1
|
Soliño M, Larrayoz IM, López EM, Rey-Funes M, Bareiro M, Loidl CF, Girardi E, Caltana L, Brusco A, Martínez A, López-Costa JJ. CB1 Cannabinoid Receptor is a Target for Neuroprotection in Light Induced Retinal Degeneration. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10734. [PMID: 38390616 PMCID: PMC10880786 DOI: 10.3389/adar.2022.10734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 02/24/2024]
Abstract
In the last few years, an increasing interest in the neuroprotective effect of cannabinoids has taken place. The aim of the present work was to study the effects of modulating cannabinoid receptor 1 (CB1) in the context of light induced retinal degeneration (LIRD), using an animal model that resembles many characteristics of human age-related macular degeneration (AMD) and other degenerative diseases of the outer retina. Sprague Dawley rats (n = 28) were intravitreally injected in the right eye with either a CB1 agonist (ACEA), or an antagonist (AM251). Contralateral eyes were injected with respective vehicles as controls. Then, rats were subjected to continuous illumination (12,000 lux) for 24 h. Retinas from 28 animals were processed by GFAP-immunohistochemistry (IHC), TUNEL technique, Western blotting (WB), or qRT-PCR. ACEA-treated retinas showed a significantly lower number of apoptotic nuclei in the outer nuclear layer (ONL), lower levels of activated Caspase-3 by WB, and lower levels of glial reactivity by both GFAP-IHC and WB. qRT-PCR revealed that ACEA significantly decreased the expression of Bcl-2 and CYP1A1. Conversely, AM251-treated retinas showed a higher number of apoptotic nuclei in the ONL, higher levels of activated Caspase-3 by WB, and higher levels of glial reactivity as determined by GFAP-IHC and WB. AM251 increased the expression of Bcl-2, Bad, Bax, Aryl hydrocarbon Receptor (AhR), GFAP, and TNFα. In summary, the stimulation of the CB1 receptor, previous to the start of the pathogenic process, improved the survival of photoreceptors exposed to LIRD. The modulation of CB1 activity may be used as a neuroprotective strategy in retinal degeneration and deserves further studies.
Collapse
Affiliation(s)
- Manuel Soliño
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Ester María López
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Manuel Rey-Funes
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Mariana Bareiro
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Cesar Fabián Loidl
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Elena Girardi
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Laura Caltana
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Juan José López-Costa
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
3
|
Cannabinoid agonists possibly mediate interaction between cholinergic and cannabinoid systems in regulating intestinal inflammation. Med Hypotheses 2020; 139:109613. [DOI: 10.1016/j.mehy.2020.109613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
|
4
|
Ranjbar S, Seyednejad SA, Nikfar S, Rahimi R, Abdollahi M. How can we develop better antispasmodics for irritable bowel syndrome? Expert Opin Drug Discov 2019; 14:549-562. [DOI: 10.1080/17460441.2019.1593369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sheyda Ranjbar
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Afshin Seyednejad
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Coffeen U, Pellicer F. Salvia divinorum: from recreational hallucinogenic use to analgesic and anti-inflammatory action. J Pain Res 2019; 12:1069-1076. [PMID: 30962708 PMCID: PMC6434906 DOI: 10.2147/jpr.s188619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salvia divinorum is a herbal plant native to the southwest region of Mexico. Traditional preparations of this plant have been used in illness treatments that converge with inflammatory conditions and pain. Currently, S. divinorum extracts have become popular in several countries as a recreational drug due to its hallucinogenic effects. Its main active component is a diterpene named salvinorin A (SA), a potent naturally occurring hallucinogen with a great affinity to the κ opioid receptors and with allosteric modulation of cannabinoid type 1 receptors. Recent biochemical research has revealed the mechanism of action of the anti-inflammatory and analgesic effect of SA at the cellular and molecular level. Nevertheless, because of their short-lasting and hallucinogenic effect, the research has focused on discovering a new analogue of SA that is able to induce analgesia and reduce inflammation with a long-lasting effect but without the hallucinatory component. In this review, we explore the role of S. divinorum, SA and its analogues. We focus mainly on their analgesic and anti-inflammatory roles but also mention their psychoactive properties.
Collapse
Affiliation(s)
- Ulises Coffeen
- Research in Neurosciences, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México,
| | - Francisco Pellicer
- Research in Neurosciences, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México,
| |
Collapse
|
6
|
Xia KK, Shen JX, Huang ZB, Song HM, Gao M, Chen DJ, Zhang SJ, Wu J. Heterogeneity of cannabinoid ligand-induced modulations in intracellular Ca 2+ signals of mouse pancreatic acinar cells in vitro. Acta Pharmacol Sin 2019; 40:410-417. [PMID: 30202013 PMCID: PMC6460482 DOI: 10.1038/s41401-018-0074-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/20/2018] [Indexed: 02/05/2023]
Abstract
We recently reported that a CB2R agonist, GW405833 (GW), reduced both the ACh-induced Ca2+ oscillations and the L-arginine-induced Ca2+ signal enhancement in mouse pancreatic acinar cells, suggesting that GW-induced inhibition may prevent the pathogenesis of acute pancreatitis. In this study, we aim to evaluate the effects of other cannabinoid ligands on Ca2+ signaling in acinar cells. Patch-clamp whole-cell recordings were applied to measure ACh-induced intracellular Ca2+ oscillations in pancreatic acinar cells acutely dissociated from wild-type (WT), CB1R knockout (KO), and CB2R KO mice, and the pharmacological effects of various cannabinoid ligands on the Ca2+ oscillations were examined. We found that all the 8 CB2R agonists tested inhibited ACh-induced Ca2+ oscillations. Among them, GW, JWH133, and GP1a caused potent inhibition with IC50 values of 5.0, 6.7, and 1.2 μmol/L, respectively. In CB2R KO mice or in the presence of a CB2R antagonist (AM630), the inhibitory effects of these 3 CB2R agonists were abolished, suggesting that they acted through the CB2Rs. The CB1R agonist ACEA also induced inhibition of Ca2+ oscillations that existed in CB1R KO mice and in the presence of a CB1R antagonist (AM251), suggesting a non-CB1R effect. In WT, CB1R KO, and CB2R KO mice, a nonselective CBR agonist, WIN55,212-2, inhibited Ca2+ oscillations, which was not mediated by CB1Rs or CB2Rs. The endogenous cannabinoid substance, 2-arachidonoylglycerol (2-AG), did not show an inhibitory effect on Ca2+ oscillations. In conclusion, CB2R agonists play critical roles in modulating Ca2+ signals in mouse pancreatic acinar cells, while other cannabinoid ligands modulate Ca2+ oscillations in a heterogeneous manner through a CB receptor or non-CB-receptor mechanism.
Collapse
Affiliation(s)
- Kun-Kun Xia
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA
| | - Jian-Xin Shen
- Department of Physiology, Shantou University Medical College, Shantou, 515100, China
| | - Ze-Bing Huang
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA
| | - Hui-Min Song
- Department of Physiology, Shantou University Medical College, Shantou, 515100, China
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA
| | - De-Jie Chen
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jie Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 8501, USA.
- Department of Physiology, Shantou University Medical College, Shantou, 515100, China.
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China.
| |
Collapse
|
7
|
Floresta G, Apirakkan O, Rescifina A, Abbate V. Discovery of High-Affinity Cannabinoid Receptors Ligands through a 3D-QSAR Ushered by Scaffold-Hopping Analysis. Molecules 2018; 23:molecules23092183. [PMID: 30200181 PMCID: PMC6225167 DOI: 10.3390/molecules23092183] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023] Open
Abstract
Two 3D quantitative structure–activity relationships (3D-QSAR) models for predicting Cannabinoid receptor 1 and 2 (CB1 and CB2) ligands have been produced by way of creating a practical tool for the drug-design and optimization of CB1 and CB2 ligands. A set of 312 molecules have been used to build the model for the CB1 receptor, and a set of 187 molecules for the CB2 receptor. All of the molecules were recovered from the literature among those possessing measured Ki values, and Forge was used as software. The present model shows high and robust predictive potential, confirmed by the quality of the statistical analysis, and an adequate descriptive capability. A visual understanding of the hydrophobic, electrostatic, and shaping features highlighting the principal interactions for the CB1 and CB2 ligands was achieved with the construction of 3D maps. The predictive capabilities of the model were then used for a scaffold-hopping study of two selected compounds, with the generation of a library of new compounds with high affinity for the two receptors. Herein, we report two new 3D-QSAR models that comprehend a large number of chemically different CB1 and CB2 ligands and well account for the individual ligand affinities. These features will facilitate the recognition of new potent and selective molecules for CB1 and CB2 receptors.
Collapse
MESH Headings
- Cannabinoid Receptor Agonists/chemistry
- Cannabinoid Receptor Agonists/metabolism
- Cannabinoid Receptor Antagonists/chemistry
- Cannabinoid Receptor Antagonists/metabolism
- Drug Design
- Hydrophobic and Hydrophilic Interactions
- Ligands
- Models, Molecular
- Molecular Conformation
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Structure
- Protein Binding
- Quantitative Structure-Activity Relationship
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/chemistry
- Receptors, Cannabinoid/metabolism
- Software
- Static Electricity
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK.
| | - Orapan Apirakkan
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Vincenzo Abbate
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
8
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Rocha NB, Peniche-Amante R, Veras AB, Machado S, Budde H. Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats. Neurochem Res 2018; 43:1511-1518. [PMID: 29876791 DOI: 10.1007/s11064-018-2565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion. Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh). Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD. Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Carretera Mérida-Progreso Km. 15.5, A.P. 96 Cordemex, C.P. 97310, Mérida, Yucatán, Mexico. .,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Health School, Polytechnic Institute of Porto, Porto, Portugal
| | - Rodrigo Peniche-Amante
- Coordinación de Psicología Organizacional, División de Estudios Profesionales, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Universidade Catolica Dom Bosco, Campo Grande, Mato Grosso Do Sul, Brazil
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Salgado de Oliveira University, Rio de Janeiro, Brazil.,Physical Activity Neuroscience Laboratory, Physical Activity Sciences Postgraduate Program-Salgado de Oliveira University (UNIVERSO), Rio de Janeiro, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering, Reykjavik University, Reykjavík, Iceland.,Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
9
|
Pesce M, D'Alessandro A, Borrelli O, Gigli S, Seguella L, Cuomo R, Esposito G, Sarnelli G. Endocannabinoid-related compounds in gastrointestinal diseases. J Cell Mol Med 2017; 22:706-715. [PMID: 28990365 PMCID: PMC5783846 DOI: 10.1111/jcmm.13359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/23/2017] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signalling pathway involved in the control of several gastrointestinal (GI) functions at both peripheral and central levels. In recent years, it has become apparent that the ECS is pivotal in the regulation of GI motility, secretion and sensitivity, but endocannabinoids (ECs) are also involved in the regulation of intestinal inflammation and mucosal barrier permeability, suggesting their role in the pathophysiology of both functional and organic GI disorders. Genetic studies in patients with irritable bowel syndrome (IBS) or inflammatory bowel disease have indeed shown significant associations with polymorphisms or mutation in genes encoding for cannabinoid receptor or enzyme responsible for their catabolism, respectively. Furthermore, ongoing clinical trials are testing EC agonists/antagonists in the achievement of symptomatic relief from a number of GI symptoms. Despite this evidence, there is a lack of supportive RCTs and relevant data in human beings, and hence, the possible therapeutic application of these compounds is raising ethical, political and economic concerns. More recently, the identification of several EC-like compounds able to modulate ECS function without the typical central side effects of cannabino-mimetics has paved the way for emerging peripherally acting drugs. This review summarizes the possible mechanisms linking the ECS to GI disorders and describes the most recent advances in the manipulation of the ECS in the treatment of GI diseases.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy.,Division of Neurogastroenterology & Motility, Great Ormond Street Hospital and University of College (UCL), London, UK
| | - Alessandra D'Alessandro
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Osvaldo Borrelli
- Division of Neurogastroenterology & Motility, Great Ormond Street Hospital and University of College (UCL), London, UK
| | - Stefano Gigli
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Rosario Cuomo
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| |
Collapse
|
10
|
Amato A, Baldassano S, Caldara GF, Mulè F. Pancreatic polypeptide stimulates mouse gastric motor activity through peripheral neural mechanisms. Neurogastroenterol Motil 2017; 29. [PMID: 27381051 DOI: 10.1111/nmo.12901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/10/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pancreatic polypeptide (PP) is supposed to be one of the major endogenous agonists of the neuropeptide Y4 receptor. Pancreatic polypeptide can influence gastrointestinal motility, acting mainly through vagal mechanisms, but whether PP acts directly on the stomach has not been explored yet. The aims of this study were to investigate the effects of PP on mouse gastric emptying, on spontaneous tone of whole stomach in vitro and to examine the mechanism of action. METHODS Gastric emptying was measured by red phenol method after i.p. PP administration (1-3 nmol per mouse). Responses induced by PP (1-300 mmol L-1 ) on gastric endoluminal pressure were analyzed in vitro in the presence of different drugs. Gastric genic expression of Y4 receptor was verified by RT-PCR. KEY RESULTS Pancreatic polypeptide dose-dependently increased non-nutrient liquid gastric emptying rate. In vitro, PP produced a concentration-dependent contraction that was abolished by tetrodotoxin, a neural blocker of Na+ voltage-dependent channels. The contractile response was significantly reduced by atropine, a muscarinic receptor antagonist, and by SR48968, an NK2 receptor antagonist, while it was potentiated by neostigmine, an inhibitor of acetylcholinesterase. The joint application of atropine and SR48968 fully abolished PP contractile effect. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of Y4 receptor mRNA in mouse stomach with a greater expression in antrum than in fundus. CONCLUSIONS & INFERENCES The present findings demonstrate that exogenous PP stimulates mouse gastric motor activity, by acting directly on the stomach. This effect appears due to the activation of enteric excitatory neurons releasing acetylcholine and tachykinins.
Collapse
Affiliation(s)
- A Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - S Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - G F Caldara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - F Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
11
|
Bozkurt TE, Kaya Y, Durlu-Kandilci NT, Onder S, Sahin-Erdemli I. The effect of cannabinoids on dinitrofluorobenzene-induced experimental asthma in mice. Respir Physiol Neurobiol 2016; 231:7-13. [PMID: 27216000 DOI: 10.1016/j.resp.2016.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/13/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Cannabinoids have anti-inflammatory effects and can produce bronchodilation in the airways. We have investigated the effects of cannabinoids on tracheal hyperreactivity and airway inflammation in dinitrofluorobenzene (DNFB)-induced experimental non-atopic asthma in mice. 5-hydroxytryptamine (5-HT)-induced contraction response was enhanced while carbachol- and electrical field stimulation-induced contractions, and isoprenaline-induced relaxation responses were remained unchanged in DNFB group. The increased 5-HT-induced contractions were inhibited by incubation with either atropine or tetrodotoxin. DNFB application resulted in increased macrophage number in the bronchoalveolar lavage fluid (BALF). In vivo ACEA (CB1 agonist) treatment prevented the increase in 5-HT contractions, while JWH133 (CB2 agonist) had no effect. However, neither ACEA nor JWH133 prevented the increase in macrophage number in BALF. In vitro ACEA incubation also inhibited the increase in 5-HT contraction in DNFB group. These results show that cannabinoid CB1 receptor agonist can prevent tracheal hyperreactivity to 5-HT in DNFB-induced non-atopic asthma in mice.
Collapse
Affiliation(s)
- Turgut Emrah Bozkurt
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara 06100, Turkey.
| | - Yesim Kaya
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara 06100, Turkey
| | | | - Sevgen Onder
- Hacettepe University, Faculty of Medicine, Department of Pathology, Sihhiye, Ankara 06100, Turkey
| | - Inci Sahin-Erdemli
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara 06100, Turkey
| |
Collapse
|
12
|
Bozkurt TE, Larsson O, Adner M. Stimulation of cannabinoid CB1 receptors prevents nerve-mediated airway hyperreactivity in NGF-induced inflammation in mouse airways. Eur J Pharmacol 2016; 776:132-8. [DOI: 10.1016/j.ejphar.2016.02.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
|
13
|
Abstract
Cannabis has been used medicinally for centuries to treat a variety of disorders, including those associated with the gastrointestinal tract. The discovery of our bodies' own "cannabis-like molecules" and associated receptors and metabolic machinery - collectively called the endocannabinoid system - enabled investigations into the physiological relevance for the system, and provided the field with evidence of a critical function for this endogenous signaling pathway in health and disease. Recent investigations yield insight into a significant participation for the endocannabinoid system in the normal physiology of gastrointestinal function, and its possible dysfunction in gastrointestinal pathology. Many gaps, however, remain in our understanding of the precise neural and molecular mechanisms across tissue departments that are under the regulatory control of the endocannabinoid system. This review highlights research that reveals an important - and at times surprising - role for the endocannabinoid system in the control of a variety of gastrointestinal functions, including motility, gut-brain mediated fat intake and hunger signaling, inflammation and gut permeability, and dynamic interactions with gut microbiota.
Collapse
Affiliation(s)
- Nicholas V. DiPatrizio
- Address correspondence to: Nicholas V. DiPatrizio, PhD, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave., Riverside, CA 92521, E-mail:
| |
Collapse
|
14
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
15
|
Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb Exp Pharmacol 2016; 239:343-362. [PMID: 28161834 DOI: 10.1007/164_2016_105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands' synthesizing/degrading enzymes. The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury. For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects. New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.
Collapse
|
16
|
Abalo R, Chen C, Vera G, Fichna J, Thakur GA, López-Pérez AE, Makriyannis A, Martín-Fontelles MI, Storr M. In vitro and non-invasive in vivo effects of the cannabinoid-1 receptor agonist AM841 on gastrointestinal motor function in the rat. Neurogastroenterol Motil 2015; 27:1721-35. [PMID: 26387676 PMCID: PMC4918633 DOI: 10.1111/nmo.12668] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/05/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cannabinoids have been traditionally used for the treatment of gastrointestinal (GI) symptoms, but the associated central effects, through cannabinoid-1 receptors (CB1R), constitute an important drawback. Our aims were to characterize the effects of the recently developed highly potent long-acting megagonist AM841 on GI motor function and to determine its central effects in rats. METHODS Male Wistar rats were used for in vitro and in vivo studies. The effect of AM841 was tested on electrically induced twitch contractions of GI preparations (in vitro) and on GI motility measured radiographically after contrast administration (in vivo). Central effects of AM841 were evaluated using the cannabinoid tetrad. The non-selective cannabinoid agonist WIN 55,212-2 (WIN) was used for comparison. The CB1R (AM251) and CB2R (AM630) antagonists were used to characterize cannabinoid receptor-mediated effects of AM841. KEY RESULTS AM841 dose-dependently reduced in vitro contractile activity of rat GI preparations via CB1R, but not CB2R or opioid receptors. In vivo, AM841 acutely and potently reduced gastric emptying and intestinal transit in a dose-dependent and AM251-sensitive manner. The in vivo GI effects of AM841 at 0.1 mg/kg were comparable to those induced by WIN at 5 mg/kg. However, at this dose, AM841 did not induce any sign of the cannabinoid tetrad, whereas WIN induced significant central effects. CONCLUSIONS & INFERENCES The CB1R megagonist AM841 may potently depress GI motor function in the absence of central effects. This effect may be mediated peripherally and may be useful in the treatment of GI motility disorders.
Collapse
Affiliation(s)
- R Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC); Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL),Corresponding author: Abalo R, Área de Farmacología y Nutrición. Dpto. Ciencias Básicas de la Salud. Fac. Ciencias de la Salud. Universidad Rey Juan Carlos, Avda. de Atenas s/n. 28922 Alcorcón, Madrid, Spain, Telf: +34 91 488 88 54, Fax: +34 91 488 89 55,
| | - C Chen
- MedizinischeKlinik 2 der Ludwig-Maximilians Universität München, Munich, Germany,Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, China
| | - G Vera
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC); Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL)
| | - J Fichna
- MedizinischeKlinik 2 der Ludwig-Maximilians Universität München, Munich, Germany,Department of Biochemistry, Medical University of Lodz, Poland
| | - GA Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston MA
| | - AE López-Pérez
- Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL),Unidad del Dolor, Servicio de Anestesiología, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
| | - A Makriyannis
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeaster Universtiy, Boston, MA
| | - MI Martín-Fontelles
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC); Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL)
| | - M Storr
- MedizinischeKlinik 2 der Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
17
|
Troy-Fioramonti S, Demizieux L, Gresti J, Muller T, Vergès B, Degrace P. Acute activation of cannabinoid receptors by anandamide reduces gastrointestinal motility and improves postprandial glycemia in mice. Diabetes 2015; 64:808-18. [PMID: 25281429 DOI: 10.2337/db14-0721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endocannabinoid system (ECS) is associated with an alteration of glucose homeostasis dependent on cannabinoid receptor-1 (CB1R) activation. However, very little information is available concerning the consequences of ECS activation on intestinal glucose absorption. Mice were injected intraperitoneally with anandamide, an endocannabinoid binding both CB1R and CB2R. We measured plasma glucose and xylose appearance after oral loading, gastrointestinal motility, and glucose transepithelial transport using the everted sac method. Anandamide improved hyperglycemia after oral glucose charge whereas glucose clearance and insulin sensitivity were impaired, pointing out some gastrointestinal events. Plasma xylose appearance was delayed in association with a strong decrease in gastrointestinal transit, while anandamide did not alter transporter-mediated glucose absorption. Interestingly, transit was nearly normalized by coinjection of SR141716 and AM630 (CB1R and CB2R antagonist, respectively), and AM630 also reduced the delay of plasma glucose appearance induced by anandamide. When gastric emptying was bypassed by direct glucose administration in the duodenum, anandamide still reduced plasma glucose appearance in wild-type but not in CB1R(-/-) mice. In conclusion, our findings demonstrated that acute activation of intestinal ECS reduced postprandial glycemia independently on intestinal glucose transport but rather inhibiting gastric emptying and small intestine motility and strongly suggest the involvement of both CB1R and CB2R.
Collapse
Affiliation(s)
| | - Laurent Demizieux
- INSERM 866, Team Pathophysiology of Dyslipidemia, University of Burgundy, Dijon, France
| | - Joseph Gresti
- INSERM 866, Team Pathophysiology of Dyslipidemia, University of Burgundy, Dijon, France
| | - Tania Muller
- INSERM 866, Team Pathophysiology of Dyslipidemia, University of Burgundy, Dijon, France
| | - Bruno Vergès
- INSERM 866, Team Pathophysiology of Dyslipidemia, University of Burgundy, Dijon, France
| | - Pascal Degrace
- INSERM 866, Team Pathophysiology of Dyslipidemia, University of Burgundy, Dijon, France
| |
Collapse
|
18
|
Amato A, Baldassano S, Caldara G, Mulè F. Neuronostatin: peripheral site of action in mouse stomach. Peptides 2015; 64:8-13. [PMID: 25541042 DOI: 10.1016/j.peptides.2014.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023]
Abstract
Neuronostatin is a 13-amino acid peptide encoded by somatostatin gene. It is distributed in different organs including gastrointestinal tract and has been involved in the control of food intake and gastrointestinal motility, likely through an action in the brain. So far, there are no reports about the occurrence of peripheral action sites in the gut. Therefore, the purpose of the present study was to examine, in the mouse, the effects of peripheral administration of neuronostatin on food intake within 24h and on gastrointestinal motility and to analyse neuronostatin actions on the gastric and intestinal mechanical activity in isolated preparations in vitro. When compared with PBS-treated mice, intraperitoneal neuronostatin reduced food intake in doses ranging from 1 to 15ng/g b.w. only in the first hour postinjection with a maximum effect obtained at the dose of 15ng/g b.w. (-46.9%). The peptide (15ng/g b.w.) significantly reduced gastric emptying rate (-31.1%) and gastrointestinal intestinal transit. Non-amidated neuronostatin failed to affect food intake, gastric emptying and intestinal transit, suggesting the specificity of action. In vitro, neuronostatin induced concentration-dependent gastric relaxation, which was abolished by tetrodotoxin. Neuronostatin failed to affect the spontaneous mechanical activity or the evoked cholinergic contractions in duodenum. These results suggest that exogenous neuronostatin is able to reduce mouse gastric motility by acting peripherally in the stomach, through intramural nervous plexuses. This indirectly action could cause reduction of food intake in the short term.
Collapse
Affiliation(s)
- Antonella Amato
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Università di Palermo, 90128 Palermo, Italy
| | - Sara Baldassano
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Università di Palermo, 90128 Palermo, Italy
| | - Gaetano Caldara
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Università di Palermo, 90128 Palermo, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Università di Palermo, 90128 Palermo, Italy.
| |
Collapse
|
19
|
Amato A, Baldassano S, Serio R, Mulè F. Tetrodotoxin-dependent effects of menthol on mouse gastric motor function. Eur J Pharmacol 2013; 718:131-7. [DOI: 10.1016/j.ejphar.2013.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/27/2013] [Indexed: 01/16/2023]
|
20
|
Guanosine negatively modulates the gastric motor function in mouse. Purinergic Signal 2013; 9:655-61. [PMID: 23839776 DOI: 10.1007/s11302-013-9378-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to evaluate if guanine-based purines may affect the gastric motor function in mouse. Thus, the influence of guanosine on the gastric emptying rate in vivo was determined and its effects on spontaneous gastric mechanical activity, detected as changes of the intraluminal pressure, were analyzed in vitro before and after different treatments. Gastric gavage of guanosine (1.75-10 mg/kg) delayed the gastric emptying. Guanosine (30 μM-1 mM) induced a concentration-dependent relaxation of isolated stomach, which was not affected by the inhibition of the purine nucleoside phosphorylase enzyme by 4'-deaza-1'-aza-2'-deoxy-1'-(9-methylene)-immucillin-H. The inhibitory response was antagonized by S-(4-nitrobenzyl)-6-thioinosine, a membrane nucleoside transporter inhibitor, but not affected by 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-c]quinazolin-5-amine, a nonselective adenosine receptor antagonist, or by tetrodotoxin, a blocker of neuronal voltage-dependent Na(+) channels. Moreover, guanosine-induced effects persisted in the presence of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase or tetraethylammonium, a nonselective potassium channel blocker, but they were progressively reduced by increasing concentrations of 2'5'dideoxyadenosine, an adenylyl cyclase inhibitor. Lastly, the levels of cyclic adenosine monophosphate (cAMP), measured by ELISA, in gastric full thickness preparations were increased by guanosine. In conclusion, our data indicate that, in mouse, guanosine is able to modulate negatively the gastric motor function, reducing gastric emptying and inducing muscular relaxation. The latter is dependent by its cellular uptake and involves adenylyl cyclase activation and increase in cAMP intracellular levels, while it is independent on neural action potentials, adenosine receptors, and K(+) channel activation.
Collapse
|
21
|
Yang CG, Wang WG, Yan J, Fei J, Wang ZG, Zheng Q. Gastric motility in ghrelin receptor knockout mice. Mol Med Rep 2012; 7:83-8. [PMID: 23128468 DOI: 10.3892/mmr.2012.1157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 10/11/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects and possible mechanisms of ghrelin receptor (GHS-R) deficiency on gastric motility in GHS-R deficient (Ghsr-/-) mice. Ghsr-/- and control (Ghsr+/+) mice were genotyped by PCR. The percentage of gastric emptying (GE%) was calculated following the intraperitoneal adminis-tration of ghrelin. In vitro, the contractile response of smooth muscle strips to ghrelin and electrical field stimulation (EFS) and the intraluminal pressure change of isolated stomach to carbachol were observed in an organ bath. The staining of nerve cells in the gastric muscle layer was performed by immunofluorescence. Delayed gastric emptying was observed in the Ghsr-/- mice; ghrelin enhanced the GE% in the Ghsr+/+ mice but had no effect on the GE% in the Ghsr-/- mice. In vitro, the response of the strips to ghrelin and EFS and the intraluminal pressure change to cabarchol was reduced in the Ghsr-/- mice. GHS-Rs were predominantly expressed on nerve cells in gastric muscle layers. The number of nerve cells was observed to be decreased in the Ghsr-/- mice. The delayed gastric emptying may relate to the loss of GHS-Rs and the reduction in the number of nerve cells in the gastric muscle layers of the GHS-R-deficient mice.
Collapse
Affiliation(s)
- Cheng-Guang Yang
- Department of General Surgery, The Affiliated Sixth Hospital of Medical School, Shanghai Jiaotong University, Shanghai 200233, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Garella R, Baccari MC. Endocannabinoids modulate non-adrenergic, non-cholinergic inhibitory neurotransmission in strips from the mouse gastric fundus. Acta Physiol (Oxf) 2012; 206:80-7. [PMID: 22510304 DOI: 10.1111/j.1748-1716.2012.02444.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/06/2011] [Accepted: 04/10/2012] [Indexed: 02/06/2023]
Abstract
AIM To investigate the effects of endocannabinoids on non-adrenergic, non-cholinergic (NANC) relaxant responses in gastric strips from mice. METHODS Gastric longitudinal strips from the fundus region were mounted in organ baths for isometric recording. RESULTS In carbachol-precontracted strips, electrical field stimulation (EFS) elicited tetrodotoxin (TTX)-sensitive fast nitrergic relaxant responses that were followed, at the highest stimulation frequency, by sustained relaxations. The latter were abolished by α-chymotrypsin. Anandamide caused a TTX-sensitive relaxation that was abolished by α-chymotrypsin but unaffected by the nitric oxide (NO) synthesis inhibitor, Nω-nitro-L-arginine (L-NNA). Anandamide reduced the amplitude of EFS-induced fast relaxations, whereas increased that of sustained ones. Relaxation to the nicotinic receptor agonist dimethylphenyl piperazinium iodide (DMPP) was decreased in amplitude by either anandamide or L-NNA, whereas, surprisingly, it was increased by α-chymotrypsin and abolished by L-NNA plus α-chymotrypsin. Relaxation to vasoactive intestinal polypeptide (VIP) was not influenced by anandamide or L-NNA and was abolished by α-chymotrypsin. Following VIP desensitization, fast relaxant responses to EFS were reduced and the sustained ones abolished. The CB1 receptor antagonist AM251 increased, only at the highest stimulation frequency, the amplitude of the EFS-induced fast relaxation and reduced the sustained one. AM251 increased the response to DMPP and abolished that to anandamide. The CB2 receptor antagonist AM630 had no effects. CONCLUSION These results indicate that endocannabinoids modulate, via prejunctional CB1 receptors, the NANC peptidergic neurotransmission that, in turn, affects the nitrergic one.
Collapse
Affiliation(s)
- R. Garella
- Department of Physiological Sciences; University of Florence; Florence; Italy
| | - M. C. Baccari
- Department of Physiological Sciences; University of Florence; Florence; Italy
| |
Collapse
|
23
|
Ross GR, Lichtman A, Dewey WL, Akbarali HI. Evidence for the putative cannabinoid receptor (GPR55)-mediated inhibitory effects on intestinal contractility in mice. Pharmacology 2012; 90:55-65. [PMID: 22759743 DOI: 10.1159/000339076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/27/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cannabinoids inhibit intestinal motility via presynaptic cannabinoid receptor type I (CB1) in enteric neurons while cannabinoid receptor type II (CB2) receptors are located mainly in immune cells. The recently de-orphanized G-protein-coupled receptor, GPR55, has been proposed to be the 'third' cannabinoid receptor. Although gene expression of GPR55 is evident in the gut, functional evidence for GPR55 in the gut is unknown. In this study, we tested the hypothesis that GPR55 activation inhibits neurogenic contractions in the gut. METHODS We assessed the inhibitory effect of the atypical cannabinoid O-1602, a GPR55 agonist, in mouse colon. Isometric tension recordings in colonic tissue strips were used from either wild-type, GPR55(-/-) or CB1(-/-)/CB2(-/-) knockout mice. RESULTS O-1602 inhibited the electrical field- induced contractions in the colon strips from wild-type and CB1(-/-)/CB2(-/-) in a concentration-dependent manner, suggesting a non-CB1/CB2 receptor-mediated prejunctional effect. The concentration-dependent response of O-1602 was significantly inhibited in GPR55(-/-) mice. O-1602 did not relax colonic strips precontracted with high K(+) (80 mmol/l), indicating no involvement of Ca(2+) channel blockade in O-1602-induced relaxation. However, 10 µmol/l O-1602 partially inhibited the exogenous acetylcholine (10 µmol/l)-induced contractions. Moreover, we also assessed the inhibitory effects of JWH015, a CB2/GPR55 agonist on neurogenic contractions of mouse ileum. Surprisingly, the effects of JWH015 were independent of the known cannabinoid receptors. CONCLUSION Taken together, these findings suggest that activation of GPR55 leads to inhibition of neurogenic contractions in the gut and are predominantly prejunctional.
Collapse
Affiliation(s)
- Gracious R Ross
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | | | | | | |
Collapse
|
24
|
Gourcerol G, Adelson DW, Million M, Wang L, Taché Y. Modulation of gastric motility by brain-gut peptides using a novel non-invasive miniaturized pressure transducer method in anesthetized rodents. Peptides 2011; 32:737-46. [PMID: 21262308 PMCID: PMC3060955 DOI: 10.1016/j.peptides.2011.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/11/2011] [Accepted: 01/11/2011] [Indexed: 01/18/2023]
Abstract
Acute in vivo measurements are often the initial, most practicable approach used to investigate the effects of novel compounds or genetic manipulations on the regulation of gastric motility. Such acute methods typically involve either surgical implantation of devices or require intragastric perfusion of solutions, which can substantially alter gastric activity and may require extended periods of time to allow stabilization or recovery of the preparation. We validated a simple, non-invasive novel method to measure acutely gastric contractility, using a solid-state catheter pressure transducer inserted orally into the gastric corpus, in fasted, anesthetized rats or mice. The area under the curve of the phasic component (pAUC) of intragastric pressure (IGP) was obtained from continuous manometric recordings of basal activity and in responses to central or peripheral activation of cholinergic pathways, or to abdominal surgery. In rats, intravenous ghrelin or intracisternal injection of the thyrotropin-releasing hormone agonist, RX-77368, significantly increased pAUC while coeliotomy and cacal palpation induced a rapid onset inhibition of phasic activity lasting for the 1-h recording period. In mice, RX-77368 injected into the lateral brain ventricle induced high-amplitude contractions, and carbachol injected intraperitoneally increased pAUC significantly, while coeliotomy and cecal palpation inhibited baseline contractile activity. In wild-type mice, cold exposure (15 min) increased gastric phasic activity and tone, while there was no gastric response in corticotropin releasing factor (CRF)-overexpressing mice, a model of chronic stress. Thus, the novel solid-state manometric approach provides a simple, reliable means for acute pharmacological studies of gastric motility effects in rodents. Using this method we established in mice that the gastric motility response to central vagal activation is impaired under chronic expression of CRF.
Collapse
Affiliation(s)
- Guillaume Gourcerol
- CURE/Digestive Diseases Research Center, and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
25
|
Kimball ES, Wallace NH, Schneider CR, D'Andrea MR, Hornby PJ. Small intestinal cannabinoid receptor changes following a single colonic insult with oil of mustard in mice. Front Pharmacol 2010; 1:132. [PMID: 21779244 PMCID: PMC3134866 DOI: 10.3389/fphar.2010.00132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/20/2010] [Indexed: 12/13/2022] Open
Abstract
Cannabinoids are known to be clinically beneficial for control of appetite disorders and nausea/vomiting, with emerging data that they can impact other GI disorders, such as inflammation. Post-inflammatory irritable bowel syndrome (PI-IBS) is a condition of perturbed intestinal function that occurs subsequent to earlier periods of intestinal inflammation. Cannabinoid 1 receptor (CB1R) and CB2R alterations in GI inflammation have been demonstrated in both animal models and clinically, but their continuing role in the post-inflammatory period has only been implicated to date. Therefore, to provide direct evidence for CBR involvement in altered GI functions in the absence of overt inflammation, we used a model of enhanced upper GI transit that persists for up to 4 weeks after a single insult by intracolonic 0.5% oil of mustard (OM) in mice. In mice administered OM, CB1R immunostaining in the myenteric plexus was reduced at day 7, when colonic inflammation is subsiding, and then increased at 28 days, compared to tissue from age-matched vehicle-treated mice. In the lamina propria CB2R immunostaining density was also increased at day 28. In mice tested 28 day after OM, either a CB1R-selective agonist, ACEA (1 and 3 mg/kg, s.c.) or a CB2R-selective agonist, JWH-133 (3 and 10 mg/kg, s.c.) reduced the enhanced small intestinal transit in a dose-related manner. Doses of ACEA and JWH-133 (1 mg/kg), alone or combined, reduced small intestinal transit of OM-treated mice to a greater extent than control mice. Thus, in this post-colonic inflammation model, both CBR subtypes are up-regulated and there is increased efficacy of both CB1R and CB2R agonists. We conclude that CBR remodeling occurs not only during GI inflammation but continues during the recovery phase. Thus, either CB1R- or CB2-selective agonists could be efficacious for modulating GI motility in individuals experiencing diarrhea-predominant PI-IBS.
Collapse
Affiliation(s)
- Edward S Kimball
- Johnson & Johnson Pharmaceutical Research and Development LLC Spring House, PA, USA
| | | | | | | | | |
Collapse
|
26
|
Storr MA, Bashashati M, Hirota C, Vemuri VK, Keenan CM, Duncan M, Lutz B, Mackie K, Makriyannis A, MacNaughton WK, Sharkey KA. Differential effects of CB(1) neutral antagonists and inverse agonists on gastrointestinal motility in mice. Neurogastroenterol Motil 2010; 22:787-96, e223. [PMID: 20180825 PMCID: PMC2943391 DOI: 10.1111/j.1365-2982.2010.01478.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cannabinoid type 1 (CB(1)) receptors are involved in the regulation of gastrointestinal (GI) motility and secretion. Our aim was to characterize the roles of the CB(1) receptor on GI motility and secretion in vitro and in vivo by using different classes of CB(1) receptor antagonists. METHODS Immunohistochemistry was used to examine the localization of CB(1) receptor in the mouse ileum and colon. Organ bath experiments on mouse ileum and in vivo motility testing comprising upper GI transit, colonic expulsion, and whole gut transit were performed to characterize the effects of the inverse agonist/antagonist AM251 and the neutral antagonist AM4113. As a marker of secretory function we measured short circuit current in vitro using Ussing chambers and stool fluid content in vivo in mouse colon. We also assessed colonic epithelial permeability in vitro using FITC-labeled inulin. KEY RESULTS In vivo, the inverse agonist AM251 increased upper GI transit and whole gut transit, but it had no effect on colonic expulsion. By contrast, the neutral antagonist AM4113 increased upper GI transit, but unexpectedly reduced both colonic expulsion and whole gut transit at high, but not lower doses. CONCLUSIONS & INFERENCES Cannabinoid type 1 receptors regulate small intestinal and colonic motility, but not GI secretion under physiological conditions. Cannabinoid type 1 inverse agonists and CB(1) neutral antagonists have different effects on intestinal motility. The ability of the neutral antagonist not to affect whole gut transit may be important for the future development of CB(1) receptor antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Martin A. Storr
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Division of Gastroenterology, Department of Medicine, University Calgary, Calgary, Alberta, Canada
| | - Mohammad Bashashati
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Christina Hirota
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - V. Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Catherine M. Keenan
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Marnie Duncan
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Beat Lutz
- Department of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | | | - Wallace K. MacNaughton
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Abalo R, Cabezos PA, Vera G, Fernández-Pujol R, Martín MI. The cannabinoid antagonist SR144528 enhances the acute effect of WIN 55,212-2 on gastrointestinal motility in the rat. Neurogastroenterol Motil 2010; 22:694-e206. [PMID: 20132133 DOI: 10.1111/j.1365-2982.2009.01466.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND In the absence of pathology, cannabinoid-induced depression of gastrointestinal (GI) motility is thought to be mediated primarily by CB1 receptors, whereas the role of CB2 receptors is still unclear. The aim of this work was to radiographically analyze the acute effect of the mixed cannabinoid agonist WIN 55,212-2 (WIN) on GI motor function in the rat, focusing on the involvement of CB1 and CB2 receptors. METHODS Male Wistar rats received different doses of WIN and both psychoactivity (cannabinoid tetrad) and GI motility (radiographic analysis) were tested. The duration of WIN effect on GI motility was also radiographically analyzed. Finally, the involvement of the different cannabinoid receptors on WIN-induced alterations of GI motility was analyzed by the previous administration of selective CB1 (AM251) and CB2 (SR144528 or AM630) antagonists. After administration of contrast medium, alterations in GI motility were quantitatively evaluated in serial radiographs by assigning a compounded value to each region of the GI tract. KEY RESULTS Low, analgesic doses of WIN delayed intestinal transit, but high, psychoactive doses were required to delay gastric emptying. Acute WIN effects on GI motility were confined to the first few hours after administration. AM251 partially counteracted the effect of WIN on GI motility. Surprisingly, SR144528 (but not AM630) enhanced WIN-induced delayed gastric emptying. CONCLUSIONS & INFERENCES X-ray analyses confirm that cannabinoids inhibit GI motility via CB1 receptors; in addition, cannabinoids could influence motility through interaction with a SR144528-sensitive site. Further studies are needed to verify if such site of action is the CB2 receptor.
Collapse
Affiliation(s)
- R Abalo
- Departamento de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain.
| | | | | | | | | |
Collapse
|
28
|
Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 2010; 126:21-38. [PMID: 20117132 DOI: 10.1016/j.pharmthera.2009.12.005] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 12/11/2022]
Abstract
Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, Naples, Italy.
| | | |
Collapse
|
29
|
Fichna J, Schicho R, Andrews CN, Bashashati M, Klompus M, McKay DM, Sharkey KA, Zjawiony JK, Janecka A, Storr MA. Salvinorin A inhibits colonic transit and neurogenic ion transport in mice by activating kappa-opioid and cannabinoid receptors. Neurogastroenterol Motil 2009; 21:1326-e128. [PMID: 19650775 DOI: 10.1111/j.1365-2982.2009.01369.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The major active ingredient of the plant Salvia divinorum, salvinorin A (SA) has been used to treat gastrointestinal (GI) symptoms. As the action of SA on the regulation of colonic function is unknown, our aim was to examine the effects of SA on mouse colonic motility and secretion in vitro and in vivo. The effects of SA on GI motility were studied using isolated preparations of colon, which were compared with preparations from stomach and ileum. Colonic epithelial ion transport was evaluated using Ussing chambers. Additionally, we studied GI motility in vivo by measuring colonic propulsion, gastric emptying, and upper GI transit. Salvinorin A inhibited contractions of the mouse colon, stomach, and ileum in vitro, prolonged colonic propulsion and slowed upper GI transit in vivo. Salvinorin A had no effect on gastric emptying in vivo. Salvinorin A reduced veratridine-, but not forskolin-induced epithelial ion transport. The effects of SA on colonic motility in vitro were mediated by kappa-opioid receptors (KORs) and cannabinoid (CB) receptors, as they were inhibited by the antagonists nor-binaltorphimine (KOR), AM 251 (CB(1) receptor) and AM 630 (CB(2) receptor). However, in the colon in vivo, the effects were largely mediated by KORs. The effects of SA on veratridine-mediated epithelial ion transport were inhibited by nor-binaltorphimine and AM 630. Salvinorin A slows colonic motility in vitro and in vivo and influences neurogenic ion transport. Due to its specific regional action, SA or its derivatives may be useful drugs in the treatment of lower GI disorders associated with increased GI transit and diarrhoea.
Collapse
Affiliation(s)
- J Fichna
- Division of Gastroenterology, Department of Medicine, Snyder Institute of Infection, Immunity and Inflammation (III), Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Grider JR, Mahavadi S, Li Y, Qiao LY, Kuemmerle JF, Murthy KS, Martin BR. Modulation of motor and sensory pathways of the peristaltic reflex by cannabinoids. Am J Physiol Gastrointest Liver Physiol 2009; 297:G539-49. [PMID: 19589944 PMCID: PMC2739820 DOI: 10.1152/ajpgi.00064.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cannabinoids have long been known to be potent inhibitors of intestinal and colonic propulsion. This effect has generally been attributed to their ability to prejunctionally inhibit release of acetylcholine from excitatory motor neurons that mediate, in part, the ascending contraction phase of the peristaltic reflex. In the present study we examined the effect of cannabinoids on the other transmitters known to participate in the peristaltic reflex using a three-compartment preparation of rat colon that allows separation of ascending contraction, descending relaxation, and the sensory components of the reflex. On addition to the orad motor compartment, anandamide decreased and AM-251, a CB-1 antagonist, increased ascending contraction and the concomitant substance P (SP) release. Similarly, on addition to the caudad motor compartment, anandamide decreased and AM-251 increased descending relaxation and the concomitant vasoactive intestinal peptide (VIP) release. On addition to the central sensory compartment, anandamide decreased and AM-251 increased both ascending contraction and SP release orad, and descending relaxation and VIP release caudad. This suggested a role for CB-1 receptors in modulation of sensory transmission that was confirmed by the demonstration that central addition of anandamide decreased and AM-251 increased release of the sensory transmitter, calcitonin gene-related peptide (CGRP). We conclude that the potent antipropulsive effect of cannabinoids is the result of inhibition of both excitatory cholinergic/tachykininergic and inhibitory VIPergic motor neurons that mediate ascending contraction and descending relaxation, respectively, as well as inhibition of the intrinsic sensory CGRP-containing neurons that initiate the peristaltic reflex underlying propulsive motility.
Collapse
Affiliation(s)
- John R. Grider
- Department of Physiology and Biophysics, Department of Internal Medicine, Division of Gastroenterology, Department of Pharmacology and Toxicology and the Virginia Program in Enteric Neuromuscular Sciences (VPENS), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, Department of Internal Medicine, Division of Gastroenterology, Department of Pharmacology and Toxicology and the Virginia Program in Enteric Neuromuscular Sciences (VPENS), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Yan Li
- Department of Physiology and Biophysics, Department of Internal Medicine, Division of Gastroenterology, Department of Pharmacology and Toxicology and the Virginia Program in Enteric Neuromuscular Sciences (VPENS), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Li-Ya Qiao
- Department of Physiology and Biophysics, Department of Internal Medicine, Division of Gastroenterology, Department of Pharmacology and Toxicology and the Virginia Program in Enteric Neuromuscular Sciences (VPENS), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - John F. Kuemmerle
- Department of Physiology and Biophysics, Department of Internal Medicine, Division of Gastroenterology, Department of Pharmacology and Toxicology and the Virginia Program in Enteric Neuromuscular Sciences (VPENS), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S. Murthy
- Department of Physiology and Biophysics, Department of Internal Medicine, Division of Gastroenterology, Department of Pharmacology and Toxicology and the Virginia Program in Enteric Neuromuscular Sciences (VPENS), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Billy R. Martin
- Department of Physiology and Biophysics, Department of Internal Medicine, Division of Gastroenterology, Department of Pharmacology and Toxicology and the Virginia Program in Enteric Neuromuscular Sciences (VPENS), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
31
|
Baldassano S, Zizzo MG, Serio R, Mulè F. Interaction between cannabinoid CB1 receptors and endogenous ATP in the control of spontaneous mechanical activity in mouse ileum. Br J Pharmacol 2009; 158:243-51. [PMID: 19466981 DOI: 10.1111/j.1476-5381.2009.00260.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Although it is well accepted that cannabinoids modulate intestinal motility by reducing cholinergic neurotransmission mediated by CB(1) receptors, it is not known whether the endocannabinoids are involved in more complex circuits and if they interact with other systems. The aim of the present study was to examine possible interactions between cannabinoid CB(1) receptors and purines in the control of spontaneous contractility of longitudinal muscle in mouse ileum. EXPERIMENTAL APPROACH The mechanical activity of longitudinally oriented ileal segments from mice was recorded as isometric contractions. KEY RESULTS The selective CB(1) receptor agonist, N-(2-chloroethyl)5,8,11,14-eicosaetraenamide (ACEA) reduced, concentration dependently, spontaneous contractions in mouse ileum. This effect was almost abolished by tetrodotoxin (TTX) or atropine. Inhibition by ACEA was not affected by theophylline (P1 receptor antagonist) or by P2Y receptor desensitization with adenosine 5'[beta-thio]diphosphate trilithium salt, but was significantly reversed by pyridoxal phosphate-6-azo(benzene-2,4-disulphonic acid) (P2 receptor antagonist), by P2X receptor desensitization with alpha,beta-methyleneadenosine 5'-triphosphate lithium salt (alpha,beta-MeATP) or by 8,8'-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino) bis(1,3,5-naphthalenetrisulphonic acid)] (P2X receptor antagonist). Contractile responses to alpha,beta-MeATP (P2X receptor agonist) were virtually abolished by TTX or atropine, suggesting that they were mediated by acetylcholine released from neurones, and significantly reduced by ACEA. CONCLUSION AND IMPLICATIONS In mouse ileum, activation of CB(1) receptors, apart from reducing acetylcholine release from cholinergic nerves, was able to modulate negatively, endogenous purinergic effects, mediated by P2X receptors, on cholinergic neurons. Our study provides evidence for a role of cannabinoids in the modulation of interneuronal purinergic transmission.
Collapse
Affiliation(s)
- S Baldassano
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, Palermo, Italy
| | | | | | | |
Collapse
|
32
|
Gratzke C, Streng T, Park A, Christ G, Stief CG, Hedlund P, Andersson KE. Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J Urol 2009; 181:1939-48. [PMID: 19237169 DOI: 10.1016/j.juro.2008.11.079] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE We investigated the distribution of cannabinoid receptor subtypes 1 and 2 in the detrusor of different species and studied the effects of cannabinoid receptor 1 and 2 agonists on bladder function. MATERIALS AND METHODS Cannabinoid receptor 1 and 2 expression was studied with Western blot and immunohistochemistry in rat, monkey and human detrusors. Co-staining was done for markers of sensory nerves using calcitonin gene-related peptide (Euro-Diagnostica, Malmö, Sweden) and transient receptor potential vanilloid 1, and for cholinergic nerves using VAChT (Santa Cruz Biotechnology, Santa Cruz, California). Actions of the endogenous cannabinoid receptor-1 and 2 agonist anandamide (Sigma(R)), and the cannabinoid receptor 1 and 2 agonist CP55,940 (Sigma) on isolated detrusor and during cystometry in conscious rats were recorded. RESULTS Higher expression of cannabinoid receptor 2 but not cannabinoid receptor 1 was noted in the mucosa than in the detrusor. Compared to the detrusor larger amounts of cannabinoid receptor 2 containing nerves that also expressed transient receptor potential vanilloid 1 or calcitonin gene-related peptide were observed in the suburothelium. Nerve fibers containing cannabinoid receptor 2 and VAChT were located in the detrusor. Neither anandamide nor CP55,940 affected isolated detrusor carbachol (Sigma) contractions. Nerve contractions were enhanced by 10 muM anandamide and decreased by 10 muM CP55,940 (p<0.05). In vivo CP55,940 increased the micturition interval by 46% and threshold pressure by 124% (p <0.05). Anandamide increased threshold pressure by 26% and decreased the micturition interval by 19% (p <0.05 and <0.01, respectively). CONCLUSIONS The distribution of cannabinoid receptor 2 on sensory nerves and in the urothelium, and effects by CP55940 on the micturition interval and threshold pressure suggest a role for cannabinoid receptor 2 in bladder afferent signals. Co-expression of VAChT and cannabinoid receptor 2, and effects by CP55940 on nerve contractions suggest a cannabinoid receptor 2 mediated modulatory effect on cholinergic nerve activity. Anandamide may not be a good tool for cannabinoid receptor studies due to its activity at other receptors.
Collapse
Affiliation(s)
- Christian Gratzke
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Borrelli F, Izzo AA. Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. Best Pract Res Clin Endocrinol Metab 2009; 23:33-49. [PMID: 19285259 DOI: 10.1016/j.beem.2008.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acylethanolamides (AEs) are a group of lipids occurring in both plants and animals. The best-studied AEs are the endocannabinoid anandamide (AEA), the anti-inflammatory compound palmitoylethanolamide (PEA), and the potent anorexigenic molecule oleoylethanolamide (OEA). AEs are biosynthesized in the gastrointestinal tract, and their levels may change in response to noxious stimuli, food deprivation or diet-induced obesity. The biological actions of AEs within the gut are not limited to the modulation of food intake and energy balance. For example, AEs exert potential beneficial effects in the regulation of intestinal motility, secretion, inflammation and cellular proliferation. Molecular targets of AEs, which have been identified in the gastrointestinal tract, include cannabinoid CB(1) and CB(2) receptors (activated by AEA), transient receptor potential vanilloid type 1 (TRPV1, activated by AEA and OEA), the nuclear receptor peroxisome proliferators-activated receptor-alpha (PPAR-alpha, activated by OEA and, to a less extent, by PEA), and the orphan G-coupled receptors GPR119 (activated by OEA) and GPR55 (activated by PEA and, with lower potency, by AEA and OEA). Modulation of AE levels in the gut may provide new pharmacological strategies not only for the treatment of feeding disorders but also for the prevention or cure of widespread intestinal diseases such as inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, via D. Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|
34
|
A decrease in anandamide signaling contributes to the maintenance of cutaneous mechanical hyperalgesia in a model of bone cancer pain. J Neurosci 2008; 28:11141-52. [PMID: 18971457 DOI: 10.1523/jneurosci.2847-08.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumors in bone are associated with pain in humans. Data generated in a murine model of bone cancer pain suggest that a disturbance of local endocannabinoid signaling contributes to the pain. When tumors formed after injection of osteolytic fibrosarcoma cells into the calcaneus bone of mice, cutaneous mechanical hyperalgesia was associated with a decrease in the level of anandamide (AEA) in plantar paw skin ipsilateral to tumors. The decrease in AEA occurred in conjunction with increased degradation of AEA by fatty acid amide hydrolase (FAAH). Intraplantar injection of AEA reduced the hyperalgesia, and intraplantar injection of URB597, an inhibitor of FAAH, increased the local level of AEA and also reduced hyperalgesia. An increase in FAAH mRNA and enzyme activity in dorsal root ganglia (DRG) L3-L5 ipsilateral to the affected paw suggests DRG neurons contribute to the increased FAAH activity in skin in tumor-bearing mice. Importantly, the anti-hyperalgesic effects of AEA and URB597 were blocked by a CB1 receptor antagonist. Increased expression of CB1 receptors by DRG neurons ipsilateral to tumor-bearing limbs may contribute to the anti-hyperalgesic effect of elevated AEA levels. Furthermore, CB1 receptor protein-immunoreactivity as well as inhibitory effects of AEA and URB597 on the depolarization-evoked Ca(2+) transient were increased in small DRG neurons cocultured with fibrosarcoma cells indicating that fibrosarcoma cells are sufficient to evoke phenotypic changes in AEA signaling in DRG neurons. Together, the data provide evidence that manipulation of peripheral endocannabinoid signaling is a promising strategy for the management of bone cancer pain.
Collapse
|
35
|
Kurjak M, Hamel AM, Allescher HD, Schusdziarra V, Storr M. Differential stimulatory effects of cannabinoids on VIP release and NO synthase activity in synaptosomal fractions from rat ileum. Neuropeptides 2008; 42:623-32. [PMID: 18829105 DOI: 10.1016/j.npep.2008.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 08/07/2008] [Accepted: 08/13/2008] [Indexed: 11/19/2022]
Abstract
Cannabinoid-1 (CB1) and CB2 receptors are present on neurons of the enteric nervous system. Our aim was to study whether cannabinoid receptor activation is involved in the regulation of VIP release and NO synthesis in isolated fractions of nerve terminals from rat ileum. VIP was measured by RIA and NO synthesis was analyzed using a L-[3H]arginine assay. Anandamide stimulated VIP release (basal: 245.9+/-12.4pg/mg, 10(-6)M: 307.6+/-11.7pg/mg, [n=6, P<0.05], 10(-7)M: 367.0+/-26.1pg/mg, [n=6, P<0.01]). The cannabinoid receptor agonist WIN 55,212-2 had similar effects (basal: 250.5+/-37.4pg/mg, 10(-6)M: 320.9+/-34.7pg/mg; [n=4, P<0.05]). The stimulatory effect of anandamide was blocked by the selective CB2 receptor antagonist, SR144528 (10(-7)M) (anandamide 10(-6)M: 307.6+/-11.7pg/mg; +SR144528: 249.0+/-26.3pg/mg, [n=6, P<0.05]), whereas the selective CB1 receptor antagonist SR141716 A had no effect. NO synthesis was stimulated by anandamide ([fmol/mg/min] basal: 0.08+/-0.01, 10(-6)M: 0.16+/-0.03; 10(-7)M: 0.13+/-0.02, n=4, P<0.05) and WIN 55,212-2 ([fmol/mg/min] basal: 0.05+/-0.01, 10(-6)M: 0.1+/-0.02, n=4, P<0.05). The anandamide reuptake inhibitor, AM 404 increased basal NOS activity ([fmol/mg/min] control: 0.1+/-0.04, 10(-6)M: 0.28+/-0.08, n=7, P<0.05). The stimulatory effect of anandamide on NO synthase was not antagonized by antagonists at the CB1, CB2 or TRPV1 receptor, respectively. In conclusion, in enteric nerves anandamide stimulates VIP release by activation of a CB2 receptor specific pathway, while the stimulation of NO production suggests the existence of an additional type of cannabinoid receptor in the enteric nervous system.
Collapse
Affiliation(s)
- M Kurjak
- Endooffice Friedenspromenade 40, 81727 Munich, Germany.
| | | | | | | | | |
Collapse
|
36
|
van Diepen H, Schlicker E, Michel MC. Prejunctional and peripheral effects of the cannabinoid CB1 receptor inverse agonist rimonabant (SR 141716). Naunyn Schmiedebergs Arch Pharmacol 2008; 378:345-69. [DOI: 10.1007/s00210-008-0327-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/23/2008] [Indexed: 02/06/2023]
|
37
|
Capasso R, Borrelli F, Cascio MG, Aviello G, Huben K, Zjawiony JK, Marini P, Romano B, Di Marzo V, Capasso F, Izzo AA. Inhibitory effect of salvinorin A, from Salvia divinorum, on ileitis-induced hypermotility: cross-talk between kappa-opioid and cannabinoid CB(1) receptors. Br J Pharmacol 2008; 155:681-9. [PMID: 18622408 DOI: 10.1038/bjp.2008.294] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Salvinorin A, the active component of the hallucinogenic herb Salvia divinorum, inhibits intestinal motility through activation of kappa-opioid receptors (KORs). However, this compound may have target(s) other than the KORs in the inflamed gut. Because intestinal inflammation upregulates cannabinoid receptors and endogenous cannabinoids, in the present study we investigated the possible involvement of the endogenous cannabinoid system in salvinorin A-induced delay in motility in the inflamed gut. EXPERIMENTAL APPROACH Motility in vivo was measured by evaluating the distribution of a fluorescent marker along the small intestine; intestinal inflammation was induced by the irritant croton oil; direct or indirect activity at cannabinoid receptors was evaluated by means of binding, enzymic and cellular uptake assays. KEY RESULTS Salvinorin A as well as the KOR agonist U-50488 reduced motility in croton oil treated mice. The inhibitory effect of both salvinorin A and U-50488 was counteracted by the KOR antagonist nor-binaltorphimine and by the cannabinoid CB(1) receptor antagonist rimonabant. Rimonabant, however, did not counteract the inhibitory effect of salvinorin A on motility in control mice. Binding experiments showed very weak affinity of salvinorin A for cannabinoid CB(1) and CB(2) and no inhibitory effect on 2-arachidonoylglycerol and anandamide hydrolysis and cellular uptake. CONCLUSIONS AND IMPLICATIONS The inhibitory effect of salvinorin A on motility reveals a functional interaction between cannabinoid CB(1) receptors and KORs in the inflamed--but not in the normal--gut in vivo.
Collapse
Affiliation(s)
- R Capasso
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Duncan M, Mouihate A, Mackie K, Keenan CM, Buckley NE, Davison JS, Patel KD, Pittman QJ, Sharkey KA. Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats. Am J Physiol Gastrointest Liver Physiol 2008; 295:G78-G87. [PMID: 18483180 PMCID: PMC2494728 DOI: 10.1152/ajpgi.90285.2008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enhanced intestinal transit due to lipopolysaccharide (LPS) is reversed by cannabinoid (CB)2 receptor agonists in vivo, but the site and mechanism of action are unknown. We have tested the hypothesis that CB2 receptors are expressed in the enteric nervous system and are activated in pathophysiological conditions. Tissues from either saline- or LPS-treated (2 h; 65 microg/kg ip) rats were processed for RT-PCR, Western blotting, and immunohistochemistry or were mounted in organ baths where electrical field stimulation was applied in the presence or absence of CB receptor agonists. Whereas the CB2 receptor agonist JWH133 did not affect the electrically evoked twitch response of the ileum under basal conditions, in the LPS-treated tissues JWH133 was able to reduce the enhanced contractile response in a concentration-dependent manner. Rat ileum expressed CB2 receptor mRNA and protein under physiological conditions, and this expression was not affected by LPS treatment. In the myenteric plexus, CB2 receptors were expressed on the majority of neurons, although not on those expressing nitric oxide synthase. LPS did not alter the distribution of CB2 receptor expression in the myenteric plexus. In vivo LPS treatment significantly increased Fos expression in both enteric glia and neurons. This enhanced expression was significantly attenuated by JWH133, whose action was reversed by the CB2 receptor antagonist AM630. Taking these facts together, we conclude that activation of CB2 receptors in the enteric nervous system of the gastrointestinal tract dampens endotoxin-induced enhanced intestinal contractility.
Collapse
Affiliation(s)
- Marnie Duncan
- Snyder Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and Department of Biological Sciences, California State Polytechnic University, Pomona, California
| | - Abdeslam Mouihate
- Snyder Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and Department of Biological Sciences, California State Polytechnic University, Pomona, California
| | - Ken Mackie
- Snyder Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and Department of Biological Sciences, California State Polytechnic University, Pomona, California
| | - Catherine M. Keenan
- Snyder Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and Department of Biological Sciences, California State Polytechnic University, Pomona, California
| | - Nancy E. Buckley
- Snyder Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and Department of Biological Sciences, California State Polytechnic University, Pomona, California
| | - Joseph S. Davison
- Snyder Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and Department of Biological Sciences, California State Polytechnic University, Pomona, California
| | - Kamala D. Patel
- Snyder Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and Department of Biological Sciences, California State Polytechnic University, Pomona, California
| | - Quentin J. Pittman
- Snyder Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and Department of Biological Sciences, California State Polytechnic University, Pomona, California
| | - Keith A. Sharkey
- Snyder Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and Department of Biological Sciences, California State Polytechnic University, Pomona, California
| |
Collapse
|
39
|
Di Marzo V, Capasso R, Matias I, Aviello G, Petrosino S, Borrelli F, Romano B, Orlando P, Capasso F, Izzo AA. The role of endocannabinoids in the regulation of gastric emptying: alterations in mice fed a high-fat diet. Br J Pharmacol 2008; 153:1272-80. [PMID: 18223666 DOI: 10.1038/sj.bjp.0707682] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids (via cannabinoid CB(1) receptor activation) are physiological regulators of intestinal motility and food intake. However, their role in the regulation of gastric emptying is largely unexplored. The purpose of the present study was to investigate the involvement of the endocannabinoid system in the regulation of gastric emptying in mice fed either a standard diet (STD) or a high-fat diet (HFD) for 14 weeks. EXPERIMENTAL APPROACH Gastric emptying was evaluated by measuring the amount of phenol red recovered in the stomach after oral challenge; CB(1) expression was analysed by quantitative reverse transcription-PCR; endocannabinoid (anandamide and 2-arachidonoyl glycerol) levels were measured by liquid chromatography-mass spectrometry. KEY RESULTS Gastric emptying was reduced by anandamide, an effect counteracted by the CB(1) receptor antagonist rimonabant, but not by the CB(2) receptor antagonist SR144528 or by the transient receptor potential vanilloid type 1 (TRPV1) antagonist 5'-iodoresiniferatoxin. The fatty acid amide hydrolase (FAAH) inhibitor N-arachidonoyl-5-hydroxytryptamine (but not the anandamide uptake inhibitor OMDM-2) reduced gastric emptying in a way partly reduced by rimonabant. Compared to STD mice, HFD mice exhibited significantly higher body weight and fasting glucose levels, delayed gastric emptying and lower anandamide and CB(1) mRNA levels. N-arachidonoylserotonin (but not rimonabant) affected gastric emptying more efficaciously in HFD than STD mice. CONCLUSIONS AND IMPLICATIONS Gastric emptying is physiologically regulated by the endocannabinoid system, which is downregulated following a HFD leading to overweight.
Collapse
Affiliation(s)
- V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Baldassano S, Serio R, Mule' F. Cannabinoid CB(1) receptor activation modulates spontaneous contractile activity in mouse ileal longitudinal muscle. Eur J Pharmacol 2007; 582:132-8. [PMID: 18234188 DOI: 10.1016/j.ejphar.2007.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 12/04/2007] [Accepted: 12/16/2007] [Indexed: 01/23/2023]
Abstract
The purpose of the present study was to examine whether cannabinoid receptor agonists influence spontaneous contractile activity of longitudinal muscle in mouse ileum in vitro. Isolated segments of mouse ileum displayed spontaneous contractions with an amplitude and frequency of about 300 mg and 30 cpm, respectively. The endocannabinoid anandamide (1-100 microM), the selective cannabinoid CB(1) receptor agonist, ACEA (0.1 microM-10 microM), but not the selective cannabinoid CB(2) receptor agonist, JWH 133 (0.1 microM-10 microM), reduced in a concentration-dependent manner the spontaneous mechanical activity. The inhibitory effect consisted in a decrease of the mean amplitude of longitudinal spontaneous contractions, without changes in the resting tone. The inhibitory effect induced by cannabinoids was significantly antagonized by the selective cannabinoid CB(1) receptor antagonist, SR141716A (0.1 microM), but not by the selective cannabinoid CB(2) receptor antagonist, AM630 (0.1 microM). None of the cannabinoid antagonists, at the concentration used, did affect the spontaneous mechanical activity. The ACEA-induced reduction of spontaneous contractions was almost abolished by tetrodotoxin, atropine or apamin and it was unaffected by hexamethonium or N(omega)-nitro-l-arginine methyl ester (l-NAME), inhibitor of nitric oxide synthase. The myogenic contractions evoked by carbachol were not affected by ACEA. In conclusion, the present results suggest that activation of neural cannabinoid CB(1) receptors may play a role in the control of spontaneous mechanical activity through inhibition of acetylcholine release from cholinergic nerve. Activation of small conductance Ca(2+)-dependent K(+) channels is involved in this action.
Collapse
Affiliation(s)
- Sara Baldassano
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | | |
Collapse
|
41
|
Micale V, Mazzola C, Drago F. Endocannabinoids and neurodegenerative diseases. Pharmacol Res 2007; 56:382-92. [DOI: 10.1016/j.phrs.2007.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 12/13/2022]
|