1
|
Parker LE, Papanicolaou KN, Zalesak-Kravec S, Weinberger EM, Kane MA, Foster DB. Retinoic acid signaling and metabolism in heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H792-H813. [PMID: 39933792 DOI: 10.1152/ajpheart.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Nearly 70 years after studies first showed that the offspring of vitamin A (retinol, ROL)-deficient rats exhibit structural cardiac defects and over 20 years since the role of vitamin A's potent bioactive metabolite hormone, all-trans retinoic acid (ATRA), was elucidated in embryonic cardiac development, the role of the vitamin A metabolites, or retinoids, in adult heart physiology and heart and vascular disease, remains poorly understood. Studies have shown that low serum levels of retinoic acid correlate with higher all-cause and cardiovascular mortality, though the relationship between circulating retinol and ATRA levels, cardiac tissue ATRA levels, and intracellular cardiac ATRA signaling in the context of heart and vascular disease has only begun to be addressed. We have recently shown that patients with idiopathic dilated cardiomyopathy show a nearly 40% decline of in situ cardiac ATRA levels, despite adequate local stores of retinol. Moreover, we and others have shown that the administration of ATRA forestalls the development of heart failure (HF) in rodent models. In this review, we summarize key facets of retinoid metabolism and signaling and discuss mechanisms by which impaired ATRA signaling contributes to several HF hallmarks including hypertrophy, contractile dysfunction, poor calcium handling, redox imbalance, and fibrosis. We highlight unresolved issues in cardiac ATRA metabolism whose pursuit will help refine therapeutic strategies aimed at restoring ATRA homeostasis.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Eva M Weinberger
- School of Medicine, Imperial College London, London, United Kingdom
| | - Maureen A Kane
- School of Pharmacy, University of Maryland, Baltimore, Maryland, United States
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Zhao Z, Lv D, Zeng R, Rong Y, Xu Z, Yin R, Hu Z, Cao X, Tang B. Association and mediation between circulating inflammatory proteins and skin fibrosis. Front Endocrinol (Lausanne) 2025; 16:1416993. [PMID: 40171199 PMCID: PMC11958232 DOI: 10.3389/fendo.2025.1416993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Objective Skin fibrosis is a dermal lesion associated with inflammatory factors. However, the exact causal relationship between circulating inflammatory proteins (CIPs) and skin fibrosis remains unclear. To investigate this potential association and mediated effect, Mendelian randomization (MR) and two-step MR were used. Methods Summary statistics from genome-wide association studies (GWAS) were extracted from the GWAS Catalog for CIPs, blood metabolites (BMs), and skin fibrosis. Two-sample MR and reverse MR were conducted to determine the effect of CIPs on skin fibrosis. Two-step MR was then performed to investigate the role of BMs in mediating the effect of CIPs on skin fibrosis. Reverse MR analysis was performed to confirm the unidirectional causality between CIPs and BMs, as well as between BMs and skin fibrosis. Results Bidirectional Mendelian randomization revealed negative associations between skin fibrosis and the levels of T-cell surface glycoprotein CD6 isoform (odds ratio [OR] 0.670 [95% confidence interval [CI] 0.472, 0.951], p = 0.025), Delta and Notch-like epidermal growth factor-related receptor (OR 0.779 [95% CI 0.609, 0.998], p = 0.048), and Interleukin-10 receptor subunit beta (OR 0.541 [95% CI 0.332, 0.884], p = 0.014). There was a positive association between skin fibrosis and levels of Fibroblast growth factor 21 (OR 2.276 [95% CI 1.064, 4.870], p = 0.034). Two-step MR showed that Retinol (Vitamin A) to the linoleoyl-arachidonoyl-glycerol ratio (βM 0.108 [95% CI 0.006, 0.210], p = 0.004) and the Cholesterol to linoleoyl-arachidonoyl-glycerol ratio (βM 0.238 [95% CI 0.002, 0.474], p = 0.048) were identified as mediators, which showed evidence of the mediated effect of the levels of Fibroblast growth factor 21 on Keloid through these mediators. Conclusion The study presented credible evidence of a causal association between CIPs and skin fibrosis, with BMs potentially acting as a mediator in this association. These findings offer new insights into early screening and prevention of skin fibrosis.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruixi Zeng
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanchao Rong
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rong Yin
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Tang
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Krug SA, Singh R, Yu J, Witt WT, Pilli NR, Wilks A, Barbier M, Robinson KM, Kane MA. Quantification of All-Trans Retinoic Acid and Cytokine Levels After Fungal, Viral and Bacterial Infections in the Lung. J Cell Mol Med 2025; 29:e70391. [PMID: 40031928 PMCID: PMC11875669 DOI: 10.1111/jcmm.70391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 03/05/2025] Open
Abstract
All-trans retinoic acid (atRA) plays a critical role in tissue homeostasis as a master regulator of cellular proliferation, apoptosis and differentiation as well as in immune cell differentiation and function. An active metabolite of vitamin A, atRA has been reported to be reduced in a number of inflammatory conditions in both the lung and gut. Decreases in atRA have been reported in gastrointestinal tissue in inflammatory bowel diseases, radiation-induced gastrointestinal injury and viral infection. In the lung, atRA is reduced in inflammatory conditions including allergic asthma and radiation-induced lung injury; however, the impact of infection on lung atRA is not well defined. In this short communication, we quantified atRA and cytokine levels in the lung after fungal, viral and bacterial infections in mice and determined the correlation between atRA and cytokine levels in the lung. atRA was quantified by LC-MRM3, and seven different inflammatory cytokines were quantified by multiplexed immunoassay in mouse lung challenged with Influenza A, Aspergillus fumigatus, Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. Combined infections were also investigated. Our results show that there is a significant decrease in atRA after infection regardless of infection type. We show an inverse correlation between the decrease in atRA and the increase in inflammatory cytokines IL-1β, IL-6, IL-10 and IL-12 in lung tissue during infection. Elucidation of the homeostatic regulation of active metabolite atRA is important to understanding disease pathology and may enable future drug development to combat the effects of inflammation and infection.
Collapse
Affiliation(s)
- Samuel A. Krug
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - Ravineel Singh
- Department of Medicine, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - William T. Witt
- Vaccine Development Center, West Virgina University Health Sciences CenterMorgantownWest VirginiaUSA
| | - Nageswara R. Pilli
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - Mariette Barbier
- Vaccine Development Center, West Virgina University Health Sciences CenterMorgantownWest VirginiaUSA
| | - Keven M. Robinson
- Department of Medicine, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| |
Collapse
|
4
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Dłubała K, Wasiek S, Pilarska P, Szewczyk-Golec K, Mila-Kierzenkowska C, Łączkowski KZ, Sobiesiak M, Gackowski M, Tylkowski B, Hołyńska-Iwan I. The Influence of Retinol Ointment on Rabbit Skin ( Oryctolagus cuniculus) Ion Transport-An In Vitro Study. Int J Mol Sci 2024; 25:9670. [PMID: 39273618 PMCID: PMC11395161 DOI: 10.3390/ijms25179670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Retinoids are known to improve the condition of the skin. Transepithelial transport of sodium and chloride ions is important for proper skin function. So far, the effect of applying vitamin A preparations to the skin on ion transport has not been evaluated. In the study, electrophysiological parameters, including transepithelial electric potential (PD) and transepithelial resistance (R), of rabbit skin specimens after 24 h exposure to retinol ointment (800 mass units/g) were measured in a modified Ussing chamber. The R of the fragments incubated with retinol was significantly different than that of the control skin samples incubated in iso-osmotic Ringer solution. For the controls, the PD values were negative, whereas the retinol-treated specimens revealed positive PD values. Mechanical-chemical stimulation with the use of inhibitors of the transport of sodium (amiloride) or chloride (bumetanide) ions revealed specific changes in the maximal and minimal PD values measured for the retinol-treated samples. Retinol was shown to slightly modify the transport pathways of sodium and chloride ions. In particular, an intensification of the chloride ion secretion from keratinocytes was observed. The proposed action may contribute to deep hydration and increase skin tightness, limiting the action of other substances on its surface.
Collapse
Affiliation(s)
- Klaudia Dłubała
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Sandra Wasiek
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Patrycja Pilarska
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Marta Sobiesiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Bartosz Tylkowski
- Eurecat, Technology Centre of Catalonia, Chemical Technology Unit, Marcelli Domingo 2, 43007 Tarragona, Spain
- Department of Clinical Neuropsychology, Faculty of Health Science, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| |
Collapse
|
6
|
Hirsinger E, Blavet C, Bonnin MA, Bellenger L, Gharsalli T, Duprez D. Limb connective tissue is organized in a continuum of promiscuous fibroblast identities during development. iScience 2024; 27:110305. [PMID: 39050702 PMCID: PMC11267076 DOI: 10.1016/j.isci.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Connective tissue (CT), which includes tendon and muscle CT, plays critical roles in development, in particular as positional cue provider. Nonetheless, our understanding of fibroblast developmental programs is hampered because fibroblasts are highly heterogeneous and poorly characterized. Combining single-cell RNA-sequencing-based strategies including trajectory inference and in situ hybridization analyses, we address the diversity of fibroblasts and their developmental trajectories during chicken limb fetal development. We show that fibroblasts switch from a positional information to a lineage diversification program at the fetal period onset. Muscle CT and tendon are composed of several fibroblast populations that emerge asynchronously. Once the final muscle pattern is set, transcriptionally close populations are found in neighboring locations in limbs, prefiguring the adult fibroblast layers. We propose that the limb CT is organized in a continuum of promiscuous fibroblast identities, allowing for the robust and efficient connection of muscle to bone and skin.
Collapse
Affiliation(s)
- Estelle Hirsinger
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, Inserm U1156, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Paris, Institut Français de Bioinformatique (IFB), 75005 Paris, France
| | - Tarek Gharsalli
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| |
Collapse
|
7
|
Bozhkov AI, Akzhyhitov RA, Bilovetska SG, Ivanov EG, Dobrianska NI, Bondar AY. The Effect of Retinol Acetate on Liver Fibrosis Depends on the Temporal Features of the Development of Pathology. J Clin Exp Hepatol 2024; 14:101338. [PMID: 38264572 PMCID: PMC10801314 DOI: 10.1016/j.jceh.2023.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Background The effect of vitamin A on the manifestations of liver fibrosis is controversial and establishing the causes of its multidirectional influence is an urgent problem. In the work, the functional characteristics of the liver with Cu-induced fibrosis were determined after the restoration of vitamin A to the control level at the F0/F1 stage. Methods In animals with liver fibrosis, classical indicators of physiology, functional activity of the liver, histological, and hematological characteristics were determined; the content of calcium and ROS was determined in bone marrow cells. Results It was shown that in the liver with Cu-induced fibrosis, the restoration of vitamin A content to control values after per os injections of a retinol acetate solution at a dose of 0.10 mg (300 IU)/100 g of body weight in the early stages of this pathology development (Fо/F1) was accompanied by: a decrease in the number of immunocompetent cells in the bloodstream to control values; normalization of the amount of calcium ions and ROS in bone marrow cells; restoration to the control level of activity of alkaline phosphatase; an increase in the number of binuclear hepatocytes; and restoration of the dynamics of body weight growth in experimental animals, even against the background of the ongoing action of the hepatotoxic factor. Conclusion We came to the conclusion that the multidirectional action of vitamin A, which occurs in liver fibrosis, depends not only on the concentration of vitamin A in the liver but also on temporal characteristics of cellular and metabolic links involved in the adaptive response formation. It was suggested that knowledge of the initial temporal metabolic characteristics and the amount of vitamin A in the liver, taking into account the stages of fibrosis development, can be an effective way to restore the altered homeostatic parameters of the body.
Collapse
Affiliation(s)
- Anatoly I. Bozhkov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Rustam A. Akzhyhitov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Svitlana G. Bilovetska
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Evgeny G. Ivanov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Nataliia I. Dobrianska
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Anastasiia Yu Bondar
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| |
Collapse
|
8
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
9
|
Pinos I, Yu J, Pilli N, Kane MA, Amengual J. Functional characterization of interleukin 4 and retinoic acid signaling crosstalk during alternative macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159291. [PMID: 36754230 PMCID: PMC9974901 DOI: 10.1016/j.bbalip.2023.159291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
Retinoic acid possesses potent immunomodulatory properties in various cell types, including macrophages. In this study, we first investigated the effects at the transcriptional and functional levels of exogenous retinoic acid in murine bone marrow-derived macrophages (BMDMs) in the presence or absence of interleukin 4 (IL4), a cytokine with potent anti-inflammatory properties. We examined the effect of IL4 on vitamin A homeostasis in macrophages by quantifying retinoid synthesis and secretion. Our RNAseq data show that exogenous retinoic acid synergizes with IL4 to regulate anti-inflammatory pathways such as oxidative phosphorylation and phagocytosis. Efferocytosis and lysosomal degradation assays validated gene expression changes at the functional level. IL4 treatment altered the expression of several genes involved in vitamin A transport and conversion to retinoic acid. Radiolabeling experiments and mass spectrometry assays revealed that IL4 stimulates retinoic acid production and secretion in a signal transducer and activator of transcription 6 (STAT6)-dependent manner. In summary, our studies highlight the key role of exogenous and endogenous retinoic acid in shaping the anti-inflammatory response of macrophages.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States; Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, United States.
| |
Collapse
|
10
|
Yilmaz G, Bulut H, Ozden Omaygenc D, Akca A, Can E, Tuten N, Bestel A, Erdem B, Atmaca UO, Kara Y, Kaya E, Unsel M, Sahin AS, Salihoglu Z. Baseline serum vitamin A and vitamin C levels and their association with disease severity in COVID-19 patients. ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023007. [PMID: 36786260 PMCID: PMC9987489 DOI: 10.23750/abm.v94i1.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 02/15/2023]
Abstract
AIM We aimed to investigate the association between the serum concentrations of Vitamin A and Vitamin C and the severity of the COVID-19. Methods: Fifty-three consecutive PCR (+) COVID-19 patients admitted to a dedicated ward were enrolled in this study. Blood samples for serum Vitamin A and C measurements were drawn from all participants upon admission. All subjects underwent thoracic CT imaging prior to hospitalization. CT severity score (CT-SS) was then calculated for determining the extent of pulmonary involvement. A group of healthy volunteers, in whom COVID-19 was ruled out, were assigned to the control group (n=26). These groups were compared by demographic features and serum vitamin A and C levels. The relationship between serum concentrations of these vitamins and pre-defined outcome measures, CT-SS and length of hospitalization (LOH), was also assessed. Results: In COVID-19 patients, serum Vitamin A (ng/ml, 494±96 vs. 698±93; p<0.001) and Vitamin C (ng/ml, 2961 [1991-31718] vs. 3953 [1385-8779]; p=0.007) levels were significantly lower with respect to healthy controls. According to the results of correlation analyses, there was a significant negative association between Vitamin A level and outcome measures (LOH, r=-0.293; p=0.009 and CT-SS, r=-0.289; p=0.010). The negative correlations between Vitamin C level and those measures were even more prominent (LOH, r=-0.478; p<0.001 and CT-SS, r=-0.734: p<0.001). CONCLUSION COVID-19 patients had lower baseline serum Vitamin A and Vitamin C levels as compared to healthy controls. In subjects with COVID-19, Vitamin A and Vitamin C levels were negatively correlated with CT-SS and LOH.
Collapse
Affiliation(s)
- Gulseren Yilmaz
- Kanuni Sultan Suleyman Training & Research Hospital, Department of Anesthesiology, Istanbul, Turkey.
| | - Huri Bulut
- Istinye University, Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey.
| | | | - Aysu Akca
- Kanuni Sultan Suleyman Training & Research Hospital, Department of Obstetrics and Gynecology, Istanbul, Turkey.
| | - Esra Can
- Kanuni Sultan Suleyman Training & Research Hospital, Department of Obstetrics and Gynecology, Istanbul, Turkey.
| | - Nevin Tuten
- Kanuni Sultan Suleyman Training & Research Hospital, Department of Obstetrics and Gynecology, Istanbul, Turkey.
| | - Aysegul Bestel
- Kanuni Sultan Suleyman Training & Research Hospital, Department of Obstetrics and Gynecology, Istanbul, Turkey.
| | - Baki Erdem
- Acıbadem University, Faculty of Medicine, Department of Gynecologic Oncology, Istanbul, Turkey.
| | - Uygar Ozan Atmaca
- Kanuni Sultan Suleyman Training & Research Hospital, Department of Anesthesiology, Istanbul, Turkey.
| | - Yasin Kara
- Kanuni Sultan Suleyman Training & Research Hospital, Department of General Surgery, Istanbul, Turkey.
| | - Ebru Kaya
- Kanuni Sultan Suleyman Training & Research Hospital, Department of Critical Care, Istanbul, Turkey.
| | - Murat Unsel
- Basaksehir Cam ve Sakura City Hospital, Department of Anesthesiology and Critical Care, Istanbul, Turkey.
| | - Ayca Sultan Sahin
- Kanuni Sultan Suleyman Training & Research Hospital, Department of Anesthesiology, Istanbul, Turkey.
| | - Ziya Salihoglu
- Istanbul University - Cerrahpasa, Faculty of Medicine, Department of Anesthesiology, Istanbul, Turkey.
| |
Collapse
|
11
|
Tan YZ, Shen HR, Wang YL, Wang QL, Wu XP, Yu SN, Wang HJ. Retinoic acid released from self-assembling peptide activates cardiomyocyte proliferation and enhances repair of infarcted myocardium. Exp Cell Res 2023; 422:113440. [PMID: 36481206 DOI: 10.1016/j.yexcr.2022.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The limited cardiomyocyte proliferation is insufficient for repair of the myocardium. Therefore, activating cardiomyocyte proliferation might be a reasonable option for myocardial regeneration. Here, we investigated effect of retinoic acid (RA) on inducing adult cardiomyocyte proliferation and assessed efficacy of self-assembling peptide (SAP)-released RA in activating regeneration of the infarcted myocardium. Effect of RA on inducing cardiomyocyte proliferation was examined with the isolated cardiomyocytes. Expression of the cell cycle-associated genes and paracrine factors in the infarcted myocardium was examined at one week after treatment with SAP-carried RA. Cardiomyocyte proliferation, myocardial regeneration and improvement of cardiac function were assessed at four weeks after treatment. In the adult rat myocardium, expression of RA synthetase gene Raldh2 and RA concentration were decreased significantly. After treatment with RA, the proliferated cardiomyocytes were increased. The formulated SAP could sustainedly release RA. After treatment with SAP-carried RA, expression of the pro-proliferative genes in cell cycle and paracrine factors in the infarcted myocardium were up-regulated. Myocardial regeneration was enhanced, and cardiac function was improved significantly. These results demonstrate that RA can induce adult cardiomyocytes to proliferate effectively. The sustained release of RA with SAP is a promise strategy to enhance repair of the infarcted myocardium.
Collapse
Affiliation(s)
- Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| | - Hao-Ran Shen
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China; Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qiang-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China; Department of Histology and Embryology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue-Ping Wu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Shu-Na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Abstract
Vitamin A (retinol) is a critical micronutrient required for the control of stem cell functions, cell differentiation, and cell metabolism in many different cell types, both during embryogenesis and in the adult organism. However, we must obtain vitamin A from food sources. Thus, the uptake and metabolism of vitamin A by intestinal epithelial cells, the storage of vitamin A in the liver, and the metabolism of vitamin A in target cells to more biologically active metabolites, such as retinoic acid (RA) and 4-oxo-RA, must be precisely regulated. Here, I will discuss the enzymes that metabolize vitamin A to RA and the cytochrome P450 Cyp26 family of enzymes that further oxidize RA. Because much progress has been made in understanding the regulation of ALDH1a2 (RALDH2) actions in the intestine, one focus of this review is on the metabolism of vitamin A in intestinal epithelial cells and dendritic cells. Another focus is on recent data that 4-oxo-RA is a ligand required for the maintenance of hematopoietic stem cell dormancy and the important role of RARβ (RARB) in these stem cells. Despite this progress, many questions remain in this research area, which links vitamin A metabolism to nutrition, immune functions, developmental biology, and nuclear receptor pharmacology.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, and Revlon Pharmaceutical Professor of Pharmacology and Toxicology, Pharmacology Department, and the Meyer Cancer Center of Weill Cornell Medicine of Cornell University, 1300 York Ave, New York, NY 10065
| |
Collapse
|
13
|
Mao Y, Wang M, Xiong Y, Wen X, Zhang M, Ma L, Zhang Y. MELTF Might Regulate Ferroptosis, Pyroptosis, and Autophagy in Platelet-Rich Plasma-Mediated Endometrial Epithelium Regeneration. Reprod Sci 2022; 30:1506-1520. [PMID: 36303086 DOI: 10.1007/s43032-022-01101-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
The endometrial basal layer is essential for endometrial regeneration, whose disruption leads to thin endometrium or intrauterine adhesion (IUA) with an unsatisfactory prognosis. Emerging data indicate that platelet-rich plasma (PRP) can promote endometrial proliferation, but the mechanism by which PRP regulates endometrial regeneration remains unclear. Herein, we investigated the therapeutic effects and possible mechanisms of PRP on endometrial regeneration. IUA animal model was generated by sham, mechanically damaging endometrium with or without PRP for 10 days. The uterine section in the model group showed degenerative changes with a narrow endometrial lumen, atrophic columnar epithelium, decreased number of endometrial glands, decreased endometrial thickness, and increased collagen deposition. The above disruption could be ameliorated by the PRP. Transcriptome sequencing analysis displayed that the retinol metabolism pathway and extracellular matrix (ECM) receptor interaction pathway were up-regulated and enriched in differential expression genes (DEGs). Melanotransferrin (MELTF) was the key up-regulated gene in PRP-induced endometrial regeneration, which was verified in vivo and in vitro. Ferroptosis, autophagy, and pyroptosis were down-regulated in PRP-treated Ishikawa cells. Conclusively, PRP promotes endometrium regeneration by up-regulating the retinol metabolism and ECM receptor interaction pathway with MELTF. Meanwhile, PRP could also inhibit endometrial epithelial cell death by regulating ferroptosis, autophagy, and pyroptosis.
Collapse
Affiliation(s)
- Yanhong Mao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Yao Xiong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Xue Wen
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China.
| | - Yuanzhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, NO. 169, East Lake Road, Wuchang District, Wuhan City, 430071, Hubei Province, China.
| |
Collapse
|
14
|
Zenkel M, Hoja U, Gießl A, Berner D, Hohberger B, Weller JM, König L, Hübner L, Ostermann TA, Gusek-Schneider GC, Kruse FE, Pasutto F, Schlötzer-Schrehardt U. Dysregulated Retinoic Acid Signaling in the Pathogenesis of Pseudoexfoliation Syndrome. Int J Mol Sci 2022; 23:ijms23115977. [PMID: 35682657 PMCID: PMC9180992 DOI: 10.3390/ijms23115977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Pseudoexfoliation (PEX) syndrome, a stress-induced fibrotic matrix process, is the most common recognizable cause of open-angle glaucoma worldwide. The recent identification of PEX-associated gene variants uncovered the vitamin A metabolic pathway as a factor influencing the risk of disease. In this study, we analyzed the role of the retinoic acid (RA) signaling pathway in the PEX-associated matrix metabolism and evaluated its targeting as a potential candidate for an anti-fibrotic intervention. We provided evidence that decreased expression levels of RA pathway components and diminished RA signaling activity occur in an antagonistic crosstalk with TGF-β1/Smad signaling in ocular tissues and cells from PEX patients when compared with age-matched controls. Genetic and pharmacologic modes of RA pathway inhibition induced the expression and production of PEX-associated matrix components by disease-relevant cell culture models in vitro. Conversely, RA signaling pathway activation by natural and synthetic retinoids was able to suppress PEX-associated matrix production and formation of microfibrillar networks via antagonization of Smad-dependent TGF-β1 signaling. The findings indicate that deficient RA signaling in conjunction with hyperactivated TGF-β1/Smad signaling is a driver of PEX-associated fibrosis, and that restoration of RA signaling may be a promising strategy for anti-fibrotic intervention in patients with PEX syndrome and glaucoma.
Collapse
Affiliation(s)
- Matthias Zenkel
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Ursula Hoja
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Daniel Berner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Genetikum, 89231 Neu-Ulm, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Julia M. Weller
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Loretta König
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Lisa Hübner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Thomas A. Ostermann
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Gabriele C. Gusek-Schneider
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Friedrich E. Kruse
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Correspondence: ; Tel.: +49-9131-8534433; Fax: +49-9131-8534631
| |
Collapse
|
15
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
16
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:nu14061312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-662-7253
| |
Collapse
|
17
|
Zalesak-Kravec S, Huang W, Jones JW, Yu J, Alloush J, Defnet AE, Moise AR, Kane MA. Role of cellular retinol-binding protein, type 1 and retinoid homeostasis in the adult mouse heart: A multi-omic approach. FASEB J 2022; 36:e22242. [PMID: 35253263 DOI: 10.1096/fj.202100901rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The main active metabolite of Vitamin A, all-trans retinoic acid (RA), is required for proper cellular function and tissue organization. Heart development has a well-defined requirement for RA, but there is limited research on the role of RA in the adult heart. Homeostasis of RA includes regulation of membrane receptors, chaperones, enzymes, and nuclear receptors. Cellular retinol-binding protein, type 1 (CRBP1), encoded by retinol-binding protein, type 1 (Rbp1), regulates RA homeostasis by delivering vitamin A to enzymes for RA synthesis and protecting it from non-specific oxidation. In this work, a multi-omics approach was used to characterize the effect of CRBP1 loss using the Rbp1-/- mouse. Retinoid homeostasis was disrupted in Rbp1-/- mouse heart tissue, as seen by a 33% and 24% decrease in RA levels in the left and right ventricles, respectively, compared to wild-type mice (WT). To further inform on the effect of disrupted RA homeostasis, we conducted high-throughput targeted metabolomics. A total of 222 metabolite and metabolite combinations were analyzed, with 33 having differential abundance between Rbp1-/- and WT hearts. Additionally, we performed global proteome profiling to further characterize the impact of CRBP1 loss in adult mouse hearts. More than 2606 unique proteins were identified, with 340 proteins having differential expression between Rbp1-/- and WT hearts. Pathway analysis performed on metabolomic and proteomic data revealed pathways related to cellular metabolism and cardiac metabolism were the most disrupted in Rbp1-/- mice. Together, these studies characterize the effect of CRBP1 loss and reduced RA in the adult heart.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jenna Alloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amy E Defnet
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Quadro L, Iqbal J, Kim YK, Hussain MM. Microsomal triglyceride transfer protein-mediated transfer of β-carotene from donor to acceptor vesicles in vitro. Methods Enzymol 2022; 674:343-362. [PMID: 36008012 PMCID: PMC9940632 DOI: 10.1016/bs.mie.2022.03.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dietary β-carotene is the most abundant vitamin A precursor. Once absorbed by the enterocytes, the provitamin A carotenoid can either be cleaved into retinoids (vitamin A and its derivatives) or incorporated in its intact form within chylomicrons to be distributed throughout the body for utilization and/or storage by other tissues. From the liver, together with endogenous lipids, intact β-carotene can also be incorporated within very low-density lipoprotein/low-density lipoprotein (VLDL/LDL) for transport to other tissues and organs. Microsomal triglyceride transfer protein (MTP) is a key regulator of lipoprotein biosynthesis in intestine and liver as it facilitates the incorporation of dietary and endogenous lipids into nascent lipoproteins. MTP is also critical for transferring β-carotene into lipoprotein particles for secretion. Here, we present an in vitro method to assess the transfer of β-carotene by MTP from donor to acceptor vesicles. This transfer can be assessed by precipitating donor vesicles and measuring amounts of β-carotene transferred to acceptor vesicles. The levels of transferred β-carotene are quantified by HPLC analysis and intrinsic fluorescence of β-carotene. This chapter demonstrates the feasibility of this method which is also useful to study the role of MTP for incorporation of other carotenoids that are known to be carried within VLDL/LDL and chylomicrons for organ distribution.
Collapse
Affiliation(s)
- Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States.
| | - Jahangir Iqbal
- King Abdullah International Medical Research Center (KAIMRC)-Eastern Region, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa, Saudi Arabia
| | - Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA.,Corresponding authors: (LQ); (MMH)
| |
Collapse
|
19
|
Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr 2021; 126:1663-1672. [PMID: 33468263 PMCID: PMC7884725 DOI: 10.1017/s0007114521000246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
SARS-CoV2 infects respiratory epithelial cells via its cellular receptor angiotensin-converting enzyme 2, causing a viral pneumonia with pronounced inflammation resulting in significant damage to the lungs and other organ systems, including the kidneys, though symptoms and disease severity are quite variable depending on the intensity of exposure and presence of underlying conditions that may affect the immune response. The resulting disease, coronavirus disease 2019 (COVID-19), can cause multi-organ system dysfunction in patients requiring hospitalisation and intensive care treatment. Serious infections like COVID-19 often negatively affect nutritional status, and the resulting nutritional deficiencies may increase disease severity and impair recovery. One example is the viral infection measles, where associated vitamin A (VA) deficiency increases disease severity and appropriately timed supplementation during recovery reduces mortality and hastens recovery. VA may play a similar role in COVID-19. First, VA is important in maintaining innate and adaptive immunity to promote clearance of a primary infection as well as minimise risks from secondary infections. Second, VA plays a unique role in the respiratory tract, minimising damaging inflammation, supporting repair of respiratory epithelium and preventing fibrosis. Third, VA deficiency may develop during COVID-19 due to specific effects on lung and liver stores caused by inflammation and impaired kidney function, suggesting that supplements may be needed to restore adequate status. Fourth, VA supplementation may counteract adverse effects of SARS-CoV2 on the angiotensin system as well as minimises adverse effects of some COVID-19 therapies. Evaluating interactions of SARS-CoV2 infection with VA metabolism may thus provide improved COVID-19 therapy.
Collapse
Affiliation(s)
- C. B. Stephensen
- Immunity and Disease Prevention Research Unit, USDA Western Human Nutrition Research Center, and Nutrition Department, University of California, Davis, CA, USA
| | - G. Lietz
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
20
|
Defnet AE, Shah SD, Huang W, Shapiro P, Deshpande DA, Kane MA. Dysregulated retinoic acid signaling in airway smooth muscle cells in asthma. FASEB J 2021; 35:e22016. [PMID: 34784434 PMCID: PMC9361782 DOI: 10.1096/fj.202100835r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
Vitamin A deficiency has been shown to exacerbate allergic asthma. Previous studies have postulated that retinoic acid (RA), an active metabolite of vitamin A and high-affinity ligand for RA receptor (RAR), is reduced in airway inflammatory condition and contributes to multiple features of asthma including airway hyperresponsiveness and excessive accumulation of airway smooth muscle (ASM) cells. In this study, we directly quantified RA and examined the molecular basis for reduced RA levels and RA-mediated signaling in lungs and ASM cells obtained from asthmatic donors and in lungs from allergen-challenged mice. Levels of RA and retinol were significantly lower in lung tissues from asthmatic donors and house dust mite (HDM)-challenged mice compared to non-asthmatic human lungs and PBS-challenged mice, respectively. Quantification of mRNA and protein expression revealed dysregulation in the first step of RA biosynthesis consistent with reduced RA including decreased protein expression of retinol dehydrogenase (RDH)-10 and increased protein expression of RDH11 and dehydrogenase/reductase (DHRS)-4 in asthmatic lung. Proteomic profiling of non-asthmatic and asthmatic lungs also showed significant changes in the protein expression of AP-1 targets consistent with increased AP-1 activity. Further, basal RA levels and RA biosynthetic capabilities were decreased in asthmatic human ASM cells. Treatment of human ASM cells with all-trans RA (ATRA) or the RARγ-specific agonist (CD1530) resulted in the inhibition of mitogen-induced cell proliferation and AP-1-dependent transcription. These data suggest that RA metabolism is decreased in asthmatic lung and that enhancing RAR signaling using ATRA or RARγ agonists may mitigate airway remodeling associated with asthma.
Collapse
Affiliation(s)
- Amy E. Defnet
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Sushrut D. Shah
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Deepak A. Deshpande
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Tang XH, Gambardella J, Jankauskas S, Wang X, Santulli G, Gudas LJ, Levi R. A Retinoic Acid Receptor β 2 Agonist Improves Cardiac Function in a Heart Failure Model. J Pharmacol Exp Ther 2021; 379:182-190. [PMID: 34389654 PMCID: PMC8626778 DOI: 10.1124/jpet.121.000806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
We previously demonstrated that the selective retinoic acid receptor (RAR) β 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. We hypothesized that by decreasing oxidative stress and consequent fibrogenesis, AC261066 could attenuate the development of contractile dysfunction in post-ischemic heart failure (HF). We tested this hypothesis in vivo using an established murine model of myocardial infarction (MI), obtained by permanent occlusion of the left anterior descending coronary artery. Treating mice with AC261066 in drinking water significantly attenuated the post-MI deterioration of echocardiographic indices of cardiac function, diminished remodeling, and reduced oxidative stress, as evidenced by a decrease in malondialdehyde level and p38 mitogen-activated protein kinase expression in cardiomyocytes. The effects of AC261066 were also associated with a decrease in interstitial fibrosis, as shown by a marked reduction in collagen deposition and α-smooth muscle actin expression. In cardiac murine fibroblasts subjected to hypoxia, AC261066 reversed hypoxia-induced decreases in superoxide dismutase 2 and angiopoietin-like 4 transcriptional levels as well as the increase in NADPH oxidase 2 mRNA, demonstrating that the post-MI cardioprotective effects of AC261066 are associated with an action at the fibroblast level. Thus, AC261066 alleviates post-MI cardiac dysfunction by modulating a set of genes involved in the oxidant/antioxidant balance. These AC261066 responsive genes diminish interstitial fibrogenesis and remodeling. Since MI is a recognized major cause of HF, our data identify RARβ 2 as a potential pharmacological target in the treatment of HF. SIGNIFICANCE STATEMENT: A previous report showed that the selective retinoic acid receptor (RAR) β 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. This study shows that AC261066 attenuates the development of contractile dysfunction and maladaptive remodeling in post-ischemic heart failure (HF) by modulating a set of genes involved in oxidant/antioxidant balance. Since myocardial infarction is a recognized major cause of HF, these data identify RARβ 2 as a potential pharmacological target in the treatment of HF.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Jessica Gambardella
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Stanislovas Jankauskas
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Xujun Wang
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Gaetano Santulli
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, New York (X.-H.T., L.J.G., R.L.); Departments of Medicine (Cardiology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (J.G., S.J., X.W., G.S.)
| |
Collapse
|
22
|
Yu J, Huang W, Liu T, Defnet AE, Zalesak-Kravec S, Farese AM, MacVittie TJ, Kane MA. Effect of Radiation on the Essential Nutrient Homeostasis and Signaling of Retinoids in a Non-human Primate Model with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:406-418. [PMID: 34546221 PMCID: PMC8549574 DOI: 10.1097/hp.0000000000001477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic (H) and gastrointestinal (GI) acute radiation syndromes (ARS) followed by delayed effects of acute radiation exposure (DEARE), which include damage to lung, heart, and GI. Whereas DEARE includes inflammation and fibrosis in multiple tissues, the molecular mechanisms contributing to inflammation and to the development of fibrosis remain incompletely understood. Reports that radiation dysregulates retinoids and proteins within the retinoid pathway indicate that radiation disrupts essential nutrient homeostasis. An active metabolite of vitamin A, retinoic acid (RA), is a master regulator of cell proliferation, differentiation, and apoptosis roles in inflammatory signaling and the development of fibrosis. As facets of inflammation and fibrosis are regulated by RA, we surveyed radiation-induced changes in retinoids as well as proteins related to and targets of the retinoid pathway in the non-human primate after high dose radiation with minimal bone marrow sparing (12 Gy PBI/BM2.5). Retinoic acid was decreased in plasma as well as in lung, heart, and jejunum over time, indicating a global disruption of RA homeostasis after IR. A number of proteins associated with fibrosis and with RA were significantly altered after radiation. Together these data indicate that a local deficiency of endogenous RA presents a permissive environment for fibrotic transformation.
Collapse
Affiliation(s)
- Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| |
Collapse
|
23
|
Zalesak-Kravec S, Huang W, Wang P, Yu J, Liu T, Defnet AE, Moise AR, Farese AM, MacVittie TJ, Kane MA. Multi-omic Analysis of Non-human Primate Heart after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:352-371. [PMID: 34546217 PMCID: PMC8554778 DOI: 10.1097/hp.0000000000001478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic and gastrointestinal acute radiation syndromes followed by delayed effects of acute radiation exposure, which encompasses multiple organs, including heart, kidney, and lung. Here we sought to further characterize the natural history of radiation-induced heart injury via determination of differential protein and metabolite expression in the heart. We quantitatively profiled the proteome and metabolome of left and right ventricle from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Global proteome profiling identified more than 2,200 unique proteins, with 220 and 286 in the left and right ventricles, respectively, showing significant responses across at least three time points compared to baseline levels. High-throughput targeted metabolomics analyzed a total of 229 metabolites and metabolite combinations, with 18 and 22 in the left and right ventricles, respectively, showing significant responses compared to baseline levels. Bioinformatic analysis performed on metabolomic and proteomic data revealed pathways related to inflammation, energy metabolism, and myocardial remodeling were dysregulated. Additionally, we observed dysregulation of the retinoid homeostasis pathway, including significant post-radiation decreases in retinoic acid, an active metabolite of vitamin A. Significant differences between left and right ventricles in the pathology of radiation-induced injury were identified. This multi-omic study characterizes the natural history and molecular mechanisms of radiation-induced heart injury in NHP exposed to PBI with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Pengcheng Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
24
|
Huang W, Yu J, Liu T, Defnet AE, Zalesak S, Farese AM, MacVittie TJ, Kane MA. Acute Proteomic Changes in Lung after Radiation: Toward Identifying Initiating Events of Delayed Effects of Acute Radiation Exposure in Non-human Primate after Partial Body Irradiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:384-394. [PMID: 34546219 PMCID: PMC8546870 DOI: 10.1097/hp.0000000000001476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Radiation-induced lung injury is a delayed effect of acute radiation exposure resulting in pulmonary pneumonitis and fibrosis. Molecular mechanisms that lead to radiation-induced lung injury remain incompletely understood. Using a non-human primate model of partial body irradiation with minimal bone marrow sparing, lung was analyzed from animals irradiated with 12 Gy at timepoints every 4 d up to 21 d after irradiation and compared to non-irradiated (sham) controls. Tryptic digests of lung tissues were analyzed by liquid chromatography-tandem mass spectrometry followed by pathway analysis. Out of the 3,101 unique proteins that were identified, we found that 252 proteins showed significant and consistent responses across at least three time points post-irradiation, of which 215 proteins showed strong up-regulation while 37 proteins showed down-regulation. Canonical pathways affected by irradiation, changes in proteins that serve as upstream regulators, and proteins involved in key processes including inflammation, fibrosis, and retinoic acid signaling were identified. The proteomic profiling of lung conducted here represents an untargeted systems biology approach to identify acute molecular events in the non-human primate lung that could potentially be initiating events for radiation-induced lung injury.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Amy E Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| |
Collapse
|
25
|
Retinoic acid exerts sexually dimorphic effects on muscle energy metabolism and function. J Biol Chem 2021; 297:101101. [PMID: 34419449 PMCID: PMC8441203 DOI: 10.1016/j.jbc.2021.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/- mice. Relative to wild-type (WT) controls, Rdh10+/- males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/- females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/- male GM decrease 38% relative to WT. Rdh10+/- male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/- female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.
Collapse
|
26
|
Hwang I, Lee EJ, Park H, Moon D, Kim HS. Retinol from hepatic stellate cells via STRA6 induces lipogenesis on hepatocytes during fibrosis. Cell Biosci 2021; 11:3. [PMID: 33407858 PMCID: PMC7789180 DOI: 10.1186/s13578-020-00509-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Hepatic stellate cells (HSCs) are activated in response to liver injury with TIF1γ-suppression, leading to liver fibrosis. Here, we examined the mechanism how reduction of TIF1γ in HSCs induces damage on hepatocytes and liver fibrosis. Method Lrat:Cas9-ERT2:sgTif1γ mice were treated Tamoxifen (TMX) or wild-type mice were treated Thioacetamide (TAA). HSCs were isolated from mice liver and analyzed role of Tif1γ. HepG2 were treated retinol with/without siRNA for Stimulated by retinoic acid 6 (STRA6) or Retinoic acid receptor(RAR)-antagonist, and LX2 were treated siTIF1γ and/or siSTRA6. TAA treated mice were used for evaluation of siSTRA6 effect in liver fibrosis. Results When we blocked the Tif1γ in HSCs using Lrat:Cas9-ERT2:sgTif1γ mice, retinol is distributed into hepatocytes. Retinol influx was confirmed using HepG2, and the increased intracellular retinol led to the upregulation of lipogenesis-related-genes and triglyceride. This effect was inhibited by a RAR-antagonist or knock-down of STRA6. In the LX2, TIF1γ-suppression resulted in upregulation of STRA6 and retinol release, which was inhibited by STRA6 knock-down. The role of STRA6-mediated retinol transfer from HSCs to hepatocytes in liver fibrosis was demonstrated by in vivo experiments where blocking of STRA6 reduced fibrosis. Conclusions Retinol from HSCs via STRA6 in response to injury with TIF1γ-reduction is taken up by hepatocytes via STRA6, leading to fat-deposition and damage, and liver fibrosis. ![]()
Collapse
Affiliation(s)
- Injoo Hwang
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea.
| | - Hyomin Park
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dodam Moon
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
27
|
Zhu GJ, Gong S, Ma DB, Tao T, He WQ, Zhang L, Wang F, Qian XY, Zhou H, Fan C, Wang P, Chen X, Zhao W, Sun J, Chen H, Wang Y, Gao X, Zuo J, Zhu MS, Gao X, Wan G. Aldh inhibitor restores auditory function in a mouse model of human deafness. PLoS Genet 2020; 16:e1009040. [PMID: 32970669 PMCID: PMC7553308 DOI: 10.1371/journal.pgen.1009040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic hearing loss is a common health problem with no effective therapy currently available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common forms of autosomal dominant non-syndromic deafness. In this study, we established a novel mouse model of the human DFNA15 deafness, with a Pou4f3 gene mutation (Pou4f3Δ) identical to that found in a familial case of DFNA15. The Pou4f3(Δ/+) mice suffered progressive deafness in a similar manner to the DFNA15 patients. Hair cells in the Pou4f3(Δ/+) cochlea displayed significant stereociliary and mitochondrial pathologies, with apparent loss of outer hair cells. Progression of hearing and outer hair cell loss of the Pou4f3(Δ/+) mice was significantly modified by other genetic and environmental factors. Using Pou4f3(-/+) heterozygous knockout mice, we also showed that DFNA15 is likely caused by haploinsufficiency of the Pou4f3 gene. Importantly, inhibition of retinoic acid signaling by the aldehyde dehydrogenase (Aldh) and retinoic acid receptor inhibitors promoted Pou4f3 expression in the cochlear tissue and suppressed the progression of hearing loss in the mutant mice. These data demonstrate Pou4f3 haploinsufficiency as the main underlying cause of human DFNA15 deafness and highlight the therapeutic potential of Aldh inhibitors for treatment of progressive hearing loss. More than 50% of deafness cases are due to genetic defects with no treatment available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common types of autosomal dominant non-syndromic deafness. Here, we established a novel mouse model with the exact Pou4f3 mutation identified in human patients. The mutant mouse display similar auditory pathophysiology as human patients and exhibit multiple hair cell abnormalities. The onset and severity of hearing loss in the mouse model is highly modifiable to environmental factors, such as aging, noise exposure or genetic backgrounds. Using a new knockout mouse model, we found Pou4f3 haploinsufficiency as the underlying mechanism of human DFNA15. Importantly, we identified Aldh inhibitor as a potent small molecule for upregulation of Pou4f3 and treatment of hearing loss in the mutant mouse. The identification of Aldh inhibitor for treatment of DFNA15 deafness represents a major advance in the unmet medical need for this common form of progressive hearing loss.
Collapse
Affiliation(s)
- Guang-Jie Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Sihao Gong
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Deng-Bin Ma
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Tao Tao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei-Qi He
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Linqing Zhang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Fang Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Yun Qian
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Han Zhou
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Chi Fan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Pei Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xin Chen
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Zhao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jie Sun
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Huaqun Chen
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ye Wang
- Nanjing MuCyte Biotechnology Co., Ltd., Nanjing, China
| | - Xiang Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, United States of America
| | - Min-Sheng Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Xia Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Guoqiang Wan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| |
Collapse
|
28
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|