial duration of 42 months comprehensive of accrual, treatment and follow-up. Considering a drop-out rate of 5%, the maximum number of enrolled patients will be 69. DISCUSSION Supported by a solid rationale, the trial has the potential to generate milestone data about the synergistic effects of cabozantinib plus lanreotide in a group of NET patients with relatively aggressive disease and limited therapeutic options. TRIAL REGISTRATION LOLA is registered at ClinicalTrials.gov (NCT04427787) and EudraCT (2019-004506-10).
Collapse
Affiliation(s)
- Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Maria Pia Brizzi
- Azienda Ospedaliera Universitaria San Luigi Gonzaga, Orbassano, Italy
| | - Vito Amoroso
- Medical Oncology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia at Spedali Civili Hospital, Brescia, Italy
| | - Dario Giuffrida
- Medical Oncology Department, Istituto Oncologico del Mediterraneo, Catania, Viagrande, Italy
| | - Francesco Panzuto
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Digestive Disease Unit, ENETS Center of Excellence, Sant' Andrea University Hospital, Rome, Italy
| | - Davide Campana
- Division of Medical Oncology, IRCCS Azienda Ospedaliera- Universitaria Bologna, NET Team Bologna, ENETS Center of Excellence, Bologna, Italy
| | - Natalie Prinzi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Massimo Milione
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Tommaso Cascella
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Milan, Italy
| | - Carlo Spreafico
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Milan, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Simone Oldani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Rita Leporati
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Giulia Scotto
- Azienda Ospedaliera Universitaria San Luigi Gonzaga, Orbassano, Italy
| | - Iolanda Pulice
- Clinical Trial Center, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Benedetta Lombardi Stocchetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Luca Porcu
- Methodology for Clinical Research Laboratory, Oncology Department, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jorgelina Coppa
- Gastro-Entero-Pancreatic Surgical and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Milan, Italy
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
| | - Sara Pusceddu
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
5
|
Delvecchio FR, Fincham REA, Spear S, Clear A, Roy-Luzarraga M, Balkwill FR, Gribben JG, Bombardieri M, Hodivala-Dilke K, Capasso M, Kocher HM. Pancreatic Cancer Chemotherapy Is Potentiated by Induction of Tertiary Lymphoid Structures in Mice. Cell Mol Gastroenterol Hepatol 2021; 12:1543-1565. [PMID: 34252585 PMCID: PMC8529396 DOI: 10.1016/j.jcmgh.2021.06.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The presence of tertiary lymphoid structures (TLSs) may confer survival benefit to patients with pancreatic ductal adenocarcinoma (PDAC), in an otherwise immunologically inert malignancy. Yet, the precise role in PDAC has not been elucidated. Here, we aim to investigate the structure and role of TLSs in human and murine pancreatic cancer. METHODS Multicolor immunofluorescence and immunohistochemistry were used to fully characterize TLSs in human and murine (transgenic [KPC (KrasG12D, p53R172H, Pdx-1-Cre)] and orthotopic) pancreatic cancer. An orthotopic murine model was developed to study the development of TLSs and the effect of the combined chemotherapy and immunotherapy on tumor growth. RESULTS Mature, functional TLSs are not ubiquitous in human PDAC and KPC murine cancers and are absent in the orthotopic murine model. TLS formation can be induced in the orthotopic model of PDAC after intratumoral injection of lymphoid chemokines (CXCL13/CCL21). Coadministration of systemic chemotherapy (gemcitabine) and intratumoral lymphoid chemokines into orthotopic tumors altered immune cell infiltration ,facilitating TLS induction and potentiating antitumor activity of chemotherapy. This resulted in significant tumor reduction, an effect not achieved by either treatment alone. Antitumor activity seen after TLS induction is associated with B cell-mediated dendritic cell activation. CONCLUSIONS This study provides supportive evidence that TLS induction may potentiate the antitumor activity of chemotherapy in a murine model of PDAC. A detailed understanding of TLS kinetics and their induction, owing to multiple host and tumor factors, may help design personalized therapies harnessing the potential of immune-oncology.
Collapse
Affiliation(s)
- Francesca R Delvecchio
- Centre for Tumor Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom; Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rachel E A Fincham
- Centre for Tumor Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - Sarah Spear
- Centre for Tumor Micro-environment, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - Marina Roy-Luzarraga
- Centre for Tumor Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - Frances R Balkwill
- Centre for Tumor Micro-environment, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Centre for Tumor Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - Melania Capasso
- Centre for Tumor Micro-environment, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom; German Centre for Neurodegenerative Diseases, Bonn, Germany
| | - Hemant M Kocher
- Centre for Tumor Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
6
|
Singh A, Beechinor RJ, Huynh JC, Li D, Dayyani F, Valerin JB, Hendifar A, Gong J, Cho M. Immunotherapy Updates in Advanced Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13092164. [PMID: 33946408 PMCID: PMC8125389 DOI: 10.3390/cancers13092164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Advanced hepatocellular carcinoma (HCC) carries a grim prognosis, which has historically been compounded by a lack of available systemic therapies. Sorafenib monotherapy was the standard of care for front-line treatment of advanced HCC for many years, despite both poor tolerability and lack of durable responses. In the past few years, there have been several clinical trials evaluating the efficacy of immune checkpoint inhibitors for advanced HCC. Use of immune checkpoint inhibitors alone, and in combination with targeted therapies, has led to improved outcomes in both treatment-naïve and subsequent line treatment of advanced HCC. Here we review the role of immunotherapy in the treatment of HCC, describe the mechanistic basis for combination with targeted therapy, and summarize the recent published data as well as ongoing clinical trials for the use of immunotherapy in the treatment of advanced HCC. Abstract Hepatocellular carcinoma (HCC) is the second most common cause of cancer death worldwide. HCC tumor development and treatment resistance are impacted by changes in the microenvironment of the hepatic immune system. Immunotherapy has the potential to improve response rates by overcoming immune tolerance mechanisms and strengthening anti-tumor activity in the tumor microenvironment. In this review, we characterize the impact of immunotherapy on outcomes of advanced HCC, as well as the active clinical trials evaluating novel combination immunotherapy strategies. In particular, we discuss the efficacy of atezolizumab and bevacizumab as demonstrated in the IMbrave150 study, which created a new standard of care for the front-line treatment of advanced HCC. However, there are multiple ongoing trials that may present additional front-line treatment options depending on their efficacy/toxicity results. Furthermore, the preliminary data on the application of chimeric antigen receptor (CAR-T) cell therapy for treatment of HCC suggests this may be a promising option for the future of advanced HCC treatment.
Collapse
Affiliation(s)
- Amisha Singh
- Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA;
| | | | - Jasmine C. Huynh
- Hematology Oncology, University of California, Davis, Sacramento, CA 95817, USA;
| | - Daneng Li
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA;
| | - Farshid Dayyani
- Hematology Oncology, University of California, Irvine, Irvine, CA 92868, USA; (F.D.); (J.B.V.)
| | - Jennifer B. Valerin
- Hematology Oncology, University of California, Irvine, Irvine, CA 92868, USA; (F.D.); (J.B.V.)
| | - Andrew Hendifar
- Hematology Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.H.); (J.G.)
| | - Jun Gong
- Hematology Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.H.); (J.G.)
| | - May Cho
- Hematology Oncology, University of California, Irvine, Irvine, CA 92868, USA; (F.D.); (J.B.V.)
- Correspondence:
| |
Collapse
|
7
|
Aloj L, Giger O, Mendichovszky IA, Challis BG, Ronel M, Harper I, Cheow H, Hoopen RT, Pitfield D, Gallagher FA, Attili B, McLean M, Jones RL, Dileo P, Bulusu VR, Maher ER, Casey RT. The role of [ 68 Ga]Ga-DOTATATE PET/CT in wild-type KIT/PDGFRA gastrointestinal stromal tumours (GIST). EJNMMI Res 2021; 11:5. [PMID: 33443647 PMCID: PMC7809083 DOI: 10.1186/s13550-021-00747-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND [68 Ga]Ga-DOTATATE PET/CT is now recognised as the most sensitive functional imaging modality for the diagnosis of well-differentiated neuroendocrine tumours (NET) and can inform treatment with peptide receptor radionuclide therapy with [177Lu]Lu-DOTATATE. However, somatostatin receptor (SSTR) expression is not unique to NET, and therefore, [68 Ga]Ga-DOTATATE PET/CT may have oncological application in other tumours. Molecular profiling of gastrointestinal stromal tumours that lack activating somatic mutations in KIT or PDGFRA or so-called 'wild-type' GIST (wtGIST) has demonstrated that wtGIST and NET have overlapping molecular features and has encouraged exploration of shared therapeutic targets, due to a lack of effective therapies currently available for metastatic wtGIST. AIMS To investigate (i) the diagnostic role of [68 Ga]Ga-DOTATATE PET/CT; and, (ii) to investigate the potential of this imaging modality to guide treatment with [177Lu]Lu-DOTATATE in patients with wtGIST. METHODS [68 Ga]Ga-DOTATATE PET/CT was performed on 11 patients with confirmed or metastatic wtGIST and one patient with a history of wtGIST and a mediastinal mass suspicious for metastatic wtGIST, who was subsequently diagnosed with a metachronous mediastinal paraganglioma. Tumour expression of somatostatin receptor subtype 2 (SSTR2) using immunohistochemistry was performed on 54 tumour samples including samples from 8/12 (66.6%) patients who took part in the imaging study and 46 tumour samples from individuals not included in the imaging study. RESULTS [68 Ga]Ga-DOTATATE PET/CT imaging was negative, demonstrating that liver metastases had lower uptake than background liver for nine cases (9/12 cases, 75%) and heterogeneous uptake of somatostatin tracer was noted for two cases (16.6%) of wtGIST. However, [68 Ga]Ga-DOTATATE PET/CT demonstrated intense tracer uptake in a synchronous paraganglioma in one case and a metachronous paraganglioma in another case with wtGIST. CONCLUSIONS Our data suggest that SSTR2 is not a diagnostic or therapeutic target in wtGIST. [68 Ga]Ga-DOTATATE PET/CT may have specific diagnostic utility in differentiating wtGIST from other primary tumours such as paraganglioma in patients with sporadic and hereditary forms of wtGIST.
Collapse
Affiliation(s)
- Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Nuclear Medicine, Cambridge University Hospitals Foundation Trust, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Olivier Giger
- Department of Pathology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Iosif A Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Nuclear Medicine, Cambridge University Hospitals Foundation Trust, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Ben G Challis
- Department of Endocrinology, Cambridge University Hospitals Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Meytar Ronel
- Department of Pathology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ines Harper
- Department of Nuclear Medicine, Cambridge University Hospitals Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Heok Cheow
- Department of Nuclear Medicine, Cambridge University Hospitals Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Rogier Ten Hoopen
- Department of Oncology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Deborah Pitfield
- Department of Endocrinology, Cambridge University Hospitals Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Bala Attili
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Mary McLean
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Robin L Jones
- Department of Medical Oncology, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, SW3 6JJ, UK
| | - Palma Dileo
- Department of Medical Oncology, University College London Hospital Foundation Trust, London, NW1 2PG, UK
| | - Venkata Ramesh Bulusu
- Department of Medical Oncology, Cambridge University Hospitals Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge, CB2 OQQ, UK
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospitals Foundation Trust, Cambridge, CB2 0QQ, UK.
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge, CB2 OQQ, UK.
| |
Collapse
|
8
|
Hilmi M, Neuzillet C, Calderaro J, Lafdil F, Pawlotsky JM, Rousseau B. Angiogenesis and immune checkpoint inhibitors as therapies for hepatocellular carcinoma: current knowledge and future research directions. J Immunother Cancer 2019; 7:333. [PMID: 31783782 PMCID: PMC6884868 DOI: 10.1186/s40425-019-0824-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second deadliest cancer worldwide, due to its high incidence and poor prognosis. Frequent initial presentation at advanced stages along with impaired liver function limit the use of a broad therapeutic arsenal in patients with HCC. Although main HCC oncogenic drivers have been deciphered in recent years (TERT, TP53, CTNNB1 mutations, miR122 and CDKN2A silencing), therapeutic applications derived from this molecular knowledge are still limited. Given its high vascularization and immunogenicity, antiangiogenics and immune checkpoint inhibitors (ICI), respectively, are two therapeutic approaches that have shown efficacy in HCC. Depending on HCC immune profile, combinations of these therapies aim to modify the protumoral/antitumoral immune balance, and to reactivate and favor the intratumoral trafficking of cytotoxic T cells. Combination therapies involving antiangiogenics and ICI may be synergistic, because vascular endothelial growth factor A inhibition increases intratumoral infiltration and survival of cytotoxic T lymphocytes and decreases regulatory T lymphocyte recruitment, resulting in a more favorable immune microenvironment for ICI antitumoral activity. First results from clinical trials evaluating combinations of these therapies are encouraging with response rates never observed before in patients with HCC. A better understanding of the balance and interactions between protumoral and antitumoral immune cells will help to ensure the success of future therapeutic trials. Here, we present an overview of the current state of clinical development of antitumoral therapies in HCC and the biological rationale for their use. Moreover, translational studies on tumor tissue and blood, prior to and during treatment, will help to identify biomarkers and immune signatures with predictive value for both clinical outcome and response to combination therapies.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/adverse effects
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/pathology
- Clinical Trials as Topic
- Combined Modality Therapy
- Disease Susceptibility
- Humans
- Immunomodulation/drug effects
- Liver Neoplasms/drug therapy
- Liver Neoplasms/etiology
- Liver Neoplasms/pathology
- Molecular Targeted Therapy
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/metabolism
- Treatment Outcome
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Marc Hilmi
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, Paris, France
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, Paris, France
| | - Julien Calderaro
- Department of Pathology, Henri Mondor Hospital, Créteil, France
- IMRB-INSERM U955 Team 18, Créteil, France
- Université Paris-Est-Créteil, Créteil, France
| | - Fouad Lafdil
- IMRB-INSERM U955 Team 18, Créteil, France
- Université Paris-Est-Créteil, Créteil, France
- Institut Universitaire de France, Paris, France
| | - Jean-Michel Pawlotsky
- IMRB-INSERM U955 Team 18, Créteil, France
- Université Paris-Est-Créteil, Créteil, France
- National Reference Center for Viral Hepatitis B, C and D, Department of Virology, Henri Mondor Hospital, Créteil, France
| | - Benoit Rousseau
- IMRB-INSERM U955 Team 18, Créteil, France.
- Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Liu X, Wang G, Yan X, Qiu H, Min P, Wu M, Tang C, Zhang F, Tang Q, Zhu S, Qiu M, Zhuang W, Fang DD, Zhou Z, Yang D, Zhai Y. Preclinical development of HQP1351, a multikinase inhibitor targeting a broad spectrum of mutant KIT kinases, for the treatment of imatinib-resistant gastrointestinal stromal tumors. Cell Biosci 2019; 9:88. [PMID: 31673329 PMCID: PMC6815454 DOI: 10.1186/s13578-019-0351-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Background Imatinib shows limited efficacy in patients with gastrointestinal stromal tumors (GISTs) carrying secondary KIT mutations. HQP1351, an orally bioavailable multikinase BCR-ABL inhibitor, is currently in clinical trials for the treatment of T315I mutant chronic myelogenous leukemia (CML), but the potential application in imatinib-resistant GISTs carrying secondary KIT mutations has not been explored. Methods The binding activities of HQP1351 with native or mutant KIT were first analyzed. Imatinib-sensitive GIST T1 and imatinib-resistant GIST 430 cells were employed to test the in vitro antiproliferative activity. Colony formation assay, cell migration assay and cell invasion assay were performed to evaluate the clonogenic, migration and invasion ability respectively. Flow cytometry and western blot analysis were used to detect cell apoptosis, cell cycle and signaling pathway. In vivo antitumor activity was evaluated in mouse xenograft models derived from GIST cell lines. Results HQP1351 potently inhibited both wild-type and mutant KIT kinases. In both imatinib-resistant and sensitive GIST cell lines, HQP1351 exhibited more potent or equivalent antiproliferative activity compared with ponatinib, a third generation BCR-ABL and KIT inhibitor. HQP1351 led to more profound inhibition of cell colony formation, cell migration and invasion, cell cycle arrest and cell apoptosis than ponatinib. Furthermore, HQP1351 also inhibited p-KIT, p-AKT, p-ERK1/2, and p-STAT3 to a higher extent than ponatinib. Finally, in xenograft tumor models derived from imatinib-resistant GIST cancer cell lines, HQP1351 exhibited antitumor activity superior to ponatinib. Conclusions Collectively, our in vitro and in vivo results suggest that the therapeutic application of HQP1351 in imatinib-resistant GIST patients deserves further investigation in clinical trials.
Collapse
Affiliation(s)
- Xuechao Liu
- 1Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People's Republic of China.,6Department of General Surgery, Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong People's Republic of China
| | - Guangfeng Wang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou Industrial Park, Suzhou, 215100 People's Republic of China
| | - Xianglei Yan
- 3Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People's Republic of China
| | - Haibo Qiu
- 1Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People's Republic of China
| | - Ping Min
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou Industrial Park, Suzhou, 215100 People's Republic of China
| | - Miaoyi Wu
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou Industrial Park, Suzhou, 215100 People's Republic of China
| | - Chunyang Tang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou Industrial Park, Suzhou, 215100 People's Republic of China
| | - Fei Zhang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou Industrial Park, Suzhou, 215100 People's Republic of China
| | - Qiuqiong Tang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou Industrial Park, Suzhou, 215100 People's Republic of China
| | - Saijie Zhu
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou Industrial Park, Suzhou, 215100 People's Republic of China
| | - Miaozhen Qiu
- 4Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People's Republic of China
| | - Wei Zhuang
- 3Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People's Republic of China
| | - Douglas D Fang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou Industrial Park, Suzhou, 215100 People's Republic of China
| | - Zhiwei Zhou
- 1Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People's Republic of China
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou Industrial Park, Suzhou, 215100 People's Republic of China.,3Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People's Republic of China
| | - Yifan Zhai
- HealthQuest Pharma Inc., Room 314, Building F, 3 Lanyue Road, Science City, Huangpu, Guangzhou, 510663 People's Republic of China
| |
Collapse
|
10
|
Liu LM, Xiong DD, Lin P, Yang H, Dang YW, Chen G. DNA topoisomerase 1 and 2A function as oncogenes in liver cancer and may be direct targets of nitidine chloride. Int J Oncol 2018; 53:1897-1912. [PMID: 30132517 PMCID: PMC6192772 DOI: 10.3892/ijo.2018.4531] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/31/2018] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to determine the role of topoisomerase 1 (TOP1) and topoisomerase 2A (TOP2A) in liver cancer (LC), and to investigate the inhibitory effect of nitidine chloride (NC) on these two topoisomerases. Immunohistochemistry (IHC) staining and microarray or RNA sequencing data mining showed markedly higher expression of TOP1 and TOP2A at the protein and mRNA levels in LC tissues compared with that in control non-tumor tissues. The prognostic values of TOP1 and TOP2A expression were also estimated based on data from The Cancer Genome Atlas. The elevated expression levels of TOP1 and TOP2A were closely associated with poorer overall survival and disease-free survival rates. When patients with LC were divided into high- and low-risk groups according to their prognostic index, TOP1 and TOP2A were highly expressed in the high-risk group. Bioinformatics analyses conducted on the co-expressed genes of TOP1 and TOP2A revealed that the topoisomerases were involved in several key cancer-related pathways, including the 'p53 pathway', 'pathway in cancer' and 'apoptosis signaling pathway'. Reverse transcription-quantitative polymerase chain reaction and IHC performed on triplicate tumor tissue samples from LC xenografts in control or NC-treated nude mice showed that NC treatment markedly reduced the protein and mRNA expression of TOP1 and TOP2A in LC tissues. Molecular docking studies further confirmed the direct binding of NC to TOP1 and TOP2A. In conclusion, the present findings indicate that TOP1 and TOP2A are oncogenes in LC and could serve as potential biomarkers for the prediction of the prognosis of patients with LC and for identification of high-risk cases, thereby optimizing individual treatment management. More importantly, the findings support TOP1 and TOP2A as potential drug targets of NC for the treatment of LC.
Collapse
Affiliation(s)
- Li-Min Liu
- Department of Toxicology, College of Pharmacy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division, Radiology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division, Radiology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
11
|
Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ, Feng ZB, Chen G. A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med 2018; 16:220. [PMID: 30092792 PMCID: PMC6085698 DOI: 10.1186/s12967-018-1593-5] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have received increasing attention in human tumor research. However, there are still a large number of unknown circRNAs that need to be deciphered. The aim of this study is to unearth novel circRNAs as well as their action mechanisms in hepatocellular carcinoma (HCC). METHODS A combinative strategy of big data mining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and computational biology was employed to dig HCC-related circRNAs and to explore their potential action mechanisms. A connectivity map (CMap) analysis was conducted to identify potential therapeutic agents for HCC. RESULTS Six differently expressed circRNAs were obtained from three Gene Expression Omnibus microarray datasets (GSE78520, GSE94508 and GSE97332) using the RobustRankAggreg method. Following the RT-qPCR corroboration, three circRNAs (hsa_circRNA_102166, hsa_circRNA_100291 and hsa_circRNA_104515) were selected for further analysis. miRNA response elements of the three circRNAs were predicted. Five circRNA-miRNA interactions including two circRNAs (hsa_circRNA_104515 and hsa_circRNA_100291) and five miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-miR-877-5p, hsa-miR-583 and hsa-miR-1276) were identified. Then, 1424 target genes of the above five miRNAs and 3278 differently expressed genes (DEGs) on HCC were collected. By intersecting the miRNA target genes and the DEGs, we acquired 172 overlapped genes. A protein-protein interaction network based on the 172 genes was established, with seven hubgenes (JUN, MYCN, AR, ESR1, FOXO1, IGF1 and CD34) determined from the network. The Gene Oncology, Kyoto Encyclopedia of Genes and Genomes and Reactome enrichment analyses revealed that the seven hubgenes were linked with some cancer-related biological functions and pathways. Additionally, three bioactive chemicals (decitabine, BW-B70C and gefitinib) based on the seven hubgenes were identified as therapeutic options for HCC by the CMap analysis. CONCLUSIONS Our study provides a novel insight into the pathogenesis and therapy of HCC from the circRNA-miRNA-mRNA network view.
Collapse
Affiliation(s)
- Dan-dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Yi-wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dong-yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Rong-quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dian-zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Zhen-bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| |
Collapse
|