1
|
Nonsuwan P, Niwetbowornchai N, Insawang K, Kunwong N, Srichan K, Srisawat C, Dana P, Saengkrit N, Nguyen KT, Punnakitikashem P. Synergistic anticancer activity of resveratrol-loaded polymeric nanoparticles and sunitinib in colorectal cancer treatment. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241817. [PMID: 40271141 PMCID: PMC12014242 DOI: 10.1098/rsos.241817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
The development of novel and effective treatment strategies, particularly through drug combinations, can significantly enhance therapeutic outcomes. This study explores the innovative combination of resveratrol (RES), a phenolic compound, with sunitinib (SUNI), a multitarget tyrosine kinase inhibitor, for targeting human colon adenocarcinoma cell line HT-29. We identified a synergistic effect at a SUNI:RES ratio of 1:8, based on their half-maximal inhibitory concentration values. Increasing the dosage of the combined treatment led to a notable reduction in cell viability, observed in both two-dimensional (2D) and three-dimensional cell cultures. To improve RES therapeutic efficacy, drug-loaded polymeric nanoparticles (PLGA-RES) were successfully fabricated with an average diameter of 178.4 ± 4.6 nm. The combination of PLGA-RES and free SUNI at the optimal ratio exhibited enhanced anticancer activity, reducing cell viability by approximately 25 and 15% more than PLGA-RES and free SUNI alone, respectively, in 2D cultures. Moreover, this combination therapy demonstrated superior effectiveness in treating HT-29 spheroids over 24 and 48 h. These findings highlight the potential of this combined approach to improve colorectal cancer treatment outcomes.
Collapse
Affiliation(s)
- Punnida Nonsuwan
- Department of Biochemistry, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattarika Niwetbowornchai
- Department of Biochemistry, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok10700, Thailand
| | - Kanyanut Insawang
- Department of Biochemistry, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok10700, Thailand
| | - Natsuda Kunwong
- Department of Biochemistry, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok10700, Thailand
| | - Kornrawee Srichan
- Department of Biochemistry, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok10700, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paweena Dana
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani12120, Thailand
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX76019, USA
| | - Primana Punnakitikashem
- Department of Biochemistry, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
2
|
Demir K, Turgut R, Şentürk S, Işıklar H, Günalan E. The Therapeutic Effects of Bioactive Compounds on Colorectal Cancer via PI3K/Akt/mTOR Signaling Pathway: A Critical Review. Food Sci Nutr 2024; 12:9951-9973. [PMID: 39723045 PMCID: PMC11666977 DOI: 10.1002/fsn3.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis. Therefore, inhibition of the mTOR signaling by numerous bioactive components may be effective against CRC. The study aims to discuss the therapeutic capacity of various polyphenols, terpenoids, and alkaloids on CRC via the PI3K/Akt/mTOR pathway. The potential molecular effects of bioactive compounds on the mTOR pathway's upstream and downstream targets are examined. Each bioactive component causes various physiological processes, such as triggering free radical production, disruption of mitochondrial membrane potential, cell cycle arrest, inhibition of CRC stem cell migration, and suppression of glycolysis through mTOR signaling inhibition. As a result, carcinogenesis is inhibited by inducing apoptosis and autophagy. However, it should be noted that studies are primarily in vitro dose-dependent treatment researchers. This study raises awareness about the role of phenolic compounds in treating CRC, contributing to their future use as anticancer agents. These bioactive compounds have the potential to be developed into food supplementation to prevent and treat various cancer types including CRC. This review has the potential to lead to further development of clinical studies. In the future, mTOR inhibition by applying several bioactive agents using advanced drug delivery systems may contribute to CRC treatment with 3D cell culture and in vivo clinical studies.
Collapse
Affiliation(s)
- Kübra Demir
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
- Faculty of Health Science, Department of Nutrition and DieteticsSabahattin Zaim UniversityIstanbulTürkiye
| | - Rana Turgut
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Selcen Şentürk
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Handan Işıklar
- Faculty of Medicine, Department of Internal MedicineYalova UniversityYalovaTürkiye
| | - Elif Günalan
- Faculty of Health Science, Department of Nutrition and DieteticsIstanbul Health and Technology UniversityIstanbulTürkiye
| |
Collapse
|
3
|
Zhou S, Zhang H, Li J, Li W, Su M, Ren Y, Ge F, Zhang H, Shang H. Potential anti-liver cancer targets and mechanisms of kaempferitrin based on network pharmacology, molecular docking and experimental verification. Comput Biol Med 2024; 178:108693. [PMID: 38850960 DOI: 10.1016/j.compbiomed.2024.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
AIM Kaempferitrin is an active component in Chenopodium ambrosioides, showing medicinal functions against liver cancer. This study aimed to identify the potential targets and pathways of kaempferitrin against liver cancer using network pharmacology and molecular docking, and verify the essential hub targets and pathway in mice model of SMMC-7721 cells xenografted tumors and SMMC-7721 cells. METHODS Kaempferitrin therapeutical targets were obtained by searching SwissTargetPrediction, PharmMapper, STITCH, DrugBank, and TTD databases. Liver cancer specific genes were obtained by searching GeneCards, DrugBank, TTD, OMIM, and DisGeNET databases. PPI network of "kaempferitrin-targets-liver cancer" was constructed to screen the hub targets. GO, KEGG pathway and MCODE clustering analyses were performed to identify possible enrichment of genes with specific biological subjects. Molecular docking and molecular dynamics simulation were employed to determine the docking pose, potential and stability of kaempferitrin with hub targets. The potential anti-liver cancer mechanisms of kaempferitrin, as predicted by network pharmacology analyses, were verified by in vitro and in vivo experiments. RESULTS 228 kaempferitrin targets and 2186 liver cancer specific targets were identified, of which 50 targets were overlapped. 8 hub targets were identified through network topology analysis, and only SIRT1 and TP53 had a potent binding activity with kaempferitrin as indicated by molecular docking and molecular dynamics simulation. MCODE clustering analysis revealed the most significant functional module of PPI network including SIRT1 and TP53 was mainly related to cell apoptosis. GO and KEGG enrichment analyses suggested that kaempferitrin exerted therapeutic effects on liver cancer possibly by promoting apoptosis via p21/Bcl-2/Caspase 3 signaling pathway, which were confirmed by in vivo and in vitro experiments, such as HE staining of tumor tissues, CCK-8, qRT-PCR and Western blot. CONCLUSION This study provided not only insight into how kaempferitrin could act against liver cancer by identifying hub targets and their associated signaling pathways, but also experimental evidence for the clinical use of kaempferitrin in liver cancer treatment.
Collapse
Affiliation(s)
- Siyu Zhou
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Huidong Zhang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jiao Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China.
| | - Wei Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Min Su
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yao Ren
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Fanglan Ge
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Hong Zhang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Hongli Shang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| |
Collapse
|
4
|
Trautmann D, Suazo F, Torres K, Simón L. Antitumor Effects of Resveratrol Opposing Mechanisms of Helicobacter pylori in Gastric Cancer. Nutrients 2024; 16:2141. [PMID: 38999888 PMCID: PMC11243391 DOI: 10.3390/nu16132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Gastric cancer is an aggressive and multifactorial disease. Helicobacter pylori (H. pylori) is identified as a significant etiological factor in gastric cancer. Although only a fraction of patients infected with H. pylori progresses to gastric cancer, bacterial infection is critical in the pathology and development of this malignancy. The pathogenic mechanisms of this bacterium involve the disruption of the gastric epithelial barrier and the induction of chronic inflammation, oxidative stress, angiogenesis and metastasis. Adherence molecules, virulence (CagA and VacA) and colonization (urease) factors are important in its pathogenicity. On the other hand, resveratrol is a natural polyphenol with anti-inflammatory and antioxidant properties. Resveratrol also inhibits cancer cell proliferation and angiogenesis, suggesting a role as a potential therapeutic agent against cancer. This review explores resveratrol as an alternative cancer treatment, particularly against H. pylori-induced gastric cancer, due to its ability to mitigate the pathogenic effects induced by bacterial infection. Resveratrol has shown efficacy in reducing the proliferation of gastric cancer cells in vitro and in vivo. Moreover, the synergistic effects of resveratrol with chemotherapy and radiotherapy underline its therapeutic potential. However, further research is needed to fully describe its efficacy and safety in treating gastric cancer.
Collapse
Affiliation(s)
- Daniela Trautmann
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Francesca Suazo
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Keila Torres
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| |
Collapse
|
5
|
Yu X, Sun Z, Nie S, Zhang T, Lu H. Effects of Resveratrol on Mouse B16 Melanoma Cell Proliferation through the SHCBP1-ERK1/2 Signaling Pathway. Molecules 2023; 28:7614. [PMID: 38005336 PMCID: PMC10674768 DOI: 10.3390/molecules28227614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Melanoma originates from the malignant mutational transformation of melanocytes in the basal layer of the epidermal layer of the skin. It can easily spread and metastasize in the early stage, resulting in a poor prognosis. Therefore, it is particularly important to find effective antitumor adjuvant drugs to inhibit the occurrence and development of melanoma. In this study, we found that resveratrol, a polyphenolic compound from grape plants, can significantly inhibit the proliferation, colony formation and migration of mouse melanoma B16 cells. Notably, resveratrol was also found to inhibit the expression of SHCBP1 in B16 cells. Transcriptional analysis and cellular studies showed that SHCBP1 can activate the MAPK/ERK signaling pathway to regulate cyclin expression and promote the G1/S phase transition of the cell cycle by upregulating ERK1/2 phosphorylation levels. Resveratrol further downregulates the phosphorylation level of ERK1/2 by inhibiting SHCBP1 expression, thus inhibiting tumor cell proliferation. In conclusion, resveratrol inhibits the proliferation of B16 cells by regulating the ERK1/2 signaling pathway through SHCBP1. As an upstream protein of the ERK1/2 signaling pathway, SHCBP1 may be involved in the process of resveratrol-mediated inhibition of tumor cell proliferation.
Collapse
Affiliation(s)
- Xiaoke Yu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Zhiyang Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Saiya Nie
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Biology, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Biology, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
6
|
Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani AS, Simal-Gandara J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact 2022; 368:110170. [DOI: 10.1016/j.cbi.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
|
7
|
Lo Iacono M, Gaggianesi M, Bianca P, Brancato OR, Muratore G, Modica C, Roozafzay N, Shams K, Colarossi L, Colarossi C, Memeo L, Turdo A, Veschi V, Di Franco S, Todaro M, Stassi G. Destroying the Shield of Cancer Stem Cells: Natural Compounds as Promising Players in Cancer Therapy. J Clin Med 2022; 11:6996. [PMID: 36498571 PMCID: PMC9737492 DOI: 10.3390/jcm11236996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In a scenario where eco-sustainability and a reduction in chemotherapeutic drug waste are certainly a prerogative to safeguard the biosphere, the use of natural products (NPs) represents an alternative therapeutic approach to counteract cancer diseases. The presence of a heterogeneous cancer stem cell (CSC) population within a tumor bulk is related to disease recurrence and therapy resistance. For this reason, CSC targeting presents a promising strategy for hampering cancer recurrence. Increasing evidence shows that NPs can inhibit crucial signaling pathways involved in the maintenance of CSC stemness and sensitize CSCs to standard chemotherapeutic treatments. Moreover, their limited toxicity and low costs for large-scale production could accelerate the use of NPs in clinical settings. In this review, we will summarize the most relevant studies regarding the effects of NPs derived from major natural sources, e.g., food, botanical, and marine species, on CSCs, elucidating their use in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Ornella Roberta Brancato
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Giampaolo Muratore
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Kimiya Shams
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
8
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
9
|
Al Mamun A, Sufian MA, Uddin MS, Sumsuzzman DM, Jeandet P, Islam MS, Zhang HJ, Kong AN, Sarwar MS. Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. Eur J Pharmacol 2022; 928:174991. [PMID: 35513016 DOI: 10.1016/j.ejphar.2022.174991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 01/10/2023]
Abstract
During the last few decades, cancer has remained one of the deadliest diseases that endanger human health, emphasizing urgent drug discovery. Cellular senescence has gained a great deal of attention in recent years because of its link to the development of cancer therapy. Senescent cells are incapable of proliferating due to irreversibly inhibited the initiation of the cell cycle pathways. However, senescent cells aggregate in tissues and produce a pro-inflammatory secretome called senescence-associated secretory phenotype (SASP) that can cause serious harmful effects if not managed properly. There is mounting evidence that senescent cells lead to various phases of tumorigenesis in various anatomical sites, owing mostly to the paracrine activities of the SASP. Therefore, a new treatment field called senotherapeutics has been established. Senotherapeutics are newly developed anticancer agents that have been demonstrated to inhibit cancer effectively. In light of recent findings, several promising natural products have been identified as senescence inducers and senotherapeutics, including, miliusanes, epigallocatechin gallate, phloretin, silybin, resveratrol, genistein, sulforaphane, quercetin, allicin, fisetin, piperlongumine, berberine, triptolide, tocotrienols and curcumin analogs. Several of them have already been validated through preclinical trials and exert an enormous potential for clinical trials. This review article focuses on and summarises the latest advances on cellular senescence and its potential as a target for cancer treatment and highlights the well-known natural products as senotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims, Cedex 2, France
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Rahman HS. Preclinical Drug Discovery in Colorectal Cancer: A Focus on Natural Compounds. Curr Drug Targets 2021; 22:977-997. [PMID: 33820517 DOI: 10.2174/1389450122666210405105206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is considered one of the most predominant and deadly cancer globally. Nowadays, the main clinical management for this cancer includes chemotherapy and surgery; however, these treatments result in the occurrence of drug resistance and severe side effects, and thus it is a crucial requirement to discover an alternative and potential therapy for CRC treatment. Numerous therapeutic cancers were initially recognized from natural metabolites utilized in traditional medicine, and several recent types of research have shown that many natural products own potential effects against CRC and may assist the action of chemotherapy for the treatment of CRC. It has been indicated that most patients are well tolerated by natural compounds without showing any toxicity signs even at high doses. Conventional chemotherapeutics interaction with natural medicinal compounds presents a new feature in cancer exploration and treatment. Most of the natural compounds overwhelm malignant cell propagation by apoptosis initiation of CRC cells and arresting of the cell cycle (especially at G, S, and G2/M phase) that result in inhibition of tumor growth. OBJECTIVE This mini-review aimed to focus on natural compounds (alkaloids, flavonoids, polysaccharides, polyphenols, terpenoids, lactones, quinones, etc.) that were identified to have anti- CRC activity in vitro on CRC cell lines and/or in vivo experiments on animal models. CONCLUSION Most of the studied active natural compounds possess anti-CRC activity via different mechanisms and pathways in vitro and in vivo that might be used as assistance by clinicians to support chemotherapy therapeutic strategy and treatment doses for cancer patients.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, 46001 Sulaymaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaisee, Sulaimaniyah, Iraq
| |
Collapse
|
11
|
Kumar R, Harilal S, Carradori S, Mathew B. A Comprehensive Overview of Colon Cancer- A Grim Reaper of the 21st Century. Curr Med Chem 2021; 28:2657-2696. [PMID: 33106132 DOI: 10.2174/0929867327666201026143757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/09/2022]
Abstract
A few decades ago, the incidence of colorectal cancer (CRC) was low and is now the fourth in the list of deadly cancers producing nearly a million deaths annually. A population that is aging along with risk factors such as smoking, obesity, sedentary lifestyle with little or no physical activity, and non-healthy food habits of developed countries can increase the risk of colorectal cancer. The balance in gut microbiota and the metabolites produced during bacterial fermentation within the host plays a significant role in regulating intestinal diseases as well as colorectal cancer development. Recent progress in the understanding of illness resulted in multiple treatment options such as surgery, radiation, and chemotherapy, including targeted therapy and multitherapies. The treatment plan for CRC depends on the location, stage and grade of cancer as well as genomic biomarker tests. Despite all the advancements made in the genetic and molecular aspects of the disease, the knowledge seems inadequate as the drug action as well as the wide variation in drug response did not appear strongly correlated with the individual molecular and genetic characteristics, which suggests the requirement of comprehensive molecular understanding of this complex heterogeneous disease. Furthermore, multitherapies or a broad spectrum approach, which is an amalgamation of the various promising as well as effective therapeutic strategies that can tackle heterogeneity and act on several targets of the disease, need to be validated in clinical studies. The latest treatment options have significantly increased the survival of up to three years in the case of advanced disease. The fact that colorectal cancer is developed from a polypoid precursor, as well as the symptoms of the disease that occur at an advanced stage, underlines how screening programs can help early detection and decrease mortality as well as morbidity from CRC.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
12
|
Patra S, Pradhan B, Nayak R, Behera C, Panda KC, Das S, Jena M, Bhutia SK. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives. Phytother Res 2021; 35:4194-4214. [DOI: 10.1002/ptr.7082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science National Institute of Technology Rourkela Rourkela Odisha India
| | - Biswajita Pradhan
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Rabindra Nayak
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Chhandashree Behera
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Krishna Chandra Panda
- Department of Pharmaceutical Chemistry Roland Institute of Pharmaceutical Sciences Berhampur Odisha India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science National Institute of Technology Rourkela Rourkela Odisha India
| | - Mrutyunjay Jena
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science National Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
13
|
Long J, Guan P, Hu X, Yang L, He L, Lin Q, Luo F, Li J, He X, Du Z, Li T. Natural Polyphenols as Targeted Modulators in Colon Cancer: Molecular Mechanisms and Applications. Front Immunol 2021; 12:635484. [PMID: 33664749 PMCID: PMC7921316 DOI: 10.3389/fimmu.2021.635484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
Colon cancer commonly develops from long-term chronic inflammation in the intestine and seriously threatens human health. Natural polyphenols have been valued as a crucial regulator of nutrient metabolism and metabolic diseases, owing to their anti-inflammatory and antioxidant functions and the ability to maintain a balance between gut microbes and their hosts. Notably, experimental and clinical evidence has shown that natural polyphenols could act as a targeted modulator to play a key role in the prevention or treatment of colon cancer. Thus, in this review, we summarized recent advances in the possible regulatory mechanism and the potential application of natural polyphenols in colon cancer, which might be regarded as a novel platform for the colon cancer management.
Collapse
Affiliation(s)
- Jing Long
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Peng Guan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xian Hu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lingyuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xingguo He
- Changsha Green Leaf Biotechnology Co., Ltd., Changsha, China
| | - Zhiliang Du
- Cloud Computing Center, Chinese Academy of Sciences, Dongguan, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
14
|
Patra S, Pradhan B, Nayak R, Behera C, Rout L, Jena M, Efferth T, Bhutia SK. Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics. Semin Cancer Biol 2020; 73:310-320. [PMID: 33152486 DOI: 10.1016/j.semcancer.2020.10.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The frequent inefficiency of conventional cancer therapies due to drug resistance, non-targeted drug delivery, chemotherapy-associated toxic side effects turned the focus to bioactive phytochemicals. In this context, curcumin and resveratrol have emerged as potent chemopreventive and chemoprotective compounds modulating apoptotic and autophagic cell death pathways in cancer in vitro and in vivo. As synergistic agents in combination with clinically established anticancer drugs, the enhanced anticancer activity at reduced chemotherapy-associated toxicity towards normal organs can be explained by improved pharmacokinetics, pharmacodynamics, bioavailability and metabolism. With promising preclinical and clinical applications, the design of drug-loaded nanoparticles, nanocarriers, liposomes and micelles have gained much attention to improve target specificity and drug efficacy. The present review focuses on the molecular modes of chemoprevention, chemoprotection and drug synergism with special emphasis to preclinical and clinical applications, pharmacokinetics, pharmacodynamics and advanced drug delivery methods for the development of next-generation personalized cancer therapeutics.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, India
| | - Biswajita Pradhan
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | - Rabindra Nayak
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | - Chhandashree Behera
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | - Laxmidhar Rout
- Post Graduate Department of Chemistry, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | - Mrutyunjay Jena
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, India.
| |
Collapse
|
15
|
Di Sotto A, Mancinelli R, Gullì M, Eufemi M, Mammola CL, Mazzanti G, Di Giacomo S. Chemopreventive Potential of Caryophyllane Sesquiterpenes: An Overview of Preliminary Evidence. Cancers (Basel) 2020; 12:E3034. [PMID: 33081075 PMCID: PMC7603190 DOI: 10.3390/cancers12103034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor development and progression in healthy people along with high-risk subjects and oncologic patients through using pharmacological or natural substances. Numerous phytochemicals have been widely described in the literature to possess chemopreventive properties, although their clinical usefulness remains to be defined. Among them, caryophyllane sesquiterpenes are natural compounds widely occurring in nature kingdoms, especially in plants, fungi, and marine environments. Several structures, characterized by a common caryophyllane skeleton with further rearrangements, have been identified, but those isolated from plant essential oils, including β-caryophyllene, β-caryophyllene oxide, α-humulene, and isocaryophyllene, have attracted the greatest pharmacological attention. Emerging evidence has outlined a complex polypharmacological profile of caryophyllane sesquiterpenes characterized by blocking, suppressing, chemosensitizing, and cytoprotective properties, which suggests a possible usefulness of these natural substances in cancer chemoprevention for both preventive and adjuvant purposes. In the present review, the scientific knowledge about the chemopreventive properties of caryophyllane sesquiterpenes and the mechanisms involved have been collected and discussed; moreover, possible structure-activity relationships have been highlighted. Although further high-quality studies are required, the promising preclinical findings and the safe pharmacological profile encourage further studies to define a clinical usefulness of caryophyllane sesquiterpenes in primary, secondary, or tertiary chemoprevention.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| |
Collapse
|
16
|
Laila F, Fardiaz D, Yuliana ND, Damanik MRM, Nur Annisa Dewi F. Methanol Extract of Coleus amboinicus (Lour) Exhibited Antiproliferative Activity and Induced Programmed Cell Death in Colon Cancer Cell WiDr. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:9068326. [PMID: 32047805 PMCID: PMC7003269 DOI: 10.1155/2020/9068326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022]
Abstract
Coleus amboinicus(Lour) (CA) has been reported to possess many pharmacological activities. In this study, evaluation of cytotoxicity using brine shrimp lethality bioassay and MTT assay using WiDr cell lines was carried out. The expression of several genes responsible for programmed cell death of the methanol extract of CA was also investigated. The morphology of the cells undergoing apoptosis was detected using Hoechst staining assay. The gene expression of BAX, BCL2, P53, Caspase 1, 7, 8, and 9 of treated samples with different concentrations (10, 15, 25 & 50 µg/ml) were measured with RT PCR. The phytochemical profiles were investigated using LC MS. The results showed that the lethality concentration (LC50) of methanol extract using brine shrimp was 34.545 µg/ml and the extract exhibited good antiproliferative activity against cancer cells WiDr with IC50 value (8.598 ± 2.68 µg/ml) as compared to standard drug 5-fluorouracil (IC50 value 1.839 ± 0.03 µg/ml). There was apoptotic evidences from the morphology of treated cells. The expressions of BAX,P53, and Caspase 9 were upregulated in lower concentration of the extract (10 and 15 µg/ml) but downregulated in higher concentration (25 and 50 µg/ml). BCL2 as anti-apoptotic gene was downregulated in all concentrations. Caspase 1 and Caspase 7 were upregulated in high concentration (25 and 50 µg/ml), but downregulated in lower concentrations. These data provide a mode of cell death for the methanol extract of CA in low concentrations corresponding to apoptosis with intrinsic pathway. Many valuable compounds identified including caffeic acid, rosmarinic acid, malic acid, eicosapentanoic acid, benserazide, alpha-linolenic acid, betaine, Salvanolic B, 4-hydroxibenzoic acid and firulic acid have been previously reported as being active agents against many cancer cells. This study suggested that CA might become an effective ingredient for health-beneficial foods to prevent colon cancer.
Collapse
Affiliation(s)
- Farida Laila
- Department of Food Science and Technology, Bogor Agricultural University, IPB Dramaga Campus, Bogor 16680, Indonesia
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | - Dedi Fardiaz
- Department of Food Science and Technology, Bogor Agricultural University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, Bogor Agricultural University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - M. Rizal M. Damanik
- Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Fitriya Nur Annisa Dewi
- Primate Research Center, Bogor Agricultural University, Jalan Lodaya II/5, Bogor 16151, Indonesia
| |
Collapse
|
17
|
Gavrilas LI, Cruceriu D, Ionescu C, Miere D, Balacescu O. Pro-apoptotic genes as new targets for single and combinatorial treatments with resveratrol and curcumin in colorectal cancer. Food Funct 2019; 10:3717-3726. [PMID: 31169275 DOI: 10.1039/c9fo01014a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) represents the third most diagnosed type of cancer worldwide with high mortality and an increased incidence rate. Bioactive dietary components such as curcumin and resveratrol have great therapeutic potential as they can modulate a plethora of signaling pathways related to colorectal carcinogenesis. Previous data have demonstrated that curcumin and resveratrol can induce apoptosis in different types of cancer cells. Considering the lack of data on the combinatorial effect of curcumin and resveratrol associated with the induction of apoptosis in colorectal pathology, the main objective of this study is to investigate the impact of single vs. combinatorial treatment of resveratrol and curcumin on their cytotoxic effects, as well as the modulation of several essential pro-apoptotic genes, on two colorectal cancer cell lines (DLD-1 and Caco-2) different in terms of chromosomal stability (MSI and MSS). The cytotoxic effects were evaluated by the MTT assay, the nature of the interaction between curcumin and resveratrol was assessed by the combination index method and the expression levels of key genes involved in the modulation of pro-apoptotic mechanisms were evaluated by RT-qPCR. Our data indicate that the combination treatment of curcumin and resveratrol is more effective in inhibiting the proliferation in a dose-dependent manner, with a synergistic effect for the DLD-1 cell line (CI < 1) and an additive effect for the Caco-2 cell line (CI ≥ 1). The IC50 values for the combination treatment were 71.8 μM (20.5 μM curcumin + 51.3 μM resveratrol) for the DLD-1 cell line and 66.21 μM (18.9 μM curcumin + 47.3 μM resveratrol) for the Caco-2 cell line, respectively. Our data pointed out, for the first time, that several genes involved in the modulation of apoptosis, including PMAIP1, BID, ZMAT3, CASP3, CASP7, and FAS, represent new targets of both singular and combinatorial treatments with resveratrol and curcumin, and also the combinatorial approach of curcumin and resveratrol exhibits a more powerful gene regulating effect compared to single treatment. Considering the beneficial aspects of the combinatorial approach with curcumin and resveratrol on colorectal cancer cells further studies should address the possible pharmacological benefits of using a combination of both dietary agents with different chemotherapeutic drug approaches.
Collapse
Affiliation(s)
- Laura Ioana Gavrilas
- University of Medicine and Pharmacy "Iuliu Hatieganu", Department of Bromatology, Hygiene, Nutrition, 23 Marinescu Street, Cluj-Napoca 400337, Romania.
| | | | | | | | | |
Collapse
|
18
|
Wu JY, Li YJ, Liu XY, Cai JX, Hu XB, Wang JM, Tang TT, Xiang DX. 3,5,4'-trimethoxy-trans-stilbene loaded PEG-PE micelles for the treatment of colon cancer. Int J Nanomedicine 2019; 14:7489-7502. [PMID: 31571860 PMCID: PMC6749994 DOI: 10.2147/ijn.s221625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/30/2019] [Indexed: 11/29/2022] Open
Abstract
Background 3,5,4′-trimethoxy-trans-stilbene (BTM) is a methylated derivative of resveratrol. To improve the pharmaceutical properties of BTM, BTM loaded PEG-PE micelles (BTM@PEG-PE) were fabricated and its anti-cancer efficacy against colon cancer was evaluated. Methods BTM@PEG-PE micelles were prepared by the solvent evaporation method and were characterized by nuclear magnetic resonance (NMR), size, zeta potential, polymer disperse index (PDI) and transmission electron microscopy (TEM). Cellular uptake, cell viability assay, caspase-3 activity assay and flow cytometry were performed to evaluate the cell internalization and anti-cancer efficacy of BTM@PEG-PE micelles in vitro. Pharmacokinetic profiles of BTM and BTM@PEG-PE micelles were compared and in vivo anti-cancer therapeutic efficacy and safety of BTM@PEG-PE micelles on CT26 xenograft mice were evaluated. Results BTM was successfully embedded in the core of PEG-PE micelles, with a drug loading capacity of 5.62±0.80%. PEG-PE micelles facilitated BTM entering to the CT26 cells and BTM@PEG-PE micelles exerted enhanced anti-cancer efficacy against CT26 cells. BTM@PEG-PE micelles showed prolonged half-life and increased bioavailability. More importantly, BTM@PEG-PE micelles treatment suppressed tumor growth in tumor-bearing mice and prolonged survival with minimal damage to normal tissues. Conclusion Altogether, the BTM@PEG-PE micelles might be a promising strategy to enhance the pharmacokinetic and pharmacodynamic potentials of BTM for colon cancer therapy.
Collapse
Affiliation(s)
- Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, People's Republic of China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, People's Republic of China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Xin-Yi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, People's Republic of China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Jia-Xin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, People's Republic of China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Xiong-Bin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, People's Republic of China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Jie-Min Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, People's Republic of China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Tian-Tian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, People's Republic of China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, People's Republic of China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| |
Collapse
|
19
|
Yang L, Qin X, Liu H, Wei Y, Zhu H, Jiang M. Design, synthesis and biological evaluation of a series of new resveratrol analogues as potential anti-cancer agents. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190125. [PMID: 31598278 PMCID: PMC6774960 DOI: 10.1098/rsos.190125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
A series of novel resveratrol derivatives were designed, synthesized and evaluated as anti-cancer agents. Most of the compounds showed significant anti-proliferative activities against three human cancer cell lines (HepG2, A549 and Hela). Among these compounds, compound r displayed the most potent inhibitory activity and showed low cytotoxic activity. Cell apoptosis and cell cycle assays demonstrated that compound r significantly induced apoptosis (p < 0.001) and arrested cell cycle at S phase. Immunofluorescence microscopy analysis showed compound r disrupted the tubulin network. Docking simulations supported the pharmacological results of compound r. It is believed that this work would be very useful for designing a new series of tubulin inhibitors.
Collapse
Affiliation(s)
- Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Xuemei Qin
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hongcun Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Yanye Wei
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| |
Collapse
|
20
|
Husain K, Zhang A, Shivers S, Davis-Yadley A, Coppola D, Yang CS, Malafa MP. Chemoprevention of Azoxymethane-induced Colon Carcinogenesis by Delta-Tocotrienol. Cancer Prev Res (Phila) 2019; 12:357-366. [DOI: 10.1158/1940-6207.capr-18-0290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
|
21
|
Xie YK, Zhou X, Yuan HT, Qiu J, Xin DQ, Chu XL, Wang DC, Wang Z. Resveratrol reduces brain injury after subarachnoid hemorrhage by inhibiting oxidative stress and endoplasmic reticulum stress. Neural Regen Res 2019; 14:1734-1742. [PMID: 31169191 PMCID: PMC6585540 DOI: 10.4103/1673-5374.257529] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous studies have shown that resveratrol, a bioactive substance found in many plants, can reduce early brain injury after subarachnoid hemorrhage, but how it acts is still unclear. This study explored the mechanism using the experimental subarachnoid hemorrhage rat model established by injecting autologous blood into the cerebellomedullary cistern. Rat models were treated with an intraperitoneal injection of 60 mg/kg resveratrol 2, 6, 24 and 46 hours after injury. At 48 hours after injury, their neurological function was assessed using a modified Garcia score. Brain edema was measured by the wet-dry method. Neuronal apoptosis in the prefrontal cortex was detected by terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Levels of reactive oxygen species and malondialdehyde in the prefrontal cortex were determined by colorimetry. CHOP, glucose-regulated protein 78, nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1 mRNA expression levels in the prefrontal cortex were measured by reverse transcription polymerase chain reaction. Tumor necrosis factor-alpha content in the prefrontal cortex was detected by enzyme linked immunosorbent assay. Immunohistochemical staining was used to detect the number of positive cells of nuclear factor-erythroid 2-related factor 2, heme oxygenase 1, glucose-regulated protein 78, CHOP and glial fibrillary acidic protein. Western blot assay was utilized to analyze the expression levels of nuclear factor-erythroid 2-related factor 2, heme oxygenase 1, glucose-regulated protein 78 and CHOP protein expression levels in the prefrontal cortex. The results showed that resveratrol treatment markedly alleviated neurological deficits and brain edema in experimental subarachnoid hemorrhage rats, and reduced neuronal apoptosis in the prefrontal cortex. Resveratrol reduced the levels of reactive oxygen species and malondialdehyde, and increased the expression of nuclear factor-erythroid 2-related factor 2, heme oxygenase-1 mRNA and protein in the prefrontal cortex. Resveratrol decreased glucose-regulated protein 78, CHOP mRNA and protein expression and tumor necrosis factor-alpha level. It also activated astrocytes. The results suggest that resveratrol exerted neuroprotective effect on subarachnoid hemorrhage by reducing oxidative damage, endoplasmic reticulum stress and neuroinflammation. The study was approved by the Animals Ethics Committee of Shandong University, China on February 22, 2016 (approval No. LL-201602022).
Collapse
Affiliation(s)
- Yun-Kai Xie
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Xin Zhou
- Department of Physiology, School of Basic Medical Sciences, Shandong University; Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Hong-Tao Yuan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Jie Qiu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Dan-Qing Xin
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Xi-Li Chu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Da-Chuan Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
22
|
Structure-Based Drug Design for Cytochrome P450 Family 1 Inhibitors. Bioinorg Chem Appl 2018; 2018:3924608. [PMID: 30147715 PMCID: PMC6083639 DOI: 10.1155/2018/3924608] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/17/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochromes P450 are a class of metalloproteins which are responsible for electron transfer in a wide spectrum of reactions including metabolic biotransformation of endogenous and exogenous substrates. The superfamily of cytochromes P450 consists of families and subfamilies which are characterized by a specific structure and substrate specificity. Cytochromes P450 family 1 (CYP1s) play a distinctive role in the metabolism of drugs and chemical procarcinogens. In recent decades, these hemoproteins have been intensively studied with the use of computational methods which have been recently developed remarkably to be used in the process of drug design by the virtual screening of compounds in order to find agents with desired properties. Moreover, the molecular modeling of proteins and ligand docking to their active sites provide an insight into the mechanism of enzyme action and enable us to predict the sites of drug metabolism. The review presents the current status of knowledge about the use of the computational approach in studies of ligand-enzyme interactions for CYP1s. Research on the metabolism of substrates and inhibitors of CYP1s and on the selectivity of their action is particularly valuable from the viewpoint of cancer chemoprevention, chemotherapy, and drug-drug interactions.
Collapse
|
23
|
Lee SR, Jin H, Kim WT, Kim WJ, Kim SZ, Leem SH, Kim SM. Tristetraprolin activation by resveratrol inhibits the proliferation and metastasis of colorectal cancer cells. Int J Oncol 2018; 53:1269-1278. [PMID: 29956753 DOI: 10.3892/ijo.2018.4453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Resveratrol (RSV) is a polyphenolic compound that naturally occurs in grapes, peanuts and berries. Considerable research has been conducted to determine the benefits of RSV against various human cancer types. Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability and has decreased expression in human cancer. The present study investigated the biological effect of RSV on TTP gene regulation in colon cancer cells. RSV inhibited the proliferation and invasion/metastasis of HCT116 and SNU81 colon cancer cells. Furthermore, RSV induced a dose-dependent increase in TTP expression in HCT116 and SNU81 cells. The microarray experiment revealed that RSV significantly increased TTP expression by downregulating E2F transcription factor 1 (E2F1), a downstream target gene of TTP and regulated genes associated with inflammation, cell proliferation, cell death, angiogenesis and metastasis. Although TTP silencing inhibited TTP mRNA expression, the expression was subsequently restored by RSV. Small interfering RNA-induced TTP inhibition attenuated the effects of RSV on cell growth. In addition, RSV induced the mRNA-decaying activity of TTP and inhibited the relative luciferase activity of baculoviral IAP repeat containing 3 (cIAP2), large tumor suppressor kinase 2 (LATS2), E2F1, and lin‑28 homolog A (Lin28) in HCT116 and SNU81 cells. Therefore, RSV enhanced the inhibitory activity of TTP in HCT116 and SNU81 cells by negatively regulating cIAP2, E2F1, LATS2, and Lin28 expression. In conclusion, RSV suppressed the proliferation and invasion/metastasis of colon cancer cells by activating TTP.
Collapse
Affiliation(s)
- Se-Ra Lee
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Hua Jin
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Won-Tae Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Won-Jung Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Sung Zoo Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
24
|
Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediators Inflamm 2018; 2018:4159013. [PMID: 29618945 PMCID: PMC5829354 DOI: 10.1155/2018/4159013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2) pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms) that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin) on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.
Collapse
|
25
|
Polyphenols in Colorectal Cancer: Current State of Knowledge including Clinical Trials and Molecular Mechanism of Action. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4154185. [PMID: 29568751 PMCID: PMC5820674 DOI: 10.1155/2018/4154185] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
Polyphenols have been reported to have wide spectrum of biological activities including major impact on initiation, promotion, and progression of cancer by modulating different signalling pathways. Colorectal cancer is the second most major cause of mortality and morbidity among females and the third among males. The objective of this review is to describe the activity of a variety of polyphenols in colorectal cancer in clinical trials, preclinical studies, and primary research. The molecular mechanisms of major polyphenols related to their beneficial effects on colorectal cancer are also addressed. Synthetic modifications and other future directions towards exploiting of natural polyphenols against colorectal cancer are discussed in the last section.
Collapse
|
26
|
Zhao Y, Hu X, Zuo X, Wang M. Chemopreventive effects of some popular phytochemicals on human colon cancer: a review. Food Funct 2018; 9:4548-4568. [DOI: 10.1039/c8fo00850g] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present review summarizes (1) the epidemiology and etiology of colon cancer, (2) generalized cancer chemoprotective mechanisms, and (3) the chemopreventive properties of some popular phytochemicals as well as some phytochemicals developed by our research group recently.
Collapse
Affiliation(s)
- Yueliang Zhao
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)
| | - Xiaoqian Hu
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)
| | - Xinyuan Zuo
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin City
- China
| | - Mingfu Wang
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)
| |
Collapse
|
27
|
Wang P, Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors 2018; 44:16-25. [PMID: 29315886 DOI: 10.1002/biof.1410] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/08/2023]
Abstract
Beneficial properties of resveratrol and pterostilbene, a dimethyl ether analog of resveratrol, have attracted increasing interest in recent years. Resveratrol and pterostilbene exhibit many pharmacological similarities and both of them are generally considered to be safe for human consumption. Beyond the structural and general bioactivity similarities between them, large amounts of data are now available to reveal the metabolic fate and pharmacological differences between them. Pterostilbene was found to be more metabolically stable and usually exhibited stronger pharmacological activities than that of resveratrol. As a contribution to clarify and compare aspects like metabolic stability and pharmacokinetics of resveratrol and pterostilbene, as well as explain the pharmacological similarities and differences between them, this review presents and compares recent data on the metabolism and pharmacokinetics of resveratrol and pterostilbene. © 2018 BioFactors, 44(1):16-25, 2018.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC
| |
Collapse
|
28
|
The Effect of Resveratrol on Cell Viability in the Burkitt's Lymphoma Cell Line Ramos. Molecules 2017; 23:molecules23010014. [PMID: 29267250 PMCID: PMC5943955 DOI: 10.3390/molecules23010014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Resveratrol is a polyphenolic natural compound produced by a variety of crops. Currently, resveratrol is considered a multi-target anti-cancer agent with pleiotropic activity, including the ability to prevent the proliferation of malignant cells by inhibiting angiogenesis and curtailing invasive and metastatic factors in many cancer models. However, the molecular mechanisms mediating resveratrol-specific effects on lymphoma cells remain unknown. To begin tackling this question, we treated the Burkitt's lymphoma cell line Ramos with resveratrol and assessed cell survival and gene expression. Our results suggest that resveratrol shows a significant anti-proliferative and pro-apoptotic activity on Ramos cells, inducing the DNA damage response, DNA repairing, and modulating the expression of several genes that regulate the apoptotic process and their proliferative activity.
Collapse
|
29
|
de Sousa Moraes LF, Sun X, Peluzio MDCG, Zhu MJ. Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes? Crit Rev Food Sci Nutr 2017; 59:59-71. [PMID: 28799785 DOI: 10.1080/10408398.2017.1357533] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cause of cancer death. Phytochemicals, especially anthocyanins/anthocyanidins (A/A), have gathered attention of the scientific community owing to their anti-inflammatory, antioxidant, and cancer-inhibitory properties. In this review, we discussed the possible mechanisms whereby A/A exhibit intestinal anticarcinogenic characteristics. Anthocyanins/anthocyanidins inhibit the pro-inflammatory NF-κB pathway, attenuate Wnt signaling and suppress abnormal epithelial cell proliferation. In addition, A/A induce mitochondrial-mediated apoptosis and downregulate Akt/mTOR (mammalian target of rapamycin) pathway. Furthermore, activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) also contributes to the anti-carcinogenic effects of A/A. Finally, downregulation of metalloproteinases (MMPs) by A/A inhibits tumor invasion and metastasis. In conclusion, A/A exert their anti-tumor effects against colorectal carcinogenesis via multiple mechanisms, providing insights into the use of A/A as a natural chemopreventive intervention on major colorectal carcinogenesis.
Collapse
Affiliation(s)
- Luís Fernando de Sousa Moraes
- a School of Food Science , Washington State University , Pullman , WA , USA.,b Department of Nutrition and Health , Universidade Federal de Viçosa , Viçosa - Minas Gerais , Brazil
| | - Xiaofei Sun
- a School of Food Science , Washington State University , Pullman , WA , USA
| | | | - Mei-Jun Zhu
- a School of Food Science , Washington State University , Pullman , WA , USA
| |
Collapse
|
30
|
Alamolhodaei NS, Tsatsakis AM, Ramezani M, Hayes AW, Karimi G. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem Toxicol 2017; 103:223-232. [DOI: 10.1016/j.fct.2017.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/05/2017] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
|
31
|
Andishmand H, Hamishehkar H, Babazadeh A, Taghvimi A, Mohammadifar MA, Tabibiazar M. A Colon Targeted Delivery System for Resveratrol Enriching in pH Responsive-Model. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.15171/ps.2017.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
32
|
Discovery of resveratrol derivatives as novel LSD1 inhibitors: Design, synthesis and their biological evaluation. Eur J Med Chem 2017; 126:246-258. [DOI: 10.1016/j.ejmech.2016.11.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/06/2023]
|
33
|
Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells. Biochim Biophys Acta Gen Subj 2016; 1861:431-440. [PMID: 27760368 DOI: 10.1016/j.bbagen.2016.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND The polyphenol resveratrol (RSV) is found in the skin of red grapes and has been reported to exhibit anticancer properties. The antitumor effects of RSV in the gastrointestinal tract have gained considerable interest due to the high exposure of this tissue to this dietary compound. One of the hallmarks of cancer cells is their particular metabolism mainly relying on glycolysis for ATP production rather than mitochondrial oxidative phosphorylation. Although RSV has been described to act as a calorie-restriction mimetic, modulating energy metabolism in normal tissues, little efforts have been done to study the effects of this polyphenol in the metabolism of cancer cells. Taking this into account, the aim of this study was to explore metabolic effects of this polyphenol in colon cancer. METHODS Oxygen consumption, ATP levels, Western blotting and other molecular biology techniques were carried out to characterize the metabolic signature of RSV in SW620 colon cancer cells. RESULTS Paradoxically, the cytotoxic effects of RSV were associated with an increase in oxygen consumption supported by mitochondrial biogenesis and increased fatty acid oxidation. This partial reversion of the Warburg effect was followed by hyperpolarization of mitochondrial membrane and ROS production, leading to an increased apoptosis. CONCLUSIONS Our results propose that the anticancer mechanisms of RSV could reside in targeting cancer cell metabolism, promoting mitochondrial electron transport chain overload and, ultimately, increasing ROS production. GENERAL SIGNIFICANCE These results shed new light into the anticancer mechanism of RSV supporting the ability of this compound in potentiating the effects of chemotherapy.
Collapse
|
34
|
Aldawsari FS, Aguayo-Ortiz R, Kapilashrami K, Yoo J, Luo M, Medina-Franco JL, Velázquez-Martínez CA. Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents. J Enzyme Inhib Med Chem 2016; 31:695-703. [PMID: 26118420 PMCID: PMC4828318 DOI: 10.3109/14756366.2015.1058256] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/22/2015] [Indexed: 12/30/2022] Open
Abstract
Resveratrol is a natural polyphenol with plethora of biological activities. Resveratrol has previously shown to decrease DNA-methyltransferase (DNMT) enzymes expression and to reactivate silenced tumor suppressor genes. Currently, it seems that no resveratrol analogs have been developed as DNMT inhibitors. Recently, we reported the synthesis of resveratrol-salicylate derivatives and by examining the chemical structure of these analogs, we proposed that these compounds could exhibit DNMT inhibition especially that they resembled NSC 14778, a compound we previously identified as a DNMT inhibitor by virtual screening. Indeed, using in vitro DNMT inhibition assay, some of the resveratrol-salicylate analogs we screened in this work that showed selective inhibition against DNMT3 enzymes which were greater than resveratrol. A molecular docking study revealed key binding interactions with DNMT3A and DNMT3B enzymes. In addition, the most active analog, 10 showed considerable cytotoxicity against three human cancer cells; HT-29, HepG2 and SK-BR-3, which was greater than resveratrol. Further studies are needed to understand the anticancer mechanisms of these derivatives.
Collapse
Affiliation(s)
- Fahad S. Aldawsari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México City, México
| | - Kanishk Kapilashrami
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, N.Y., USA
| | - Jakyung Yoo
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd, Pogok-Eup, Republic of Korea
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, N.Y., USA
| | - José L. Medina-Franco
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México City, México
| | | |
Collapse
|
35
|
López-Gutiérrez N, Romero-González R, Martínez Vidal JL, Frenich AG. Determination of polyphenols in grape-based nutraceutical products using high resolution mass spectrometry. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Azimi A, Hagh MF, Talebi M, Yousefi B, Hossein pour feizi AA, Baradaran B, Movassaghpour AA, Shamsasenjan K, Khanzedeh T, Ghaderi AH, Heydarabad MZ. Time--and Concentration--Dependent Effects of Resveratrol on miR 15a and miR16-1 Expression and Apoptosis in the CCRF-CEM Acute Lymphoblastic Leukemia Cell Line. Asian Pac J Cancer Prev 2016; 16:6463-8. [PMID: 26434860 DOI: 10.7314/apjcp.2015.16.15.6463] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemotherapy is one of the common approaches in treatment of cancers, especially leukemia. However, drug resistance phenomena reduce the likelihood of treatment success. Resveratrol is a herbal compound which through complicated processes makes some selected cells sensitive to treatment and induction of apoptosis. In the present study, the effects of resveratrol on the expression of miR 15a and miR16-1 and apoptosis in the CCRF-CEM cell line were investigated. MATERIALS AND METHODS The CCRF-CEM cell line was cultured under standard conditions and changes in miR 15a and miR 16-1 expression were analyzed by real time-PCR technique, with attention to reveratrol dose and time dependence. Also, apoptosis is evaluated by flow cytometry using annexin V and PI. RESULTS CCRF-CEM cells underwent dose-dependent apoptotic cell death in response to resveratrol. MiR 15a and miR 16-1 expression was up-regulated after 24 and 48 hours resveratrol treatment (p<0.05). CONCLUSIONS The results of our study indicate that resveratrol induces apoptosis in a time and dose- dependent manner in CCRF-CEM cells. Also, increased expression level of miR 16-1 and miR 15a by means of resveratrol in CCRF-CEM cells might have a role in apoptosis induction and predisposition. According to our results resveratrol can be regarded as a dietary supplement to improve efficacy of anti-leukemia therapies.
Collapse
Affiliation(s)
- Ako Azimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
liu S, Li T, Liu H, Wang X, bo S, Xie Y, Bai X, Wu L, Wang Z, Liu D. Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex. Behav Brain Res 2016; 302:191-9. [DOI: 10.1016/j.bbr.2016.01.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 02/05/2023]
|
38
|
Khan OS, Bhat AA, Krishnankutty R, Mohammad RM, Uddin S. Therapeutic Potential of Resveratrol in Lymphoid Malignancies. Nutr Cancer 2016; 68:365-373. [PMID: 27028800 DOI: 10.1080/01635581.2016.1152386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products have always been sought as a dependable source for the cure of many fatal diseases including cancer. Resveratrol (RSV), a naturally occurring plant polyphenol, has been of recent research interest and is being investigated for its beneficial biological properties that include antioxidant, anti-inflammatory, proapoptotic, and growth inhibitory activities. These effects are mainly mediated by cell cycle arrest, upregulation of proapoptotic proteins, loss of mitochondrial potential, and generation of reactive oxygen species. Among the beneficial properties of RSV, the anticancer property has been of the prime focus and extensively explored during the last few years. Although reports exist on the chemopreventive role of RSV in many solid tumors, limited information is available on the antiproliferative activity of RSV in human lymphoma cells and experimental models. Potential mechanisms for its antiproliferative effect include induction of cell differentiation, apoptosis, and inhibition of DNA synthesis. In this review, the different kinds of lymphoid malignancies and the main mechanisms of cell death induced by resveratrol are discussed. The challenges are limiting in vivo experimental studies involving resveratrol. An attempt for the translation of this compound into a clinical drug also forms a part of this review.
Collapse
Affiliation(s)
- Omar S Khan
- a Health Science, College of Science, Benedictine University , Lisle , Illinois , USA
| | - Ajaz A Bhat
- b Translational Research Institute, Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Roopesh Krishnankutty
- b Translational Research Institute, Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Ramzi M Mohammad
- b Translational Research Institute, Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Shahab Uddin
- b Translational Research Institute, Academic Health System, Hamad Medical Corporation , Doha , Qatar
| |
Collapse
|
39
|
Mazzoni L, Perez-Lopez P, Giampieri F, Alvarez-Suarez JM, Gasparrini M, Forbes-Hernandez TY, Quiles JL, Mezzetti B, Battino M. The genetic aspects of berries: from field to health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:365-71. [PMID: 25872898 DOI: 10.1002/jsfa.7216] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/24/2015] [Accepted: 04/10/2015] [Indexed: 05/03/2023]
Abstract
Berries are a relevant source of micronutrients and nonessential phytochemicals, such as polyphenol compounds, that play a synergistic and cumulative role in human health promotion. Several systematic analyses showed that berry phenolics are able to detoxify reactive oxygen and nitrogen species, blocking their production, to intervene in the cell cycle, participating in the transduction and expression of genes involved in apoptosis, and to repair oxidative DNA damage. As a consequence, the improvement of the nutritional quality of berries has become a new quality target of breeding and biotechnological strategies, to control or to increase the content of specific health-related compounds in fruits. This work reviews, on the basis of the in vitro and in vivo evidence, the main berries' phytochemical compounds and their possible mechanisms of action on pathways involved in several type of diseases, with particular attention to cancer, inflammation, neurodegeneration, diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Patricia Perez-Lopez
- Department of Physiology, Institute of Nutrition and Food Technology 'José Mataix, Biomedical Research Center, University of Granada, Granada, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Jose M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
- Facultad de Ciencias de la Salud, Universidad Nacional de Chimborazo, Riobamba, Ecuador
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
- Area de Nutrición y Salud, Universidad Internacional Iberoamericana (UNINI), Campeche, CP, 24040, Mexico
| | - Jose L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology 'José Mataix, Biomedical Research Center, University of Granada, Granada, Spain
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
- Director Centre for Nutrition and Health, Universidad Europea del Atlantico (UEA), Santander, 39011, Spain
| |
Collapse
|
40
|
Dampf Stone A, Batie SF, Sabir MS, Jacobs ET, Lee JH, Whitfield GK, Haussler MR, Jurutka PW. Resveratrol potentiates vitamin D and nuclear receptor signaling. J Cell Biochem 2016; 116:1130-43. [PMID: 25536521 DOI: 10.1002/jcb.25070] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
The 1,25-dihydroxyvitamin D3 (1,25D) hormone is derived from vitamin D generated in skin or obtained from the diet, and binds to and activates the vitamin D receptor (VDR) in target tissues including kidney, colon/small intestine, and bone/muscle. We tested resveratrol for its ability to modulate VDR signaling, using vitamin D responsive element (VDRE) and mammalian 2-hybrid (M2H) transcriptional system technology. Via VDRE-based assays in kidney, colon and myoblast cells, VDR-mediated transcription was activated by resveratrol, and a cooperative effect on transactivation was observed with resveratrol plus 1,25D. The M2H assay revealed a modest, resveratrol-induced dimerization of VDR with its retinoid X receptor (RXR) heteropartner. Cells treated with both resveratrol and 1,25D displayed synergistic stimulation of VDR-RXR heterodimerization, while resveratrol antagonized rexinoid-mediated RXR-RXR homodimerization. Increased transactivation in response to resveratrol was also observed with a subset of other nuclear receptors and their respective cognate responsive elements. Evaluation of wild-type versus a ligand-binding domain mutant VDR revealed that hormone-responsiveness to 1,25D was severely depressed, while the response to resveratrol was only moderately attenuated. Moreover, radiolabeled 1,25D-displacement assays demonstrated an increase in VDR-bound 1,25D in the presence of resveratrol. Thus, resveratrol may affect VDR and other nuclear receptors indirectly, likely via the ability of resveratrol to: (1) potentiate 1,25D binding to VDR; (2) activate RXR; and/or (3) stimulate SIRT1, an enzyme known to deacetylate nuclear receptors. The results of this study elucidate a possible pathway for crosstalk between two nutritionally derived lipids, vitamin D and resveratrol, both of which converge on VDR signaling.
Collapse
Affiliation(s)
- Angelika Dampf Stone
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, 85306
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chang CC, Lin KY, Peng KY, Day YJ, Hung LM. Resveratrol exerts anti-obesity effects in high-fat diet obese mice and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells. Endocr J 2016; 63:169-78. [PMID: 26698690 DOI: 10.1507/endocrj.ej15-0545] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Studies on resveratrol in a wide range of concentrations on obese mice and adipose cells are necessary to comprehend its range of diverse and contradictory effects. In this study, we examined the anti-obesity effects of resveratrol on high-fat diet (HFD)-induced obese mice at dosages ranging from 1 to 30 mg/kg treatment for 10 wk. We also evaluated the effects of resveratrol on cytotoxicity, proliferation, adipogenic differentiation, and lipolysis of 3T3-L1 cells at concentrations ranging from 0.03 to 100 μM. In HFD obese mice, resveratrol treatment for 10 wk without decreased calories intake significantly attenuated HFD-induced weight gain in a dose-dependent manner. Resveratrol treatment also protected against HFD-induced lipid deposition in adipose tissues and liver. In cultured 3T3-L1 preadipocytes, high dosage (10 to 100 μM) resveratrol treatment produced cytotoxicity in both preadipocytes and mature adipocytes. In contrast, low concentration resveratrol treatment (1 to 10 μM) significantly inhibited the capacity of 3T3-L1 cells differentiated into mature adipocytes. Low dose resveratrol treatment also downregulated peroxisome proliferator-activated receptor gamma (PPARγ) and perilipin protein expressions in differentiated adipocytes. Additionally, tumor necrosis factor alpha (TNFα)-induced lipolysis was inhibited by low concentration resveratrol treatment in mature adipocytes. At concentrations of 10-100 μM, resveratrol exerted cytotoxicity. In contrast, at concentrations of 1-10 μM resveratrol inhibited adipogenic differentiation in preadipocytes and suppressed lipolysis in mature adipocytes. Our results suggest that resveratrol possessed anti-obesity effects by induction of cytotoxicity at high dosage and that it influences preadipocyte differentiation and mature adipocyte lipolysis at low concentration.
Collapse
Affiliation(s)
- Chih-Chun Chang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
43
|
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol 2015; 35 Suppl:S25-S54. [PMID: 25892662 PMCID: PMC4898971 DOI: 10.1016/j.semcancer.2015.02.006] [Citation(s) in RCA: 464] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, Temple University, Philadelphia, PA, United States.
| | - Alla Arzumanyan
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Stacy W Blain
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Randall F Holcombe
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Jamal Mahajna
- MIGAL-Galilee Technology Center, Cancer Drug Discovery Program, Kiryat Shmona, Israel
| | - Maria Marino
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Maria L Martinez-Chantar
- Metabolomic Unit, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Dipali Sharma
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj K Saxena
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Neetu Singh
- Tissue and Cell Culture Unit, CSIR-Central Drug Research Institute, Council of Scientific & Industrial Research, Lucknow, India
| | | | - Shanchun Guo
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sophie Chen
- Department of Research and Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey GU2 7YG, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Asfar S Azmi
- Department of Pathology, Karmonas Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dorota Halicka
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| |
Collapse
|
44
|
Vece MM, Agnoli C, Grioni S, Sieri S, Pala V, Pellegrini N, Frasca G, Tumino R, Mattiello A, Panico S, Bendinelli B, Masala G, Ricceri F, Sacerdote C, Krogh V. Dietary Total Antioxidant Capacity and Colorectal Cancer in the Italian EPIC Cohort. PLoS One 2015; 10:e0142995. [PMID: 26565695 PMCID: PMC4643904 DOI: 10.1371/journal.pone.0142995] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Background Colorectal cancer is the third most common cancer worldwide. Diet has been hypothesized as involved in colorectal cancer etiology, but few studies on the influence of total dietary antioxidant intake on colorectal cancer risk have been performed. Methods We investigated the association between colorectal cancer risk and the total antioxidant capacity (TAC) of the diet, and also of intake of selected antioxidants, in 45,194 persons enrolled in 5 centers (Florence, Naples, Ragusa, Turin and Varese) of the European Prospective Investigation into Cancer and Nutrition (EPIC) Italy study. TAC was estimated by the Trolox equivalent antioxidant capacity (TEAC) assay. Hazard ratios (HRs) for developing colorectal cancer, and colon and rectal cancers separately, adjusted for confounders, were estimated for tertiles of TAC by Cox modeling, stratifying by center. Results Four hundred thirty-six colorectal cancers were diagnosed over a mean follow-up of 11.28 years. No significant association between dietary TAC and colorectal cancer incidence was found. However for the highest category of TAC compared to the lowest, risk of developing colon cancer was lower (HR: 0.63; 95% CI: 0.44–0.89, P trend: 0.008). By contrast, increasing TAC intake was associated with significantly increasing risks of rectal cancer (2nd tertile HR: 2.09; 95%CI: 1.19–3.66; 3rd tertile 2.48 95%CI: 1.32–4.66; P trend 0.007). Intakes of vitamin C, vitamin E, and ß-carotene were not significantly associated with colorectal cancer risk. Conclusions Further prospective studies are needed to confirm the contrasting effects of high total antioxidant intake on risk of colon and rectal cancers.
Collapse
Affiliation(s)
- Marilena Monica Vece
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- * E-mail:
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Rosario Tumino
- Cancer Registry, Department of Prevention, ASP 7, Ragusa, Italy
| | - Amalia Mattiello
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Naples, Italy
| | - Salvatore Panico
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Naples, Italy
| | - Benedetta Bendinelli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Fulvio Ricceri
- Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco (TO), Italy
- Unit of Cancer Epidemiology, University of Turin and Center for Cancer Prevention, Turin, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, University of Turin and Center for Cancer Prevention, Turin, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
45
|
Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice. Eur J Pharmacol 2015; 768:49-57. [PMID: 26485503 DOI: 10.1016/j.ejphar.2015.10.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Abstract
Current evidence supports that depression is accompanied by the activation of the inflammatory-response system, and overproduction of pro-inflammatory cytokines may play a role in the pathophysiology of depressive disorders. Resveratrol has anti-inflammatory, antioxidant and anti-depressant-like properties. Using an animal model of depression induced by a single administration of lipopolysaccharide (LPS), the present study investigated the effects of resveratrol on LPS-induced depressive-like behavior and inflammatory-response in adult mice. Our results showed that pretreatment with resveratrol (80mg/kg, i.p.) for 7 consecutive days reversed LPS-increased the immobility time in the forced swimming test and tail suspension test, and LPS-reduced sucrose preference test. Moreover, the antidepressant action of resveratrol was paralleled by significantly reducing the expression levels of pro-inflammatory cytokines, and up-regulating phosphorylated cAMP response-element-binding protein (pCREB)/brain-derived neurotrophic factor (BDNF) expression in prefrontal cortex (PFC) and hippocampus. In addition, resveratrol ameliorated LPS-induced NF-κB activation in the PFC and hippocampus. The results demonstrate that resveratrol may be an effective therapeutic agent for LPS-induced depressive-like behavior, partially due to its anti-inflammatory aptitude and by modulating pCREB and BDNF expression in the brain region of mice.
Collapse
|
46
|
Zhu Y, Fu J, Shurlknight KL, Soroka DN, Hu Y, Chen X, Sang S. Novel Resveratrol-Based Aspirin Prodrugs: Synthesis, Metabolism, and Anticancer Activity. J Med Chem 2015; 58:6494-6506. [PMID: 26204233 DOI: 10.1021/acs.jmedchem.5b00536] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regular aspirin use has been convincingly shown to reduce the risk of colorectal cancer. However, long-term use of aspirin leads to gastrotoxicity. Herein, we designed and synthesized a novel class of resveratrol-based aspirin prodrugs to simultaneously release aspirin and resveratrol to attenuate the side effects caused by aspirin. Prodrug RAH exerted enhanced anticancer activities which are better than a physical mixture of aspirin and resveratrol as well as each individually. Metabolism of RAH in mice showed that the majority of RAH is decomposed to release resveratrol and aspirin or salicylic acid either in the intestine or after absorption. Mechanistic studies demonstrate RAH inhibits cell cycle arrest through downregulation of cyclins and induces apoptosis by activation of caspase-3 in cancer cells. These findings highlighted the improved anticancer properties of resveratrol-based aspirin prodrugs. RAH may represent novel and safe alternatives of aspirin for the purpose of daily use in the future.
Collapse
Affiliation(s)
- Yingdong Zhu
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Junsheng Fu
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
- College of Life Sciences, Fujian Agriculture and Forestry University , No. 15 Shangxiadian Road, Cangshan District, Fuzhou, Fujian Province 350002, P. R. China
| | - Kelly L Shurlknight
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Dominique N Soroka
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yuhui Hu
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , 700 George Street, Durham, North Carolina 27707, United States
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , 700 George Street, Durham, North Carolina 27707, United States
| | - Shengmin Sang
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
47
|
Buhrmann C, Shayan P, Kraehe P, Popper B, Goel A, Shakibaei M. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol 2015; 98:51-68. [PMID: 26310874 DOI: 10.1016/j.bcp.2015.08.105] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
Abstract
5-Fluorouracil (5-FU), a common chemotherapeutic agent used for the treatment of colorectal cancer (CRC), by itself has inadequate response rates; highlighting the need for novel and improved treatment regimens for these patients. Resveratrol, a naturally-occurring polyphenol, has been linked with chemosensitizing potential and anticancer properties; however, the underlying mechanisms for these effects remain poorly understood. The effect of resveratrol in parental CRC cell lines (HCT116, SW480) and their corresponding isogenic 5-FU-chemoresistant derived clones (HCT116R, SW480R) was examined by MTT assays, intercellular junction formation and apoptosis by electron- and immunoelectron microscopy, nuclear factor-kappaB (NF-κB) and NF-κB regulated gene products by western blot analysis in a 3D-alginate microenvironment. Resveratrol blocked the proliferation of all four CRC cell lines and synergized the invasion inhibitory effects of 5-FU. Interestingly, resveratrol induced a transition from 5-FU-induced formation of microvilli to a planar cell surface, which was concomitant with up-regulation of desmosomes, gap- and tight junctions (claudin-2) and adhesion molecules (E-cadherin) expression in HCT116 and HCT116R cells. Further, resveratrol significantly attenuated drug resistance through inhibition of epithelial-mesenchymal transition (EMT) factors (decreased vimentin and slug, increased E-cadherin) and down-regulation of NF-κB activation and its translocation to the nucleus and abolished NF-κB-regulated gene end-products (MMP-9, caspase-3). Moreover, this suppression was mediated through inhibition of IκBα kinase and IκBα phosphorylation and degradation. Our results demonstrate that resveratrol can potentiate the anti-tumor effects of 5-FU on CRC cells by chemosensitizing them, inhibiting an EMT phenotype via up-regulation of intercellular junctions and by down-regulation of NF-κB pathway.
Collapse
Affiliation(s)
- Constanze Buhrmann
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Parviz Shayan
- Investigating Institute of Molecular Biological System Transfer, Tehran 1417863171, Iran; Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, 141556453, Iran
| | - Patricia Kraehe
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Biomedical Center, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| |
Collapse
|
48
|
Azzolini M, Mattarei A, La Spina M, Marotta E, Zoratti M, Paradisi C, Biasutto L. Synthesis and Evaluation as Prodrugs of Hydrophilic Carbamate Ester Analogues of Resveratrol. Mol Pharm 2015; 12:3441-54. [DOI: 10.1021/acs.molpharmaceut.5b00464] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michele Azzolini
- Department of Biomedical Sciences, University of Padova, viale G. Colombo
3, 35131 Padova, Italy
- NÓOS Srl, via Campello sul Clitunno 34, 00181 Roma, Italy
| | - Andrea Mattarei
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35121 Padova, Italy
| | - Martina La Spina
- Department of Biomedical Sciences, University of Padova, viale G. Colombo
3, 35131 Padova, Italy
| | - Ester Marotta
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35121 Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, viale G. Colombo
3, 35131 Padova, Italy
- CNR Neuroscience Institute, viale G. Colombo 3, 35131 Padova, Italy
| | - Cristina Paradisi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35121 Padova, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, viale G. Colombo
3, 35131 Padova, Italy
- CNR Neuroscience Institute, viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
49
|
Han G, Xia J, Gao J, Inagaki Y, Tang W, Kokudo N. Anti-tumor effects and cellular mechanisms of resveratrol. Drug Discov Ther 2015; 9:1-12. [PMID: 25788047 DOI: 10.5582/ddt.2015.01007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a phytoalexin contained in a variety of plants, such as grapes, berries and especially in the dried roots of Polygonum cuspidatum Sieb. et Zucc. It has been shown to exhibit anti-oxidative and anti-inflammation activity, and to reverse the effects of aging. Its ability to suppress cell proliferation, induce apoptosis and suppress the metastasis and invasion in a number of cell lines has prompted a large interest from people for its use as an anti-tumor component. In this review, evidence of resveratrol's anti-tumor effects and molecular mechanisms are recapitulated. First, we present the anti-apoptosis, anti-invasion/metastasis and anti-inflammation effect of resveratrol; second, the main signaling pathways involved in these activities are described and summarized with the studies of different tumors involved. Resveratrol not only induces apoptosis of tumor cells through intrinsic/extrinsic pathways and cell cycle arrest, but also inhibits the invasion and metastasis abilities of tumors via modulating collagen degradation-related molecular targets. Altogether, the present findings suggest the anti-tumor potential of resveratrol against various types of cancers.
Collapse
Affiliation(s)
- Guohua Han
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has been found to afford neuroprotective effects against neuroinflammation in the brain. Activated microglia can secrete various pro-inflammatory cytokines and neurotoxic mediators, which may contribute to hypoxic brain injuries. The aim of this study is to investigate the potential role of resveratrol in attenuating hypoxia-induced neurotoxicity via its anti-inflammatory actions through in vitro models of the BV-2 microglial cell line and primary microglia. We found that resveratrol significantly inhibited hypoxia-induced microglial activation and reduced subsequent release of pro-inflammatory factors. In addition, resveratrol inhibited the hypoxia-induced degradation of IκB-alpha and phosphorylation of p65 NF-κB protein. Hypoxia-induced ERK1/2 and JNK phosphorylation was also strongly inhibited by resveratrol, whereas resveratrol had no effect on hypoxia-stimulated p38 MAPK phosphorylation. Importantly, treating primary cortical neurons with conditioned medium (CM) from hypoxia-stimulated microglia induced neuronal apoptosis, which was reversed by CM co-treated with resveratrol. Taken together, resveratrol exerts neuroprotection against hypoxia-induced neurotoxicity through its anti-inflammatory effects in microglia. These effects were mediated, at least in part, by suppressing the activation of NF-ĸB, ERK and JNK MAPK signaling pathways.
Collapse
|