1
|
Ferreira T, Faustino-Rocha AI, Gaspar VM, Medeiros R, Mano JF, Oliveira PA. Contribution of non-steroidal anti-inflammatory drugs to breast cancer treatment: In vitro and in vivo studies. Vet World 2024; 17:1052-1072. [PMID: 38911075 PMCID: PMC11188899 DOI: 10.14202/vetworld.2024.1052-1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
Chronic inflammation plays a crucial role in carcinogenesis. High levels of serum prostaglandin E2 and tissue overexpression of cyclooxygenase-2 (COX-2) have been described in breast, urinary, colorectal, prostate, and lung cancers as being involved in tumor initiation, promotion, progression, angiogenesis, and immunosuppression. Non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed for several medical conditions to not only decrease pain and fever but also reduce inflammation by inhibiting COX and its product synthesis. To date, significant efforts have been made to better understand and clarify the interplay between cancer development, inflammation, and NSAIDs with a view toward addressing their potential for cancer management. This review provides readers with an overview of the potential use of NSAIDs and selective COX-2 inhibitors for breast cancer treatment, highlighting pre-clinical in vitro and in vivo studies employed to evaluate the efficacy of NSAIDs and their use in combination with other antineoplastic drugs.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000–801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200–072 Porto, Portugal
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000–801 Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora 7004-516, Portugal
- Comprehensive Health Research Center, 7004–516 Évora, Portugal
| | - Vítor M. Gaspar
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200–072 Porto, Portugal
- Faculty of Medicine of the University of Porto, 4200–319 Porto, Portugal
- Department of Research, Portuguese League against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200–177 Porto, Portugal
- Virology Service, IPO Porto, 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University, Porto 4249-004, Portugal
| | - João F. Mano
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000–801 Vila Real, Portugal
| |
Collapse
|
2
|
Wang B, Jin Y, Liu J, Liu Q, Shen Y, Zuo S, Yu Y. EP1 activation inhibits doxorubicin-cardiomyocyte ferroptosis via Nrf2. Redox Biol 2023; 65:102825. [PMID: 37531930 PMCID: PMC10400469 DOI: 10.1016/j.redox.2023.102825] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023] Open
Abstract
Chemotherapeutic agents, such as doxorubicin (DOX), may cause cardiomyopathy, even life-threatening arrhythmias in cancer patients. Ferroptosis-an iron-dependent oxidative form of programmed necrosis, plays a pivotal role in DOX-induced cardiomyopathy (DIC). Prostaglandins (PGs) are bioactive signaling molecules that profoundly modulate cardiac performance in both physiologic and pathologic conditions. Here, we found that PGE2 production and its E-prostanoid 1 receptor (EP1) expression were upregulated in erastin (a ferroptosis inducer) or DOX-treated cardiomyocytes. EP1 inhibition markedly aggravated erastin or DOX-induced cardiomyocyte ferroptosis, whereas EP1 activation exerted opposite effect. Genetic depletion of EP1 in cardiomyocytes worsens DOX-induced cardiac injury in mice, which was efficiently rescued by the ferroptosis inhibitor Ferrostatin-1 (Fer-1). Mechanistically, EP1 activation protected cardiomyocytes from DOX-induced ferroptosis by promoting nuclear factor erythroid 2-related factor 2 (Nrf2)-driven anti-oxidative gene expression, such as glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). EP1 was coupled with Gαq to elicit intracellular Ca2+ flux and activate the PKC/Nrf2 cascade in ferroptotic cardiomyocytes. EP1 activation also prevents DOX-induced ferroptosis in human cardiomyocytes. Thus, PGE2/EP1 axis protects cardiomyocytes from DOX-induced ferroptosis by activating PKC/Nrf2 signaling and activation of EP1 may represent an attractive strategy for DIC prevention and treatment.
Collapse
Affiliation(s)
- Bei Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuxuan Jin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Biopharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Kaur S, Balakrishnan B, Mallia MB, Keshari R, Hassan PA, Banerjee R. Technetium-99m labeled core shell hyaluronate nanoparticles as tumor responsive, metastatic skeletal lesion targeted combinatorial theranostics. Carbohydr Polym 2023; 312:120840. [PMID: 37059565 DOI: 10.1016/j.carbpol.2023.120840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Achieving target specific delivery of chemotherapeutics in metastatic skeletal lesions remains a major challenge. Towards this, a dual drug loaded, radiolabeled multi-trigger responsive nanoparticles having partially oxidized hyaluronate (HADA) conjugated to alendronate shell and palmitic acid core were developed. While the hydrophobic drug, celecoxib was encapsulated in the palmitic acid core, the hydrophilic drug, doxorubicin hydrochloride was linked to the shell via a pH responsive imine linkage. Hydroxyapatite binding studies showed affinity of alendronate conjugated HADA nanoparticles to bones. Enhanced cellular uptake of the nanoparticles was achieved via HADA-CD44 receptor binding. HADA nanoparticles demonstrated trigger responsive release of encapsulated drugs in the presence of hyaluronidase, pH and glucose, present in excess in the tumor microenvironment. Efficacy of the nanoparticles for combination chemotherapy was established by >10-fold reduction in IC50 of drug loaded particles with a combination index of 0.453, as compared to free drugs in MDA-MB-231 cells. The nanoparticles could be radiolabeled with the gamma emitting radioisotope technetium-99m (99mTc) through a simple, 'chelator free', procedure with excellent radiochemical purity (RCP) (>90 %) and in vitro stability. 99mTc-labeled drug loaded nanoparticles reported herein constitutes a promising theranostic agent to target metastatic bone lesions. STATEMENT OF HYPOTHESES: Technetium-99m labeled, alendronate conjugated, dual targeting, tumor responsive, hyaluronate nanoparticle for tumor specific drug release and enhanced therapeutic effect, with real-time in vivo monitoring.
Collapse
Affiliation(s)
- Shahdeep Kaur
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Biji Balakrishnan
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400076, India; Nanotherapeutics & Biosensor Section, Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Roshan Keshari
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - P A Hassan
- Nanotherapeutics & Biosensor Section, Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400076, India
| |
Collapse
|
4
|
Zidan A, El Saadany AA, El Maghraby GM, Abdin AA, Hedya SE. Potential cardioprotective and anticancer effects of carvedilol either free or as loaded nanoparticles with or without doxorubicin in solid Ehrlich carcinoma-bearing mice. Toxicol Appl Pharmacol 2023; 465:116448. [PMID: 36921847 DOI: 10.1016/j.taap.2023.116448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
AIM The aim of this study was to investigate the potential cardioprotective and anti-cancer effects of carvedilol (CAR) either free or as loaded nano-formulated with or without doxorubicin (DOX) in solid Ehrlich carcinoma (SEC)-bearing mice. It focused on assessment of cardiac damage, drug resistance, apoptosis, oxidative stress status, angiogenesis and proliferation. METHODS CAR was loaded into poly-D,L lactic-co-glycolic acid)PLGA(or Niosomes. SEC was induced in female albino mice as an experimental model of breast cancer. Seventy-two mice were randomly divided into 9 equal groups (Normal control, Untreated-SEC, SEC + DOX, SEC + CAR-free, SEC + CAR-PLGA, SEC + CAR-Niosomes, SEC + DOX + CAR-free, SEC + DOX + CAR-PLGA and SEC + DOX + CAR-Niosomes). Tumor volume and survival rate were recorded. On day 28 from tumor inoculation, mice were sacrificed, and blood samples were collected for determination of serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). One part from tumor tissues was prepared for assessment of multidrug resistance protein-1 (MDR-1), caspase-3, reduced glutathione (GSH) and malondialdehyde (MDA), while the other part was processed for histopathological examination and immunohistochemical expression of vascular endothelial growth factor (VEGF) and Ki-67. RESULTS There was non-significant difference between CAR-free, CAR-PLGA and CAR-Niosomes as anticancer either alone or when combined with DOX. However, CAR-free demonstrated potential cardioprotective effects against cardiac damage mediated by cancer or DOX that have been enhanced using CAR-PLGA or CAR-Niosomes, but that of Niosomes outperformed them both. CONCLUSION CAR could be used as an adjuvant therapy with DOX, especially when nanoformualted with PLGA and even better with Niosomes, without compromising its cytotoxicity against cancer cells and preventing its cardiotoxic impacts.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Egypt
| | - Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Sabeha E Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
5
|
Thiruchenthooran V, Sánchez-López E, Gliszczyńska A. Perspectives of the Application of Non-Steroidal Anti-Inflammatory Drugs in Cancer Therapy: Attempts to Overcome Their Unfavorable Side Effects. Cancers (Basel) 2023; 15:cancers15020475. [PMID: 36672424 PMCID: PMC9856583 DOI: 10.3390/cancers15020475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) express anti-tumoral activity mainly by blocking cyclooxygenase-2 involved in the synthesis of prostaglandins. Therefore, in the last few decades, many have attempted to explore the possibilities of applying this group of drugs as effective agents for the inhibition of neoplastic processes. This review summarizes the evidence presented in the literature regarding the anti-tumoral actions of NSAIDs used as monotherapies as well as in combination with conventional chemotherapeutics and natural products. In several clinical trials, it was proven that combinations of NSAIDs and chemotherapeutic drugs (CTDs) were able to obtain suitable results. The combination with phospholipids may resolve the adverse effects of NSAIDs and deliver derivatives with increased antitumor activity, whereas hybrids with terpenoids exhibit superior activity against their parent drugs or physical mixtures. Therefore, the application of NSAIDs in cancer therapy seems to be still an open chapter and requires deep and careful evaluation. The literature's data indicate the possibilities of re-purposing anti-inflammatory drugs currently approved for cancer treatments.
Collapse
Affiliation(s)
- Vaikunthavasan Thiruchenthooran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
- Correspondence: (E.S.-L.); or (A.G.)
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (E.S.-L.); or (A.G.)
| |
Collapse
|
6
|
Watson J, Ninh MK, Ashford S, Cornett EM, Kaye AD, Urits I, Viswanath O. Anesthesia Medications and Interaction with Chemotherapeutic Agents. Oncol Ther 2021; 9:121-138. [PMID: 33861416 PMCID: PMC8140172 DOI: 10.1007/s40487-021-00149-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is now a leading health concern worldwide. In an effort to provide these patients with adequate care, coordination between anesthesiologists and surgeons is crucial. In cancer-related treatment, it is very clear that radio-chemotherapy and medical procedures are important. There are some obstacles to anesthesia when dealing with cancer treatment, such as physiological disturbances, tumor-related symptoms, and toxicity in traditional chemotherapy treatment. Therefore, it is important that a multisystemic, multidisciplinary and patient-centered approach is used to preserve perioperative homeostasis and immune function integrity. Adding adjuvants can help increase patient safety and satisfaction and improve clinical efficacy. Correctly paired anesthetic procedures and medications will reduce perioperative inflammatory and immune changes that could potentially contribute to improved results for future cancer patients. Further research into best practice strategies is required which will help to enhance the acute and long-term effects of cancer care in clinical practice.
Collapse
Affiliation(s)
- Jeremy Watson
- LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103 USA
| | - Michael K. Ninh
- LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103 USA
| | - Scott Ashford
- LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103 USA
| | - Elyse M. Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71103 USA
| | - Alan David Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103 USA
| | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA USA
- Valley Pain Consultants – Envision Physician Services, Phoenix, AZ USA
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE USA
| |
Collapse
|
7
|
Abd Elrazik NA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Sesamol Upregulates Death Receptors and Acts as a Chemosensitizer in Solid Ehrlich Carcinoma Model in Mice. Nutr Cancer 2021; 74:250-264. [PMID: 33439054 DOI: 10.1080/01635581.2020.1871496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AIMS The aim of the present study was to investigate the anti-tumor effect of sesamol (SML), a nutritional phenolic compound of sesame, in solid Ehrlich carcinoma (SEC) model in mice and its ability to enhance doxorubicin (DOX) anti-tumor activity. Moreover, we analyzed the ability of SML to protect against DOX-induced cardiotoxicity. MAIN METHODS SML (70 mg/kg), DOX (2 mg/kg) and their combination were given to mice bearing SEC for 21 day. The mRNA level of Fas, FasL, TRAILR2, TRAIL, caspase-3 and Bcl-2 were assessed by qPCR. Tumor and cardiac tissues were examined for histopathological changes by hematoxylin and eosin. Active caspase-3 was scored by immunohistochemical analysis. KEY FINDINGS SML treatment significantly decreased solid tumor size and weight. In addition, SML enhanced DOX anti-tumor activity. SML treatment either alone or in combination with DOX induced upregulation of Fas/FasL and TRAILR2/TRAIL gene expression. Moreover, SML increased caspase-3 protein and gene expressions and decreased Bcl-2 gene expression. SIGNIFICANCE SML upregulates death receptors expression and enhances apoptosis induction in tumor cells that may explain its anti-tumor activity. Not only that, but SML also enhances DOX anti-tumor activity and attenuates its cardiotoxicity.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Salah R, Salama MF, Mahgoub HA, El-Sherbini ES. Antitumor activity of sitagliptin and vitamin B12 on Ehrlich ascites carcinoma solid tumor in mice. J Biochem Mol Toxicol 2020; 35:e22645. [PMID: 33016524 DOI: 10.1002/jbt.22645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
This study was carried out to investigate the potential effects of vitamin B12 and sitagliptin, and their possible synergistic effect with doxorubicin (DOX) on the Ehrlich solid tumor model. B12, sitagliptin, and their combination with DOX were administered to tumor-bearing mice for 21 days. Treatment with B12, sitagliptin, as well as their combinations with DOX caused a significant inhibition of tumor growth and increased the survival time. Malondialdehyde levels and the relative expression of tumor necrosis factor-α and nuclear factor kappa B were significantly decreased, whereas the total antioxidant capacity was significantly increased in all treated groups, except the DOX-treated one, when compared with the positive control group. Moreover, increased apoptosis was also observed by increased cleaved caspase-3 immunostaining and histopathological examination. In conclusion, the antitumor activity of B12 and sitagliptin could be attributed to their ability to induce apoptosis and suppress oxidative stress and inflammation.
Collapse
Affiliation(s)
- Rania Salah
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed F Salama
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hebatallah A Mahgoub
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - El-Said El-Sherbini
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
El Tawiil GA, Noaman EA, Askar MA, El Fatih NM, Mohamed HE. Anticancer and Apoptogenic Effect of Graviola and Low-Dose Radiation in Tumor Xenograft in Mice. Integr Cancer Ther 2020; 19:1534735419900930. [PMID: 32493124 PMCID: PMC7273578 DOI: 10.1177/1534735419900930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Annona muricata (graviola) has been claimed for its potential against various diseases including cancer. Objective: The present study aimed to investigate the anticancer effect of graviola extract on Ehrlich solid tumor (EST) mice along with or without a low dose of γ radiation (LDR). Methods: Mice were treated with graviola 50 mg/kg body weight orally for 30 days after EST induction and exposed to γ-ray (2 Gy/week for 3 weeks). Cell cycle, CD44, TGF-β, Bcl-2, and annexin V were determined in tumor tissue. Results: The result obtained showed a significant decrease (P < .05) of tumor size in 28 graviola-treated EST-bearing mice group (EG) or graviola-treated and irradiated EST-30-bearing mice (EGR) groups versus the EST group. The large number of cells in the sub-G0/G1 population and low cell number at S and M phases signify tumor cell apoptosis and inhibition of cell division in EG or EGR groups. Additionally, significant increases in the expression of CD44 and TGF-β were recorded in EST mice as compared with EG or EGR mice. Furthermore, EST mice exhibited a decrease in the apoptotic marker annexin v and increase in antiapoptotic Bcl-2 compared with EG and EGR mice. Conclusion: It could be suggested that graviola exerts its antitumor effect throughout the regulation of the tumor cell cycle as well as inducing apoptotic signals. The combined treatment of graviola and LDR augments their effect on tumor proliferation.
Collapse
|
10
|
Abd Elrazik NA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Chlorogenic acid potentiates antitumor effect of doxorubicin through upregulation of death receptors in solid Ehrlich carcinoma model in mice. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/2314808x.2019.1682331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nesma A. Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila A. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Soliman NA, Abd-Ellatif RN, ELSaadany AA, Shalaby SM, Bedeer AE. Luteolin and 5-flurouracil act synergistically to induce cellular weapons in experimentally induced Solid Ehrlich Carcinoma: Realistic role of P53; a guardian fights in a cellular battle. Chem Biol Interact 2019; 310:108740. [DOI: 10.1016/j.cbi.2019.108740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022]
|
12
|
Ahmed KS, Changling S, Shan X, Mao J, Qiu L, Chen J. Liposome-based codelivery of celecoxib and doxorubicin hydrochloride as a synergistic dual-drug delivery system for enhancing the anticancer effect. J Liposome Res 2019; 30:285-296. [DOI: 10.1080/08982104.2019.1634724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kamel S. Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sun Changling
- Department of Otolaryngology–Head and Neck Surgery, Hospital of Jiangnan University, Wuxi, China
| | - Xiaotian Shan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jing Mao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Lipeng Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jinghua Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Liu J, Chang B, Li Q, Xu L, Liu X, Wang G, Wang Z, Wang L. Redox-Responsive Dual Drug Delivery Nanosystem Suppresses Cancer Repopulation by Abrogating Doxorubicin-Promoted Cancer Stemness, Metastasis, and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801987. [PMID: 31139556 PMCID: PMC6446919 DOI: 10.1002/advs.201801987] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Indexed: 05/15/2023]
Abstract
Chemotherapy is a major therapeutic option for cancer patients. However, its effectiveness is challenged by chemodrugs' intrinsic pathological interactions with residual cancer cells. While inducing cancer cell death, chemodrugs enhance cancer stemness, invasiveness, and drug resistance of remaining cancer cells through upregulating cyclooxygenase-2/prostaglandin-E2 (COX-2/PGE2) signaling, therefore facilitating cancer repopulation and relapse. Toward tumor eradication, it is necessary to improve chemotherapy by abrogating these chemotherapy-induced effects. Herein, redox-responsive, celecoxib-modified mesoporous silica nanoparticles with poly(β-cyclodextrin) wrapping (MSCPs) for sealing doxorubicin (DOX) are synthesized. Celecoxib, an FDA-approved COX-2 inhibitor, is employed as a structural and functional element to confer MSCPs with redox-responsiveness and COX-2/PGE2 inhibitory activity. MSCPs efficiently codeliver DOX and celecoxib into the tumor location, minimizing systemic toxicity. Importantly, through blocking chemotherapy-activated COX-2/PGE2 signaling, MSCPs drastically enhance DOX's antitumor activity by suppressing enhancement of cancer stemness and invasiveness as well as drug resistance induced by DOX-based chemotherapy in vitro. This is also remarkably achieved in three preclinical tumor models in vivo. DOX-loaded MSCPs effectively inhibit tumor repopulation by blocking COX-2/PGE2 signaling, which eliminates DOX-induced expansion of cancer stem-like cells, distant metastasis, and acquired drug resistance. Thus, this drug delivery nanosystem is capable of effectively suppressing tumor repopulation and has potential clinical translational value.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bingcheng Chang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xingxin Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guobin Wang
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
14
|
Haggag YA, Matchett KB, Falconer RA, Isreb M, Jones J, Faheem A, McCarron P, El-Tanani M. Novel Ran-RCC1 Inhibitory Peptide-Loaded Nanoparticles Have Anti-Cancer Efficacy In Vitro and In Vivo. Cancers (Basel) 2019; 11:222. [PMID: 30769871 PMCID: PMC6406988 DOI: 10.3390/cancers11020222] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
The delivery of anticancer agents to their subcellular sites of action is a significant challenge for effective cancer therapy. Peptides, which are integral to several oncogenic pathways, have significant potential to be utilised as cancer therapeutics due to their selectivity, high potency and lack of normal cell toxicity. Novel Ras protein-Regulator of chromosome condensation 1 (Ran-RCC1) inhibitory peptides designed to interact with Ran, a novel therapeutic target in breast cancer, were delivered by entrapment into polyethylene glycol-poly (lactic-co-glycolic acid) PEG-PLGA polymeric nanoparticles (NPs). A modified double emulsion solvent evaporation technique was used to optimise the physicochemical properties of these peptide-loaded biodegradable NPs. The anti-cancer activity of peptide-loaded NPs was studied in vitro using Ran-expressing metastatic breast (MDA-MB-231) and lung cancer (A549) cell lines, and in vivo using Solid Ehrlich Carcinoma-bearing mice. The anti-metastatic activity of peptide-loaded NPs was investigated using migration, invasion and colony formation assays in vitro. A PEG-PLGA-nanoparticle encapsulating N-terminal peptide showed a pronounced antitumor and anti-metastatic action in lung and breast cancer cells in vitro and caused a significant reduction of tumor volume and associated tumor growth inhibition of breast cancer model in vivo. These findings suggest that the novel inhibitory peptides encapsulated into PEGylated PLGA NPs are delivered effectively to interact and deactivate Ran. This novel Ran-targeting peptide construct shows significant potential for therapy of breast cancer and other cancers mediated by Ran overexpression.
Collapse
Affiliation(s)
- Yusuf A Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta 31111, Egypt.
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - Kyle B Matchett
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, C-TRIC, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, Northern Ireland, UK.
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Mohammad Isreb
- School of Pharmacy and Clinical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Jason Jones
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Ahmed Faheem
- Department of Pharmacy, Health and Well-being, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
- Imhotep Diagnostics and Therapeutics, Europa Tool House, Springbank, Industrial Estate, Dunmurry BT17 0QL, Northern Ireland, UK.
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
15
|
Arisan ED, Ergül Z, Bozdağ G, Rencüzoğulları Ö, Çoker-Gürkan A, Obakan-Yerlikaya P, Coşkun D, Palavan-Ünsal N. Diclofenac induced apoptosis via altering PI3K/Akt/MAPK signaling axis in HCT 116 more efficiently compared to SW480 colon cancer cells. Mol Biol Rep 2018; 45:2175-2184. [PMID: 30406888 DOI: 10.1007/s11033-018-4378-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Diclofenac is a preferential cyclooxygenase 2 inhibitor (COX-2) and member of non-steroidal anti-inflammatory drugs (NSAIDs). Inflammation is one of the main reason of poor prognosis of colon cancer cases; thereby NSAIDs are potential therapeutic agents in colon cancer therapy. In this study, our aim to understand the potential molecular targets of diclofenac, which may propose new therapeutic targets in HCT 116 (wt p53) and SW480 (mutant p53R273H) colon cancer cells. For this purpose, we identified different response against diclofenac treatment through expression profiles of PI3K/Akt/MAPK signaling axis. Our hypothesis was diclofenac-mediated apoptosis is associated with inhibition of PI3K/Akt/MAPK signaling axis. We found that sub-cytotoxic concentration of diclofenac (400 µM) promoted further apoptosis in HCT 116 cells compared to SW480 colon cancer cells. Diclofenac triggered dephosphorylation of PTEN, PDK, Akt, which led to inhibition of PI3K/Akt survival axis in HCT 116 colon cancer cells. However, diclofenac showed lesser effect in SW480 colon cancer cells. In addition, diclofenac further activated p44/42, p38 and SAPK/JNK in HCT 116 cells compared to SW480 cells.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Zehragül Ergül
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Gülnihal Bozdağ
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Özge Rencüzoğulları
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Ajda Çoker-Gürkan
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Deniz Coşkun
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Narçin Palavan-Ünsal
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| |
Collapse
|
16
|
Haggag YA, Osman MA, El-Gizawy SA, Goda AE, Shamloula MM, Faheem AM, McCarron PA. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice. Biomed Pharmacother 2018; 105:215-224. [DOI: 10.1016/j.biopha.2018.05.124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 11/26/2022] Open
|
17
|
Khairy Abd M, Abu-Bakr H A. Radiosensitizing Efficacy of Diosmin- Hesperidin Complex Against Ehrlich Solid Carcinoma in Mice, A Potential Role of Histone Deacetylase and Pro-angiogenic Chaperones Targeting. INTERNATIONAL JOURNAL OF CANCER RESEARCH 2017; 13:59-70. [DOI: 10.3923/ijcr.2017.59.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Ong SM, Saeki K, Tanaka Y, Nishimura R, Nakagawa T. Effects of etoposide alone and in combination with piroxicam on canine osteosarcoma cell lines. Vet J 2016; 218:51-59. [PMID: 27938709 DOI: 10.1016/j.tvjl.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Osteosarcoma (OSA) is the most common primary bone tumour in dogs. The poor survival rate in dogs with OSA highlights the need for new therapeutic approaches. This study evaluated the cytotoxic effects of etoposide, alone and in combination with piroxicam, on canine OSA cell cultures. Etoposide alone significantly suppressed cell growth and viability, whereas etoposide in combination with piroxicam exhibited concentration dependent cytotoxicity. The anti-proliferative effect was a result of inactivity of the Cdc2-cyclin B1 complex, which correlated with an increase in the G2/M fraction. This subsequently activated the apoptosis cascade, as indicated by elevated apoptosis levels and up-regulation of poly (ADP-ribose) polymerase proteolytic cleavage. Down-regulation of survivin expression induced by the combination treatment may have contributed to the enhanced cytotoxicity. The results of this study suggest that further investigation of etoposide and piroxicam as a therapeutic combination for canine OSA is warranted.
Collapse
Affiliation(s)
- S M Ong
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - K Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Y Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - R Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - T Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
19
|
Frajacomo FTT, de Souza Padilha C, Marinello PC, Guarnier FA, Cecchini R, Duarte JAR, Deminice R. Solid Ehrlich carcinoma reproduces functional and biological characteristics of cancer cachexia. Life Sci 2016; 162:47-53. [DOI: 10.1016/j.lfs.2016.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022]
|
20
|
Sung MW, Lee DY, Park SW, Oh SM, Choi JJ, Shin ES, Kwon SK, Ahn SH, Kim YH. Celecoxib enhances the inhibitory effect of 5-FU on human squamous cell carcinoma proliferation by ROS production. Laryngoscope 2016; 127:E117-E123. [PMID: 27666139 DOI: 10.1002/lary.26309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/23/2016] [Accepted: 08/05/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The role of celecoxib in preventing and treating tumors has attracted broad attention in recent years because of its selective and specific inhibition of COX-2 activity. We investigated the inhibitory effects and mechanisms of celecoxib combined with 5-fluorouracil (5-FU) on proliferation of squamous cell carcinoma cells in vivo and in vitro. STUDY DESIGN Animal study and basic research. METHODS SNU-1041 and SNU-1076 squamous cell lines and an orthotopic tongue cancer mouse model were used to study growth inhibition with 5-FU enhanced by celecoxib. Sensitivity of cells to drug treatment was analyzed by the MTT assay, and generation of reactive oxygen species (ROS) was measured using dichlorofluorescein diacetate. Phosphorylation of AKT was detected by Western blotting. Survival analysis in the mouse model was assessed according to combination treatment with 5-FU and celecoxib. RESULTS Reactive oxygen species production in vitro was highest when celecoxib was administered 48 hours after 5-FU treatment. 5-FU-induced inhibition of cell proliferation was enhanced when combined with celecoxib, which was positively correlated with ROS production. Antioxidant treatment reversed 5-FU-inhibited cell proliferation by up to 60%. Cotreatment with celecoxib and 5-FU partially blocked AKT phosphorylation, although no significant changes in total AKT protein levels were detected. An increased survival time was observed in an orthotopic mouse model treated with a combination of celecoxib and 5-FU compared to treatment with either agent alone. CONCLUSION Celecoxib may have an enhanced anticancer effect in combination with 5-FU. Reactive oxygen species production may be a key mechanism in this combination therapy by inhibiting the AKT pathway. LEVEL OF EVIDENCE N/A. Laryngoscope, 127:E117-E123, 2017.
Collapse
Affiliation(s)
- Myung-Whun Sung
- Department of Otorhinolaryngology Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul.,Cancer Research Institute, Seoul.,Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| | - Doh Young Lee
- Cancer Research Institute, Seoul.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hostpital, Seoul
| | | | | | - Jun-Jae Choi
- Department of Otorhinolaryngology Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul
| | - Eun Sil Shin
- Department of Otorhinolaryngology Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul
| | - Seong Keun Kwon
- Department of Otorhinolaryngology Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul.,Cancer Research Institute, Seoul
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Young Ho Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul
| |
Collapse
|
21
|
Tietz O, Wuest M, Marshall A, Glubrecht D, Hamann I, Wang M, Bergman C, Way JD, Wuest F. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Res 2016; 6:37. [PMID: 27112768 PMCID: PMC4844587 DOI: 10.1186/s13550-016-0192-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Cyclooxygenase-2 (COX-2) is the inducible isoform of the cyclooxygenase enzyme family. COX-2 is involved in tumor development and progression, and frequent overexpression of COX-2 in a variety of human cancers has made COX-2 an important drug target for cancer treatment. Non-invasive imaging of COX-2 expression in cancer would be useful for assessing COX-2-mediated effects on chemoprevention and radiosensitization using COX-2 inhibitors as an emerging class of anti-cancer drugs, especially for colorectal cancer. Herein, we describe the radiopharmacological analysis of [18F]Pyricoxib, a novel radiolabeled COX-2 inhibitor, for specific PET imaging of COX-2 in colorectal cancer. Methods Uptake of [18F]Pyricoxib was assessed in human colorectal cancer cell lines HCA-7 (COX-2 positive) and HCT-116 (COX-2 negative). Standard COX-2 inhibitors were used to test for specificity of [18F]Pyricoxib for COX-2 binding in vitro and in vivo. PET imaging, biodistribution, and radiometabolite analyses were included into radiopharmacological evaluation of [18F]Pyricoxib. Results Radiotracer uptake in COX-2 positive HCA-7 cells was significantly higher than in COX-2 negative HCT-116 cells (P < 0.05). COX-2 inhibitors, celecoxib, rofecoxib, and SC58125, blocked uptake of [18F]Pyricoxib in HCA-7 cells in a concentration-dependent manner. The radiotracer was slowly metabolized in mice, with approximately 60 % of intact compound after 2 h post-injection. Selective COX-2-mediated tumor uptake of [18F]Pyricoxib in HCA-7 xenografts was confirmed in vivo. Celecoxib (100 mg/kg) selectively blocked tumor uptake by 16 % (PET image analysis; P < 0.05) and by 51 % (biodistribution studies; P < 0.01). Conclusions The novel PET radiotracer [18F]Pyricoxib displays a promising radiopharmacological profile to study COX-2 expression in cancer in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0192-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ole Tietz
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Alison Marshall
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Darryl Glubrecht
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Ingrit Hamann
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Monica Wang
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Cody Bergman
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Jenilee D Way
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada. .,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
22
|
Bakirel T, Alkan FÜ, Üstüner O, Çinar S, Yildirim F, Erten G, Bakirel U. Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27. J Vet Med Sci 2016; 78:657-68. [PMID: 26822118 PMCID: PMC4873858 DOI: 10.1292/jvms.15-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cyclooxygenase (COX) inhibitors have been shown to exert anti-angiogenic and anti-tumor
activities on many types of malignant tumors. These anticancer properties make it
worthwhile to examine the possible benefit of combining COX inhibitors with other
anti-cancer agents. In the present study, we evaluated the potential of deracoxib (DER) in
potentiating antitumor activity of doxorubicin (DOX) in canine mammary carcinoma cells
(CMT-U27). DER (50–250 µM) enhanced the antiproliferative activity of DOX
by reducing the IC50 (approximately 3- to 3.5 fold). Interaction analysis of
the data showed that combinations of DOX at 0.9 µM with DER (100–250
µM) produced synergism in the CMT-U27 cell line, with a ratio index
ranging from 1.98 to 2.33. In additional studies identifying the mechanism of observed
synergistic effect, we found that DER strongly potentiated DOX-caused
G0/G1 arrest in cell cycle progression. Also, DER (100–250
µM) augmented apoptosis induction with approximately 1.35- and 1.37-
fold increases in apoptotic response caused by DOX in the cells. DER enhanced the
antiproliferative effect of DOX in conjunction with induction of apoptosis by modulation
of Bcl-2 expression and changes in the cell cycle of the CMT-U27 cell line. Although the
exact molecular mechanism of the alterations in the cell cycle and apoptosis observed with
DER and DOX combinations require further investigations, the results suggest that the
synergistic effect of DOX and DER combinations in CMT therapy may be achieved at
relatively lower doses of DOX with lesser side effects. Therefore, combining DER with DOX
may prove beneficial in the clinical treatment of canine mammary cancer.
Collapse
Affiliation(s)
- Tülay Bakirel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, 34320, Turkey
| | | | | | | | | | | | | |
Collapse
|
23
|
Eisa NH, ElSherbiny NM, Shebl AM, Eissa LA, El-Shishtawy MM. Phenethyl isothiocyanate potentiates anti-tumour effect of doxorubicin through Akt-dependent pathway. Cell Biochem Funct 2015; 33:541-551. [PMID: 26548747 DOI: 10.1002/cbf.3153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 04/03/2025]
Abstract
The present study aims to investigate the in vivo and in vitro anti-tumour properties of phenethyl isothiocyanate (PEITC) alone and in combination with doxorubicin (Dox). The anti-tumour activity was evaluated in vitro by MTT assay using cultured human breast cancer cell line (MCF-7) and human hepatoma cell line (HepG-2) cell lines. In vivo, Ehrlich solid tumour model was used. Tumour volume, weight and antioxidant parameters were determined. Immunohistochemistry analysis for active (cleaved) caspase-3 was also performed. We tested the effect of PEITC treatment on pAkt/Akt ratio, NF-κB p65 DNA binding activity and caspase-9 enzyme activity in both MCF-7 and HepG-2 cell lines. Effect of PEITC treatment on cell migration was assessed by wound healing assay. PEITC and/or Dox treatment significantly inhibited solid tumour volume and tumour weight when compared with control mice. PEITC treatment significantly reduced oxidative stress caused by Dox treatment as indicated by significant increase in total antioxidant capacity and decrease in malondialdehyde level. Microscopic examination of tumour tissues showed a significant increase in active (cleaved) caspase-3 expression in PEITC and/or Dox treated groups. PEITC showed a dose-dependent inhibition of MCF-7 and HepG-2 cellular viability. PEITC inhibited Akt and NF-κB activation and increased caspase-9 activity in a dose-dependent manner. PEITC treatment effectively inhibited both MCF-7 and HepG-2 cell migration. We can conclude that PEITC acts via multiple molecular targets to elicit anti-carcinogenic activity. PEITC/Dox combination therapy might be a potential novel strategy, which may benefit patients with breast and liver cancers.
Collapse
Affiliation(s)
- Nada H Eisa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nehal M ElSherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Abdelhadi M Shebl
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
24
|
Coyne CP, Jones T, Bear R. Simultaneous Dual Selective Targeted Delivery of Two Covalent Gemcitabine Immunochemotherapeutics and Complementary Anti-Neoplastic Potency of [Se]-Methylselenocysteine. JOURNAL OF CANCER THERAPY 2015; 6:62-89. [PMID: 25821636 PMCID: PMC4376018 DOI: 10.4236/jct.2015.61009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunochemotherapeutics that possess properties of selective "targeted" delivery. The simultaneous dual selective "targeted" delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition; prolong chemotherapeutic plasma half-life (reduces administration frequency); minimize innocent exposure of normal tissues and healthy organ systems; and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. MATERIALS AND METHODS A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunochemotherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between gemcitabine-equivalent concentrations of 10-12 M and 10-6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunochemotherapeutics. RESULTS Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were greatest between gemcitabine-equivalent concentrations of 10-9 M and 10-6 M. Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-nocysteine.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Ryan Bear
- Wise Center, Mississippi State University, Mississippi State, USA
| |
Collapse
|
25
|
HIĽOVSKÁ LUCIA, JENDŽELOVSKÝ RASTISLAV, FEDOROČKO PETER. Potency of non-steroidal anti-inflammatory drugs in chemotherapy. Mol Clin Oncol 2015; 3:3-12. [PMID: 25469262 PMCID: PMC4251142 DOI: 10.3892/mco.2014.446] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer cell resistance, particularly multidrug resistance (MDR), is the leading cause of chemotherapy failure. A number of mechanisms involved in the development of MDR have been described, including the overexpression of ATP-dependent membrane-bound transport proteins. The enhanced expression of these proteins, referred to as ATP-binding cassette (ABC) transporters, results in an increased cellular efflux of the cytotoxic drug, thereby reducing its intracellular concentration to an ineffective level. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most frequently consumed drugs worldwide. NSAIDs are mainly used to treat pain, fever and inflammation. Numerous studies suggest that NSAIDs also show promise as anticancer drugs. NSAIDs have been shown to reduce cancer cell proliferation, motility, angiogenesis and invasiveness. In addition to these effects, NSAIDs have been shown to induce apoptosis in a wide variety of cancer types. Moreover, several studies have indicated that NSAIDs may sensitise cancer cells to the antiproliferative effects of cytotoxic drugs by modulating ABC transporter activity. Therefore, combining specific NSAIDs with chemotherapeutic drugs may have clinical applications. Such treatments may allow for the use of a lower dose of cytotoxic drugs and may also enhance the effectiveness of therapy. The objective of this review was to discuss the possible role of NSAIDs in the modulation of antitumour drug cytotoxicity. We particularly emphasised on the use of COX-2 inhibitors in combination with chemotherapy and the molecular and cellular mechanisms underlying the alterations in outcome that occur in response to this combination therapy.
Collapse
Affiliation(s)
- LUCIA HIĽOVSKÁ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| | - RASTISLAV JENDŽELOVSKÝ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| | - PETER FEDOROČKO
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| |
Collapse
|
26
|
El-Sisi AE, Sokar SS, Salem TA, Abu Risha SE. PPARγ-dependent anti-tumor and immunomodulatory actions of pioglitazone. J Immunotoxicol 2014; 12:308-16. [PMID: 25425470 DOI: 10.3109/1547691x.2014.978055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to play important roles in carcinogenesis. The current study was carried out to assess the possible anti-tumor effects of pioglitazone (PIO), a PPARγ agonist, in a mouse mammary carcinoma model, i.e. a solid Ehrlich carcinoma (SEC). Effects of PIO on tumor-induced immune dysfunction, and the possibility that PIO may modulate the anti-tumor and immunomodulatory effects of doxorubicin (DOX) were also studied. The effects in tumor-bearing hosts of several doses of PIO (100 mg/kg, per os), with and without the added presence of DOX (2 mg/kg, IP), was investigated in vivo; end-points evaluated included assessment of tumor volume, splenic lymphocyte profiles/functionality, tumor necrosis factor (TNF)-α content, as well as apoptosis and expression of nuclear factor-κB (NF-κB) among the tumor cells. The data indicate that PIO induced significant anti-tumor activity against the SEC. PIO treatments also significantly mitigated both tumor- and doxorubicin-induced declines in immune parameters assessed here. Moreover, PIO led to decreased NF-κB nuclear expression, and, in doing so, appeared to chemo-sensitize these tumor cells to DOX-induced apoptosis. All pioglitazone-studied effects were antagonized by GW9662, a selective PPARγ antagonist.
Collapse
Affiliation(s)
- Alaa E El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University , Tanta , Egypt and
| | | | | | | |
Collapse
|
27
|
Abdin AA, Soliman NA, Saied EM. Effect of propranolol on IL-10, visfatin, Hsp70, iNOS, TLR2, and survivin in amelioration of tumor progression and survival in Solid Ehrlich Carcinoma-bearing mice. Pharmacol Rep 2014; 66:1114-21. [PMID: 25443743 DOI: 10.1016/j.pharep.2014.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND β-Adrenergic signaling could contribute to initiation and progression of breast cancer. This research investigated some potential mechanisms of propranolol in amelioration of progression and survival in breast cancer. METHODS AND RESULTS Solid Ehrlich Carcinoma (SEC) xenograft model was induced in 30 mice divided into 3 groups; where group I served as untreated SEC group. In groups II and III, propranolol treatment i.p. in low (5mg/kg) and high dose (10mg/kg) caused significant increase in interleukin-10 (IL-10) and decrease in heat shock protein 70 (Hsp70) and inducible nitric oxide synthase (iNOS) activity with non significant change in visfatin in tumor tissues compared to untreated SEC. In untreated SEC, tumor volume (V) exhibited significant negative correlation with IL-10 levels and toll like receptor 2 (TLR2) expression with significant positive correlation with Hsp70 levels and iNOS activity. While propranolol in either doses caused reduction of tumor volume (V), and improved percentage tumor growth inhibition (% TGI) only its high dose exhibited significant impact on survival rate. Propranolol dose-dependent effect was evident for IL-10 and Hsp70, and even only the high dose significantly increased and decreased TLR2 and survivin, respectively. This comes in favor of recommending high dose of propranolol in cancer therapy. Nonetheless, use of low dose cannot be ignored when benefit to risk balance have to be considered. CONCLUSIONS Propranolol could provide palliative effects in progression and survival of breast cancer that are mainly mediated via direct immunomodulatory and apoptotic mechanisms and probably associated with indirect anti-angiogenic activity.
Collapse
Affiliation(s)
- Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman M Saied
- Department of Pathology, Faculty of Medicine, Kafr El-Sheikh University, Tanta, Egypt
| |
Collapse
|
28
|
Shamshad H, Arayne MS, Sultana N. Spectroscopic characterization of in vitro interactions of cetirizine and NSAIDS. J Anal Sci Technol 2014. [DOI: 10.1186/s40543-014-0022-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Novakova I, Subileau EA, Toegel S, Gruber D, Lachmann B, Urban E, Chesne C, Noe CR, Neuhaus W. Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models. PLoS One 2014; 9:e86806. [PMID: 24466249 PMCID: PMC3900635 DOI: 10.1371/journal.pone.0086806] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of this work was to conduct a comprehensive study about the transport properties of NSAIDs across the blood-brain barrier (BBB) in vitro. Transport studies with celecoxib, diclofenac, ibuprofen, meloxicam, piroxicam and tenoxicam were accomplished across Transwell models based on cell line PBMEC/C1-2, ECV304 or primary rat brain endothelial cells. Single as well as group substance studies were carried out. In group studies substance group compositions, transport medium and serum content were varied, transport inhibitors verapamil and probenecid were added. Resulted permeability coefficients were compared and normalized to internal standards diazepam and carboxyfluorescein. Transport rankings of NSAIDs across each model were obtained. Single substance studies showed similar rankings as corresponding group studies across PBMEC/C1-2 or ECV304 cell layers. Serum content, glioma conditioned medium and inhibitors probenecid and verapamil influenced resulted permeability significantly. Basic differences of transport properties of the investigated NSAIDs were similar comparing all three in vitro BBB models. Different substance combinations in the group studies and addition of probenecid and verapamil suggested that transporter proteins are involved in the transport of every tested NSAID. Results especially underlined the importance of same experimental conditions (transport medium, serum content, species origin, cell line) for proper data comparison.
Collapse
Affiliation(s)
- Iveta Novakova
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Stefan Toegel
- Department of Orthopedics, Medical University Vienna, Vienna, Austria
| | - Daniela Gruber
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Bodo Lachmann
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Christian R. Noe
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Winfried Neuhaus
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
- Department of Anesthesia and Critical Care, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
30
|
Meloxicam synergistically enhances the in vitro effects of sunitinib malate on bladder-cancer cells. J Appl Biomed 2013. [DOI: 10.2478/v10136-012-0034-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Tomsik P, Micuda S, Sucha L, Cermakova E, Suba P, Zivny P, Mazurova Y, Knizek J, Niang M, Rezacova M. The anticancer activity of alpha-tomatine against mammary adenocarcinoma in mice. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013; 157:153-61. [DOI: 10.5507/bp.2013.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/17/2013] [Indexed: 11/23/2022] Open
|
32
|
Hanušová V, Tomšík P, Kriesfalusyová L, Pakostová A, Boušová I, Skálová L. In vivo effect of oracin on doxorubicin reduction, biodistribution and efficacy in Ehrlich tumor bearing mice. Pharmacol Rep 2013; 65:445-52. [PMID: 23744429 DOI: 10.1016/s1734-1140(13)71020-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/26/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND The limitation of carbonyl reduction represents one possible way to increase the effectiveness of anthracycline doxorubicin (DOX) in cancer cells and decrease its toxicity in normal cells. In vitro, isoquinoline derivative oracin (ORC) inhibited DOX reduction and increased the antiproliferative effect of DOX in MCF-7 breast cancer cells. Moreover, ORC significantly decreases DOX toxicity in non-cancerous MCF-10A breast cells and in hepatocytes. The present study was designed to test in mice the in vivo effect of ORC on plasma and tissue concentrations of DOX and its main metabolite DOXOL. The effect of ORC on DOX efficacy in mice bearing solid Ehrlich tumors (EST) was also studied. METHODS DOX and DOX + ORC combinations were iv administered to healthy mice. Blood samples, livers and hearts were collected during the following 48 h. DOX and DOXOL concentrations were assayed using HPLC. The mice with inoculated EST cells were treated repeatedly iv with DOX and DOX + ORC combinations, and the growth of tumors was monitored. RESULTS ORC in combination with DOX significantly decreased DOXOL plasma concentrations during four hours after administration, but this significantly affected neither DOX plasma concentrations nor DOX or DOXOL concentrations in the liver and heart at any of intervals tested. In EST bearing mice, ORC did not significantly affect DOX efficacy on tumor growth. However, EST was shown to be an improper model for the testing of ORC efficacy in vivo, as ORC did not inhibit DOXOL formation in EST. CONCLUSIONS In vivo, ORC was able to retard DOXOL formation but was not able to improve DOX efficacy in EST-bearing mice.
Collapse
Affiliation(s)
- Veronika Hanušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Králové, CZ 500 05, Czech Republic
| | | | | | | | | | | |
Collapse
|
33
|
Role of cysteinyl leukotriene receptor-1 antagonists in treatment of experimentally induced mammary tumor. Toxicol Ind Health 2013; 31:1024-36. [DOI: 10.1177/0748233713485884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been reported that a leukotriene (LT)-D4 receptor (i.e. cysteinyl LT1 receptor; CysLT1R) has an important role in carcinogenesis. The current study was carried out to assess the possible antitumor effects of montelukast (MON), a CysLT1R antagonist, in a mouse mammary carcinoma model, that is, a solid Ehrlich carcinoma (SEC). Effects of MON on tumor-induced immune dysfunction and the possibility that MON may modulate the antitumor and immunomodulatory effects of doxorubicin (DOX) were also studied. The effects in tumor-bearing hosts of several dosings with MON (10 mg/kg, per os), with and without the added presence of DOX (2 mg/kg, intraperitoneal), were investigated in vivo; end points evaluated included assessment of tumor volume, splenic lymphocyte profiles/functionality, tumor necrosis factor-α content, as well as apoptosis and expression of nuclear factor-κB (NF-κB) among the tumor cells. The data indicate that MON induced significant antitumor activity against the SEC. MON treatments also significantly mitigated both tumor- and DOX-induced declines in immune parameters assessed here. Moreover, MON led to decreased NF-κB nuclear expression and, in doing so, appeared to chemosensitize these tumor cells to DOX-induced apoptosis.
Collapse
|
34
|
Kang SN, Hong SS, Lee MK, Lim SJ. Dual function of tributyrin emulsion: Solubilization and enhancement of anticancer effect of celecoxib. Int J Pharm 2012; 428:76-81. [DOI: 10.1016/j.ijpharm.2012.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/31/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
35
|
Yan YX, Li WZ, Huang YQ, Liao WX. The COX-2 inhibitor Celecoxib enhances the sensitivity of KB/VCR oral cancer cell lines to Vincristine by down-regulating P-glycoprotein expression and function. Prostaglandins Other Lipid Mediat 2011; 97:29-35. [PMID: 21835258 DOI: 10.1016/j.prostaglandins.2011.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 07/26/2011] [Indexed: 01/16/2023]
Abstract
Previous studies have indicated that long-term chemotherapy decreases the sensitivity of oral cancer cells to chemotherapeutics while simultaneously increasing resistance to these drugs. COX-2 inhibitors are known to enhance the toxic action of anti-tumor drugs against cancer cells. Using the MTT method, we investigated the influence of the COX-2 selective inhibitor Celecoxib on the proliferation of KB/VCR oral cancer cell lines and analyzed the effect of Celecoxib on the regulation of P-glycoprotein (P-gp) expression and function. Western blot analysis was employed to detect the expression of P-gp, and flow cytometry was used to evaluate P-gp function by detecting the accumulation of the active P-gp functional fluorescence substrate within KB/VCR cells. The results revealed that a low dose of Celecoxib (10 μmol/L) showed no growth inhibitory effects on KB/VCR cell lines. When the concentration of Celecoxib was greater than or equal to 20 μmol/L, the inhibitory effect on KB/VCR cells was significantly enhanced in a time- and dose-dependent manner. The lower dose of Celecoxib (10 μmol/L) significantly enhanced the toxicity of Vincristine (VCR) against KB/VCR cell lines. After the application of Celecoxib plus VCR (10 μmol/L+1.5μmol/L, respectively) treatment for 24, 48 or 72 h, the growth inhibition rates of KB/KBV cells were 37.82 ± 1.60%, 47.84 ± 1.29% and 54.43 ± 2.35%, respectively, which were significantly higher than the rates in the cells treated only with Celecoxib (10 μmol/L) or VCR (1.5 μmol/L) (all P<0.01). P-gp expression levels in KB/KBV cells treated with Celecoxib plus VCR (10 μmol/L+1.5 μmol/L, respectively) were markedly lower than the levels in control cells and those treated with VCR (1.5 μmol/L) (all P<0.01). In addition, the intensity of Rho123 fluorescence of KB/KBV cells in cells treated with Celecoxib plus VCR (10 μmol/L+1.5 μmol/L, respectively) or Celecoxib alone (10 μmol/L) was significantly higher than the intensity observed in control cells and those treated with VCR alone (1.5 μmol/L) (all P<0.01). The underlying mechanism of these phenomena is likely correlated with the down-regulation of the expression and function of P-gp due to Celecoxib, thereby increasing the amount of VCR accumulated in KB/VCR cells.
Collapse
Affiliation(s)
- Yi Xuan Yan
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Road, Guangzhou 510515, China.
| | | | | | | |
Collapse
|
36
|
Coyne CP, Jones T, Sygula A, Bailey J, Pinchuk L. Epirubicin-[Anti-HER2/ neu] Synthesized with an Epirubicin-(C 13- imino)-EMCS Analog: Anti-Neoplastic Activity against Chemotherapeutic-Resistant SKBr-3 Mammary Carcinoma in Combination with Organic Selenium. ACTA ACUST UNITED AC 2011; 2:22-39. [PMID: 26229727 DOI: 10.4236/jct.2011.21004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Discover the anti-neoplastic efficacy of epirubicin-(C13-imino)-[anti-HER2/neu] against chemotherapeutic-resistant SKBr-3 mammary carcinoma and delineate the capacity of selenium to enhance it's cytotoxic anti-neoplastic potency. METHODS In molar excess, EMCH was combined with epirubicin to create a covalent epirubicin-(C13-imino)-EMCH-maleimide intermediate with sulfhydryl-reactive properties. Monoclonal immunoglobulin selective for HER2/neu was then thiolated with 2-iminothiolane at the terminal ε-amine group of lysine residues. The sulfhydryl-reactive epirubicin-(C13-imino)-EMCH intermediate was then combined with thiolated anti-HER2/neu monoclonal immunoglobulin. Western-blot analysis was utilized to characterize the molecular weight profiles while binding of epirubicin-(C13-imino)-[anti-HER2/neu] to membrane receptors was determined by cell-ELISA utilizing populations of SKBr-3 mammary carcinoma that highly over-expresses HER2/neu complexes. Anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/neu] between the epirubicin-equivalent concentrations of 10-12 M and 10-7 M was determined by vitality staining analysis with and without the presence of selenium (5 μM). RESULTS Epiribucin-(C13-imino)-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10-8 M to 10-7 M consistently evoked higher anti-neoplastic potency than "free" non-conjugated epirubicin which corresponded with previous investigations utilizing epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-[anti-EGFR]. Selenium at 5 mM consistently enhanced the cytotoxic anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/neu] at epirubicin equivalent concentrations (10-12 to 10-7 M). CONCLUSIONS Epirubicin-(C13-imino)-[anti-HER2/neu] is more potent than epirubicin against chemotherapeutic-resistant SKBr-3 mammary carcinoma and selenium enhances epirubicin-(C13-imino)-[anti-HER2/neu] potency. The methodology applied for synthesizing epirubicin-(C13-imino)-[anti-HER2/neu] is relatively time convenient and has low instrumentation requirements.
Collapse
Affiliation(s)
- Cody P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Andrzej Sygula
- Department Organic Chemistry, Mississippi State University, Mississippi State, USA
| | - John Bailey
- College of Osteopathic Medicine, William Cary University, Hattiesburg, USA
| | - Lesya Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| |
Collapse
|
37
|
Sui H, Zhou S, Wang Y, Liu X, Zhou L, Yin P, Fan Z, Li Q. COX-2 contributes to P-glycoprotein-mediated multidrug resistance via phosphorylation of c-Jun at Ser63/73 in colorectal cancer. Carcinogenesis 2011; 32:667-75. [DOI: 10.1093/carcin/bgr016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Chen C, Shen HL, Yang J, Chen QY, Xu WL. Preventing chemoresistance of human breast cancer cell line, MCF-7 with celecoxib. J Cancer Res Clin Oncol 2011; 137:9-17. [PMID: 20229271 DOI: 10.1007/s00432-010-0854-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/19/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE To investigate the preventive effect of celecoxib, a specific cyclooxygenase-2 (Cox-2) inhibitor, on the development of chemoresistance in breast cancer cell line, MCF-7, and explore the mechanism of the action. METHODS Chemoresistance phenotype was established by treating MCF-7 cells with 0.05 μg/ml doxorubicin for 7 days, and then the effect of preventive chemoresistance was investigated by the combination of same dose of doxorubicin with 10 μM celecoxib. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay was used to assess cytostatic efficacy of doxorubicin and 50% inhibiting concentration (IC(50)) of MCF-7 cells. RT-PCR was performed to examine mRNA expression of multidrug resistance gene 1 (MDR1) and its transcription factors c-Jun and NF-κB. Western blotting analysis was performed to detect the expression of protein. Flow cytometry (FCM) was applied to analyze the expression and function of P-glycoprotein (P-gp). Electrophoretic gel mobility shift assay (EMSA) was performed to determine the DNA-binding activity of nuclear transcription factors AP-1 and NF-κB. RESULTS Compared with sensitive MCF-7 cells, MDR1 and its transcription factors c-Jun and NF-κB were up-regulated at both mRNA level (P < 0.01) and protein level (P < 0.01) by treatment with 0.05 μg/ml doxorubicin for 7 days. After co-incubation with both the same dose of doxorubicin and 10 μM celecoxib for 7 days, both mRNA level and protein level of MDR1, c-Jun and NF-κB up-regulated by doxorubicin were partly reversed (P < 0.01); DNA-binding activity of nuclear transcription factors AP-1 and NF-κB were inhibited; and the function of P-gp was decreased (P < 0.01). When MCF-7 cells were treated with increasing doses of doxorubicin in the presence of 10 μM celecoxib, IC50 value of doxorubicin and doxorubicin plus 10 μM celecoxib was 0.67 ± 0.03 and 0.38 ± 0.04 μg/ml, respectively (P < 0.01). CONCLUSION Celecoxib effectively prevents the development of chemoresistance in breast cancer cell line MCF-7 induced by doxorubicin, which was partly involved in inhibiting the expression and DNA-binding activity of nuclear transcription factors AP-1 and NF-κB and downstream expression and function of P-gp. Furthermore, cytostatic efficacy of celecoxib and doxorubicin on MCF-7 cell was synergistic.
Collapse
Affiliation(s)
- Chen Chen
- The Affiliated People's Hospital, Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Agarwal S, Reddy GV, Reddanna P. Eicosanoids in inflammation and cancer: the role of COX-2. Expert Rev Clin Immunol 2010; 5:145-65. [PMID: 20477063 DOI: 10.1586/1744666x.5.2.145] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eicosanoids, a family of oxygenated metabolites of eicosapolyenoic fatty acids, such as arachidonic acid, formed via the lipoxygenase, cyclooxygenase (COX) and epoxygenase pathways, play an important role in the regulation of various pathophysiological processes, including inflammation and cancer. COX-2, the inducible isoform of COX, has emerged as the key enzyme regulating inflammation, and promises to play a considerable role in cancer. Although NSAIDs have been in use for centuries, the COX-2 selective inhibitors - coxibs - have emerged as potent anti-inflammatory drugs with fewer gastric side effects. As COX-2 plays a major role in neoplastic transformation and cancer growth, by downregulating apoptosis and promoting angiogenesis, invasion and metastasis, coxibs have a potential role in the prevention and treatment of cancer. Recent studies indicate their possible application in overcoming drug resistance by downregulating the expression of MDR-1. However, the cardiac side effects of some of the coxibs have limited their application in treating various inflammatory disorders and warrant the development of COX-2 inhibitors without side effects. This review will focus on the role of COX-2 in inflammation and cancer, with an emphasis on novel approaches to the development of COX-2 inhibitors without side effects.
Collapse
Affiliation(s)
- Smita Agarwal
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| | | | | |
Collapse
|
40
|
Lee WH, Choi JS, Kim HY, Park JH, Park BD, Cho SJ, Lee SK, Surh YJ. Potentiation of etoposide-induced apoptosis in HeLa cells by co-treatment with KG-135, a quality-controlled standardized ginsenoside formulation. Cancer Lett 2010; 294:74-81. [PMID: 20226587 DOI: 10.1016/j.canlet.2010.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 01/09/2010] [Accepted: 01/20/2010] [Indexed: 12/20/2022]
Abstract
Our previous studies demonstrated that KG-135, a quality-controlled red ginseng-specific formulation containing approximately equal amounts of three major ginsenosides (Rk1, Rg3 and Rg5), down-regulated G1 cyclin-dependent kinase in HeLa cells. In the present work, we have found that KG-135 potentates cytotoxicity of etoposide by modulating apoptotic signaling. Co-treatment of etoposide and KG-135 markedly elevated the expression and phosphorylation at the serine 15 residue of p53 as well as the cellular levels of Bax and p21(Waf1/Cip1). The increased accumulation and phosphorylation of p53 (Ser15) were attenuated by treatment of cells with wortmannin, a pan-phosphatidylinositol-3 kinase inhibitor. Moreover, co-treatment of etoposide and KG-135 enhanced mitochondrial localization of Bax. Our results indicate that etoposide-induced apoptosis in HeLa cells can be potentiated in the presence of KG-135 through a mechanism that involves the stabilization of p53 and the stimulation of Bax- and p21-mediated apoptotic signaling pathways. These findings suggest that KG-135 represents a useful candidate adjuvant for the treatment of cancers that could potentially minimize the adverse effects of current clinical chemotherapeutics.
Collapse
Affiliation(s)
- Won-Hee Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Li WZ, Wang XY, Li ZG, Zhang JH, Ding YQ. Celecoxib enhances the inhibitory effect of cisplatin on Tca8113 cells in human tongue squamous cell carcinoma in vivo and in vitro. J Oral Pathol Med 2010; 39:579-84. [PMID: 20202090 DOI: 10.1111/j.1600-0714.2009.00885.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Overexpression of cyclooxygenase-2 (COX-2) is associated with carcinogenesis, invasiveness, and metastasis of malignant tumors. Inhibition of COX-2 is one hot topic of research in prevention and treatment of malignant tumors. Because of the selective and specific inhibition on the activity of COX-2, the roles of celecoxib in prevention and treatment of tumors have attracted broad attention in recent years. In this study, we investigated the inhibitory effect of celecoxib combined with cisplatin on the proliferation of human tongue squamous cell carcinoma cell line Tca8113 in vivo and in vitro. METHODS Human tongue squamous cell carcinoma tumor cells Tca8113 and a mouse model with Tca8113 cells were used to study the growth inhibition of cisplatin enhanced by celecoxib. Drug treatment of Tca8113 in vitro and mice bearing xenografts in vivo were used. The level of COX-2 expression was detected by Western blotting. Sensitivity of cells to drug treatment was analyzed by MTT assay. RESULTS Treatment of Tca8113 cells with cisplatin (CDDP) had less effect on the expression of COX-2, whereas the COX-2 expression was significantly down-regulated after treatment with celecoxib alone or in combination with CDDP for 24 h. In addition, the combination of celecoxib with CDDP was also able to inhibit the Tca8113 line heterotransplanted in Balb/c nude mice. CONCLUSIONS Those findings indicate that a low dose of celecoxib could augment CDDP-induced growth inhibition of Tca8113 cells and its xenograft in Balb/c nude mice.
Collapse
Affiliation(s)
- Wei Zhong Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
42
|
Xia W, Zhao T, Lv J, Xu S, Shi J, Wang S, Han X, Sun Y. Celecoxib enhanced the sensitivity of cancer cells to anticancer drugs by inhibition of the expression of P-glycoprotein through a COX-2-independent manner. J Cell Biochem 2010; 108:181-94. [PMID: 19562670 DOI: 10.1002/jcb.22239] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The P-glycoprotein (p170, P-gp) encoded by human MDR1 gene functions as a pump to extrude anticancer drugs from cancer cells. Over-expression of p170 is closely related to primary and induced drug resistance phenotype of tumor cells. Recent studies have demonstrated that expression of cyclooxygenase-2 (COX-2) is positively correlated with the p170 level, suggesting a potential of COX-2 specific inhibitors in regulation of cytotoxicity of anticancer agents. Celecoxib is one of the specific inhibitors of COX-2 and has been widely used in clinic. However, its function in the response of cancer cells to anticancer drugs and the related mechanism are still waiting to be investigated. To explore the correlation of celecoxib and the p170-mediated drug resistance, the role of celecoxib in drug response of cancer cells was analyzed with flow cytometry, high performance liquid chromatography (HPLC), and colony formation experiments. Celecoxib (50 microM) was found to significantly enhance the sensitivity of MCF-7 and JAR/VP16 cells to tamoxifen and etoposide, respectively, by inhibition of p170 expression and increase in intracellular accumulation of the drugs. However, celecoxib did not affect pump function of p170. Enzyme activity and methylation analyses demonstrated that the inhibitory effect of celecoxib on p170 was independent on COX-2 but closely related to hypermethylation of MDR1 gene promoter. Our study suggested that celecoxib was a potential agent for enhancement of the sensitivity of cancer cells to anticancer drugs. It also provided a links between epigenetic change of MDR1 and drug response of cancer cells.
Collapse
Affiliation(s)
- Wenhong Xia
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yu L, Wu WKK, Li ZJ, Liu QC, Li HT, Wu YC, Cho CH. Enhancement of doxorubicin cytotoxicity on human esophageal squamous cell carcinoma cells by indomethacin and 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC236) via inhibiting P-glycoprotein activity. Mol Pharmacol 2009; 75:1364-73. [PMID: 19264847 DOI: 10.1124/mol.108.053546] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Doxorubicin is a chemotherapeutic drug widely used for the treatment of advanced esophageal squamous cell carcinoma. However, its efficacy is usually limited by the development of multidrug resistance (MDR), which has been linked to the up-regulation of P-glycoprotein (P-gp) in cancer cells. Conventional nonsteroidal anti-inflammatory drugs and cyclooxygenase 2 (COX-2)-selective inhibitors have been demonstrated to overcome MDR in some cancer cells. Here we sought to elucidate the effect of COX inhibitors on doxorubicin-induced cytotoxicity in relation to P-gp function in human esophageal squamous cell carcinoma cells. Among the five tested COX inhibitors [indomethacin, 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-benzenesulfonamide (SC236), 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluorom-ethylpyrazole (SC560), nimesulide, and N-(2-cyclohexyloxy-4-nitrophenyl)methanesulfonamide (NS398)], all of which substantially suppressed prostaglandin E(2) (PGE(2)) production to a similar extent, only the nonselective COX inhibitor indomethacin and the COX-2-selective inhibitor SC236 enhanced cytotoxic effects of doxorubicin on HKESC-1 and HKESC-2 cells. Moreover, these effects could not be reversed by the addition of PGE(2). Knockdown of COX-2 by small interference RNA also failed to mimic the enhancing effects of indomethacin or SC236, implicating that their action is COX- and PGE(2)-independent. To this end, we observed that indomethacin and SC236 directly functioned as noncompetitive inhibitors of P-gp, which were manifested as a reduction of P-gp ATPase activity. Collectively, these findings suggest that the direct inhibitory effects of indomethacin and SC236 on P-gp may contribute to their ability to increase the intracellular retention of doxorubicin and thus enhance its cytotoxicity. The combination of indomethacin or SC236 with doxorubicin may have significant potential clinical application, especially in the circumvention of P-gp-mediated MDR in cancer cells.
Collapse
Affiliation(s)
- Le Yu
- Department of Pharmacology, The Chinese University of Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Liu JF, Jamieson GG, Wu TC, Zhu GJ, Drew PA. A Preliminary Study on the Postoperative Survival of Patients Given Aspirin After Resection for Squamous Cell Carcinoma of the Esophagus or Adenocarcinoma of the Cardia. Ann Surg Oncol 2009; 16:1397-402. [DOI: 10.1245/s10434-009-0382-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/17/2008] [Accepted: 01/02/2009] [Indexed: 02/03/2023]
|
45
|
MARTINEZ M, MODRIC S, SHARKEY M, TROUTMAN L, WALKER L, MEALEY K. The pharmacogenomics of P-glycoprotein and its role in veterinary medicine. J Vet Pharmacol Ther 2008; 31:285-300. [DOI: 10.1111/j.1365-2885.2008.00964.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Rollason V, Samer C, Piguet V, Dayer P, Desmeules J. Pharmacogenetics of analgesics: toward the individualization of prescription. Pharmacogenomics 2008; 9:905-33. [DOI: 10.2217/14622416.9.7.905] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The use of analgesics is based on the empiric administration of a given drug with clinical monitoring for efficacy and toxicity. However, individual responses to drugs are influenced by a combination of pharmacokinetic and pharmacodynamic factors that can sometimes be regulated by genetic factors. Whereas polymorphic drug-metabolizing enzymes and drug transporters may affect the pharmacokinetics of drugs, polymorphic drug targets and disease-related pathways may influence the pharmacodynamic action of drugs. After a usual dose, variations in drug toxicity and inefficacy can be observed depending on the polymorphism, the analgesic considered and the presence or absence of active metabolites. For opioids, the most studied being morphine, mutations in the ABCB1 gene, coding for P-glycoprotein (P-gp), and in the µ-opioid receptor reduce morphine potency. Cytochrome P450 (CYP) 2D6 mutations influence the analgesic effect of codeine and tramadol, and polymorphism of CYP2C9 is potentially linked to an increase in nonsteroidal anti-inflammatory drug-induced adverse events. Furthermore, drug interactions can mimic genetic deficiency and contribute to the variability in response to analgesics. This review summarizes the available data on the pharmacokinetic and pharmacodynamic consequences of known polymorphisms of drug-metabolizing enzymes, drug transporters, drug targets and other nonopioid biological systems on central and peripheral analgesics.
Collapse
Affiliation(s)
- Victoria Rollason
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| | - Caroline Samer
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| | - Valerie Piguet
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| | - Pierre Dayer
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| | - Jules Desmeules
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| |
Collapse
|
47
|
de Vries EFJ, Doorduin J, Vellinga NAR, van Waarde A, Dierckx RA, Klein HC. Can celecoxib affect P-glycoprotein-mediated drug efflux? A microPET study. Nucl Med Biol 2008; 35:459-66. [PMID: 18482683 DOI: 10.1016/j.nucmedbio.2008.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 01/11/2008] [Indexed: 01/16/2023]
Abstract
INTRODUCTION P-glycoprotein (Pgp) is an efflux pump that protects vital organs like the brain from toxic substances, but which is also associated with therapy resistance. The anti-inflammatory drug celecoxib potentiates the efficacy of several cytostatic and neurotropic drugs that are known Pgp substrates. To clarify whether Pgp is involved in the sensitizing effect of celecoxib, we investigated in vivo whether celecoxib is a substrate of Pgp and whether it can affect the efflux activity of the pump. METHODS In control rats and in rats treated with the Pgp modulator cyclosporin A (CsA), cerebral accumulation of radiolabeled [(11)C]celecoxib was investigated by ex vivo biodistribution and micro-positron emission tomography imaging. In addition, the effect of unlabeled celecoxib and CsA (positive control) on the cerebral uptake of the Pgp substrate [(11)C]verapamil was studied. RESULTS [(11)C]Celecoxib uptake in rat brain was relatively high and homogeneously distributed. Treatment of rats with CsA only marginally increased cerebral tracer uptake, which is most likely due to reduced tracer clearance from plasma. [(11)C]Verapamil brain uptake was more than 10-fold higher after treatment with CsA. In contrast, a high dose of celecoxib increased cerebral [(11)C]verapamil uptake only twofold, which was accompanied by a similar increase in tracer concentration in plasma. CONCLUSIONS This study shows that celecoxib is not a substrate of Pgp and does not substantially affect the Pgp-mediated efflux of [(11)C]verapamil. Therefore, celecoxib-induced augmentation of the efficacy of chemotherapeutic and neurotropic drugs must be due to another mechanism than modulation of Pgp-mediated drug efflux.
Collapse
Affiliation(s)
- Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Suh YJ, Hunt KK. A Novel Therapeutic Approach to Breast Cancer using a Selective Cyclooxygenase 2 Inhibitor and Adenovirus-mediated Delivery of the Melanoma Differentiation-associated Gene-7 (Ad-mda7). J Breast Cancer 2008. [DOI: 10.4048/jbc.2008.11.2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Young-Jin Suh
- Department of Surgery, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Kelly K. Hunt
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Fantappiè O, Solazzo M, Lasagna N, Platini F, Tessitore L, Mazzanti R. P-glycoprotein mediates celecoxib-induced apoptosis in multiple drug-resistant cell lines. Cancer Res 2007; 67:4915-23. [PMID: 17510421 DOI: 10.1158/0008-5472.can-06-3952] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In several neoplastic diseases, including hepatocellular carcinoma, the expression of P-glycoprotein and cyclooxygenase-2 (COX-2) are often increased and involved in drug resistance and poor prognosis. P-glycoprotein, in addition to drug resistance, blocks cytochrome c release, preventing apoptosis in tumor cells. Because COX-2 induces P-glycoprotein expression, we evaluated the effect of celecoxib, a specific inhibitor of COX-2 activity, on P-glycoprotein-mediated resistance to apoptosis in cell lines expressing multidrug resistant (MDR) phenotype. Experiments were done using MDR-positive and parental cell lines at basal conditions and after exposure to 10 or 50 micromol/L celecoxib. We found that 10 micromol/L celecoxib reduced P-glycoprotein, Bcl-x(L), and Bcl-2 expression, and induced translocation of Bax from cytosol to mitochondria and cytochrome c release into cytosol in MDR-positive hepatocellular carcinoma cells. This causes the activation of caspase-3 and increases the number of cells going into apoptosis. No effect was shown on parental drug-sensitive or on MDR-positive hepatocellular carcinoma cells after transfection with MDR1 small interfering RNA. Interestingly, although inhibiting COX-2 activity, 50 micromol/L celecoxib weakly increased the expression of COX-2 and P-glycoprotein and did not alter Bcl-x(L) and Bcl-2 expression. In conclusion, these results show that relatively low concentrations of celecoxib induce cell apoptosis in MDR cell lines. This effect is mediated by P-glycoprotein and suggests that the efficacy of celecoxib in the treatment of different types of cancer may depend on celecoxib concentration and P-glycoprotein expression.
Collapse
Affiliation(s)
- Ornella Fantappiè
- Department of Internal Medicine, Postgraduate School in Oncology, Interuniversity Center for Liver Pathophysiology, University of Florence, Azienda Ospedaliero-Universitaria Careggi and Istituto Toscano Tumori, Florence, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Naruse T, Nishida Y, Ishiguro N. Synergistic effects of meloxicam and conventional cytotoxic drugs in human MG-63 osteosarcoma cells. Biomed Pharmacother 2007; 61:338-46. [PMID: 17395421 DOI: 10.1016/j.biopha.2007.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/12/2007] [Indexed: 11/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) inhibitors have been shown to exert inhibitory effects on many types of malignant tumors and several groups have suggested that COX-2 inhibitors enhance the cytotoxic effects of other anti-cancer agents. We previously reported that meloxicam has an anti-tumorigenic effect on COX-2-expressing osteosarcoma cells. In the current study, we evaluated the synergy between meloxicam and cisplatin (CDDP), doxorubicin (DXR) and 4-hydroperoxy ifosfamide (4OOH-IFM), using the human osteosarcoma cell line, MG-63. Cytotoxicity was determined using 3-(4,5'-dimethylthiazol-2-yl)-2,5'-diphenyltetrazolium bromide (MTT) assays, and isobolographic analysis was used to evaluate any synergy. Apoptotic activity was determined by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), and by evaluating Bax and Bcl-2 expression levels using real-time RT-PCR and western blotting analysis. Cell cycling was evaluated by flow cytometry. The cytotoxic effects of CDDP and DXR were enhanced synergistically in the presence of meloxicam and were partially due to an increase in apoptosis. By contrast, meloxicam enhanced neither the cytotoxic nor the apoptotic activity of 4OOH-IFM. Combining meloxicam with DXR significantly up-regulated Bax expression, whereas it down-regulated Bcl-2 expression in combination with CDDP. Furthermore, the number of cells in the G2/M phase was significantly increased in DXR-treated samples by the addition of meloxicam, but not in CDDP-treated or 4OOH-IFM-treated samples. These results suggest a potential clinical application of meloxicam in combination with cytotoxic drugs in patients with COX-2-positive osteosarcoma.
Collapse
Affiliation(s)
- T Naruse
- Department of Orthopaedic Surgery, Nagoya University School and Graduate School of Medicine, 65-Tsurumai, Showa, Nagoya, 466-8550, Japan.
| | | | | |
Collapse
|