1
|
Peng S, Long M, Chen Q, Yin Z, Zeng C, Zhang W, Wen Q, Zhang X, Ke W, Wu Y. Perspectives on cancer therapy-synthetic lethal precision medicine strategies, molecular mechanisms, therapeutic targets and current technical challenges. Cell Death Discov 2025; 11:179. [PMID: 40240755 PMCID: PMC12003663 DOI: 10.1038/s41420-025-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/27/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, synthetic lethality has become an important theme in the field of targeted cancer therapy. Synthetic lethality refers to simultaneous defects in two or more genes leading to cell death, whereas defects in any single gene do not lead to cell death. Taking advantage of the genetic vulnerability that exists within cancer cells, it theoretically has no negative impact on healthy cells and has fewer side effects than non-specific chemotherapy. Currently, targeted cancer therapies focus on inhibiting key pathways in cancer. However, it has been found that over-activation of oncogenic-related signaling pathways can also induce cancer cell death, which is a major breakthrough in the new field of targeted therapies. In this review, we summarize the conventional gene targets in synthetic lethality (PARP, ATR, ATM, WEE1, PRMT) and provide an in-depth analysis of their latest potential mechanisms. We explore the impact of over-activation of pathways such as PI3K/AKT, MAPK, and WNT on cancer cell survival, and present the technical challenges of current research. Important theoretical foundations and insights are provided for the application of synthetic lethal strategies in cancer therapy, as well as future research directions.
Collapse
Affiliation(s)
- Shixuan Peng
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Mengle Long
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Qisheng Chen
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The Chenzhou Affiliated Hospital, Hengyang Medical School, University of South China, Chenzhou, Hunan, 423000, China
| | - Zhijian Yin
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Chang Zeng
- Department of Pathology, Yueyang Central Hospital, Yueyang, China
| | - Wanyong Zhang
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Qingyang Wen
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Xinwen Zhang
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Weiqi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Yongjun Wu
- Department of Pathology, Xiangtan Center Hospital, Xiangtan City, Hunan province, 411100, China.
- Department of Pathology, The Affiliated Hospital of Hunan University, Xiangtan City, Hunan Province, China.
| |
Collapse
|
2
|
Chauhan R, Damerla RR, Dhyani VS. Synthetic lethality in cancer: a protocol for scoping review of gene interactions from synthetic lethal screens and functional studies. Syst Rev 2025; 14:81. [PMID: 40200332 PMCID: PMC11978169 DOI: 10.1186/s13643-025-02814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Two genes are synthetically lethal if loss of function of either one of the two genes does not result in cell death, whereas loss of function of both genes together results in being detrimental to cell survival. This concept has been the basis for developing personalized, precision treatments, which can selectively damage tumor cells and minimize toxicity to normal tissues. Tumor cells often harbor mutations in genes involved in DNA repair pathways, forcing them to switch to alternative repair pathways, leading to chemotherapeutic resistance. These interactions, if targeted, could be synthetically lethal. We aimed to summarize synthetically lethal gene pairs that could be utilized to selectively target cancer cells and minimize side effects on normal tissues. The objective of this review is to study druggable synthetically lethal gene pairs for targeted cancer therapy that have been identified through various genetic screens and functional studies. METHODS A systematic literature search will be conducted to extract synthetically lethal gene pairs that can be specifically targeted to cancer cells. Owing to the relatively recent research pertaining to this field, the literature search will incorporate data from 1956. The search will be conducted on PubMed, Web of Science, Embase, and Scopus. The narrative approach will guide the analysis and synthesis of the results. DISCUSSION This review highlights scientific articles that report druggable synthetically lethal gene pairs by testing the efficacy of targeted inhibitors in clonogenic assays. These include research studies that identify synthetically lethal gene pairs detected through CRISPR screens by knocking out one or two genes within the same cell and testing the potency of inhibitors to specifically kill malignant cells. SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.17605/OSF.IO/5BCW6 .
Collapse
Affiliation(s)
- Raashi Chauhan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Vijay Shree Dhyani
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Cheng B, Ding Z, Hong Y, Wang Y, Zhou Y, Chen J, Peng X, Zeng C. Research progress in DNA damage response (DDR)-targeting modulators: From hits to clinical candidates. Eur J Med Chem 2025; 287:117347. [PMID: 39908794 DOI: 10.1016/j.ejmech.2025.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
In recent years, synthetic lethality has been regarded as a sound example of cancer treatment. Identifying a growing number of synthetic lethality targets has led to a substantial broadening of the application of synthetic lethality, well beyond the PAPR inhibitors employed for treating tumors with BRCA1/2 deficiencies. Especially, molecular targets within the DDR have furnished inhibitor sources and have rapidly advanced to clinical trials. In this review, we summarize the DDR-associated synthetic lethality targets such as WRN, USP1, PARP, ATR, DNA-PK, PRMT5, POLQ, and WEE1. These targets allow for the development of targeted modulators like inhibitors and degraders. Additionally, we emphasize the rational design, advantages, and potential limitations. Furthermore, we outline the promising future of DDR-targeted drug development.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China; Department of Cardiology, Central Laboratory of Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Zongbao Ding
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yimeng Hong
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China
| | - Yaping Wang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China
| | - Yingxing Zhou
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China; Huangshi Key Laboratory of Molecular Diagnosis and Individualized Treatment, Huangshi Love&health Hospital Affiliated of Hubei Polytechnic University, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Chunlai Zeng
- Department of Cardiology, Central Laboratory of Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
4
|
Wu M, Chen X, Wang H, Li C, Liu W, Zheng X, Yang J, Ye X, Weng Y, Fan T, Hou H. Discovery of the Clinical Candidate YY2201 as a Highly Potent and Selective ATR Inhibitor. J Med Chem 2025; 68:5292-5311. [PMID: 40029060 DOI: 10.1021/acs.jmedchem.4c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
ATR is one of the key DNA damage response (DDR) regulatory factors to maintain genome stability. ATR inhibition induces DNA damage accumulation and apoptosis in DDR kinase mutation or deficiency cancer cells through synthetic lethality, making it a promising target for treatment of cancers with DDR defects. Herein, we describe the discovery and preclinical evaluation of YY2201, a highly potent and selective novel ATR inhibitor, with favorable ADME, safety pharmacology, and pharmacokinetics profiles. YY2201 efficiently inhibits tumor progression in broad-spectrum cancer types, both in vitro and in vivo. YY2201 shows superior in vivo anticancer efficacy and a better therapeutic index compared to AZD6738 in a lung cancer xenograft model. YY2201 also exhibits potent cancer suppression effects in combination with chemotherapy in vivo. Currently, the investigational new drug application of YY2201 has been approved by the FDA for further clinical investigation.
Collapse
Affiliation(s)
- Meng Wu
- Center for Drug Research and Evaluation, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Xiaofang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Haoran Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Chang Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Wenjin Liu
- Jiangsu YaYao Biotechnology Co., Ltd, Nanjing 210032, P. R. China
| | - Xiao Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jingxin Yang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Yali Weng
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Tianyun Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| |
Collapse
|
5
|
Polajžer S, Černe K. Precision Medicine in High-Grade Serous Ovarian Cancer: Targeted Therapies and the Challenge of Chemoresistance. Int J Mol Sci 2025; 26:2545. [PMID: 40141188 PMCID: PMC11942020 DOI: 10.3390/ijms26062545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/22/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
The poor prognosis for high-grade serous ovarian cancer (HGSOC), the dominant subtype of ovarian cancer, reflects its aggressive nature, late diagnosis, and the highest mortality rate among all gynaecologic cancers. Apart from late diagnosis, the main reason for the poor prognosis and its unsuccessful treatment is primarily the emergence of chemoresistance to carboplatin. Although there is a good response to primary treatment, the disease recurs in 80% of cases, at which point it is largely resistant to carboplatin. The introduction of novel targeted therapies in the second decade of the 21st century has begun to transform the treatment of HGSOC, although their impact on overall survival remains unsatisfactory. Targeting the specific pathways known to be abnormally activated in HGSOC is especially difficult due to the molecular diversity of its subtypes. Moreover, a range of molecular changes are associated with acquired chemoresistance, e.g., reversion of BRCA1 and BRCA2 germline alleles. In this review, we examine the advantages and disadvantages of approved targeted therapies, including bevacizumab, PARP inhibitors (PARPis), and treatments targeting cells with neurotrophic tyrosine receptor kinase (NTRK), B-rapidly accelerated fibrosarcoma (BRAF), and rearranged during transfection (RET) gene alterations, as well as antibody-drug conjugates. Additionally, we explore promising new targets under investigation in ongoing clinical trials, such as immune checkpoint inhibitors, anti-angiogenic agents, phosphatidylinositol-3-kinase (PI3K) inhibitors, Wee1 kinase inhibitors, and ataxia telangiectasia and Rad3-related protein (ATR) inhibitors for platinum-resistant disease. Despite the development of new targeted therapies, carboplatin remains the fundamental medicine in HGSOC therapy. The correct choice of treatment strategy for better survival of patients with advanced HGSOC should therefore include a prediction of patients' risks of developing chemoresistance to platinum-based chemotherapy. Moreover, effective targeted therapy requires the selection of patients who are likely to derive clinical benefit while minimizing potential adverse effects, underscoring the essence of precision medicine.
Collapse
Affiliation(s)
| | - Katarina Černe
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Lerksuthirat T, Prasopporn S, Wikiniyadhanee R, Chitphuk S, Stitchantrakul W, Owneium P, Jirawatnotai S, Dejsuphong D. DNA damage response mutations enhance the antitumor efficacy of ATR and PARP inhibitors in cholangiocarcinoma cell lines. Oncol Lett 2025; 29:128. [PMID: 39822940 PMCID: PMC11736248 DOI: 10.3892/ol.2025.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/28/2024] [Indexed: 01/19/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary tract carcinoma that is challenging to treat due to its heterogeneity and limited treatment options. Genetic alterations in DNA damage response (DDR) pathways and homologous recombination (HR) defects are common in CCA. This has prompted interest in the use of ataxia telangiectasia and Rad3-related protein (ATR) and poly(ADP-ribose) polymerase (PARP) inhibitors to treat CCA. The present study investigated the impact of an ATR inhibitor and various PARP inhibitors, individually and in combination, on CCA cell lines with different DDR mutation profiles. DDR gene alterations in these cell lines were analyzed, and the responses of the cells to treatment with the PARP inhibitors olaparib, veliparib and talazoparib and/or the ATR inhibitor AZD6738 were evaluated. Assessments focused on cellular viability, clonogenic survival and the combination index, alongside changes in DNA damage assessed via the formation of micronuclei and γ-H2A histone family member X foci. The results revealed that the CCA cell lines with more DDR mutations exhibited greater sensitivity to single and combination treatments. Talazoparib was found to be the most potent PARP inhibitor in the CCA cell lines. The combination of AZD6738 and talazoparib demonstrated varying synergistic effects depending on the genetic background of the CCA cells, with greater efficacy in the cell lines less sensitive to single drug treatments. Mechanistically, this combination promoted the accumulation of DNA damage, including DNA double-strand breaks. Overall, the study underscores the importance of HR in CCA. It reveals an association between the extent of DDR mutations and the response to AZD6738 and PARP inhibitors in CCA, both as single agents and in combination. These findings highlight that the number of mutated genes influences variability in the drug response.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Sunisa Prasopporn
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rakkreat Wikiniyadhanee
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Paravee Owneium
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Donniphat Dejsuphong
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| |
Collapse
|
7
|
Tang XM, Shi MM, Wang JC, Gu YJ, Dai YT, Yang QX, Liu J, Ren LJ, Liu XY, Yang C, Ma FF, Liu JB, Yu H, Fu D, Wang YF. TOPBP1 as a potential predictive biomarker for enhanced combinatorial efficacy of olaparib and AZD6738 in PDAC. Cell Biosci 2025; 15:17. [PMID: 39920847 PMCID: PMC11806807 DOI: 10.1186/s13578-025-01350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and often lethal malignancy, requiring the development of enhanced therapeutic approaches. The DNA damage response (DDR) pathway is frequently altered during PDAC development, leading to an increased occurrence of DNA damage. DNA topoisomerase II-binding protein 1 (TOPBP1) plays a supportive role in regulating the DDR pathway, and its overexpression has been linked to the tumorigenesis of various cancers. This study investigated the biological role of TOPBP1 in PDAC pathogenesis and evaluated its clinical relevance in guiding treatment regimens. We examined the relationship between TOPBP1 expression, DDR pathway modulation, and therapeutic response in PDAC cell lines, primary cells, and subcutaneous mouse models. We found that elevated TOPBP1 expression was positively correlated with increased histologic grade and reduced patient survival in PDAC. TOPBP1 knockdown increased the sensitivity of PDAC cells to olaparib treatment and improved therapeutic efficacy in both PDAC cell lines and subcutaneous mouse models. Combination treatment with olaparib and AZD6738 effectively induced P53-dependent apoptosis via inhibiting the ATR pathway and enhancing signaling through the ATM pathway, which significantly reduced the viability of pancreatic cell lines. Notably, this combination therapy was more effective in PDAC cell lines exhibiting high TOPBP1 expression, indicating that TOPBP1 may serve as a useful predictive biomarker. In conclusion, TOPBP1 is a potential marker for optimizing the olaparib and AZD6738 combination therapy in PDAC. This study highlights the clinical significance of TOPBP1 in the treatment of PDAC and emphasizes the potential implications for a broader population of patients.
Collapse
Affiliation(s)
- Xiao-Mei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Min-Min Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jia-Cheng Wang
- Shanghai Pinghe School, Shanghai, 200127, China
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Yi-Jin Gu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Ting Dai
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qin-Xin Yang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Department of Pathology, The Affiliated Taizhou Peoples Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ling-Jie Ren
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou Peoples Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Chun Yang
- Department of Anesthesiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Fang-Fang Ma
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ji-Bing Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou Peoples Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Yun-Feng Wang
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
8
|
Karami Fath M, Najafiyan B, Morovatshoar R, Khorsandi M, Dashtizadeh A, Kiani A, Farzam F, Kazemi KS, Nabi Afjadi M. Potential promising of synthetic lethality in cancer research and treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1403-1431. [PMID: 39305329 DOI: 10.1007/s00210-024-03444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 02/14/2025]
Abstract
Cancer is a complex disease driven by multiple genetic changes, including mutations in oncogenes, tumor suppressor genes, DNA repair genes, and genes involved in cancer metabolism. Synthetic lethality (SL) is a promising approach in cancer research and treatment, where the simultaneous dysfunction of specific genes or pathways causes cell death. By targeting vulnerabilities created by these dysfunctions, SL therapies selectively kill cancer cells while sparing normal cells. SL therapies, such as PARP inhibitors, WEE1 inhibitors, ATR and ATM inhibitors, and DNA-PK inhibitors, offer a distinct approach to cancer treatment compared to conventional targeted therapies. Instead of directly inhibiting specific molecules or pathways, SL therapies exploit genetic or molecular vulnerabilities in cancer cells to induce selective cell death, offering benefits such as targeted therapy, enhanced treatment efficacy, and minimized harm to healthy tissues. SL therapies can be personalized based on each patient's unique genetic profile and combined with other treatment modalities to potentially achieve synergistic effects. They also broaden the effectiveness of treatment across different cancer types, potentially overcoming drug resistance and improving patient outcomes. This review offers an overview of the current understanding of SL mechanisms, advancements, and challenges, as well as the preclinical and clinical development of SL. It also discusses new directions and opportunities for utilizing SL in targeted therapy for anticancer treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behnam Najafiyan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdieh Khorsandi
- Department of Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Coquel F, Ho SZ, Tsai KC, Yang CY, Aze A, Devin J, Chang TH, Kong-Hap M, Bioteau A, Moreaux J, Maiorano D, Pourquier P, Yang WC, Lin YL, Pasero P. Synergistic effect of inhibiting CHK2 and DNA replication on cancer cell growth. eLife 2025; 13:RP104718. [PMID: 39887032 PMCID: PMC11785374 DOI: 10.7554/elife.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.
Collapse
Affiliation(s)
- Flavie Coquel
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| | - Sing-Zong Ho
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
| | - Keng-Chang Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
- National Research Institute of Chinese Medicine, Ministry of Health and WelfareTaipeiTaiwan
| | - Chun-Yen Yang
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
| | - Antoine Aze
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Genome Surveillance and Stability’ Laboratory, IGH, Univ. de Montpellier, CNRSMontpellierFrance
| | - Julie Devin
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Normal and Malignant B cells’ laboratory', IGH, Univ. de Montpellier, CNRSMontpellierFrance
| | - Ting-Hsiang Chang
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
| | - Marie Kong-Hap
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de MontpellierMontpellierFrance
| | - Audrey Bioteau
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| | - Jerome Moreaux
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Normal and Malignant B cells’ laboratory', IGH, Univ. de Montpellier, CNRSMontpellierFrance
- Institut Universitaire de FranceParisFrance
- Department of Biological Hematology, CHU MontpellierMontpellierFrance
| | - Domenico Maiorano
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Genome Surveillance and Stability’ Laboratory, IGH, Univ. de Montpellier, CNRSMontpellierFrance
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de MontpellierMontpellierFrance
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
- Graduate Institute of Integrated Medicine, China Medical UniversityTaichungTaiwan
- Department of Life Sciences, National Chung-Hsing UniversityTaichungTaiwan
| | - Yea-Lih Lin
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| | - Philippe Pasero
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| |
Collapse
|
10
|
Wu L, Li L, Zhu M, Zhou Z, Su X, Jiang Y, Kang M, Jiang L. Evaluating H2BC9 as a potential diagnostic and prognostic biomarker in head and neck squamous cell carcinoma. Eur J Med Res 2025; 30:54. [PMID: 39865289 PMCID: PMC11771076 DOI: 10.1186/s40001-025-02301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study aimed to evaluate the potential diagnostic and prognostic value of H2BC9 in HNSCC and investigate its biological role using bioinformatics. METHODS The expression pattern and diagnostic value of H2BC9 in HNSCC were explored using UCSC Xena and GEO database. H2BC9 expression was validated using the Human Protein Atlas database, qRT-PCR, and western blotting. Prognostic value was assessed using Kaplan-Meier curves, Cox regression analysis, and a nomogram. Drug sensitivity was predicted using the R package pRRophetic, and molecular interactions were analyzed using the DepMap database. The impact of H2BC9 on HNSCC cells was further investigated through in vitro experiments. RESULTS H2BC9 was markedly upregulated in HNSCC cell lines and tissues. High expression of H2BC9 was correlated with advanced-stage disease and poor prognosis. KEGG analysis linked H2BC9 to cell cycle regulation and DNA replication. H2BC9 expression influenced the drug sensitivity of paclitaxel, docetaxel, cisplatin, and 5-fluorouracil. Key molecules, such as TONSL, PITX2, NOTCH1, and H2BC10, were positively correlated with H2BC9 expression. Silencing H2BC9 suppressed cell proliferation, induced G2/M cell cycle arrest, and enhanced apoptosis and DNA damage in HNSCC cells. CONCLUSION We demonstrated that H2BC9 expression may be associated with HNSCC development and prognosis. These findings may provide a potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Lanhua Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) , Ministry of Education, Nanning, 530021, Guangxi, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Liang Li
- CPC Organization and Human Resource Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mingjing Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) , Ministry of Education, Nanning, 530021, Guangxi, China
| | - Ziyan Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuejin Su
- Department of Oncology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, 545006, Guangxi, China
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) , Ministry of Education, Nanning, 530021, Guangxi, China.
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Li Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) , Ministry of Education, Nanning, 530021, Guangxi, China.
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
11
|
Mann J, Niedermayer K, Krautstrunk J, Abbey L, Wiesmüller L, Piekorz RP, Fritz G. Combined inhibition of RAD51 and CHK1 causes synergistic toxicity in cisplatin resistant cancer cells by triggering replication fork collapse. Int J Cancer 2025; 156:389-402. [PMID: 39239809 DOI: 10.1002/ijc.35164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024]
Abstract
The therapeutic efficacy of the anticancer drug cisplatin is limited by acquired drug resistance. Cisplatin forms DNA crosslinks, that, if not removed, lead to replication stress. Due to this, the DNA damage response (DDR) gets activated regulating cell cycle arrest, DNA repair, cell death or survival. This makes DDR components promising targets for the development of new therapeutic approaches aiming to overcome acquired drug resistance. To this end, cisplatin-resistant bladder cancer cells were analyzed regarding their sensitivity to combination treatments with selected pharmacological DDR inhibitors. Synergistic cytolethal effects were achieved after combined treatment with low to moderate doses of the non-genotoxic RAD51-inhibitor (RAD51i) B02 and CHK1-inhibitor (CHK1i) PF477736. This effect was also found in cisplatin resistant tumor cells of other origin as well as with other RAD51i and CHK1i. Combined treatments promoted decelerated replication, S-phase blockage, accumulation of DNA strand breaks, DDR activation and stimulation of apoptotic cell death as compared to mono-treatment, which is independent of the expression of RAD51, CHK1, and PrimPol. Based on these data, we suggest combined inhibition of RAD51 and CHK1 to overcome acquired cisplatin resistance of malignant cells. We propose that the molecular mechanism of this synergistic toxicity relies on a simultaneous inactivation of two key DNA damage tolerance pathways regulating replication fork restart, thereby circumventing the activation of alternative compensatory mechanisms and, in consequence, eventually effectively triggering apoptotic cell death by replication fork collapse.
Collapse
Affiliation(s)
- Julia Mann
- Institute of Toxicology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Johannes Krautstrunk
- Institute of Toxicology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lena Abbey
- Institute of Toxicology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Roland P Piekorz
- Institute of Biochemistryand Molecular Biology II, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett 2025; 30:2. [PMID: 39757165 DOI: 10.1186/s11658-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shiting Xia
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
13
|
Zhao Z, Zhu L, Luo Y, Xu H, Zhang Y. Collateral lethality: A unique type of synthetic lethality in cancers. Pharmacol Ther 2025; 265:108755. [PMID: 39581504 DOI: 10.1016/j.pharmthera.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Genetic interactions play crucial roles in cell-essential functions. Intrinsic genetic defects in tumors typically involve gain-of- and loss-of-function mutations in tumor suppressor genes (TSGs) and oncogenes, respectively, providing potential antitumor vulnerabilities. Moreover, tumor cells with TSG deficiencies exhibit heightened sensitivity to the inhibition of compensatory pathways. Synthetic and collateral lethality are two strategies used for exploiting novel drug targets in multiple types of cancer. Collateral lethality is a unique type of synthetic lethality that occurs when passenger genes are co-deleted in neighboring TSGs. Although synthetic lethality has already been successfully demonstrated in clinical practice, antitumor therapeutics based on collateral lethality are predominantly still in the preclinical phase. Therefore, screening for potential genetic interactions within the cancer genome has emerged as a promising approach for drug development. Here, the two conceptual therapeutic strategies that involve the deletion or inactivation of cancer-specific TSGs are discussed. Moreover, existing approaches for screening and identifying potential gene partners are also discussed. Particularly, this review highlights the current advances of "collateral lethality" in the preclinical phase and addresses the challenges involved in translating them into therapeutic applications. This review provides insights into these strategies as new opportunities for the development of personalized antitumor therapies.
Collapse
Affiliation(s)
- Zichen Zhao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Luo
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Heng Xu
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Li L, Hu X, Nkwocha J, Kmieciak M, Meads MB, Shain KH, Alugubelli RR, Silva AS, Mann H, Sudalagunta PR, Canevarolo RR, Zhou L, Grant S. Combined MEK1/2 and ATR inhibition promotes myeloma cell death through a STAT3-dependent mechanism in vitro and in vivo. Br J Haematol 2024; 205:2338-2348. [PMID: 39379134 DOI: 10.1111/bjh.19796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mechanisms underlying potentiation of the anti-myeloma (MM) activity of ataxia telangiectasia Rad3 (ATR) antagonists by MAPK (Mitogen-activated protein kinases)-related extracellular kinase 1/2 (MEK1/2) inhibitors were investigated. Co-administration of the ATR inhibitor (ATRi) BAY1895344 (BAY) and MEK1/2 inhibitors, for example, cobimetinib, synergistically increased cell death in diverse MM cell lines. Mechanistically, BAY and cobimetinib blocked STAT3 Tyr705 and Ser727 phosphorylation, respectively, and dual dephosphorylation triggered marked STAT3 inactivation and downregulation of STAT3 (Signal transducer and activator of transcription 3) downstream targets (c-Myc and BCL-XL). Similar events occurred in highly bortezomib-resistant (PS-R) cells, in the presence of patient-derived conditioned medium, and with alternative ATR (e.g. M1774) and MEK1/2 (trametinib) inhibitors. Notably, constitutively active STAT3 c-MYC or BCL-XL ectopic expression significantly protected cells from BAY/cobimetinib. In contrast, transfection of cells with a dominant-negative form of STAT3 (Y705F) sensitized cells to cobimetinib, as did ATR shRNA knockdown. Conversely, MEK1/2 knockdown markedly increased ATRi sensitivity. The BAY/cobimetinib regimen was also active against primary CD138+ MM cells, but not normal CD34+ cells. Finally, the ATR inhibitor/cobimetinib regimen significantly improved survival in MM xenografts, including bortezomib-resistant models, with minimal toxicity. Collectively, these findings suggest that combined ATR/MEK1/2 inhibition triggers dual STAT3 Tyr705 and Ser727 dephosphorylation, pronounced downregulation of cytoprotective targets and MM cell death, warranting attention as a novel therapeutic strategy in MM.
Collapse
Affiliation(s)
- Lin Li
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark B Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Ariosto S Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Hashim Mann
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Praneeth R Sudalagunta
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Rafael R Canevarolo
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Translational Medicine, Asklepios BioPharmaceutical, Inc., Durham, North Carolina, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
15
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
16
|
Luo J, Li Y, Zhang Y, Wu D, Ren Y, Liu J, Wang C, Zhang J. An update on small molecule compounds targeting synthetic lethality for cancer therapy. Eur J Med Chem 2024; 278:116804. [PMID: 39241482 DOI: 10.1016/j.ejmech.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Targeting cancer-specific vulnerabilities through synthetic lethality (SL) is an emerging paradigm in precision oncology. A SL strategy based on PARP inhibitors has demonstrated clinical efficacy. Advances in DNA damage response (DDR) uncover novel SL gene pairs. Beyond BRCA-PARP, emerging SL targets like ATR, ATM, DNA-PK, CHK1, WEE1, CDK12, RAD51, and RAD52 show clinical promise. Selective and bioavailable small molecule inhibitors have been developed to induce SL, but optimization for potency, specificity, and drug-like properties remains challenging. This article illuminated recent progress in the field of medicinal chemistry centered on the rational design of agents capable of eliciting SL specifically in neoplastic cells. It is envisioned that innovative strategies harnessing SL for small molecule design may unlock novel prospects for targeted cancer therapeutics going forward.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengdi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Zhen T, Sun T, Xiong B, Liu H, Wang L, Chen Y, Sun H. New insight into targeting the DNA damage response in the treatment of glioblastoma. Chin J Nat Med 2024; 22:869-886. [PMID: 39428180 DOI: 10.1016/s1875-5364(24)60694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Glioblastoma (GBM) is the most common invasive malignant tumor in human brain tumors, representing the most severe grade of gliomas. Despite existing therapeutic approaches, patient prognosis remains dismal, necessitating the exploration of novel strategies to enhance treatment efficacy and extend survival. Due to the restrictive nature of the blood-brain barrier (BBB), small-molecule inhibitors are prioritized in the treatment of central nervous system tumors. Among these, DNA damage response (DDR) inhibitors have garnered significant attention due to their potent therapeutic potential across various malignancies. This review provides a detailed analysis of DDR pathways as therapeutic targets in GBM, summarizes recent advancements, therapeutic strategies, and ongoing clinical trials, and offers perspectives on future directions in this rapidly evolving field. The goal is to present a comprehensive outlook on the potential of DDR inhibitors in improving GBM management and outcomes.
Collapse
Affiliation(s)
- Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
18
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
19
|
Jo U, Arakawa Y, Zimmermann A, Taniyama D, Mizunuma M, Jenkins LM, Maity T, Kumar S, Zenke FT, Takebe N, Pommier Y. The Novel ATR Inhibitor M1774 Induces Replication Protein Overexpression and Broad Synergy with DNA-targeted Anticancer Drugs. Mol Cancer Ther 2024; 23:911-923. [PMID: 38466804 PMCID: PMC11555614 DOI: 10.1158/1535-7163.mct-23-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/09/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase inhibitors are in clinical trials. Here we explored the molecular pharmacology and therapeutic combination strategies of the oral ATR inhibitor M1774 (Tuvusertib) with DNA-damaging agents (DDA). As single agent, M1774 suppressed cancer cell viability at nanomolar concentrations, showing greater activity than ceralasertib and berzosertib, but less potency than gartisertib and elimusertib in the small cell lung cancer H146, H82, and DMS114 cell lines. M1774 also efficiently blocked the activation of the ATR-CHK1 checkpoint pathway caused by replication stress induced by TOP1 inhibitors. Combination with non-toxic dose of M1774 enhanced TOP1 inhibitor-induced cancer cell death by enabling unscheduled replication upon replicative damage, thereby increasing genome instability. Tandem mass tag-based quantitative proteomics uncovered that M1774, in the presence of DDA, forces the expression of proteins activating replication (CDC45) and G2-M progression (PLK1 and CCNB1). In particular, the fork protection complex proteins (TIMELESS and TIPIN) were enriched. Low dose of M1774 was found highly synergistic with a broad spectrum of clinical DDAs including TOP1 inhibitors (SN-38/irinotecan, topotecan, exatecan, and exatecan), the TOP2 inhibitor etoposide, cisplatin, the RNA polymerase II inhibitor lurbinectedin, and the PARP inhibitor talazoparib in various models including cancer cell lines, patient-derived organoids, and mouse xenograft models. Furthermore, we demonstrate that M1774 reverses chemoresistance to anticancer DDAs in cancer cells lacking SLFN11 expression, suggesting that SLFN11 can be utilized for patient selection in upcoming clinical trials.
Collapse
Affiliation(s)
- Ukhyun Jo
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Daiki Taniyama
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Makito Mizunuma
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tapan Maity
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Naoko Takebe
- Developmental Therapeutics Branch and Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
20
|
Nakazawa MS, Silverman IM, Rimkunas V, Veloso A, Glodzik D, Johnson A, Ohsumi TK, Patel SR, Conley AP, Roland CL, Soliman PT, Beird HC, Wu CC, Ingram DR, Lazcano R, Song D, Wani KM, Lazar AJ, Yap TA, Wang WL, Livingston JA. Loss of the DNA Repair Gene RNase H2 Identifies a Unique Subset of DDR-Deficient Leiomyosarcomas. Mol Cancer Ther 2024; 23:1057-1065. [PMID: 38561019 PMCID: PMC11321279 DOI: 10.1158/1535-7163.mct-23-0761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Targeting the DNA damage response (DDR) pathway is an emerging therapeutic approach for leiomyosarcoma (LMS), and loss of RNase H2, a DDR pathway member, is a potentially actionable alteration for DDR-targeted treatments. Therefore, we designed a protein- and genomic-based RNase H2 screening assay to determine its prevalence and prognostic significance. Using a selective RNase H2 antibody on a pan-tumor microarray (TMA), RNase H2 loss was more common in LMS (11.5%, 9/78) than across all tumors (3.8%, 32/843). In a separate LMS cohort, RNase H2 deficiency was confirmed in uterine LMS (U-LMS, 21%, 23/108) and soft-tissue LMS (ST-LMS; 30%, 39/102). In the TCGA database, RNASEH2B homozygous deletions (HomDels) were found in 6% (5/80) of LMS cases, with a higher proportion in U-LMS (15%; 4/27) compared with ST-LMS (2%; 1/53). Using the SNiPDx targeted-NGS sequencing assay to detect biallelic loss of function in select DDR-related genes, we found RNASEH2B HomDels in 54% (19/35) of U-LMS cases with RNase H2 loss by IHC, and 7% (3/43) HomDels in RNase H2 intact cases. No RNASEH2B HomDels were detected in ST-LMS. In U-LMS patient cohort (n = 109), no significant overall survival difference was seen in patients with RNase H2 loss versus intact, or RNASEH2B HomDel (n = 12) versus Non-HomDel (n = 37). The overall diagnostic accuracy, sensitivity, and specificity of RNase H2 IHC for detecting RNA-SEH2B HomDels in U-LMS was 76%, 93%, and 71%, respectively, and it is being developed for future predictive biomarker driven clinical trials targeting DDR in U-LMS.
Collapse
Affiliation(s)
- Michael S Nakazawa
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | - Shreyaskumar R Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christina L Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela T Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dawon Song
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida M Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
21
|
Yap TA, Tolcher AW, Plummer R, Mukker JK, Enderlin M, Hicking C, Grombacher T, Locatelli G, Szucs Z, Gounaris I, de Bono JS. First-in-Human Study of the Ataxia Telangiectasia and Rad3-Related (ATR) Inhibitor Tuvusertib (M1774) as Monotherapy in Patients with Solid Tumors. Clin Cancer Res 2024; 30:2057-2067. [PMID: 38407317 PMCID: PMC11094421 DOI: 10.1158/1078-0432.ccr-23-2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE Tuvusertib (M1774) is a potent, selective, orally administered ataxia telangiectasia and Rad3-related (ATR) protein kinase inhibitor. This first-in-human study (NCT04170153) evaluated safety, tolerability, maximum tolerated dose (MTD), recommended dose for expansion (RDE), pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of tuvusertib monotherapy. PATIENTS AND METHODS Ascending tuvusertib doses were evaluated in 55 patients with metastatic or locally advanced unresectable solid tumors. A safety monitoring committee determined dose escalation based on PK, PD, and safety data guided by a Bayesian 2-parameter logistic regression model. Molecular responses (MR) were assessed in circulating tumor DNA samples. RESULTS Most common grade ≥3 treatment-emergent adverse events were anemia (36%), neutropenia, and lymphopenia (both 7%). Eleven patients experienced dose-limiting toxicities, most commonly grade 2 (n = 2) or 3 (n = 8) anemia. No persistent effects on blood immune cell populations were observed. The RDE was 180 mg tuvusertib QD (once daily), 2 weeks on/1 week off treatment, which was better tolerated than the MTD (180 mg QD continuously). Tuvusertib median time to peak plasma concentration ranged from 0.5 to 3.5 hours and mean elimination half-life from 1.2 to 5.6 hours. Exposure-related PD analysis suggested maximum target engagement at ≥130 mg tuvusertib QD. Tuvusertib induced frequent MRs in the predicted efficacious dose range; MRs were enriched in patients with radiological disease stabilization, and complete MRs were detected for mutations in ARID1A, ATRX, and DAXX. One patient with platinum- and PARP inhibitor-resistant BRCA wild-type ovarian cancer achieved an unconfirmed RECIST v1.1 partial response. CONCLUSIONS Tuvusertib demonstrated manageable safety and exposure-related target engagement. Further clinical evaluation of tuvusertib is ongoing.
Collapse
Affiliation(s)
- Timothy A. Yap
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ruth Plummer
- Newcastle University and Northern Centre for Cancer Care, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom
| | | | - Marta Enderlin
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | | | - Zoltan Szucs
- Merck Serono Ltd., Feltham, UK, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Ioannis Gounaris
- Merck Serono Ltd., Feltham, UK, an affiliate of Merck KGaA, Darmstadt, Germany
| | | |
Collapse
|
22
|
Wang Y, Sun Y, Tan M, Lin X, Tai P, Huang X, Jin Q, Yuan D, Xu T, He B. Association Between Polymorphisms in DNA Damage Repair Pathway Genes and Female Breast Cancer Risk. DNA Cell Biol 2024; 43:219-231. [PMID: 38634815 DOI: 10.1089/dna.2023.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Breast cancer risk have been discussed to be associated with polymorphisms in genes as well as abnormal DNA damage repair function. This study aims to assess the relationship between genes single nucleotide polymorphisms (SNPs) related to DNA damage repair and female breast cancer risk in Chinese population. A case-control study containing 400 patients and 400 healthy controls was conducted. Genotype was identified using the sequence MassARRAY method and expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) in tumor tissues was analyzed by immunohistochemistry assay. The results revealed that ATR rs13091637 decreased breast cancer risk influenced by ER, PR (CT/TT vs. CC: adjusted odds ratio [OR] = 1.54, 95% confidence interval [CI]: 1.04-2.27, p = 0.032; CT/TT vs. CC: adjusted OR = 1.63, 95%CI: 1.14-2.35, p = 0.008) expression. Stratified analysis revealed that PALB2 rs16940342 increased breast cancer risk in response to menstrual status (AG/GG vs. AA: adjusted OR = 1.72, 95%CI: 1.13-2.62, p = 0.011) and age of menarche (AG/GG vs. AA: adjusted OR = 1.54, 95%CI: 1.03-2.31, p = 0.037), whereas ATM rs611646 and Ku70 rs132793 were associated with reduced breast cancer risk influenced by menarche (GA/AA vs. GG: adjusted OR = 0.50, 95%CI: 0.30-0.95, p = 0.033). In a summary, PALB2 rs16940342, ATR rs13091637, ATM rs611646, and Ku70 rs132793 were associated with breast cancer risk.
Collapse
Affiliation(s)
- Ying Wang
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yalan Sun
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjuan Tan
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Lin
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ping Tai
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Huang
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Jin
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Yuan
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bangshun He
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Cui J, Liu X, Shang Q, Sun S, Chen S, Dong J, Zhu Y, Liu L, Xia Y, Wang Y, Xiang L, Fan B, Zhan J, Zhou Y, Chen P, Zhao R, Liu X, Xing N, Wu D, Shi B, Zou Y. Deubiquitination of CDC6 by OTUD6A promotes tumour progression and chemoresistance. Mol Cancer 2024; 23:86. [PMID: 38685067 PMCID: PMC11057083 DOI: 10.1186/s12943-024-01996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.
Collapse
Affiliation(s)
- Jianfeng Cui
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Clinical laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jianping Dong
- Department of Urology, Shouguang People's Hospital, Weifang, Shandong, 262750, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Liu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lu Xiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Bowen Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Jiafeng Zhan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yadi Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Renchang Zhao
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaofei Liu
- Departement of Breast and Thyroid Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
24
|
Burris HA, Berlin J, Arkenau T, Cote GM, Lolkema MP, Ferrer-Playan J, Kalapur A, Bolleddula J, Locatelli G, Goddemeier T, Gounaris I, de Bono J. A phase I study of ATR inhibitor gartisertib (M4344) as a single agent and in combination with carboplatin in patients with advanced solid tumours. Br J Cancer 2024; 130:1131-1140. [PMID: 38287179 PMCID: PMC10991509 DOI: 10.1038/s41416-023-02436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Gartisertib is an oral inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), a key kinase of the DNA damage response. We aimed to determine the safety and tolerability of gartisertib ± carboplatin in patients with advanced solid tumours. METHODS This phase I open-label, multicenter, first-in-human study comprised four gartisertib cohorts: A (dose escalation [DE]; Q2W); A2 (DE; QD/BID); B1 (DE+carboplatin); and C (biomarker-selected patients). RESULTS Overall, 97 patients were enroled into cohorts A (n = 42), A2 (n = 26), B1 (n = 16) and C (n = 13). The maximum tolerated dose and recommended phase II dose (RP2D) were not declared for cohorts A or B1. In cohort A2, the RP2D for gartisertib was determined as 250 mg QD. Gartisertib was generally well-tolerated; however, unexpected increased blood bilirubin in all study cohorts precluded further DE. Investigations showed that gartisertib and its metabolite M26 inhibit UGT1A1-mediated bilirubin glucuronidation in human but not dog or rat liver microsomes. Prolonged partial response (n = 1 [cohort B1]) and stable disease >6 months (n = 3) did not appear to be associated with biomarker status. Exposure generally increased dose-dependently without accumulation. CONCLUSION Gartisertib was generally well-tolerated at lower doses; however, unexpected liver toxicity prevented further DE, potentially limiting antitumour activity. Gartisertib development was subsequently discontinued. CLINICALTRIALS GOV: NCT02278250.
Collapse
Affiliation(s)
| | - Jordan Berlin
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Gregory M Cote
- Division of Hematology and Oncology, Mass General Cancer Center, Boston, MA, USA
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Utrecht, Netherlands
- Amgen Inc., Thousand Oaks, CA, USA
| | - Jordi Ferrer-Playan
- Global Clinical Development, Ares Trading SA, an affiliate of Merck KGaA, Eysins, Switzerland
| | - Anup Kalapur
- Global Patient Safety Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Jayaprakasam Bolleddula
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, USA
| | | | | | - Ioannis Gounaris
- Global Clinical Development, Merck Serono Ltd., an affiliate of Merck KGaA, Feltham, UK
| | - Johann de Bono
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Royal Marsden, Hospital, London, UK
| |
Collapse
|
25
|
Odhiambo DA, Pittman AN, Rickard AG, Castillo RJ, Bassil AM, Chen J, Ravotti ML, Xu ES, Himes JE, Daniel AR, Watts TL, Williams NT, Luo L, Kirsch DG, Mowery YM. Preclinical Evaluation of the ATR Inhibitor BAY 1895344 as a Radiosensitizer for Head and Neck Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys 2024; 118:1315-1327. [PMID: 38104870 PMCID: PMC11294978 DOI: 10.1016/j.ijrobp.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Despite aggressive multimodal treatment that typically includes definitive or adjuvant radiation therapy (RT), locoregional recurrence rates approach 50% for patients with locally advanced human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC). Thus, more effective therapeutics are needed to improve patient outcomes. We evaluated the radiosensitizing effects of ataxia telangiectasia and RAD3-related (ATR) inhibitor (ATRi) BAY 1895344 in preclinical models of HNSCC. METHODS AND MATERIALS Murine and human HPV-negative HNSCC cells (MOC2, MOC1, JHU-012) were treated with vehicle or ATRi with or without 4 Gy. Checkpoint kinase 1 phosphorylation and DNA damage (γH2AX) were evaluated by Western blot, and ATRi half-maximal inhibitory concentration was determined by MTT assay for HNSCC cells and immortalized murine oral keratinocytes. In vitro radiosensitization was tested by clonogenic assay. Cell cycle distribution and mitotic catastrophe were evaluated by flow cytometry. Mitotic aberrations were quantified by fluorescent microscopy. Tumor growth delay and survival were assessed in mice bearing MOC2 or JHU-012 transplant tumors treated with vehicle, ATRi, RT (10 Gy × 1 or 8 Gy × 3), or combined ATRi + RT. RESULTS ATRi caused dose-dependent reduction in checkpoint kinase 1 phosphorylation at 1 hour post-RT (4 Gy) and dose-dependent increase in γH2AX at 18 hours post-RT. Addition of RT to ATRi led to decreased BAY 1895344 half-maximal inhibitory concentration in HNSCC cell lines but not in normal tissue surrogate immortalized murine oral keratinocytes. Clonogenic assays demonstrated radiosensitization in the HNSCC cell lines. ATRi abrogated the RT-induced G2/M checkpoint, leading to mitosis with unrepaired DNA damage and increased mitotic aberrations (multinucleated cells, micronuclei, nuclear buds, nucleoplasmic bridges). ATRi and RT significantly delayed tumor growth in MOC2 and JHU-012 in vivo models, with improved overall survival in the MOC2 model. CONCLUSIONS These findings demonstrated that BAY 1895344 increased in vitro and in vivo radiosensitivity in HPV-negative HNSCC preclinical models, suggesting therapeutic potential warranting evaluation in clinical trials for patients with locally advanced or recurrent HPV-negative HNSCC.
Collapse
Affiliation(s)
| | | | - Ashlyn G Rickard
- Dept. of Radiation Oncology, UPMC Hillman Cancer Center/University of Pittsburgh
| | | | | | - Joshua Chen
- College of Arts and Sciences, Duke University
| | - Madison L Ravotti
- Dept. of Radiation Oncology, UPMC Hillman Cancer Center/University of Pittsburgh
| | - Eric S Xu
- Dept. of Radiation Oncology, Duke University
| | | | | | - Tammara L Watts
- Dept. of Head and Neck Surgery & Communication Sciences, Duke University
| | | | - Lixia Luo
- Dept. of Radiation Oncology, Duke University
| | - David G Kirsch
- Dept. of Radiation Oncology, Duke University
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network
- Dept. of Radiation Oncology and Dept. of Medical Biophysics, University of Toronto
| | - Yvonne M Mowery
- Dept. of Radiation Oncology, Duke University
- Dept. of Radiation Oncology, UPMC Hillman Cancer Center/University of Pittsburgh
- Dept. of Head and Neck Surgery & Communication Sciences, Duke University
| |
Collapse
|
26
|
Dillon MT, Guevara J, Mohammed K, Patin EC, Smith SA, Dean E, Jones GN, Willis SE, Petrone M, Silva C, Thway K, Bunce C, Roxanis I, Nenclares P, Wilkins A, McLaughlin M, Jayme-Laiche A, Benafif S, Nintos G, Kwatra V, Grove L, Mansfield D, Proszek P, Martin P, Moore L, Swales KE, Banerji U, Saunders MP, Spicer J, Forster MD, Harrington KJ. Durable responses to ATR inhibition with ceralasertib in tumors with genomic defects and high inflammation. J Clin Invest 2024; 134:e175369. [PMID: 37934611 PMCID: PMC10786692 DOI: 10.1172/jci175369] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUNDPhase 1 study of ATRinhibition alone or with radiation therapy (PATRIOT) was a first-in-human phase I study of the oral ATR (ataxia telangiectasia and Rad3-related) inhibitor ceralasertib (AZD6738) in advanced solid tumors.METHODSThe primary objective was safety. Secondary objectives included assessment of antitumor responses and pharmacokinetic (PK) and pharmacodynamic (PD) studies. Sixty-seven patients received 20-240 mg ceralasertib BD continuously or intermittently (14 of a 28-day cycle).RESULTSIntermittent dosing was better tolerated than continuous, which was associated with dose-limiting hematological toxicity. The recommended phase 2 dose of ceralasertib was 160 mg twice daily for 2 weeks in a 4-weekly cycle. Modulation of target and increased DNA damage were identified in tumor and surrogate PD. There were 5 (8%) confirmed partial responses (PRs) (40-240 mg BD), 34 (52%) stable disease (SD), including 1 unconfirmed PR, and 27 (41%) progressive disease. Durable responses were seen in tumors with loss of AT-rich interactive domain-containing protein 1A (ARID1A) and DNA damage-response defects. Treatment-modulated tumor and systemic immune markers and responding tumors were more immune inflamed than nonresponding.CONCLUSIONCeralasertib monotherapy was tolerated at 160 mg BD intermittently and associated with antitumor activity.TRIAL REGISTRATIONClinicaltrials.gov: NCT02223923, EudraCT: 2013-003994-84.FUNDINGCancer Research UK, AstraZeneca, UK Department of Health (National Institute for Health Research), Rosetrees Trust, Experimental Cancer Medicine Centre.
Collapse
Affiliation(s)
- Magnus T. Dillon
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jeane Guevara
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Kabir Mohammed
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Marcella Petrone
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Carlos Silva
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Khin Thway
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Catey Bunce
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Anna Wilkins
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Adoracion Jayme-Laiche
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Sarah Benafif
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Georgios Nintos
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Vineet Kwatra
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Lorna Grove
- The Institute of Cancer Research, London, United Kingdom
| | | | - Paula Proszek
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Philip Martin
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Luiza Moore
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Udai Banerji
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - James Spicer
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Martin D. Forster
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Kevin J. Harrington
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
27
|
Tran HL, Lai KH, Chang HS, Chen YS, Wang HC, Yang SS, Chang HW, Hsu CM, Yen CH, Hsiao HH. Indigofera suffruticosa aerial parts extract induce G2/M arrest and ATR/CHK1 pathway in Jurkat cells. BMC Complement Med Ther 2024; 24:28. [PMID: 38195460 PMCID: PMC10775588 DOI: 10.1186/s12906-023-04325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Indigofera suffruticosa Mill. is used as a folk medicine for treating patients with leukemia, however very little is known regarding the molecular mechanism of its anti-leukemic activity and the chemical profile of the active extract. The present study aimed to reveal the molecular effect of I. suffruticosa aerial parts extract (ISAE) on leukemia cells and its chemical constituents. METHODS Cytotoxicity of ISAE were determined by resazurin viability assay, multitox - Glo multiplex cytotoxicity assay, and Annexin V staining assay. Cell cycle profiles were revealed by propidium iodide staining assay. The effects of ISAE on G2/M arrest signaling and DNA damage were evaluated by Western blot assay and phospho-H2A.X staining assay. The chemical profile of ISAE were determined by tandem mass spectroscopy and molecular networking approach. RESULTS We showed that the acute lymphoblastic leukemia cell line Jurkat cell was more responsive to ISAE treatment than other leukemia cell lines. In contrast, ISAE did not induce cytotoxic effects in normal fibroblast cells. Cell cycle analysis revealed that ISAE triggered G2/M arrest in Jurkat cells in dose- and time-dependent manners. Elevation of annexin V-stained cells and caspase 3/7 activity suggested ISAE-induced apoptosis. Furthermore, ISAE alone could increase the phosphorylation of CDK1 at Y15 and activate the ATR/CHK1/Wee1/CDC25C signaling pathway. However, the addition of caffeine, a widely used ATR inhibitor to ISAE, reduced the phosphorylation of ATR, CHK1, and CDK1, as well as G2/M arrest in Jurkat cells. Moreover, increased phospho-H2A.X stained cells indicated the involvement of DNA damage in the anti-leukemic effect of ISAE. Finally, qualitative analysis using UPLC-tandem mass spectroscopy and molecular networking revealed that tryptanthrin was the most abundant organoheterocyclic metabolite in ISAE. At equivalent concentrations to ISAE, tryptanthrin induced G2/M arrest of Jurkat cells, which can be prevented by caffeine. CONCLUSIONS ISAE causes G2/M arrest via activating ATR/CHK1/CDK1 pathway and tryptanthrin is one of the active components of ISAE. Our findings provide subtle support to the traditional use of I. suffruitcosa in leukemia management in folk medicine.
Collapse
Affiliation(s)
- Hong-Loan Tran
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yi-Siao Chen
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, 80708, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shuen-Shin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chin-Mu Hsu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| | - Hui-Hua Hsiao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
28
|
Lin Z, Wang L, Xing Z, Wang F, Cheng X. Update on Combination Strategies of PARP Inhibitors. Cancer Control 2024; 31:10732748241298329. [PMID: 39500600 PMCID: PMC11539152 DOI: 10.1177/10732748241298329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The application of PARP inhibitors has revolutionized cancer treatment and has achieved significant advancements, particularly with regard to tumors with defects in genes involved in homologous recombination repair (HRR) processes, such as BRCA1 and BRCA2. Despite the promising outcomes of PARP inhibitors, certain limitations and challenges still exist, including acquired drug resistance, severe side effects, and limited therapeutic benefits for patients without homologous recombination deficiency (HRD). Various combinations involving PARP inhibitors have been developed to overcome these limitations. Among these, combinations with immune checkpoint inhibitors, antiangiogenic agents, and various small-molecule inhibitors are well-studied strategies that show great potential for optimizing the efficacy of PARP inhibitors, overcoming resistance mechanisms, and expanding target populations. However, the efficiency and overlapping toxicity of these combination strategies for cancers vary among studies, thereby limiting their use. In this review, we describe the mechanisms and limitations of PARP inhibitors to better understand the mechanisms of combination treatments. Furthermore, we have summarized recent studies on the combination of PARP inhibitors with a range of medications and discussed their clinical efficacy. The objective of this review is to enhance the comprehensiveness of information pertaining to this topic.
Collapse
Affiliation(s)
- Zhuoqun Lin
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Wang
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ziyu Xing
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenfen Wang
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Gynecological Oncology Department, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, P.R. China
| | - Xiaodong Cheng
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Gynecological Oncology Department, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, P.R. China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, P.R. China
| |
Collapse
|
29
|
Sugitani N, Mason HR, Campfield BT, Piganelli JD. An orally available cancer drug AZD6738 prevents type 1 diabetes. Front Immunol 2023; 14:1290058. [PMID: 38164129 PMCID: PMC10757955 DOI: 10.3389/fimmu.2023.1290058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Type 1 diabetes (T1D) affects three million Americans, with 80 new people diagnosed each day. T1D is currently uncurable and there is an urgent need to develop additional drug candidates to achieve the prevention of T1D. We propose AZD6738 (ATRi), an orally available drug currently in phases I and II of clinical trials for various cancers, as a novel candidate to prevent T1D. Based on previously reported findings of ATRi inducing cell death in rapidly proliferating T cells, we hypothesized that this drug would specifically affect self-antigen activated diabetogenic T cells. These cells, if left unchecked, could otherwise lead to the destruction of pancreatic β cells, contributing to the development of T1D. This work demonstrates that increasing the duration of ATRi treatment provides extended protection against T1D onset. Remarkably, 5-week ATRi treatment prevented T1D in a robust adoptive transfer mouse model. Furthermore, the splenocytes of animals that received 5-week ATRi treatment did not transfer immune-mediated diabetes, while the splenocytes from control animal transferred the disease in 10 days. This work shows that ATRi prevents T1D by specifically inducing cell death in self-antigen activated, highly proliferative diabetogenic T cells through the induction of DNA damage, resulting in the inhibition of IFNγ production and proliferation. These findings support the consideration of repurposing ATRi for T1D prevention.
Collapse
Affiliation(s)
- Norie Sugitani
- Division of Pediatric Surgery, Department of Surgery, Pittsburgh, PA, United States
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Pittsburgh, PA, United States
- University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Hannah R. Mason
- Division of Pediatric Surgery, Department of Surgery, Pittsburgh, PA, United States
| | - Brian T. Campfield
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Pittsburgh, PA, United States
- University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Jon D. Piganelli
- Division of Pediatric Surgery, Department of Surgery, Pittsburgh, PA, United States
- Department of Endocrinology, Indiana University, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Vanderlinden A, Jones CG, Myers KN, Rominiyi O, Collis SJ. DNA damage response inhibitors enhance tumour treating fields (TTFields) potency in glioma stem-like cells. Br J Cancer 2023; 129:1829-1840. [PMID: 37777579 PMCID: PMC10667536 DOI: 10.1038/s41416-023-02454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND High-grade gliomas are primary brain cancers with unacceptably low and persistent survival rates of 10-16 months for WHO grade 4 gliomas over the last 40 years, despite surgical resection and DNA-damaging chemo-radiotherapy. More recently, tumour-treating fields therapy (TTFields) has demonstrated modest survival benefit and been clinically approved in several countries. TTFields is thought to mediate anti-cancer activity by primarily disrupting mitosis. However, recent data suggest that TTFields may also attenuate DNA damage repair and replication fork dynamics, providing a potential platform for therapeutic combinations incorporating standard-of-care treatments and targeted DNA damage response inhibitors (DDRi). METHODS We have used patient-derived, typically resistant, glioma stem-like cells (GSCs) in combination with the previously validated preclinical Inovitro™ TTFields system together with a number of therapeutic DDRi. RESULTS We show that TTFields robustly activates PARP- and ATR-mediated DNA repair (including PARylation and CHK1 phosphorylation, respectively), whilst combining TTFields with PARP1 or ATR inhibitor treatment leads to significantly reduced clonogenic survival. The potency of each of these strategies is further enhanced by radiation treatment, leading to increased amounts of DNA damage with profound delay in DNA damage resolution. CONCLUSION To our knowledge, our findings represent the first report of TTFields applied with clinically approved or in-trial DDRi in GSC models and provides a basis for translational studies toward multimodal DDRi/TTFields-based therapeutic strategies for patients with these currently incurable tumours.
Collapse
Affiliation(s)
- Aurelie Vanderlinden
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Callum G Jones
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Katie N Myers
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Ola Rominiyi
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
- Division of Neuroscience, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S10 2JF, UK.
| | - Spencer J Collis
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
| |
Collapse
|
31
|
Du Y, Luo L, Xu X, Yang X, Yang X, Xiong S, Yu J, Liang T, Guo L. Unleashing the Power of Synthetic Lethality: Augmenting Treatment Efficacy through Synergistic Integration with Chemotherapy Drugs. Pharmaceutics 2023; 15:2433. [PMID: 37896193 PMCID: PMC10610204 DOI: 10.3390/pharmaceutics15102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is the second leading cause of death in the world, and chemotherapy is one of the main methods of cancer treatment. However, the resistance of cancer cells to chemotherapeutic drugs has always been the main reason affecting the therapeutic effect. Synthetic lethality has emerged as a promising approach to augment the sensitivity of cancer cells to chemotherapy agents. Synthetic lethality (SL) refers to the specific cell death resulting from the simultaneous mutation of two non-lethal genes, which individually allow cell survival. This comprehensive review explores the classification of SL, screening methods, and research advancements in SL inhibitors, including Poly (ADP-ribose) polymerase (PARP) inhibitors, Ataxia telangiectasia and Rad3-related (ATR) inhibitors, WEE1 G2 checkpoint kinase (WEE1) inhibitors, and protein arginine methyltransferase 5 (PRMT5) inhibitors. Emphasizing their combined use with chemotherapy drugs, we aim to unveil more effective treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| |
Collapse
|
32
|
Li L, Hu X, Nkwocha J, Sharma K, Kmieciak M, Mann H, Zhou L, Grant S. Non-canonical role for the ataxia-telangiectasia-Rad3 pathway in STAT3 activation in human multiple myeloma cells. Cell Oncol (Dordr) 2023; 46:1369-1380. [PMID: 37126127 PMCID: PMC10618375 DOI: 10.1007/s13402-023-00817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
PURPOSE The goal of this study was to characterize the relationship between ATR and STAT3 interactions in human multiple myeloma (MM) cells. METHODS Various MM cell lines, including IL-6-dependent cells were exposed to ATR inhibitors and effects on STAT3 Tyr705 and Ser727 were monitored by WB analysis and ImageStream analysis. Parallel studies examined induction of cell death, STAT3 DNA binding activity, and expression of STAT3 downstream targets (BCL-XL, MCL-1, c-MYC). Validation was obtained in ATR shRNA knock-down cells, and in cells ectopically expressing BCL-XL, MCL-1, or c-MYC. Analogous studies were performed in primary MM cells and in a MM xenograft model. RESULTS Multiple pharmacologic ATR inhibitors inhibited STAT3 Tyr705 (but not Ser727) phosphorylation at low uM concentrations and down-regulated BCL-XL, MCL-1, c-MYC in association with cell death induction. Compatible results were observed in ATR shRNA knock-down cells. Cell death induced by ATR inhibitors was significantly attenuated in cells ectopically expressing constitutively active STAT3, BCL-XL, MCL-1, or c-MYC. Concordant results were observed in primary human MM cells and in an in vivo MM xenograft model. CONCLUSIONS Collectively, these findings argue for a non-canonical role for the ATR kinase in STAT3 activation in MM cells, and suggest that STAT3 inactivation contributes to the lethal actions of ATR inhibitors in MM.
Collapse
Affiliation(s)
- Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Kanika Sharma
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Hashim Mann
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
- Department of Translational Medicine, Asklepios BioPharmaceutical, Inc., Durham, NC, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
33
|
Girst G, Lopes EA, Gonçalves LM, Espadinha M, Kúsz N, Wang HC, Santos MMM, Hunyadi A. Hybrid molecules of protoflavones and spirooxindole derivatives with selective cytotoxicity against triple-negative breast cancer cells. RSC Med Chem 2023; 14:1778-1786. [PMID: 37731691 PMCID: PMC10507806 DOI: 10.1039/d3md00251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
The combination of compounds with complementary bioactivities into hybrid molecules is an emerging concept in drug discovery. In this study, we aimed to synthesize new hybrid compounds based on p53-MDM2/X protein-protein interaction spiropyrazoline oxindole-based inhibitors and ataxia telangiectasia and Rad3-related (ATR) protoflavone-based inhibitors through copper(i) catalysed azide-alkyne cycloaddition. Five new hybrids were prepared along with three representative reference fragments. The compounds were tested against human breast cancer cell lines MCF-7 (hormone-dependent, wild-type p53) and MDA-MB-231 (triple-negative, mutant p53). Most of the new hybrids were more cytotoxic than their reference fragments and several showed 2-4 times selective toxicity against MDA-MB-231 cells. Relevant pharmacological benefit gained from the hybrid coupling was further confirmed by virtual combination index calculations using the Chou method. Compound 13 modulated doxorubicin-induced DNA damage response through inhibiting the ATR-dependent activation of Chk-1, while increasing the activation of Chk-2. Our results suggest that the new hybrids may serve as new leads against triple negative breast cancer.
Collapse
Affiliation(s)
- Gábor Girst
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, Faculty of Pharmacy, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary
| | - Elizabeth A Lopes
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Lídia M Gonçalves
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Margarida Espadinha
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Norbert Kúsz
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, Faculty of Pharmacy, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University Shih-Chuan 1st Rd. 100 Kaohsiung 807 Taiwan
| | - Maria M M Santos
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, Faculty of Pharmacy, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary
| |
Collapse
|
34
|
Liu T, Wang H, Chen Y, Wan Z, Du Z, Shen H, Yu Y, Ma S, Xu Y, Li Z, Yu N, Zhang F, Cao K, Cai J, Zhang W, Gao F, Yang Y. SENP5 promotes homologous recombination-mediated DNA damage repair in colorectal cancer cells through H2AZ deSUMOylation. J Exp Clin Cancer Res 2023; 42:234. [PMID: 37684630 PMCID: PMC10486113 DOI: 10.1186/s13046-023-02789-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/06/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neoadjuvant radiotherapy has been used as the standard treatment of colorectal cancer (CRC). However, radiotherapy resistance often results in treatment failure. To identify radioresistant genes will provide novel targets for combined treatments and prognostic markers. METHODS Through high content screening and tissue array from CRC patients who are resistant or sensitive to radiotherapy, we identified a potent resistant gene SUMO specific peptidase 5 (SENP5). Then, the effect of SENP5 on radiosensitivity was investigated by CCK8, clone formation, comet assay, immunofluorescence and flow cytometric analysis of apoptosis and cell cycle to investigate the effect of SENP5 on radiosensitivity. SUMO-proteomic mass spectrometry combined with co-immunoprecipitation assay were used to identify the targets of SENP5. Patient-derived organoids (PDO) and xenograft (PDX) models were used to explore the possibility of clinical application. RESULTS We identified SENP5 as a potent radioresistant gene through high content screening and CRC patients tissue array analysis. Patients with high SENP5 expression showed increased resistance to radiotherapy. In vitro and in vivo experiments demonstrated that SENP5 knockdown significantly increased radiosensitivity in CRC cells. SENP5 was further demonstrated essential for efficient DNA damage repair in homologous recombination (HR) dependent manner. Through SUMO mass spectrometry analysis, we characterized H2AZ as a deSUMOylation substrate of SENP5, and depicted the SUMOylation balance of H2AZ in HR repair and cancer resistance. By using PDO and PDX models, we found targeting SENP5 significantly increased the therapeutic efficacy of radiotherapy. CONCLUSION Our findings revealed novel role of SENP5 in HR mediated DNA damage repair and cancer resistance, which could be applied as potent prognostic marker and intervention target for cancer radiotherapy.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hang Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhijie Wan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhipeng Du
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Shen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yue Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shengzhe Ma
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ying Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhuqing Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Nanxi Yu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangxiao Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
35
|
Sturm MJ, Henao-Restrepo JA, Becker S, Proquitté H, Beck JF, Sonnemann J. Synergistic anticancer activity of combined ATR and ribonucleotide reductase inhibition in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2023; 149:8605-8617. [PMID: 37097390 PMCID: PMC10374484 DOI: 10.1007/s00432-023-04804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Ewing's sarcoma is a highly malignant childhood tumour whose outcome has hardly changed over the past two decades despite numerous attempts at chemotherapy intensification. It is therefore essential to identify new treatment options. The present study was conducted to explore the effectiveness of combined inhibition of two promising targets, ATR and ribonucleotide reductase (RNR), in Ewing's sarcoma cells. METHODS Effects of the ATR inhibitor VE821 in combination with the RNR inhibitors triapine and didox were assessed in three Ewing's sarcoma cell lines with different TP53 status (WE-68, SK-ES-1, A673) by flow cytometric analysis of cell death, mitochondrial depolarisation and cell cycle distribution as well as by caspase 3/7 activity determination, by immunoblotting and by real-time RT-PCR. Interactions between inhibitors were evaluated by combination index analysis. RESULTS Single ATR or RNR inhibitor treatment produced small to moderate effects, while their combined treatment produced strong synergistic ones. ATR and RNR inhibitors elicited synergistic cell death and cooperated in inducing mitochondrial depolarisation, caspase 3/7 activity and DNA fragmentation, evidencing an apoptotic form of cell death. All effects were independent of functional p53. In addition, VE821 in combination with triapine increased p53 level and induced p53 target gene expression (CDKN1A, BBC3) in p53 wild-type Ewing's sarcoma cells. CONCLUSION Our study reveals that combined targeting of ATR and RNR was effective against Ewing's sarcoma in vitro and thus rationalises an in vivo exploration into the potential of combining ATR and RNR inhibitors as a new strategy for the treatment of this challenging disease.
Collapse
Affiliation(s)
- Max-Johann Sturm
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Julián Andrés Henao-Restrepo
- Placenta Laboratory, Department of Obstetrics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sabine Becker
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Hans Proquitté
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - James F Beck
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jürgen Sonnemann
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
36
|
Yang J, Kang H, Lyu L, Xiong W, Hu Y. A target map of clinical combination therapies in oncology: an analysis of clinicaltrials.gov. Discov Oncol 2023; 14:151. [PMID: 37603124 PMCID: PMC10441974 DOI: 10.1007/s12672-023-00758-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Combination therapies have taken center stage for cancer treatment, however, there is a lack of a comprehensive portrait to quantitatively map the current clinical combination progress. This study aims to capture clinical combination therapies of the validated FDA-approved new oncology drugs by a macro data analysis and to summarize combination mechanisms and strategies in the context of the existing literature. A total of 72 new molecular entities or new therapeutic biological products for cancer treatment approved by the FDA from 2017 to 2021 were identified, and the data on their related 3334 trials were retrieved from the database of ClinicalTrials.gov. Moreover, these sampled clinical trials were refined by activity status and combination relevance and labeled with the relevant clinical arms and drug combinations, as well as drug targets and target pairs. Combination therapies are increasingly prevalent in clinical trials of new oncology drugs. From retrospective work, existing clinical combination therapies in oncology are driven by different patterns (i.e., rational design and industry trends). The former can be represented by mechanism-based or structure-based combinations, such as targeting different domains of HER2 protein or in-series co-targeting in RAF plus MEK inhibitors. The latter is an empirically driven strategy, including redundant combinations in hot targets, such as PD-1/PD-L1, PI3K, CDK4/6, and PARP. Because of an explosion in the number of clinical trials and the resultant shortage of available patients, it is essential to rationally design drug combinations.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Heming Kang
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China
| | - Liyang Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China.
| |
Collapse
|
37
|
Dexheimer TS, Coussens NP, Silvers T, Wright J, Morris J, Doroshow JH, Teicher BA. Multicellular Complex Tumor Spheroid Response to DNA Repair Inhibitors in Combination with DNA-damaging Drugs. CANCER RESEARCH COMMUNICATIONS 2023; 3:1648-1661. [PMID: 37637936 PMCID: PMC10452929 DOI: 10.1158/2767-9764.crc-23-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Multicellular spheroids comprised of malignant cells, endothelial cells, and mesenchymal stem cells served as an in vitro model of human solid tumors to investigate the potentiation of DNA-damaging drugs by pharmacologic modulation of DNA repair pathways. The DNA-damaging drugs, topotecan, trabectedin, and temozolomide were combined with varied inhibitors of DNA damage response enzymes including PARP (olaparib or talazoparib), ATM (ataxia telangiectasia mutated; AZD-1390), ATR (ataxia telangiectasia and Rad3-related protein; berzosertib or elimusertib), and DNA-PK (DNA-dependent protein kinase; nedisertib or VX-984). A range of clinically achievable concentrations were tested up to the clinical Cmax, if known. Mechanistically, the types of DNA damage induced by temozolomide, topotecan, and trabectedin are distinct, which was apparent from the response of spheroids to combinations with various DNA repair inhibitors. Although most combinations resulted in additive cytotoxicity, synergistic activity was observed for temozolomide combined with PARP inhibitors as well as combinations of the ATM inhibitor AZD-1390 with either topotecan or trabectedin. These findings might provide guidance for the selection of anticancer agent combinations worthy of further investigation. Significance Clinical efficacy of DNA-damaging anticancer drugs can be influenced by the DNA damage response in tumor cells. The potentiation of DNA-damaging drugs by pharmacologic modulation of DNA repair pathways was assessed in multicellular tumor spheroids. Although most combinations demonstrated additive cytotoxicity, synergistic cytotoxicity was observed for several drug combinations.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nathan P Coussens
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas Silvers
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - John Wright
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Joel Morris
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| |
Collapse
|
38
|
Duan Y, Zhuang L, Xu Y, Cheng H, Xia J, Lu T, Chen Y. Design, synthesis, and biological evaluation of pyrido[3,2-d]pyrimidine derivatives as novel ATR inhibitors. Bioorg Chem 2023; 136:106535. [PMID: 37086581 DOI: 10.1016/j.bioorg.2023.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Targeting ataxia telangiectasia mutated and Rad3-related (ATR) kinase is being pursued as a new therapeutic strategy for the treatment of advanced solid tumor with specific DNA damage response deficiency. Herein, we report a series of pyrido[3,2-d]pyrimidine derivatives with potent ATR inhibitory activity through structure-based drug design. Among them, the representative compound 10q exhibited excellent potency against ATR in both biochemical and cellular assays. More importantly, 10q exhibited good liver microsomes stability in different species and also showed moderate inhibitory activity against HT-29 cells in combination treatment with the ATM inhibitor AZD1390. Thus, this work provides a promising lead compound against ATR for further study.
Collapse
Affiliation(s)
- Yunxin Duan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Lili Zhuang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yerong Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Haodong Cheng
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiawei Xia
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
39
|
Sun YM, Zhang YM, Shi HL, Yang S, Zhao YL, Liu HJ, Li C, Liu HL, Yang JP, Song J, Sun GZ, Yang JK. Enhancer-driven transcription of MCM8 by E2F4 promotes ATR pathway activation and glioma stem cell characteristics. Hereditas 2023; 160:29. [PMID: 37349788 DOI: 10.1186/s41065-023-00292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Glioma stem cells (GSCs) are responsible for glioma recurrence and drug resistance, yet the mechanisms underlying their maintenance remains unclear. This study aimed to identify enhancer-controlled genes involved in GSCs maintenance and elucidate the mechanisms underlying their regulation. METHODS We analyzed RNA-seq data and H3K27ac ChIP-seq data from GSE119776 to identify differentially expressed genes and enhancers, respectively. Gene Ontology analysis was performed for functional enrichment. Transcription factors were predicted using the Toolkit for Cistrome Data Browser. Prognostic analysis and gene expression correlation was conducted using the Chinese Glioma Genome Atlas (CGGA) data. Two GSC cell lines, GSC-A172 and GSC-U138MG, were isolated from A172 and U138MG cell lines. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to detect H3K27ac of enhancers, and binding of E2F4 to target gene enhancers. Western blot was used to analyze protein levels of p-ATR and γH2AX. Sphere formation, limiting dilution and cell growth assays were used to analyze GSCs growth and self-renewal. RESULTS We found that upregulated genes in GSCs were associated with ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) pathway activation, and that seven enhancer-controlled genes related to ATR pathway activation (LIN9, MCM8, CEP72, POLA1, DBF4, NDE1, and CDKN2C) were identified. Expression of these genes corresponded to poor prognosis in glioma patients. E2F4 was identified as a transcription factor that regulates enhancer-controlled genes related to the ATR pathway activation, with MCM8 having the highest hazard ratio among genes positively correlated with E2F4 expression. E2F4 bound to MCM8 enhancers to promote its transcription. Overexpression of MCM8 partially restored the inhibition of GSCs self-renewal, cell growth, and the ATR pathway activation caused by E2F4 knockdown. CONCLUSION Our study demonstrated that E2F4-mediated enhancer activation of MCM8 promotes the ATR pathway activation and GSCs characteristics. These findings offer promising targets for the development of new therapies for gliomas.
Collapse
Affiliation(s)
- Yu-Meng Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yi-Meng Zhang
- Medical Department, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hai-Liang Shi
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Song Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yin-Long Zhao
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hong-Jiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hong-Lei Liu
- Department of Neurosurgery, Shijiazhuang Third Hospital, Shijiazhuang, 050011, Hebei, China
| | - Ji-Peng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Guo-Zhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian-Kai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
40
|
Duan Y, Cheng H, Zhuang L, Xia J, Xu Y, Zhang R, Sun R, Lu T, Chen Y. Discovery of Thieno[3,2-d]pyrimidine derivatives as potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) kinase. Eur J Med Chem 2023; 255:115370. [PMID: 37130473 DOI: 10.1016/j.ejmech.2023.115370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
The ataxia telangiectasia mutated and rad3-related (ATR) kinase regulates the DNA damage response (DDR), which plays a critical role in the ATR-Chk1 signaling pathway. ATR inhibition can induce synthetic lethality (SL) with several DDR deficiencies, making it an attractive drug target for cancers with DDR defects. In this study, we developed a series of selective and potent ATR inhibitors with a thieno[3,2-d]pyrimidine scaffold using a hybrid design. We identified compound 34 as a representative molecule that inhibited ATR kinase with an IC50 value of 1.5 nM and showed reduced potency against other kinases tested. Compound 34 also exhibited potent antiproliferative effects against LoVo cells and SL effects against HT-29 cells. Moreover, compound 34 demonstrated good pharmacokinetic properties, in vivo antitumor efficacy, and no obvious toxicity in the LoVo xenograft tumor model. Therefore, compound 34 is a promising lead compound for drug development to combat specific DDR deficiencies in cancer patients.
Collapse
Affiliation(s)
- Yunxin Duan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Haodong Cheng
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Lili Zhuang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Jiawei Xia
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yerong Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Ruyue Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Rui Sun
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| |
Collapse
|
41
|
Shetu SA, James N, Rivera G, Bandyopadhyay D. Molecular Research in Pancreatic Cancer: Small Molecule Inhibitors, Their Mechanistic Pathways and Beyond. Curr Issues Mol Biol 2023; 45:1914-1949. [PMID: 36975494 PMCID: PMC10047141 DOI: 10.3390/cimb45030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Pancreatic enzymes assist metabolic digestion, and hormones like insulin and glucagon play a critical role in maintaining our blood sugar levels. A malignant pancreas is incapable of doing its regular functions, which results in a health catastrophe. To date, there is no effective biomarker to detect early-stage pancreatic cancer, which makes pancreatic cancer the cancer with the highest mortality rate of all cancer types. Primarily, mutations of the KRAS, CDKN2A, TP53, and SMAD4 genes are responsible for pancreatic cancer, of which mutations of the KRAS gene are present in more than 80% of pancreatic cancer cases. Accordingly, there is a desperate need to develop effective inhibitors of the proteins that are responsible for the proliferation, propagation, regulation, invasion, angiogenesis, and metastasis of pancreatic cancer. This article discusses the effectiveness and mode of action at the molecular level of a wide range of small molecule inhibitors that include pharmaceutically privileged molecules, compounds under clinical trials, and commercial drugs. Both natural and synthetic small molecule inhibitors have been counted. Anti-pancreatic cancer activity and related benefits of using single and combined therapy have been discussed separately. This article sheds light on the scenario, constraints, and future aspects of various small molecule inhibitors for treating pancreatic cancer-the most dreadful cancer so far.
Collapse
Affiliation(s)
- Shaila A. Shetu
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Nneoma James
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
42
|
Salguero C, Valladolid C, Robinson HMR, Smith GCM, Yap TA. Targeting ATR in Cancer Medicine. Cancer Treat Res 2023; 186:239-283. [PMID: 37978140 DOI: 10.1007/978-3-031-30065-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
As a key component of the DNA Damage Response, the Ataxia telangiectasia and Rad3-related (ATR) protein is a promising druggable target that is currently widely evaluated in phase I-II-III clinical trials as monotherapy and in combinations with other rational antitumor agents, including immunotherapy, DNA repair inhibitors, chemo- and radiotherapy. Ongoing clinical studies for this drug class must address the optimization of the therapeutic window to limit overlapping toxicities and refine the target population that will most likely benefit from ATR inhibition. With advances in the development of personalized treatment strategies for patients with advanced solid tumors, many ongoing ATR inhibitor trials have been recruiting patients based on their germline and somatic molecular alterations, rather than relying solely on specific tumor subtypes. Although a spectrum of molecular alterations have already been identified as potential predictive biomarkers of response that may sensitize to ATR inhibition, these biomarkers must be analytically validated and feasible to measure robustly to allow for successful integration into the clinic. While several ATR inhibitors in development are poised to address a clinically unmet need, no ATR inhibitor has yet received FDA-approval. This chapter details the underlying rationale for targeting ATR and summarizes the current preclinical and clinical landscape of ATR inhibitors currently in evaluation, as their regulatory approval potentially lies close in sight.
Collapse
Affiliation(s)
- Carolina Salguero
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Valladolid
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen M R Robinson
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Graeme C M Smith
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, and Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, TX, 77030, Houston, USA.
| |
Collapse
|
43
|
Golder A, Nelson L, Tighe A, Barnes B, Coulson-Gilmer C, Morgan R, McGrail J, Taylor S. Multiple-low-dose therapy: effective killing of high-grade serous ovarian cancer cells with ATR and CHK1 inhibitors. NAR Cancer 2022; 4:zcac036. [PMID: 36381271 PMCID: PMC9653014 DOI: 10.1093/narcan/zcac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive disease that typically develops drug resistance, thus novel biomarker-driven strategies are required. Targeted therapy focuses on synthetic lethality-pioneered by PARP inhibition of BRCA1/2-mutant disease. Subsequently, targeting the DNA replication stress response (RSR) is of clinical interest. However, further mechanistic insight is required for biomarker discovery, requiring sensitive models that closely recapitulate HGSOC. We describe an optimized proliferation assay that we use to screen 16 patient-derived ovarian cancer models (OCMs) for response to RSR inhibitors (CHK1i, WEE1i, ATRi, PARGi). Despite genomic heterogeneity characteristic of HGSOC, measurement of OCM proliferation was reproducible and reflected intrinsic tumour-cell properties. Surprisingly, RSR targeting drugs were not interchangeable, as sensitivity to the four inhibitors was not correlated. Therefore, to overcome RSR redundancy, we screened the OCMs with all two-, three- and four-drug combinations in a multiple-low-dose strategy. We found that low-dose CHK1i-ATRi had a potent anti-proliferative effect on 15 of the 16 OCMs, and was synergistic with potential to minimise treatment resistance and toxicity. Low-dose ATRi-CHK1i induced replication catastrophe followed by mitotic exit and post-mitotic arrest or death. Therefore, this study demonstrates the potential of the living biobank of OCMs as a drug discovery platform for HGSOC.
Collapse
Affiliation(s)
- Anya Golder
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Bethany Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Camilla Coulson-Gilmer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Robert D Morgan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK
| | - Joanne C McGrail
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
44
|
Li S, Wang T, Fei X, Zhang M. ATR Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14235902. [PMID: 36497387 PMCID: PMC9740197 DOI: 10.3390/cancers14235902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Platinum-resistant ovarian cancer (PROC) is one of the deadliest types of epithelial ovarian cancer, and it is associated with a poor prognosis as the median overall survival (OS) is less than 12 months. Targeted therapy is a popular emerging treatment method. Several targeted therapies, including those using bevacizumab and poly (ADP-ribose) polymerase inhibitor (PARPi), have been used to treat PROC. Ataxia telangiectasia and RAD3-Related Protein Kinase inhibitors (ATRi) have attracted attention as a promising class of targeted drugs that can regulate the cell cycle and influence homologous recombination (HR) repair. In recent years, many preclinical and clinical studies have demonstrated the efficacy of ATRis in PROC. This review focuses on the anticancer mechanism of ATRis and the progress of research on ATRis for PROC.
Collapse
Affiliation(s)
- Siyu Li
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Tao Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Xichang Fei
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Mingjun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
- Correspondence:
| |
Collapse
|
45
|
Ahmed S, Alam W, Aschner M, Alsharif KF, Albrakati A, Saso L, Khan H. Natural products targeting the ATR-CHK1 signaling pathway in cancer therapy. Biomed Pharmacother 2022; 155:113797. [PMID: 36271573 PMCID: PMC9590097 DOI: 10.1016/j.biopha.2022.113797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer is one of the most severe medical conditions in the world, causing millions of deaths each year. Chemotherapy and radiotherapy are critical for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer requires novel efficacious treatment modalities. Natural remedies offer feasible alternative options against malignancy in contrast to available synthetic medication. Selective killing of cancer cells is privileged mainstream in cancer treatment, and targeted therapy represents the new tool with the potential to pursue this aim. The discovery of innovative therapies targeting essential components of DNA damage signaling and repair pathways such as ataxia telangiectasia mutated and Rad3 related Checkpoint kinase 1 (ATR-CHK1)has offered a possibility of significant therapeutic improvement in oncology. The activation and inhibition of this pathway account for chemopreventive and chemotherapeutic activity, respectively. Targeting this pathway can also aid to overcome the resistance of conventional chemo- or radiotherapy. This review enlightens the anticancer role of natural products by ATR-CHK1 activation and inhibition. Additionally, these compounds have been shown to have chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Ideally, this review will trigger interest in natural products targeting ATR-CHK1 and their potential efficacy and safety as cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue Bronx, NY 10461, USA
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza University, Rome 00185, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
46
|
Dahoud W, Handler J, Parimi V, Meyer CF, Wethington SL, Eshleman JR, Vang R, Ronnett BM, Xing D. Adult Granulosa Cell Tumor With Sarcomatous Transformation: A Case Study With Emphasis on Molecular Alterations. Int J Gynecol Pathol 2022; 41:600-607. [PMID: 34856571 PMCID: PMC9167042 DOI: 10.1097/pgp.0000000000000845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult granulosa cells tumors (AGCTs) are typically low-grade indolent tumors. On rare occasions, they undergo high-grade/sarcomatous transformation and behave aggressively. This transformation is postulated to occur as the result of acquired genetic alterations, some of which may be eligible for targeted therapy. Here we report a rare case of AGCT with sarcomatous transformation that harbored distinct molecular alterations from those typically seen with AGCTs supporting a molecularly driven approach to these malignancies. The patient is a 56-yr-old G3P3 woman with a history of multiple recurrences of ovarian AGCT for which the first diagnosis was made at the age of 25 when she was evaluated for infertility. The ovarian tumor displayed typical features of AGCT with low-grade, bland morphology. The first extraovarian spread of tumor involving the cul-de-sac was reported at the age of 39. After that, recurrences occurred every 2 to 3 yr with involvement of multiple anatomic sites and repeated surgical resections. At the age of 55 she developed a symptomatic recurrence in the pelvis and underwent resection of an isolated lesion (specimen 1) to no gross residual disease. Within 4 wk of resection she developed significant pelvic pain and imaging showed recurrence of the mass. Therefore, in 5 mo after the initial resection she underwent repeat excision of the lesion (specimen 2) and associated bowel. The sections from specimen 1 showed a biphasic morphology: a low-grade component with morphology and immunophenotype consistent with a typical AGCT and a high-grade spindle cell component with features consistent with a high-grade sarcoma. Specimen 2 featured a pure high-grade sarcoma characterized by coagulative tumor cell necrosis, readily recognizable mitoses, highly atypical cells with vesicular nuclei and prominent nucleoli. SF-1 positivity and the presence of FOXL2 C134W mutation in the sarcomatous component support the notion of transformation of typical AGCT. While detected TERT promoter C228T mutation may play a role in this process, we further identified genetic alterations affecting PI3K/AKT/mTOR pathway, including mutations in PIK3CA , PIK3R1 , AKT1 , and NF2 , which may also contribute to tumor progression/transformation. These findings provide rationale for molecular/pathway-based targeted therapy for patients with advanced AGCT.
Collapse
|
47
|
Li S, Wang L, Wang Y, Zhang C, Hong Z, Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J Hematol Oncol 2022; 15:147. [PMID: 36253861 PMCID: PMC9578258 DOI: 10.1186/s13045-022-01360-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through “synthetic lethality” mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Collapse
Affiliation(s)
- Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
48
|
Kloeber JA, Lou Z. Critical DNA damaging pathways in tumorigenesis. Semin Cancer Biol 2022; 85:164-184. [PMID: 33905873 PMCID: PMC8542061 DOI: 10.1016/j.semcancer.2021.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
The acquisition of DNA damage is an early driving event in tumorigenesis. Premalignant lesions show activated DNA damage responses and inactivation of DNA damage checkpoints promotes malignant transformation. However, DNA damage is also a targetable vulnerability in cancer cells. This requires a detailed understanding of the cellular and molecular mechanisms governing DNA integrity. Here, we review current work on DNA damage in tumorigenesis. We discuss DNA double strand break repair, how repair pathways contribute to tumorigenesis, and how double strand breaks are linked to the tumor microenvironment. Next, we discuss the role of oncogenes in promoting DNA damage through replication stress. Finally, we discuss our current understanding on DNA damage in micronuclei and discuss therapies targeting these DNA damage pathways.
Collapse
Affiliation(s)
- Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
49
|
Gedminas JM, Laetsch TW. Targeting the DNA damage response in pediatric malignancies. Expert Rev Anticancer Ther 2022; 22:1099-1113. [PMID: 36099180 DOI: 10.1080/14737140.2022.2124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION High levels of DNA damage and mutations in DNA damage response genes creates a high reliance on DNA damage repair in various tumors. This creates a vulnerability for new cancer therapies. Although there is extensive data for the use of these agents in adult tumors, the evaluation of these compounds in the pediatric population remains in the early stages. AREAS COVERED In this review, we discuss the role of the DNA damage response as a therapeutic vulnerability in pediatric malignancies, provide a summary of clinical data for the use of DNA damage response inhibitors in cancer, and review how these compounds can be extended to the pediatric population. EXPERT OPINION A number of pediatric cancers rely on robust DNA damage repair to maintain cell viability. This provides a therapeutic vulnerability in cancer cells resistant to other traditional therapies. Unfortunately, although clinical evaluation of inhibitors of various components of the DNA damage response has been done in adults, pediatric data remains limited. Further studies are needed to evaluate the efficacy of these compounds in the pediatric population.
Collapse
Affiliation(s)
- Jenna M Gedminas
- Children's Hospital of Philadelphia, Division of Oncology, Philadelphia, PA, USA
| | - Theodore W Laetsch
- Children's Hospital of Philadelphia, Division of Oncology, Philadelphia, PA, USA
| |
Collapse
|
50
|
Turpin A, Neuzillet C, Colle E, Dusetti N, Nicolle R, Cros J, de Mestier L, Bachet JB, Hammel P. Therapeutic advances in metastatic pancreatic cancer: a focus on targeted therapies. Ther Adv Med Oncol 2022; 14:17588359221118019. [PMID: 36090800 PMCID: PMC9459481 DOI: 10.1177/17588359221118019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Mortality from pancreatic ductal adenocarcinoma (PDAC) is increasing worldwide and effective new treatments are urgently needed. The current treatment of metastatic PDAC in fit patients is based on two chemotherapy combinations (FOLFIRINOX and gemcitabine plus nab-paclitaxel) which were validated more than 8 years ago. Although almost all treatments targeting specific molecular alterations have failed so far when administered to unselected patients, encouraging results were observed in the small subpopulations of patients with germline BRCA 1/2 mutations, and somatic gene fusions (neurotrophic tyrosine receptor kinase, Neuregulin 1, which are enriched in KRAS wild-type PDAC), KRAS G12C mutations, or microsatellite instability. While targeted tumor metabolism therapies and immunotherapy have been disappointing, they are still under investigation in combination with other drugs. Optimizing pharmacokinetics and adapting available chemotherapies based on molecular signatures are other promising avenues of research. This review evaluates the current expectations and limits of available treatments and analyses the existing trials. A permanent search for actionable vulnerabilities in PDAC tumor cells and microenvironments will probably result in a more personalized therapeutic approach, keeping in mind that supportive care must also play a major role if real clinical efficacy is to be achieved in these patients.
Collapse
Affiliation(s)
- Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020,
Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to
Therapies, University Lille, CHU Lille, Lille, France
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie
Institute, Versailles Saint-Quentin University, Paris-Saclay University,
Saint-Cloud, France
| | - Elise Colle
- Department of Digestive and Medical Oncology,
Hospital Paul Brousse (AP-HP), Villejuif, University of Paris Saclay,
France
| | - Nelson Dusetti
- Cancer Research Center of Marseille, CRCM,
Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille,
France
| | - Rémy Nicolle
- Centre de Recherche sur l’Inflammation, INSERM,
U1149, CNRS, ERL 8252, Université de Paris Cité, Paris, France
| | - Jérôme Cros
- Department of Pathology, University of Paris
Cité, Hospital Beaujon (AP-HP), Clichy, France
| | - Louis de Mestier
- Department of Gastroenterology and
Pancreatology, University of Paris Cité, Hospital Beaujon (AP-HP), Clichy,
France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology and Digestive
Oncology, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC University,
Paris, France
| | - Pascal Hammel
- Department of Digestive and Medical Oncology,
Hôpital Paul Brousse (AP-HP), 12 Avenue Paul Vaillant-Couturier, Villejuif
94800, University of Paris Saclay, France
| |
Collapse
|