1
|
Sun Y, Zhao X, Zhang Q, Yang R, Liu W. An immunoregulatory and metabolism-improving injectable hydrogel for cardiac repair after myocardial infarction. Regen Biomater 2024; 12:rbae131. [PMID: 39776861 PMCID: PMC11703553 DOI: 10.1093/rb/rbae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity via pentose phosphate pathway. OD with intrinsic anti-inflammatory effect can induce M2 polarization of macrophages to accelerate inflammatory elimination. While facing the possibility of endothelial-to-mesenchymal transition (EndoMT) caused by excessive expressed TGF-β1 secreted from M2 macrophages, BFZ NPs can target endothelia cells and intracellularly release BA to regulate the level of fatty acid oxidation, resulting in retained endothelial features and decreased risk of cardiac fibrosis. After being injecting the hydrogel into rats' infarcted cardiac, the 28-day-post surgical outcomes demonstrate its benign effects on restoring cardiac functions and attenuating adverse left ventricular remodeling. This study shows a promising measure for MI treatment with immunoregulating and metabolism regulation comprehensively.
Collapse
Affiliation(s)
- Yage Sun
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xinrui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qian Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Rong Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Lu B, Zhao Q, Cai Z, Qian S, Mao J, Zhang L, Mao X, Sun X, Cui W, Zhang Y. Regulation of Glucose Metabolism for Cell Energy Supply In Situ via High-Energy Intermediate Fructose Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309060. [PMID: 38063818 DOI: 10.1002/smll.202309060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Indexed: 05/12/2024]
Abstract
The cellular functions, such as tissue-rebuilding ability, can be directly affected by the metabolism of cells. Moreover, the glucose metabolism is one of the most important processes of the metabolism. However, glucose cannot be efficiently converted into energy in cells under ischemia hypoxia conditions. In this study, a high-energy intermediate fructose hydrogel (HIFH) is developed by the dynamic coordination between sulfhydryl-functionalized bovine serum albumin (BSA-SH), the high-energy intermediate in glucose metabolism (fructose-1,6-bisphosphate, FBP), and copper ion (Cu2+). This hydrogel system is injectable, self-healing, and biocompatible, which can intracellularly convert energy with high efficacy by regulating the glucose metabolism in situ. Additionally, the HIFH can greatly boost cell antioxidant capacity and increase adenosine triphosphate (ATP) in the ischemia anoxic milieu by roughly 1.3 times, improving cell survival, proliferation and physiological functions in vitro. Furthermore, the ischemic skin tissue model is established in rats. The HIFH can speed up the healing of damaged tissue by promoting angiogenesis, lowering reactive oxygen species (ROS), and eventually expanding the healing area of the damaged tissue by roughly 1.4 times in vivo. Therefore, the HIFH can provide an impressive perspective on efficient in situ cell energy supply of damaged tissue.
Collapse
Affiliation(s)
- Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Shutong Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
3
|
McDonald TS, Neal ES, Borges K. Fructose 1,6-bisphosphate is anticonvulsant and improves oxidative glucose metabolism within the hippocampus and liver in the chronic pilocarpine mouse epilepsy model. Epilepsy Behav 2021; 122:108223. [PMID: 34388666 DOI: 10.1016/j.yebeh.2021.108223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Glucose metabolism is altered in epilepsy, and this may contribute to seizure generation. Recent research has shown that metabolic therapies including the ketogenic diet and medium chain triglycerides can improve energy metabolism in the brain. Fructose 1,6-bisphosphate (F16BP) is an intermediate of glycolysis and when administered exogenously is anticonvulsant in several rodent seizure models and may alter glucose metabolism. Here, we showed that F16BP elevated the seizure threshold in the acute 6-Hz mouse seizure model and investigated if F16BP could restore impairments in glucose metabolism occurring in the chronic stage of the pilocarpine mouse model of epilepsy. Two weeks after the pilocarpine injections, mice that experienced status epilepticus (SE, "epileptic") and did not experience SE (no SE, "nonepileptic") were injected with vehicle (0.9% saline) or F16BP (1 g/kg in 0.9% saline) daily for 5 consecutive days. At 3 weeks, mice were injected with [U-13C6]-glucose and the % enrichment of 13C in key metabolites in addition to the total levels of each metabolite was measured in the hippocampal formation and liver. Fructose 1,6-bisphosphate increased total GABA in the hippocampal formation, regardless of whether mice had experienced SE. In the hippocampal formation, F16BP prevented reductions in the % 13C enrichment of citrate, succinate, malate, glutamate, GABA and aspartate that occurred in the chronic stage of the pilocarpine model. Interestingly, % 13C enrichment in glucose-derived metabolites was reduced in the liver in the chronic stage of the pilocarpine model. Fructose 1,6-bisphosphate was also beneficial in the liver, preventing reductions in % 13C enrichment of lactate and alanine that were associated with SE. This study confirmed that F16BP is anticonvulsant and can improve elements of glucose metabolism that are dysregulated in the chronic stage of the pilocarpine model, which may be due to reduction of spontaneous seizures. Our results highlight that F16BP may be therapeutically beneficial for epilepsies refractory to treatment.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Elliott S Neal
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karin Borges
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
4
|
Dias HB, de Oliveira JR, Donadio MVF, Kimura S. Fructose-1,6-bisphosphate prevents pulmonary fibrosis by regulating extracellular matrix deposition and inducing phenotype reversal of lung myofibroblasts. PLoS One 2019; 14:e0222202. [PMID: 31509566 PMCID: PMC6738633 DOI: 10.1371/journal.pone.0222202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is the result of chronic injury where fibroblasts become activated and secrete large amounts of extracellular matrix (ECM), leading to impaired fibroblasts degradation followed by stiffness and loss of lung function. Fructose-1,6-bisphosphate (FBP), an intermediate of glycolytic pathway, decreases PF development, but the underlying mechanism is unknown. To address this issue, PF was induced in vivo using a mouse model, and pulmonary fibroblasts were isolated from healthy and fibrotic animals. In PF model mice, lung function was improved by FBP as revealed by reduced collagen deposition and downregulation of ECM gene expression such as collagens and fibronectin. Fibrotic lung fibroblasts (FLF) treated with FBP for 3 days in vitro showed decreased proliferation, contraction, and migration, which are characteristic of myofibroblast to fibroblast phenotype reversal. ECM-related genes and proteins such as collagens, fibronectin and α-smooth muscle actin, were also downregulated in FBP-treated FLF. Moreover, matrix metalloproteinase (MMP) 1, responsible for ECM degradation, was produced only in fibroblasts obtained from healthy lungs (HLF) and FBP did not alter its expression. On the other hand, tissue inhibitor of metalloproteinase (TIMP)-1, a MMP1 inhibitor, and MMP2, related to fibroblast tissue-invasion, were predominantly produced by FLF and FBP was able to downregulate its expression. These results demonstrate that FBP may prevent bleomycin-induced PF development through reduced expression of collagen and other ECM components mediated by a reduced TIMP-1 and MMP2 expression.
Collapse
Affiliation(s)
- Henrique Bregolin Dias
- Laboratory of Cellular Biophysics and Inflammation, PUCRS, Porto Alegre, RS, Brazil
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | | | | | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
5
|
Wilches-Buitrago L, Viacava PR, Cunha FQ, Alves-Filho JC, Fukada SY. Fructose 1,6-bisphosphate inhibits osteoclastogenesis by attenuating RANKL-induced NF-κB/NFATc-1. Inflamm Res 2019; 68:415-421. [PMID: 30927049 DOI: 10.1007/s00011-019-01228-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Although some glycolytic intermediates have been shown to modulate several cell type formation and activation, the functional role of fructose 1,6-bisphosphate (FBP) on osteoclastogenesis is still unknown. METHODS Osteoclastogenesis was evaluated on bone marrow preosteoclasts cultured with M-CSF - 30 ng/ml, RANKL - 10 ng/ml, and two concentrations of FBP (100 and 300 µM). TRAP-positive stained cells were counted, and osteoclastogenic marker genes expression were evaluated by qPCR. Osteoclasts resorption capacity was evaluated by the expression of specific enzymes and capacity to resorb a mineralized matrix. The NF-κB activation was detected using RAW 264.7, stably expressing luciferase on the NF-κB responsive promoter. RESULTS We show that FBP, the product of the first stage of glycolysis, inhibited RANKL-induced osteoclasts differentiation and TRAP activity. The treatment of preosteoclasts with FBP attenuated osteoclast fusion and formation, without affecting cell viability. Moreover, the inhibition of several osteoclastogenic marker genes expression (TRAP, OSCAR, DC-STAMP, Integrin αv, NFATc1) by FBP correlates with a reduction of mineralized matrix resorption capacity. The mechanism underlying FBP-inhibition of osteoclastogenesis involves NF-κB/NFATc1 signaling pathway inhibition. CONCLUSION Altogether these data show a protective role of a natural glycolytic intermediate in bone homeostasis that may have therapeutic benefit for osteolytic diseases.
Collapse
Affiliation(s)
- L Wilches-Buitrago
- Ribeirao Preto Medical School, Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil.,School of Pharmaceutical Sciences of Ribeirao Preto, Department of Physics and Chemistry, University of Sao Paulo, Ribeirao Preto, Brazil
| | - P R Viacava
- Ribeirao Preto Medical School, Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
| | - F Q Cunha
- Ribeirao Preto Medical School, Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
| | - J C Alves-Filho
- Ribeirao Preto Medical School, Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
| | - S Y Fukada
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Physics and Chemistry, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
6
|
Lv T, Gu Y, Bi J, Kang N, Yang Z, Fu X, Wang Q, Yan L, Liu X, Cao Y, Xiao R. Fructose 1,6-Bisphosphate as a Protective Agent for Experimental Fat Grafting. Stem Cells Transl Med 2019; 8:606-616. [PMID: 30779327 PMCID: PMC6525580 DOI: 10.1002/sctm.18-0212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Fat grafting procedures are considered to be a promising regenerative, cell‐directed therapy; however, their survival is mainly influenced by ischemia condition. Fructose 1,6‐bisphosphate (FBP), as an intermediate in energy metabolism, has the potential to rescue cells and tissues from hypoxic‐ischemic circumstances. In the present study, human lipoaspirates were grafted subcutaneously into nude mice followed by a daily intraperitoneal injection of FBP at different doses for 7 days. Next, the grafts were harvested at different time points till 12 weeks postimplantation and were evaluated for cell viability and function, tissue revascularization and inflammatory cell infiltration using histological analysis, whole‐mount living tissue imaging, glycerol 3‐phosphate dehydrogenase activity assays, and quantitative analysis of gene expression. The results demonstrated that exogenous FBP administration could attenuate the volume and weight reduction of fat graft; meanwhile, FBP enhanced adipocyte viability and function, increased blood vessel formation, and decreased inflammation. Moreover, in vitro cell experiments showed that FBP could promote adipose‐derived stem cell viability and vascular endothelial growth factor (VEGF) mRNA expression in ischemia conditions. Our study indicates that FBP can be used as a protective agent for fat grafting and may be applied in stem cell‐based regenerative medicine. stem cells translational medicine2019;8:606–616
Collapse
Affiliation(s)
- Tao Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Yunpeng Gu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Jianhai Bi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Ning Kang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Yilin Cao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
7
|
Zhou J, Wang F, Zhang J, Gao H, Yang Y, Fu R. Repeated febrile convulsions impair hippocampal neurons and cause synaptic damage in immature rats: neuroprotective effect of fructose-1,6-diphosphate. Neural Regen Res 2014; 9:937-42. [PMID: 25206915 PMCID: PMC4146224 DOI: 10.4103/1673-5374.133145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2014] [Indexed: 11/07/2022] Open
Abstract
Fructose-1,6-diphosphate is a metabolic intermediate that promotes cell metabolism. We hypothesize that fructose-1,6-diphosphate can protect against neuronal damage induced by febrile convulsions. Hot-water bathing was used to establish a repetitive febrile convulsion model in rats aged 21 days, equivalent to 3–5 years in humans. Ninety minutes before each seizure induction, rats received an intraperitoneal injection of low- or high-dose fructose-1,6-diphosphate (500 or 1,000 mg/kg, respectively). Low- and high-dose fructose-1,6-diphosphate prolonged the latency and shortened the duration of seizures. Furthermore, high-dose fructose-1,6-diphosphate effectively reduced seizure severity. Transmission electron microscopy revealed that 24 hours after the last seizure, high-dose fructose-1,6-diphosphate reduced mitochondrial swelling, rough endoplasmic reticulum degranulation, Golgi dilation and synaptic cleft size, and increased synaptic active zone length, postsynaptic density thickness, and synaptic interface curvature in the hippocampal CA1 area. The present findings suggest that fructose-1,6-diphosphate is a neuroprotectant against hippocampal neuron and synapse damage induced by repeated febrile convulsion in immature rats.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of Pediatrics, the Second Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fan Wang
- Department of Obstetrics and Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Jun Zhang
- Department of Gastroenterology, the Second Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hui Gao
- Department of Anesthesiology, Yanan University Affiliated Hospital, Yan'an, Shaanxi Province, China
| | - Yufeng Yang
- Editorial Board of Chinese Journal of Child Health Care, Xi'an, Shaanxi Province, China
| | - Rongguo Fu
- Department of Nephrology, the Second Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
8
|
Ding Y, Wang S, Jiang Y, Yang Y, Zhang M, Guo Y, Wang S, Ding MP. Fructose-1,6-diphosphate protects against epileptogenesis by modifying cation-chloride co-transporters in a model of amygdaloid-kindling temporal epilepticus. Brain Res 2013; 1539:87-94. [PMID: 24095797 DOI: 10.1016/j.brainres.2013.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/27/2022]
Abstract
Fructose-1,6-diphosphate (FDP) shifts the metabolism of glucose from glycolysis to the pentose phosphate pathway and has anticonvulsant activity in several acute seizure animal models. In the present study, we investigated the anti-epileptogenic effects of FDP in an amygdaloid-kindling seizure model, which is an animal model of the most common form of human temporal lobe epilepsy. We found that 1.0 g/kg FDP slowed seizure progression and shortened the corresponding after-discharge duration (ADD). FDP increased the number of stimulations needed to reach seizure stages 2-5 and prolonged the cumulative ADD prior to reaching stages 3-5. It also shortened staying days and cumulative ADD in stages 4-5. However, it demonstrated no significant protective effect when administered after the animals were fully kindled. In hippocampal neurons, cation-chloride co-transporters (CCCs) are suggested to play interesting roles in epilepsy by modulating γ-aminobutyric acid (GABA)ergic activity through controlling GABAA receptor-mediated reversal potential. We examined the potential link between FDP and the hippocampal expression of two main members of the CCCs: the neuron-specific K(+)-Cl(-)co-transporter 2 (KCC2) and Na(+)-K(+)-Cl(-)co-transporter 1 (NKCC1). FDP inhibited the kindling-induced downregulation of KCC2 expression and decreased NKCC1 expression during the kindling session. Taken together, our data reveal that FDP may have protective activity against epileptogenesis, from partial to generalized tonic-clonic seizures. Furthermore, our findings suggest that the FDP-induced imbalance between KCC2 and NKCC1 expression may be involved in the neuroprotective effect.
Collapse
Affiliation(s)
- Yao Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Seok SM, Kim JM, Park TY, Baik EJ, Lee SH. Fructose-1,6-bisphosphate ameliorates lipopolysaccharide-induced dysfunction of blood-brain barrier. Arch Pharm Res 2013; 36:1149-59. [PMID: 23604722 DOI: 10.1007/s12272-013-0129-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/12/2013] [Indexed: 11/26/2022]
Abstract
Fructose-1,6-bisphosphate (FBP), a glycolytic intermediate, has neuroprotective effects in various brain injury models. However, its effects on blood-brain barrier (BBB) are largely unknown. In this study, we investigated the effects of FBP on lipopolysaccharide (LPS)-induced BBB dysfunction in in vitro BBB model comprising co-culture of mouse brain endothelial cell line, bEnd.3 and mouse primary astrocyte and explored its action mechanism therein involved. LPS induced the impairment of endothelial permeability and transendothelial electrical resistance (TEER). The functional changes were confirmed by alterations in immunostaining for junctional proteins occludin, ZO-1 and VE-cadherin, such as the loss of cortical staining pattern and appearance of intercellular gaps in endothelial cells. Co-administration of FBP alleviated the deleterious effects of LPS on BBB permeability and TEER in a dose dependent manner. And also FBP inhibited the LPS-induced changes in the distribution of endothelial junctional proteins, resulting in the better preservation of monolayer integrity. FBP suppressed the production of reactive oxygen species (ROS) but did not affect cyclooxygenase-2 expression and prostaglandin E₂ production in endothelial cells stimulated with LPS. Taken together, these data suggest that FBP could ameliorate LPS-induced BBB dysfunction through the maintenance of junctional integrity, which might be mediated by downregulation of ROS production.
Collapse
Affiliation(s)
- Sun Mi Seok
- Department of Physiology, Ajou University School of Medicine, #5, Wonchon-dong, Suwon, 443-749, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Santos RCV, Moresco RN, Peña Rico MA, Susperregui ARG, Rosa JL, Bartrons R, Ventura F, Mário DN, Alves SH, Tatsch E, Kober H, de Mello RO, Scherer P, Dias HB, de Oliveira JR. Fructose-1,6-bisphosphate reduces the mortality in Candida albicans bloodstream infection and prevents the septic-induced platelet decrease. Inflammation 2013; 35:1256-61. [PMID: 22367598 DOI: 10.1007/s10753-012-9436-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to the fact that an increased number of patients have experienced bloodstream infections caused by Candida species and the high mortality of this infection, there is a need for a strategy to reduce this scenery. One possible strategy is the use of new drugs, such as fructose-1,6-bisphosphate (FBP), which is a high-energy glycolytic metabolite and has shown to have therapeutic effects in several pathological conditions such as ischemia, shock, toxic injuries, and bacterial sepsis. The aim of this manuscript was to determine the role of FBP in experimental Candida albicans bloodstream infection. We used mice that were divided into three experimental groups: sham (not induced), bloodstream infection (induced with intratracheal instillation of C. albicans) and FBP (bloodstream infection plus FBP 500 mg/kg i.p.). Blood was taken for assessment of complete hematological profile and cytokine assay (IL-6 and MCP-1). Results of the study demonstrated that mortality decreased significantly in groups that received FBP. All cytokine and hematological indexes of FBP group were similar to bloodstream infection group with exception of platelets count. FBP significantly prevented the decrease in platelets. Taken together, our results demonstrate that FBP prevented the mortality in C. albicans bloodstream infection.
Collapse
Affiliation(s)
- Roberto Christ Vianna Santos
- Laboratório de Microbiologia Clínica, Ciências da Saúde, Centro Universitário Franciscano, UNIFRA, Rua dos Andradas 1614, sala 115, 97010-032, Santa Maria, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alva N, Cruz D, Sanchez S, Valentín JM, Bermudez J, Carbonell T. Nitric oxide as a mediator of fructose 1,6-bisphosphate protection in galactosamine-induced hepatotoxicity in rats. Nitric Oxide 2012; 28:17-23. [PMID: 23032643 DOI: 10.1016/j.niox.2012.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Fructose 1,6-bisphosphate (F1,6BP) has been widely used as a therapeutic agent for different harmful conditions in a variety of tissues. The hypothesis of the present work was that the increase in nitric oxide production and the prevention of oxidative stress induced by exogenous F1,6BP mediate its protective effect against the hepatotoxic action of GalN. Experimental groups used were sham, F1,6BP (2g/kg bw i.p.), GalN (0.4g/kg bw i.p), l-NAME (10mg/kg bw i.v.), F1,6BP+GalN, l-NAME+GalN and l-NAME+F1,6BP+GalN. Animals were killed after 24h of bolus administration. F1,6BP induced an increase in NO and the redox ratio (GSH/GSSG) in liver. Western blot assays pointed to overexpression of liver eNOS in F1,6BP-treated rats. The hepatic injury induced by GalN increased transaminases in plasma and decreased the reduced/oxidized glutathione ratio in liver. The concomitant administration of F1,6BP reversed this damage, while the addition of l-NAME worsened the liver injury. We provided evidence that this F1,6BP-induced protection may be related to the increase in NO production through the positive modulation of eNOS, and the increase in intracellular reduced glutathione, thus providing a higher reducing capacity.
Collapse
Affiliation(s)
- Norma Alva
- Departament de Fisiologia i Immunologia (Biologia), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Kim YC, Park TY, Baik E, Lee SH. Fructose-1,6-bisphosphate attenuates induction of nitric oxide synthase in microglia stimulated with lipopolysaccharide. Life Sci 2011; 90:365-72. [PMID: 22227475 DOI: 10.1016/j.lfs.2011.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/21/2011] [Accepted: 12/13/2011] [Indexed: 11/28/2022]
Abstract
AIMS Fructose-1,6-bisphosphate (FBP) is a glycolytic intermediate with neuroprotective action in various brain injury models. However, the mechanism underlying the neuroprotection of FBP has not been fully defined. In this study, we investigated whether FBP inhibits endotoxin-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in microglial cells and explored the possible mechanisms of the effects of FBP. MAIN METHODS Murine microglial cell line BV2 and primary cultured murine microglial cells were used. NO production and iNOS expression were determined by Griess reaction, RT-PCR and Western blot. Luciferase assay using iNOS promoter-luciferase (iNOS-Luc) construct was adopted for measuring transcriptional activity. KEY FINDINGS FBP dose-dependently suppressed lipopolysaccharide (LPS)-induced NO production, along with reducing the expression of iNOS at both the protein and mRNA level in primary cultured murine microglia and BV2 cells. FBP significantly inhibited iNOS promoter activity but stabilized iNOS mRNA. Among transcription factors known to be related to iNOS expression, activator protein (AP-1) activation was significantly blocked by FBP. FBP suppressed LPS-induced phosphorylation of three MAPK subtypes-p38 MAPK, JNK and ERK. FBP inhibited LPS-induced production of reactive oxygen species (ROS) and decreased intracellular GSSG/GSH ratio. SIGNIFICANCE Our findings suggest that FBP attenuates the LPS-induced iNOS expression through inhibition of JNK and p38 MAPK, which might be related to ROS downregulation.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Physiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Bajić A, Zakrzewska J, Godjevac D, Andjus P, Jones DR, Spasić M, Spasojević I. Relevance of the ability of fructose 1,6-bis(phosphate) to sequester ferrous but not ferric ions. Carbohydr Res 2010; 346:416-20. [PMID: 21232735 DOI: 10.1016/j.carres.2010.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 12/27/2022]
Abstract
The cytoprotective activity of F16BP has been documented in severe conditions such as convulsions, reperfusion injury, septic shock, diabetic complications, hypothermia-induced injury, UV-provoked skin damage and in other processes including apoptosis and excitotoxicity. F16BP shows very efficient cytoprotective activity in astroglial cells exposed to H(2)O(2)-provoked oxidative stress and during neuronal injury caused by hypoxic conditions. As most of the aforementioned processes involve iron activity-related conditions, we investigated the ferric and ferrous iron binding properties of F16BP under physiological conditions using (31)P NMR and EPR spectroscopy. Our results indicate that cytoprotective F16BP activity is predominantly based on ferrous iron sequestration. (31)P NMR spectroscopy of F16BP employing paramagnetic properties of iron clearly showed that F16BP forms stabile complexes with Fe(2+) which was verified by EPR of another divalent cation-Mn(2+). On the other hand, F16BP does not sequester ferric iron nor does it increase its redox activity as shown by (31)P NMR and EPR spin-trapping. Therefore, F16BP may be beneficial in neurodegenerative and other conditions that are characterised by ferric iron stores and deposits.
Collapse
Affiliation(s)
- Aleksandar Bajić
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
14
|
Sekar Y, Moon TC, Slupsky CM, Befus AD. Protein tyrosine nitration of aldolase in mast cells: a plausible pathway in nitric oxide-mediated regulation of mast cell function. THE JOURNAL OF IMMUNOLOGY 2010; 185:578-87. [PMID: 20511553 DOI: 10.4049/jimmunol.0902720] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
NO is a short-lived free radical that plays a critical role in the regulation of cellular signaling. Mast cell (MC)-derived NO and exogenous NO regulate MC activities, including the inhibition of MC degranulation. At a molecular level, NO acts to modify protein structure and function through several mechanisms, including protein tyrosine nitration. To begin to elucidate the molecular mechanisms underlying the effects of NO in MCs, we investigated protein tyrosine nitration in human MC lines HMC-1 and LAD2 treated with the NO donor S-nitrosoglutathione. Using two-dimensional gel Western blot analysis with an anti-nitrotyrosine Ab, together with mass spectrometry, we identified aldolase A, an enzyme of the glycolytic pathway, as a target for tyrosine nitration in MCs. The nitration of aldolase A was associated with a reduction in the maximum velocity of aldolase in HMC-1 and LAD2. Nuclear magnetic resonance analysis showed that despite these changes in the activity of a critical enzyme in glycolysis, there was no significant change in total cellular ATP content, although the AMP/ATP ratio was altered. Elevated levels of lactate and pyruvate suggested that S-nitrosoglutathione treatment enhanced glycolysis. Reduced aldolase activity was associated with increased intracellular levels of its substrate, fructose 1,6-bisphosphate. Interestingly, fructose 1,6-bisphosphate inhibited IgE-mediated MC degranulation in LAD2 cells. Thus, for the first time we report evidence of protein tyrosine nitration in human MC lines and identify aldolase A as a prominent target. This posttranslational nitration of aldolase A may be an important pathway that regulates MC phenotype and function.
Collapse
Affiliation(s)
- Yokananth Sekar
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
15
|
Ding Y, Wang S, Zhang MM, Guo Y, Yang Y, Weng SQ, Wu JM, Qiu X, Ding MP. Fructose-1,6-diphosphate inhibits seizure acquisition in fast hippocampal kindling. Neurosci Lett 2010; 477:33-6. [PMID: 20416358 DOI: 10.1016/j.neulet.2010.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 11/30/2022]
Abstract
Inhibition of glycolytic metabolism may provide a new therapy for refractory epilepsy. Fructose-1,6-diphosphate (FDP), which inhibits glycolysis and diverts glucose into the pentose phosphate pathway, has strong inhibitory action on seizures induced by chemical convulsants. Here, we investigated the effect of FDP on a rat model of rapid hippocampal kindling. After determining the after-discharge threshold (ADT), the seizure severity and after-discharge duration (ADD) were measured to study the antiepileptogenic effects of FDP (0.5 or 1.0 g/kg i.p. for 4 days). The mRNA expression levels of the brain-derived neurotrophic factor (BDNF) and its principal receptor TrkB, which are key modulators of seizure activity, were determined in the ipsilateral hippocampus by real-time polymerase chain reaction (RT-PCR). High-dose FDP (1.0 g/kg) delayed kindling development together with shortened ADD, and high-dose treated rats also needed more kindling stimulations and more cumulative ADD to stage 4. However, it showed no significant antiepileptogenic effect at a lower dose of 0.5 g/kg. In addition, FDP attenuated BDNF and TrkB expression before and during kindling procedure; this result indicated that BDNF/TrkB signaling pathway may participate in the antiepileptogenic action of FDP. Our data demonstrates that FDP has a significant antiepileptogenic effect in kindling seizures and that it may be a potential antiepileptic drug in the future.
Collapse
Affiliation(s)
- Yao Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Protective role of fructose in the metabolism of astroglial C6 cells exposed to hydrogen peroxide. Carbohydr Res 2009; 344:1676-81. [PMID: 19591975 DOI: 10.1016/j.carres.2009.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 12/13/2022]
Abstract
Astroglial cells represent the main line of defence against oxidative damage related to neurodegeneration. Therefore, protection of astroglia from an excess of reactive oxygen species could represent an important target of the treatment of such conditions. The aim of our study was to compare the abilities of glucose and fructose, the two monosaccharides used in diet and infusion, to protect C6 cells from hydrogen peroxide (H(2)O(2))-mediated oxidative stress. It was observed using confocal microscopy with fluorescent labels and the MTT test that fructose prevents changes of oxidative status of the cells exposed to H(2)O(2) and preserves their viability. Even more pronounced protective effects were observed for fructose 1,6-bis(phosphate). We propose that fructose and its intracellular forms prevent H(2)O(2) from participating in the Fenton reaction via iron sequestration. As fructose and fructose 1,6-bis(phosphate) are able to pass the blood-brain barrier, they could provide antioxidative protection of nervous tissue in vivo. So, in contrast to the well-known negative effects of frequent consumption of fructose under physiological conditions, acute infusion or ingestion of fructose or fructose 1,6-bis(phosphate) could be of benefit in the cytoprotective therapy of neurodegenerative disorders related to oxidative stress.
Collapse
|
17
|
Lian XY, Xu K, Stringer JL. Oral administration of fructose-1,6-diphosphate has anticonvulsant activity. Neurosci Lett 2009; 446:75-7. [PMID: 18832008 DOI: 10.1016/j.neulet.2008.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 09/06/2008] [Accepted: 09/18/2008] [Indexed: 11/28/2022]
Abstract
Recently it has been shown that fructose-1,6-diphosphate (FDP) has dose-dependent anticonvulsant activity in rat models of acute generalized motor seizures induced with chemical convulsants. The present study asked whether FDP also has activity in an epileptic brain after oral administration and activity against non-convulsive seizures. Animals (n = 14) were administered pilocarpine to induce status epilepticus. Several weeks later, these animals had spontaneous seizures and a baseline rate of seizure frequency was determined over a 6-day period. Animals were then continued without treatment (n = 8) or 0.5% FDP was added to the drinking water (n = 6). In animals treated with FDP the seizures completely stopped after 7 days. Removal of FDP from the water resulted in the return of seizure activity in 4 of the 6 animals by 16 days of observation. To induce non-convulsive seizures, animals (n = 6) received a single injection of gamma-butyrolactone (GBL, 100 mg/kg i.p.). All animals had spike-wave activity recorded in the cortex within minutes after GBL administration. Administration of a single injection of FDP (500 g/kg i.p.) had no effect on the baseline cortical activity, nor on the spike-wave activity induced by GBL (n = 5). These experiments suggest that oral administration of FDP may have utility in the treatment of partial or generalized convulsive seizure disorders, but not absence seizures.
Collapse
|
18
|
Stringer JL, Xu K. Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate. Epilepsia 2009; 49 Suppl 8:101-3. [PMID: 19049602 DOI: 10.1111/j.1528-1167.2008.01849.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fructose-1,6-diphosphate (FDP), an intracellular metabolite of glucose, has anticonvulsant activity in several models of acute seizures in laboratory animals. The anticonvulsant effect of FDP is most likely due to a direct effect since intraperitoneal and oral administration results in significant increases in brain levels. A number of mechanisms have been proposed for this action of FDP. One possibility is that peripheral administration of FDP results in changes in brain metabolism that are anticonvulsant. Glucose can be metabolized through the glycolytic or pentose phosphate pathway. There is evidence that the pentose phosphate pathway is more active in the brain than in other tissues, and that, in the presence of elevated levels of FDP, the majority of glucose is metabolized by the pentose phosphate pathway. The pentose phosphate pathway generates NADPH, which is used to reduce glutathione. The reduced form of endogenous glutathione has been shown to have anticonvulsant activity. Taken together, the data suggest a hypothesis that exogenously administered FDP gets into the brain and astrocytes where it increases the flux of glucose through the pentose phosphate pathway, generating additional NADPH for the reduction of glutathione.
Collapse
|
19
|
Liu J, Hirai K, Litt L. Fructose-1,6-bisphosphate does not preserve ATP in hypoxic-ischemic neonatal cerebrocortical slices. Brain Res 2008; 1238:230-8. [PMID: 18725216 DOI: 10.1016/j.brainres.2008.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 08/02/2008] [Accepted: 08/04/2008] [Indexed: 11/17/2022]
Abstract
Fructose-1,6-bisphosphate (FBP), an endogenous intracellular metabolite in glycolysis, was found in many preclinical studies to be neuroprotective during hypoxia-ischemia (HI) when administered exogenously. We looked for HI neuroprotection from FBP in a neonatal rat brain slice model, using 14.1 T (1)H/(31)P/(13)C NMR spectroscopy of perchloric acid slice extracts to ask: 1) if FBP preserves high energy phosphates during HI; and 2) if exogenous [1-(13)C]FBP enters cells and is glycolytically metabolized to [3-(13)C]lactate. We also asked: 3) if substantial superoxide production occurs during and after HI, thinking such might be treatable by exogenous FBP's antioxidant effects. Superfused P7 rat cerebrocortical slices (350 mum) were treated with 2 mM FBP before and during 30 min of HI, and then given 4 h of recovery with an FBP-free oxygenated superfusate. Slices were removed before HI, at the end of HI, and at 1 and 4 h after HI. FBP did not improve high energy phosphate levels or change (1)H metabolite profiles. Large increases in [3-(13)C]lactate were seen with (13)C NMR, but the lactate fractional enrichment was always (1.1+/-0.5)%, implying that all of lactate's (13)C was natural abundance (13)C, that none was from metabolism of (13)C-FBP. FBP had no effect on the fluorescence of ethidium produced from superoxide oxidation of hydroethidine. Compared to control slices, ethidium fluorescence was 25% higher during HI and 50% higher at the end of recovery. Exogenous FBP did not provide protection or enter glycolysis. Its use as an antioxidant might be worth studying at higher FBP concentrations.
Collapse
Affiliation(s)
- Jia Liu
- Department of Anesthesia and Perioperative Medicine, The University of California San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|