1
|
Vörös K, Becker Z, Kónya R, Arany-Tóth A, Farkas R. Application of Moxidectin and Ultrasound-Aided Injection of Melarsomine During the American Heartworm Society Recommended Treatment Protocol in Dirofilaria immitis Infected Dogs. Vector Borne Zoonotic Dis 2022; 22:382-390. [PMID: 35687421 DOI: 10.1089/vbz.2021.0108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The American Heartworm Society (AHS) recommends the three-dose alternate melarsomine therapeutic regimen, together with a macrocyclic lactone (ML) to reduce new infections and eliminate susceptible larvae and doxycycline against Wolbachia bacteria. Till now, only reports on ivermectin as an ML exist in the frame of this protocol. Between 2014 and 2020, the AHS protocol was used in 44 heartworm-positive dogs. Microfilaremic dogs were pretreated with prednisolone and clopidogrel for 1 week before the first moxidectin application. Moxidectin was applied on the 1st, 30th, 60th, and 90th therapeutic days. On the first day, dexamethasone and chloropyramine were used to avoid potential adverse effects caused by the destroyed microfilariae. During the 1st-28th days, doxycycline 10 mg/kg BID was given with probiotics. Adult heartworms were destroyed with melarsomine on the 60th, 90th, and 91st days. Butorphanol and dexamethasone were given just before melarsomine injections. The depth of the intramuscular injection site was determined by ultrasound examination of the lumbar muscles. From the 60th day, dalteparin was applied for 10 days to decrease the chance of pulmonary thromboembolism. Moxidectin did not cause adverse reactions, even in microfilaremic dogs. Gastrointestinal side effects of doxycycline were observed in three (6%) dogs, they recovered after symptomatic therapy and by lowering the initial dose to 5 mg/kg BID. Transient anorexia and diarrhea were found in one (2%), and coughing and mild dyspnea in one (2%) animal as systemic post-therapeutic complications of melarsomine. No local side effects were observed in 13 (30%) dogs, mild local side effects occurred in 29 (66%) patients, and severe local swelling in 2 (4%) cases. All dogs recovered clinically by the 120th day and no microfilaremia was seen that time. An antigen test performed in 37/44 animals on the 271st day was also negative in all cases.
Collapse
Affiliation(s)
- Károly Vörös
- Department and Clinic of Internal Medicine, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Zsolt Becker
- Department and Clinic of Internal Medicine, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Réka Kónya
- Department and Clinic of Internal Medicine, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Attila Arany-Tóth
- Division of Radiology, Department and Clinic of Surgery and Ophthalmology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Róbert Farkas
- Department of Parasitology and Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| |
Collapse
|
2
|
Li B, Zhang H, Shi L, Li R, Luo Y, Deng Y, Li S, Li R, Liu Z. Saccharomyces boulardii alleviates DSS-induced intestinal barrier dysfunction and inflammation in humanized mice. Food Funct 2022; 13:102-112. [PMID: 34878454 DOI: 10.1039/d1fo02752b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent clinical studies have demonstrated a beneficial effect of Saccharomyces boulardii (S. boulardii) in inflammatory bowel disease (IBD). However, the underlying mechanisms remain poorly defined. In this study, we investigated the modulating effect of S. boulardii on the intestinal microbiota in humanized mice with dextran sulfate sodium (DSS)-induced colitis. The mice were fed an S. boulardii-supplement diet for 16 days before DSS treatment. The results showed that feeding S. boulardii significantly ameliorated the colon damage and regulated inflammatory responses by modulating the cytokine profile. These changes were found to be associated with an altered microbiome composition and short-chain fatty acid (SCFA) metabolism. Further analysis demonstrated that S. boulardii-derived polysaccharides and polypeptides promoted the growth of certain probiotics and increased the microbial metabolite SCFAs levels. Overall, these findings demonstrated the role of S. boulardii as a potential gut microbiota modulator to prevent and treat IBD.
Collapse
Affiliation(s)
- Bei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Haibo Zhang
- Hubei Provincial Key Laboratory of Yeast Function, Yichang, P. R. China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, P. R. China
| | - Rong Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Yanan Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Yun Deng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Shihan Li
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Ruizhen Li
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
3
|
Changes in Gut Microbiota Induced by Doxycycline Influence in Vascular Function and Development of Hypertension in DOCA-Salt Rats. Nutrients 2021; 13:nu13092971. [PMID: 34578849 PMCID: PMC8464928 DOI: 10.3390/nu13092971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Previous experiments in animals and humans show that shifts in microbiota and its metabolites are linked to hypertension. The present study investigates whether doxycycline (DOX, a broad-spectrum tetracycline antibiotic) improves dysbiosis, prevent cardiovascular pathology and attenuate hypertension in deoxycorticosterone acetate (DOCA)-salt rats, a renin-independent model of hypertension. Male Wistar rats were randomly assigned to three groups: control, DOCA-salt hypertensive rats, DOCA-salt treated with DOX for 4 weeks. DOX decreased systolic blood pressure, improving endothelial dysfunction and reducing aortic oxidative stress and inflammation. DOX decreased lactate-producing bacterial population and plasma lactate levels, improved gut barrier integrity, normalized endotoxemia, plasma noradrenaline levels and restored the Treg content in aorta. These data demonstrate that DOX through direct effects on gut microbiota and its non-microbial effects (anti-inflammatory and immunomodulatory) reduces endothelial dysfunction and the increase in blood pressure in this low-renin form of hypertension.
Collapse
|
4
|
Wang XQ, Chen H, Gao YZ, Huang YX, Zhang RJ, Xie J, Li Y, Huang YQ, Gou LS, Yao RQ. The Potential Immunomodulatory Properties of Levornidazole Contribute to Improvement in Experimental Ulcerative Colitis. Curr Med Sci 2021; 41:746-756. [PMID: 34403100 DOI: 10.1007/s11596-021-2384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/26/2020] [Indexed: 10/20/2022]
Abstract
The use of an antibiotic with immunomodulatory properties could be fascinating in treating multifactorial inflammatory conditions such as ulcerative colitis (UC). We report our investigations into the immunomodulatory properties of levornidazole, the S-enantiomer of ornidazole, which displayed a tremendous therapeutic potential in UC induced by dextran sodium sulfate (DSS). Levornidazole administration to DSS-colitic mice attenuated the intestinal inflammatory process, with an efficacy better than that shown by 5-amino salicylic acid. This was evidenced by decreased disease activity index, ameliorated macroscopic and microscopic colon damages, and reduced expression of inflammatory cytokines. Additionally, levornidazole displayed anti-inflammatory activity through Caveolin-1-dependent reducing IL-1β and IL-18 secretion by macrophages contributing to its improvement of the intestinal inflammation, as confirmed in vitro and in vivo. In conclusion, these results pointed out that the immunomodulatory effects of levornidazole played a vital role in ameliorating the intestinal inflammatory process, which would be crucial for the translation of its use into clinical settings.
Collapse
Affiliation(s)
- Xing-Qi Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Chen
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221600, China
| | - Yu-Zhi Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, 221009, China
| | - Yan-Xiu Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Rui-Juan Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jun Xie
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Qing Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, 221009, China.
| | - Rui-Qin Yao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, 221009, China.
| |
Collapse
|
5
|
Diez-Echave P, Martín-Cabrejas I, Garrido-Mesa J, Langa S, Vezza T, Landete JM, Hidalgo-García L, Algieri F, Mayer MJ, Narbad A, García-Lafuente A, Medina M, Rodríguez-Nogales A, Rodríguez-Cabezas ME, Gálvez J, Arqués JL. Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572. Nutrients 2021; 13:1860. [PMID: 34072532 PMCID: PMC8228662 DOI: 10.3390/nu13061860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.
Collapse
Affiliation(s)
- Patricia Diez-Echave
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Izaskun Martín-Cabrejas
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - José Garrido-Mesa
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Susana Langa
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Teresa Vezza
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José M. Landete
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Laura Hidalgo-García
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Francesca Algieri
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Melinda J. Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Ana García-Lafuente
- Centro para la Calidad de los Alimentos, INIA-CISC, c/José Tudela s/n, 42004 Soria, Spain;
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Alba Rodríguez-Nogales
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Elena Rodríguez-Cabezas
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Juan L. Arqués
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| |
Collapse
|
6
|
Kamalian A, Sohrabi Asl M, Dolatshahi M, Afshari K, Shamshiri S, Momeni Roudsari N, Momtaz S, Rahimi R, Abdollahi M, Abdolghaffari AH. Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways. World J Gastroenterol 2020; 26:3365-3400. [PMID: 32655263 PMCID: PMC7327787 DOI: 10.3748/wjg.v26.i24.3365] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) refers to a group of disorders characterized by chronic inflammation of the gastrointestinal (GI) tract. The elevated levels of nitric oxide (NO) in serum and affected tissues; mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme; can exacerbate GI inflammation and is one of the major biomarkers of GI inflammation. Various natural and synthetic agents are able to ameliorate GI inflammation and decrease iNOS expression to the extent comparable with some IBD drugs. Thereby, the purpose of this study was to gather a list of natural or synthetic mediators capable of modulating IBD through the NO pathway. Electronic databases including Google Scholar and PubMed were searched from 1980 to May 2018. We found that polyphenols and particularly flavonoids are able to markedly attenuate NO production and iNOS expression through the nuclear factor κB (NF-κB) and JAK/STAT signaling pathways. Prebiotics and probiotics can also alter the GI microbiota and reduce NO expression in IBD models through a broad array of mechanisms. A number of synthetic molecules have been found to suppress NO expression either dependent on the NF-κB signaling pathway (i.e., dexamethasone, pioglitazone, tropisetron) or independent from this pathway (i.e., nicotine, prednisolone, celecoxib, β-adrenoceptor antagonists). Co-administration of natural and synthetic agents can affect the tissue level of NO and may improve IBD symptoms mainly by modulating the Toll like receptor-4 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Masoud Sohrabi Asl
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahsa Dolatshahi
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Khashayar Afshari
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
7
|
García-Collinot G, Madrigal-Santillán EO, Martínez-Bencomo MA, Carranza-Muleiro RA, Jara LJ, Vera-Lastra O, Montes-Cortes DH, Medina G, Cruz-Domínguez MP. Effectiveness of Saccharomyces boulardii and Metronidazole for Small Intestinal Bacterial Overgrowth in Systemic Sclerosis. Dig Dis Sci 2020; 65:1134-1143. [PMID: 31549334 DOI: 10.1007/s10620-019-05830-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Small intestinal bacterial overgrowth (SIBO) affects up to 60% of patients with systemic sclerosis (SSc), and it improves with antibiotics. The addition of probiotics could lead to better results. AIMS To evaluate the efficacy and safety of Saccharomyces boulardii (SB) versus metronidazole (M) versus M + SB for 2 months, to reduce gastrointestinal symptoms and SIBO assessed with hydrogen breath test in SSc. METHODS An open pilot clinical trial performed in forty patients with SIBO and SSc (ACR-EULAR 2013) who signed informed consent. Three groups were assigned: M, SB, and M + SB, for 2 months. Hydrogen was measured in parts per million with a hydrogen breath test to evaluate SIBO. The National Institutes of Health Patient-Reported Outcomes Measurement Information System (NIH-PROMIS) questionnaire was applied to quantify gastrointestinal symptoms with a raw score of eight symptoms. This study is registered in ClinicalTrials.gov with the following ID: NCT03692299. RESULTS Baseline characteristics were similar between groups. The average age was 53.2 ± 9.3 years, and the evolution of SSc was 13.5 (1-34) years. After 2 months of treatment, SIBO was eradicated in 55% of the M + SB group: 33% of SB, and 25% of M. The SB and M + SB groups had decreased diarrhea, abdominal pain, and gas/bloating/flatulence, but M remained unchanged. Reductions in expired hydrogen at 45 to 60 min were as follows: M + SB 48% and 44%, M 18% and 20%, and SB 53% and 60% at the first and second months, respectively (p < 0.01). Adverse effects were epigastric burning and constipation in M (53%) and M + SB (36%), and flatulence/diarrhea in SB (22%). CONCLUSIONS Metronidazole treatment is partially effective in SIBO, but S. boulardii in monotherapy or in combination improves the gastrointestinal outcomes in SSc.
Collapse
Affiliation(s)
- Grettel García-Collinot
- Research Division, Clinical Research Training Center, Hospital de Especialidades Centro Medico 'La Raza', Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Postgraduate Section, Escuela Superior de Medicina (ESM), Instituto Politecnico Nacional, Mexico City, Mexico
| | | | - Michel A Martínez-Bencomo
- Research Division, Hospital de Especialidades Centro Medico 'La Raza', Instituto Mexicano del Seguro Social, Seris y Zaachila SN, Colonia La Raza, Azcapotzalco, Mexico City, Mexico
| | - Rosa A Carranza-Muleiro
- Postgraduate Section, Escuela Superior de Medicina (ESM), Instituto Politecnico Nacional, Mexico City, Mexico
- Research Division, Hospital de Especialidades Centro Medico 'La Raza', Instituto Mexicano del Seguro Social, Seris y Zaachila SN, Colonia La Raza, Azcapotzalco, Mexico City, Mexico
| | - Luis J Jara
- Direction of Education and Research, Hospital de Especialidades Centro Medico 'La Raza', Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Olga Vera-Lastra
- Internal Medicine Department, Hospital de Especialidades Centro Medico, 'La Raza', Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Daniel H Montes-Cortes
- Emergency Department, Hospital General Centro Medico 'La Raza', Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Research Division, Hospital Regional '1° de Octubre', (ISSSTE), Mexico City, Mexico
| | - Gabriela Medina
- Translational Research Unit, Hospital de Especialidades Centro Medico 'La Raza', Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María Pilar Cruz-Domínguez
- Research Division, Hospital de Especialidades Centro Medico 'La Raza', Instituto Mexicano del Seguro Social, Seris y Zaachila SN, Colonia La Raza, Azcapotzalco, Mexico City, Mexico.
| |
Collapse
|
8
|
Chiabai MJ, Almeida JF, de Azevedo MGD, Fernandes SS, Pereira VB, de Castro RJA, Jerônimo MS, Sousa IG, de Souza Vianna LM, Miyoshi A, Bocca AL, Maranhão AQ, Brigido MM. Mucosal delivery of Lactococcus lactis carrying an anti-TNF scFv expression vector ameliorates experimental colitis in mice. BMC Biotechnol 2019; 19:38. [PMID: 31238939 PMCID: PMC6593574 DOI: 10.1186/s12896-019-0518-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Anti-Tumor Necrosis Factor-alpha therapy has become clinically important for treating inflammatory bowel disease. However, the use of conventional immunotherapy requires a systemic exposure of patients and collateral side effects. Lactic acid bacteria have been shown to be effective as mucosal delivering system for cytokine and single domain antibodies, and it is amenable to clinical purposes. Therefore, lactic acid bacteria may function as vehicles for delivery of therapeutic antibodies molecules to the gastrointestinal tract restricting the pharmacological effect towards the gut. Here, we use the mucosal delivery of Lactococcus lactis carrying an anti-TNFα scFv expression plasmid on a DSS-induced colitis model in mice. Results Experimental colitis was induced with DSS administered in drinking water. L. lactis carrying the scFv expression vector was introduced by gavage. After four days of treatment, animals showed a significant improvement in histological score and disease activity index compared to those of untreated animals. Moreover, treated mice display IL-6, IL17A, IL1β, IL10 and FOXP3 mRNA levels similar to health control mice. Therefore, morphological and molecular markers suggest amelioration of the experimentally induced colitis. Conclusion These results provide evidence for the use of this alternative system for delivering therapeutic biopharmaceuticals in loco for treating inflammatory bowel disease, paving the way for a novel low-cost and site-specific biotechnological route for the treatment of inflammatory disorders. Electronic supplementary material The online version of this article (10.1186/s12896-019-0518-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria José Chiabai
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Juliana Franco Almeida
- Centro de Biotecnologia, Departamento de Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Suelen Soares Fernandes
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Vanessa Bastos Pereira
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raffael Júnio Araújo de Castro
- Laboratório de Imunologia Aplicada, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Márcio Sousa Jerônimo
- Laboratório de Imunologia Aplicada, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Isabel Garcia Sousa
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Anderson Miyoshi
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anamelia Lorenzetti Bocca
- Laboratório de Imunologia Aplicada, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Andrea Queiroz Maranhão
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil.,Instituto Nacional de Investigação em Imunologia, INCTii, Brasília, Distrito Federal, Brazil
| | - Marcelo Macedo Brigido
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil. .,Instituto Nacional de Investigação em Imunologia, INCTii, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
9
|
Garrido-Mesa J, Rodríguez-Nogales A, Algieri F, Vezza T, Hidalgo-Garcia L, Garrido-Barros M, Utrilla MP, Garcia F, Chueca N, Rodriguez-Cabezas ME, Garrido-Mesa N, Gálvez J. Immunomodulatory tetracyclines shape the intestinal inflammatory response inducing mucosal healing and resolution. Br J Pharmacol 2018; 175:4353-4370. [PMID: 30184260 DOI: 10.1111/bph.14494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Immunomodulatory tetracyclines are well-characterized drugs with a pharmacological potential beyond their antibiotic properties. Specifically, minocycline and doxycycline have shown beneficial effects in experimental colitis, although pro-inflammatory actions have also been described in macrophages. Therefore, we aimed to characterize the mechanism behind their effect in acute intestinal inflammation. EXPERIMENTAL APPROACH A comparative pharmacological study was initially used to elucidate the most relevant actions of immunomodulatory tetracyclines: doxycycline, minocycline and tigecycline; other antibiotic or immunomodulatory drugs were assessed in bone marrow-derived macrophages and in dextran sodium sulfate (DSS)-induced mouse colitis, where different barrier markers, inflammatory mediators, microRNAs, TLRs, and the gut microbiota composition were evaluated. The sequential immune events that mediate the intestinal anti-inflammatory effect of minocycline in DSS-colitis were then characterized. KEY RESULTS Novel immunomodulatory activity of tetracyclines was identifed; they potentiated the innate immune response and enhanced resolution of inflammation. This is also the first report describing the intestinal anti-inflammatory effect of tigecycline. A minor therapeutic benefit seems to derive from their antibiotic properties. Conversely, immunomodulatory tetracyclines potentiated macrophage cytokine release in vitro, and while improving mucosal recovery in colitic mice, they up-regulated Ccl2, miR-142, miR-375 and Tlr4. In particular, minocycline initially enhanced IL-1β, IL-6, IL-22, GM-CSF and IL-4 colonic production and monocyte recruitment to the intestine, subsequently increasing Ly6C- MHCII+ macrophages, Tregs and type 2 intestinal immune responses. CONCLUSIONS AND IMPLICATIONS Immunomodulatory tetracyclines potentiate protective immune pathways leading to mucosal healing and resolution, representing a promising drug reposition strategy for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- J Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - A Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - F Algieri
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - T Vezza
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - L Hidalgo-Garcia
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M Garrido-Barros
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M P Utrilla
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - F Garcia
- Clinical Microbiology Service, Hospital Universitario San Cecilio, ibs. GRANADA, Red de, Investigación en SIDA, Granada, Spain
| | - N Chueca
- Clinical Microbiology Service, Hospital Universitario San Cecilio, ibs. GRANADA, Red de, Investigación en SIDA, Granada, Spain
| | - M E Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - N Garrido-Mesa
- School of Health, Sport and Bioscience, University of East London, London, UK
| | - J Gálvez
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
10
|
Garrido-Mesa J, Algieri F, Rodríguez-Nogales A, Vezza T, Utrilla M, Garcia F, Chueca N, Rodríguez-Cabezas M, Garrido-Mesa N, Gálvez J. Immunomodulatory tetracyclines ameliorate DNBS-colitis: Impact on microRNA expression and microbiota composition. Biochem Pharmacol 2018; 155:524-536. [DOI: 10.1016/j.bcp.2018.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
|
11
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, García F, Rodríguez-Cabezas ME, Gálvez J. Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice: Impact on microRNAs expression and gut microbiota composition. J Nutr Biochem 2018; 61:129-139. [PMID: 30236870 DOI: 10.1016/j.jnutbio.2018.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
The beneficial effects exerted by probiotics in inflammatory bowel disease (IBD) are well known, although their exact mechanisms have not been fully elucidated, and only few studies have focused on their impact on selected miRNAs and the gut microbiota composition. Therefore, our aim was to correlate the intestinal anti-inflammatory activity of the probiotic Saccharomyces boulardii in the dextran sodium sulphate (DSS) model of mouse colitis and the changes induced in miRNA expression and gut microbiota populations. Probiotic was given orally (5×109 CFU) to C57BL/6 mice for 26 days. After 2 weeks, the colitis was induced adding DSS to the drinking water. Mice were scored daily using a Disease Activity Index (DAI). After sacrifice, the colonic specimens were evaluated by determining the expression of inflammatory markers and micro-RNAs by qRT-PCR. Moreover, changes in microbiota populations were evaluated by pyrosequencing. Probiotic ameliorated the colonic damage induced by DSS, as evidenced by lower DAI values and colonic weight/length compared with untreated mice. The treatment modified the colonic expression of different inflammatory markers and the epithelial integrity proteins, and induced changes in micro-RNAs expression. Moreover, microbiota characterization showed that probiotic treatment increased bacterial diversity, thus ameliorating the dysbiosis produced by DSS-colitis. Saccharomyces boulardii exerted intestinal anti-inflammatory effects in DSS-mouse colitis, through the modulation in the immune response, involving modification of altered miRNA expression, being associated to the improvement of the inflammation-associated dysbiosis in the intestinal lumen, which could be of great interest to control the complex pathogenesis of IBD.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - José Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - M Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Natalia Chueca
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| |
Collapse
|
12
|
Rosa CP, Brancaglion GA, Miyauchi-Tavares TM, Corsetti PP, de Almeida LA. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions. Life Sci 2018; 207:480-491. [DOI: 10.1016/j.lfs.2018.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
|
13
|
Sivananthan K, Petersen AM. Review ofSaccharomyces boulardiias a treatment option in IBD. Immunopharmacol Immunotoxicol 2018; 40:465-475. [DOI: 10.1080/08923973.2018.1469143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kavitha Sivananthan
- Department of Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Andreas Munk Petersen
- Department of Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
14
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Fernández-Caballero JA, García F, Rodríguez-Cabezas ME, Gálvez J. The Administration of Escherichia coli Nissle 1917 Ameliorates Development of DSS-Induced Colitis in Mice. Front Pharmacol 2018; 9:468. [PMID: 29867475 PMCID: PMC5958303 DOI: 10.3389/fphar.2018.00468] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
The beneficial effects of probiotics on immune-based pathologies such as inflammatory bowel disease (IBD) have been well reported. However, their exact mechanisms have not been fully elucidated. Few studies have focused on the impact of probiotics on the composition of the colonic microbiota. The aim of the present study was to correlate the intestinal anti-inflammatory activity of the probiotic Escherichia coli Nissle 1917 (EcN) in the dextran sodium sulfate (DSS) model of mouse colitis with the changes induced in colonic microbiota populations. EcN prevented the DSS-induced colonic damage, as evidenced by lower disease activity index (DAI) values and colonic weight/length ratio, when compared with untreated control mice. The beneficial effects were confirmed biochemically, since the probiotic treatment improved the colonic expression of different cytokines and proteins involved in epithelial integrity. In addition, it restored the expression of different micro-RNAs (miR-143, miR-150, miR-155, miR-223, and miR-375) involved in the inflammatory response that occurs in colitic mice. Finally, the characterization of the colonic microbiota by pyrosequencing showed that the probiotic administration was able to counteract the dysbiosis associated with the intestinal inflammatory process. This effect was evidenced by an increase in bacterial diversity in comparison with untreated colitic mice. The intestinal anti-inflammatory effects of the probiotic EcN were associated with an amelioration of the altered gut microbiome in mouse experimental colitis, especially when considering bacterial diversity, which is reduced in these intestinal conditions. Moreover, this probiotic has shown an ability to modulate expression levels of miRNAs and different mediators of the immune response involved in gut inflammation. This modulation could also be of great interest to understand the mechanism of action of this probiotic in the treatment of IBD.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - José Garrido-Mesa
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Maria P Utrilla
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Natalia Chueca
- Department of Microbiology, Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Jose A Fernández-Caballero
- Department of Microbiology, Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Federico García
- Department of Microbiology, Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Maria E Rodríguez-Cabezas
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
15
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Garcia F, Olivares M, Rodríguez-Cabezas ME, Gálvez J. Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Mol Nutr Food Res 2017; 61. [PMID: 28752563 DOI: 10.1002/mnfr.201700144] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
SCOPE To compare the intestinal anti-inflammatory effects of two probiotics Lactobacillus fermentum and Lactobacillus salivarius in mouse colitis, focusing on their impact on selected miRNAs and microbiota composition. METHODS AND RESULTS Male C57BL/6J mice were randomly assigned to four groups (n = 10): non-colitic, DSS colitic and two colitic groups treated with probiotics (5 × 108 CFU/mouse/day). Both probiotics ameliorated macroscopic colonic damage. They improved the colonic expression of markers involved in the immune response, and the expression of miR-155 and miR-223. L. fermentum also restored miR-150 and miR-143 expression, also linked to the preservation of the intestinal barrier function. Besides, these beneficial effects were associated with the amelioration of the microbiota dysbiosis and a recovery of the SCFAs- and lactic acid-producing bacterial populations, although only L. fermentum improved Chao richness, Pielou evenness and Shannon diversity. Moreover, L. fermentum also restored the Treg cell population in MLNs and the Th1/Th2 cytokine balance. CONCLUSION Both probiotics exerted intestinal anti-inflammatory effects in DSS-mouse colitis, maybe due to their ability to restore the intestinal microbiota homeostasis and modulate the immune response. L. fermentum showed a greater beneficial effect compared to L. salivarius, which makes it more interesting for future studies.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Jose Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Natalia Chueca
- Department of Microbiology, ibs.GRANADA, Complejo Hospitalario Universitario de Granada, ibs.GRANADA, Granada, Spain
| | - Federico Garcia
- Department of Microbiology, ibs.GRANADA, Complejo Hospitalario Universitario de Granada, ibs.GRANADA, Granada, Spain
| | | | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
16
|
Fábrega MJ, Rodríguez-Nogales A, Garrido-Mesa J, Algieri F, Badía J, Giménez R, Gálvez J, Baldomà L. Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice. Front Microbiol 2017; 8:1274. [PMID: 28744268 PMCID: PMC5504144 DOI: 10.3389/fmicb.2017.01274] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli Nissle 1917 (EcN) is a probiotic strain with proven efficacy in inducing and maintaining remission of ulcerative colitis. However, the microbial factors that mediate these beneficial effects are not fully known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a direct pathway for delivering selected bacterial proteins and active compounds to the host. In fact, vesicles released by gut microbiota are emerging as key players in signaling processes in the intestinal mucosa. In the present study, the dextran sodium sulfate (DSS)-induced colitis mouse model was used to investigate the potential of EcN OMVs to ameliorate mucosal injury and inflammation in the gut. The experimental protocol involved pre-treatment with OMVs for 10 days before DSS intake, and a 5-day recovery period. Oral administration of purified EcN OMVs (5 μg/day) significantly reduced DSS-induced weight loss and ameliorated clinical symptoms and histological scores. OMVs treatment counteracted altered expression of cytokines and markers of intestinal barrier function. This study shows for the first time that EcN OMVs can mediate the anti-inflammatory and barrier protection effects previously reported for this probiotic in experimental colitis. Remarkably, translation of probiotics to human healthcare requires knowledge of the molecular mechanisms involved in probiotic–host interactions. Thus, OMVs, as a non-replicative bacterial form, could be explored as a new probiotic-derived therapeutic approach, with even lower risk of adverse events than probiotic administration.
Collapse
Affiliation(s)
- María-José Fábrega
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| | - Alba Rodríguez-Nogales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - José Garrido-Mesa
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Francesca Algieri
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Josefa Badía
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| | - Rosa Giménez
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| | - Julio Gálvez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Laura Baldomà
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| |
Collapse
|
17
|
Wang JZ, Du WT, Xu YL, Cheng SZ, Liu ZJ. Gut microbiome-based medical methodologies for early-stage disease prevention. Microb Pathog 2017; 105:122-130. [PMID: 28219830 DOI: 10.1016/j.micpath.2017.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
|
18
|
Abiodun OO, Rodríguez-Nogales A, Algieri F, Gomez-Caravaca AM, Segura-Carretero A, Utrilla MP, Rodriguez-Cabezas ME, Galvez J. Antiinflammatory and immunomodulatory activity of an ethanolic extract from the stem bark of Terminalia catappa L. (Combretaceae): In vitro and in vivo evidences. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:309-319. [PMID: 27452660 DOI: 10.1016/j.jep.2016.07.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMOCOLOGICAL RELEVANCE Terminalia catappa Linn (Combretaceae) is a medicinal plant with anti-inflammatory, anti-diarrhoeal and antioxidant properties, frequently found in tropical regions. Considering its characteristics, it could be useful for the treatment of inflammatory bowel disease, which is associated with inflammation, oxidative stress and an immune dysfunction. Thus this study evaluates the immunomodulatory properties and the intestinal anti-inflammatory effect of an ethanolic extract of the stem bark of T. catappa (ETCB) both in vitro (in RAW 264.7 macrophages) and in vivo, in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. MATERIALS AND METHODS The phenolic compounds in ETCB were identified and quantified using HPLC-DAD-qTOF-MS. The immunomodulatory activity ETCB was tested in vitro by determining the macrophage production of IL-1β and nitrites. In vivo studies were performed in the TNBS model of rat colitis. ETCB was given (25, 50 and 100mg/kg/day) orally for two days prior to colitis induction and thereafter for 7 days. Response to treatment was assessed by scoring the gross appearance of the colon, and determining myeloperoxidase activity, gene expression of pro-inflammatory cytokines like TNF-α, IL-23 and IL-6, chemokines, inducible nitric oxide synthase and proteins crucial in the maintenance of the intestinal mucosal barrier integrity like mucins (MUC-2, MUC-3) and villin. RESULTS ETCB was able to inhibit IL-1β and nitrite production in vitro in RAW 264.7 macrophages. Moreover, treatment of TNBS colitic rats with ETCB resulted in a decreased colonic damage score and weight/length ratio. It also reduced the colonic neutrophil infiltration indicated by a lower myeloperoxidase activity and prevented the depletion of colonic glutathione levels in colitic rats. In addition, treatment with ETCB down-regulated the gene expression of pro-inflammatory mediators (TNF-α, IL-23, IL-6 and CINC-1) and iNOS in colitic rats. Moreover, the gene expression of mucosal barrier proteins like MUC-2, MUC-3 and villin were up-regulated in colitic rats treated with ETCB. The dose of ETCB that produced the most significant beneficial effect was 100mg/kg. Regarding the chemical composition of ETCB, 31 phenolic compounds were identified, including ellagic acid, catalagin and gallic acid. CONCLUSION The beneficial effect of ETCB in the TNBS induced colitis in rats could be related to its antioxidant, immunomodulatory and anti-inflammatory activities, which could be attributed to the phenolic compounds identified.
Collapse
Affiliation(s)
- Oyindamola O Abiodun
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Ana Maria Gomez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain; Research and Development Centre for Functional Food (CIDAF), Health-Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain; Research and Development Centre for Functional Food (CIDAF), Health-Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - M Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M Elena Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Galvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.
| |
Collapse
|
19
|
Ghassemi Nooreini M, Ahmad Panahi H. Fabrication of magnetite nano particles and modification with metal organic framework of Zn2+ for sorption of doxycyline. Int J Pharm 2016; 512:178-185. [DOI: 10.1016/j.ijpharm.2016.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 11/28/2022]
|
20
|
The flesh ethanolic extract of Hylocereus polyrhizus exerts anti-inflammatory effects and prevents murine colitis. Clin Nutr 2016; 35:1333-1339. [PMID: 26948401 DOI: 10.1016/j.clnu.2016.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/02/2016] [Accepted: 02/14/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS IBD is a chronic disorder of the gastrointestinal tract characterized by mucosal inflammation and epithelial damage. Biologic therapy has significantly improved the course of the disease but there are still a high percentage of patients that do not respond to current therapies. We aim to determine the effects of the flesh ethanolic extract of Hylocereus polyrhizus (EH) in a mice model of colitis induced by TNBS. METHODS Balb/c mice received TNBS (175 mg/kg, 100 μl, i.r.) and six and thirty hours later were administered with EH (1 g/kg, i.p.). Mice were weighted daily and after sacrificing (2 and 4 days after TNBS) we analyzed mucosal histology, myeloperoxidase activity (MPO), the expression of pro-inflammatory molecules (qPCR) and NF-κB and Iκβ-α protein levels. The chemical characterization of the EH was determined by LC-MS/MS. RESULTS The administration of EH to TNBS-treated mice prevented (P < 0.05) the loss of body weight and significantly reduced in the colon: a) histological damage score, b) MPO enzymatic activity c) the expression of pro-inflammatory molecules and d) Iκβ-α degradation and nuclear NF-κβ protein levels. The LC-MS analysis detected metabolites such as polyphenols and fatty acids. CONCLUSION Systemic administration of the ethanolic extract of H. polyrhizus exerts an anti-inflammatory effect and prevents murine colitis induced by TNBS.
Collapse
|