1
|
Xiang F, Zhang Z, Xie J, Xiong S, Yang C, Liao D, Xia B, Lin L. Comprehensive review of the expanding roles of the carnitine pool in metabolic physiology: beyond fatty acid oxidation. J Transl Med 2025; 23:324. [PMID: 40087749 PMCID: PMC11907856 DOI: 10.1186/s12967-025-06341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
Traditionally, the carnitine pool is closely related to fatty acid metabolism. However, with increasing research, the pleiotropic effects of the carnitine pool have gradually emerged. The purpose of this review is to comprehensively investigate of the emerging understanding of the pleiotropic role of the carnitine pool, carnitine/acylcarnitines are not only auxiliaries or metabolites of fatty acid oxidation, but also play more complex and diverse roles, including energy metabolism, mitochondrial homeostasis, epigenetic regulation, regulation of inflammation and the immune system, tumor biology, signal transduction, and neuroprotection. This review provides an overview of the complex network of carnitine synthesis, transport, shuttle, and regulation, carnitine/acylcarnitines have the potential to be used as communication molecules, biomarkers and therapeutic targets for multiple diseases, with profound effects on intercellular communication, metabolic interactions between organs and overall metabolic health. The purpose of this review is to comprehensively summarize the multidimensional biological effects of the carnitine pool beyond its traditional role in fatty acid oxidation and to summarize the systemic effects mediated by carnitine/acylcarnitine to provide new perspectives for pharmacological research and treatment innovation and new strategies for the prevention and treatment of a variety of diseases.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Montanari S, Jansen R, Schranner D, Kastenmüller G, Arnold M, Janiri D, Sani G, Bhattacharyya S, Mahmoudian Dehkordi S, Dunlop BW, Rush AJ, Penninx BWHJ, Kaddurah-Daouk R, Milaneschi Y. Acylcarnitines metabolism in depression: association with diagnostic status, depression severity and symptom profile in the NESDA cohort. Transl Psychiatry 2025; 15:65. [PMID: 39988721 PMCID: PMC11847943 DOI: 10.1038/s41398-025-03274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Previous genomic evidence identified four ACs potentially linked to depression risk. We carried forward these ACs and tested the association of their circulating levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. The sample from the Netherlands Study of Depression and Anxiety included participants with current (n = 1035) or remitted (n = 739) MDD and healthy controls (n = 800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d = 0.2, p ≤ 1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß = 0.06, SE = 0.02, p = 1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß = -0.05, SE = 0.02, p = 1.85e-2) and higher C3 (ß = 0.08, SE = 0.02, p = 3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4141 observations). Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.
Collapse
Affiliation(s)
- Silvia Montanari
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Daniela Schranner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Delfina Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sudeepa Bhattacharyya
- Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | | | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke-National University of Singapore, Singapore, Singapore
| | - Brenda W H J Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Zhang X, Du P, Wang Z, Zhu Y, Si X, Chen W, Huang Y. Distinct dynamic regulation of pectoralis muscle metabolomics by insulin and the promotion of glucose-lipid metabolism with extended duration. Poult Sci 2025; 104:104619. [PMID: 39642750 PMCID: PMC11665691 DOI: 10.1016/j.psj.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024] Open
Abstract
Birds' glycolipid metabolism has garnered considerable attention due to their fasting blood glucose levels being nearly twice those of mammals. While skeletal muscle is the primary insulin-sensitive tissue in mammals, the effects of insulin on chicken skeletal muscle remain unclear. In this study, the insulin-responsive metabolites were identified in broiler's pectoralis muscle (after 16 h of fasting) using widely targeted metabolomics. Glycolipid concentrations were measured using kits, and the expression of key genes involved in glucose metabolism was assessed via quantitative real-time PCR (qRT-PCR). The insulin tolerance test, performed by injecting 5 IU/kg body weight of insulin, demonstrated a rapid drop in blood glucose levels from 0 to 15 min, with a consistent reduction observed at 120 min (P < 0.01). Insulin did not alter glucose and glycogen content in chicken pectoralis; however, low-density lipoprotein (LDL, P < 0.05) levels were upregulated in the early phase (15 min). With an extended insulin duration (120 min), pectoralis glucose content increased (P < 0.05), accompanied by a reduction in TG levels (P < 0.05). Metabolomic analysis revealed that insulin promotes the downregulation of 63 out of 71 metabolites at 15 min and the upregulation of 101 out of 134 metabolites at 120 min, mainly associated with lysine degradation and thyroid hormone signaling pathways, respectively. 7 metabolites were dynamically modulated in the same manner over time (2 up-up and 5 down-down). Early insulin inhibited glycolysis, evidenced by the reduction in phosphoenolpyruvate levels and hexokinase 2 (HK2) expression; however, insulin promoted glucose uptake through the activation of glucose transporter 4 (GLUT4) and enhanced glycolysis, accompanied by elevated fatty acid metabolism at the later phase. In conclusion, insulin dynamically regulates the metabolomics of the pectoralis muscle over time. Initially, chicken muscle tissues downregulate metabolic activities to accommodate the new signaling state, followed by significant upregulation to meet heightened metabolic demands. Extended insulin monitoring promotes glucose uptake and glycolysis, alongside enhanced fatty acid metabolism. This research provides insights into the potential mechanisms of insulin action in chicken muscles.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengfei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ziyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yao Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| |
Collapse
|
4
|
Huang H, Apaijai N, Oo TT, Suntornsaratoon P, Charoenphandhu N, Chattipakorn N, Chattipakorn SC. Gestational diabetes mellitus, not obesity, triggers postpartum brain inflammation and premature aging in Sprague-Dawley rats. Neuroscience 2024; 559:166-180. [PMID: 39236804 DOI: 10.1016/j.neuroscience.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Previous studies showed that women with gestational diabetes mellitus (GDM) are susceptible to cognitive dysfunction. We investigated the effects of GDM on brain pathologies and premature brain aging in rats. Seven-week-old female Sprague-Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD) after two weeks of acclimatization. On pregnancy day 0, HFD-treated rats received streptozotocin (GDM group) or vehicle (Obese mothers). ND-treated rats received vehicle (ND-control mothers). On postpartum day 21, brains and blood were collected. The GDM group showed increased inflammatory and premature aging markers, mitochondrial changes, and compensatory increases in the blood-brain barrier and synaptic proteins in the prefrontal cortex and hippocampus. GDM triggers maternal brain inflammation and premature aging, suggesting compensatory mechanisms may protect against these effects.
Collapse
Affiliation(s)
- Huatuo Huang
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Center for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Pereyra AS, Fernandez RF, Amorese A, Castro JN, Lin CT, Spangenburg EE, Ellis JM. Loss of mitochondria long-chain fatty acid oxidation impairs skeletal muscle contractility by disrupting myofibril structure and calcium homeostasis. Mol Metab 2024; 89:102015. [PMID: 39182841 PMCID: PMC11408158 DOI: 10.1016/j.molmet.2024.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Abnormal lipid metabolism in mammalian tissues can be highly deleterious, leading to organ failure. Carnitine Palmitoyltransferase 2 (CPT2) deficiency is an inherited metabolic disorder affecting the liver, heart, and skeletal muscle due to impaired mitochondrial oxidation of long-chain fatty acids (mLCFAO) for energy production. METHODS However, the basis of tissue damage in mLCFAO disorders is not fully understood. Mice lacking CPT2 in skeletal muscle (Cpt2Sk-/-) were generated to investigate the nexus between mFAO deficiency and myopathy. RESULTS Compared to controls, ex-vivo contractile force was reduced by 70% in Cpt2Sk-/- oxidative soleus muscle despite the preserved capacity to couple ATP synthesis to mitochondrial respiration on alternative substrates to long-chain fatty acids. Increased mitochondrial biogenesis, lipid accumulation, and the downregulation of 80% of dystrophin-related and contraction-related proteins severely compromised the structure and function of Cpt2Sk-/- soleus. CPT2 deficiency affected oxidative muscles more than glycolytic ones. Exposing isolated sarcoplasmic reticulum to long-chain acylcarnitines (LCACs) inhibited calcium uptake. In agreement, Cpt2Sk-/- soleus had decreased calcium uptake and significant accumulation of palmitoyl-carnitine, suggesting that LCACs and calcium dyshomeostasis are linked in skeletal muscle. CONCLUSIONS Our data demonstrate that loss of CPT2 and mLCFAO compromise muscle structure and function due to excessive mitochondrial biogenesis, downregulation of the contractile proteome, and disruption of calcium homeostasis.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.
| | - Regina F Fernandez
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Adam Amorese
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Jasmine N Castro
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Chien-Te Lin
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Espen E Spangenburg
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.
| |
Collapse
|
6
|
Milaneschi Y, Montanari S, Jansen R, Schranner D, Kastenmüller G, Arnold M, Janiri D, Sani G, Bhattacharyya S, Dehkordi SM, Dunlop B, Rush A, Penninx B, Kaddurah-Daouk R. Acylcarnitines metabolism in depression: association with diagnostic status, depression severity and symptom profile in the NESDA cohort. RESEARCH SQUARE 2024:rs.3.rs-4638158. [PMID: 39149483 PMCID: PMC11326352 DOI: 10.21203/rs.3.rs-4638158/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Previous genomic evidence identified four ACs potentially linked to depression risk. We carried forward these ACs and tested the association of their circulating levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. The sample from the Netherlands Study of Depression and Anxiety included participants with current (n = 1035) or remitted (n = 739) MDD and healthy controls (n = 800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d = 0.2, p ≤ 1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß=0.06, SE = 0.02, p = 1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß=-0.05, SE = 0.02, p = 1.85e-2) and higher C3 (ß=0.08, SE = 0.02, p = 3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4141 observations). Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.
Collapse
Affiliation(s)
| | | | - Rick Jansen
- Amsterdam UMC location Vrije Universiteit Amsterdam
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Davies A, Wenzl FA, Li XS, Winzap P, Obeid S, Klingenberg R, Mach F, Räber L, Muller O, Matter CM, Laaksonen R, Wang Z, Hazen SL, Lüscher TF. Short and medium chain acylcarnitines as markers of outcome in diabetic and non-diabetic subjects with acute coronary syndromes. Int J Cardiol 2023; 389:131261. [PMID: 37574027 DOI: 10.1016/j.ijcard.2023.131261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Carnitine metabolism produces numerous molecular species of short-, medium-, and long-chain acylcarnitines, which play important roles in energy homeostasis and fatty acid transport in the myocardium. Given that disturbances in the carnitine metabolism are linked to cardiometabolic disease, we studied the relationship of circulating acylcarnitines with outcomes in patients with acute coronary syndromes (ACS) and evaluated differences in circulating levels of these metabolites between diabetic and non-diabetic patients. METHODS Harnessing a prospective multicentre cohort study (SPUM-ACS; NCT01000701), we measured plasma levels of acylcarnitines, carnitine, and carnitine metabolites to assess their relationship with adjudicated major adverse cardiac events (MACE), defined as composite of myocardial infarction, stroke, clinically indicated revascularization, or death of any cause. The SPUM-ACS study enrolled patients presenting with ACS to Swiss University Hospitals between 2009 and 2012. Acetylcarnitine, octanoylcarnitine, proprionylcarnitine, butyrylcarnitine, pentanoylcarnitine, hexanoylcarnitine, carnitine, γ-butyrobetaine, and trimethylamine N-oxide were measured in plasma using stable isotope dilution high-performance liquid chromatography with online electrospray ionization tandem mass spectrometry. RESULTS A total of 1683 patients with ACS were included in the study. All measured metabolites except γ-butyrobetaine and carnitine were higher in diabetic subject (n = 294) than in non-diabetic subjects (n = 1389). On univariate analysis, all metabolites, apart from octenoylcarnitine, were significantly associated with MACE at 1 year. After multivariable adjustment for established risk factors, acetylcarnitine remained an independent predictor of MACE at 1-year (quartile 4 vs. quartile 1, adjusted hazard ratio 2.06; 95% confidence interval 1.12-3.80, P = 0.020). CONCLUSION Circulating levels of acetylcarnitine independently predict residual cardiovascular risk in patients with ACS.
Collapse
Affiliation(s)
- Allan Davies
- Royal Brompton and Harefield Hospitals, London, UK
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patric Winzap
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | - Slayman Obeid
- Division of Cardiology, Department of Medicine, Aarau Cantonal Hospital, Aarau, Switzerland; Herzklinik Kreuzlingen, Kreuzlingen, Switzerland
| | - Roland Klingenberg
- Kerckhoff Heart and Thorax Center, Department of Cardiology, Kerckhoff-Klinik, Bad Nauheim, Germany; Campus of the Justus Liebig University of Giessen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - François Mach
- Department of Cardiology, Hopital Universitaire de Geneve, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olivier Muller
- Department of Cardiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Christian M Matter
- University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Reijo Laaksonen
- Zora Biosciences Oy, Espoo, Finland; Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center Tampere, Tampere University, Tampere, Finland
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas F Lüscher
- Royal Brompton and Harefield Hospitals, London, UK; Center for Molecular Cardiology, University of Zurich, Switzerland; National Heart and Lung Institute, Imperial College, London, UK; School of Cardiovascular Medicine and Sciences, Kings College London, London, UK.
| |
Collapse
|
8
|
Balint L, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan M, Ienciu S, Mogos M, Jianu DC, Ursoniu S, Dumitrascu V, Vlad D, Popescu R, Petrica L. Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients. Metabolites 2023; 13:893. [PMID: 37623837 PMCID: PMC10456401 DOI: 10.3390/metabo13080893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Complications due to type 2 diabetes mellitus (T2DM) such as diabetic kidney disease (DKD) and cerebral small vessel disease (CSVD) have a powerful impact on mortality and morbidity. Our current diagnostic markers have become outdated as T2DM-related complications continue to develop. The aim of the investigation was to point out the relationship between previously selected metabolites which are potentially derived from gut microbiota and indicators of endothelial, proximal tubule (PT), and podocyte dysfunction, and neurosonological indices. The study participants were 20 healthy controls and 90 T2DM patients divided into three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. Serum and urine metabolites were determined by untargeted and targeted metabolomic techniques. The markers of endothelial, PT and podocyte dysfunction were assessed by ELISA technique, and the neurosonological indices were provided by an ultrasound device with high resolution (MYLAB 8-ESAOTE Italy). The descriptive statistical analysis was followed by univariable and multivariable linear regression analyses. In conclusion, in serum, arginine (sArg), butenoylcarnitine (sBCA), and indoxyl sulfate (sIS) expressed a biomarker potential in terms of renal endothelial dysfunction and carotid atherosclerosis, whereas sorbitol (sSorb) may be a potential biomarker of blood-brain barrier (BBB) dysfunction. In urine, BCA and IS were associated with markers of podocyte damage, whereas PCS correlated with markers of PT dysfunction.
Collapse
Affiliation(s)
- Lavinia Balint
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Carmen Socaciu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Research Center for Applied Biotechnology and Molecular Therapy Biodiatech, SC Proplanta, Trifoiului 12G, 400478 Cluj-Napoca, Romania
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Haţieganu”, Victor Babes 8, 400347 Cluj-Napoca, Romania;
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Internal Medicine II—Division of Diabetes and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Flaviu Bob
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Oana Milas
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Octavian Marius Cretu
- Department of Surgery I—Division of Surgical Semiology I, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, Emergency Clinical Municipal Hospital Timisoara, 300041 Timisoara, Romania;
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Mihaela Glavan
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Silvia Ienciu
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Maria Mogos
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Neurosciences—Division of Neurology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Sorin Ursoniu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Functional Sciences III, Division of Public Health and History of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Daliborca Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Microscopic Morphology II, Division of Cell and Molecular Biology II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|
9
|
Dambrova M, Liepinsh E. Acylcarnitines in health and disease: biomarkers and drug targets. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukes Str. 21, LV1006 Riga, Latvia
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukes Str. 21, LV1006 Riga, Latvia
| |
Collapse
|
10
|
Lipidomics profiling of biological aging in American Indians: the Strong Heart Family Study. GeroScience 2022; 45:359-369. [PMID: 35953607 PMCID: PMC9886745 DOI: 10.1007/s11357-022-00638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/02/2022] [Indexed: 02/03/2023] Open
Abstract
Telomeres shorten with age and shorter leukocyte telomere length (LTL) has been associated with various age-related diseases. Thus, LTL has been considered a biomarker of biological aging. Dyslipidemia is an established risk factor for most age-related metabolic disorders. However, little is known about the relationship between LTL and dyslipidemia. Lipidomics is a new biochemical technique that can simultaneously identify and quantify hundreds to thousands of small molecular lipid species. In a large population comprising 1843 well-characterized American Indians in the Strong Heart Family Study, we examined the lipidomic profile of biological aging assessed by LTL. Briefly, LTL was quantified by qPCR. Fasting plasma lipids were quantified by untargeted liquid chromatography-mass spectrometry. Lipids associated with LTL were identified by elastic net modeling. Of 1542 molecular lipids identified (518 known, 1024 unknown), 174 lipids (36 knowns) were significantly associated with LTL, independent of chronological age, sex, BMI, hypertension, diabetes status, smoking status, bulk HDL-C, and LDL-C. These findings suggest that altered lipid metabolism is associated with biological aging and provide novel insights that may enhance our understanding of the relationship between dyslipidemia, biological aging, and age-related diseases in American Indians.
Collapse
|
11
|
Virmani MA, Cirulli M. The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int J Mol Sci 2022; 23:ijms23052717. [PMID: 35269860 PMCID: PMC8910660 DOI: 10.3390/ijms23052717] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria control cellular fate by various mechanisms and are key drivers of cellular metabolism. Although the main function of mitochondria is energy production, they are also involved in cellular detoxification, cellular stabilization, as well as control of ketogenesis and glucogenesis. Conditions like neurodegenerative disease, insulin resistance, endocrine imbalances, liver and kidney disease are intimately linked to metabolic disorders or inflexibility and to mitochondrial dysfunction. Mitochondrial dysfunction due to a relative lack of micronutrients and substrates is implicated in the development of many chronic diseases. l-carnitine is one of the key nutrients for proper mitochondrial function and is notable for its role in fatty acid oxidation. l-carnitine also plays a major part in protecting cellular membranes, preventing fatty acid accumulation, modulating ketogenesis and glucogenesis and in the elimination of toxic metabolites. l-carnitine deficiency has been observed in many diseases including organic acidurias, inborn errors of metabolism, endocrine imbalances, liver and kidney disease. The protective effects of micronutrients targeting mitochondria hold considerable promise for the management of age and metabolic related diseases. Preventing nutrient deficiencies like l-carnitine can be beneficial in maintaining metabolic flexibility via the optimization of mitochondrial function. This paper reviews the critical role of l-carnitine in mitochondrial function, metabolic flexibility and in other pathophysiological cellular mechanisms.
Collapse
|
12
|
Wang WY, Liu X, Gao XQ, Li X, Fang ZZ. Relationship Between Acylcarnitine and the Risk of Retinopathy in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:834205. [PMID: 35370967 PMCID: PMC8964487 DOI: 10.3389/fendo.2022.834205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Diabetic retinopathy is a common complication of type 2 diabetes mellitus (T2DM). Due to the limited effectiveness of current prevention and treatment methods, new biomarkers are urgently needed for the prevention and diagnosis of DR. This study aimed to explore the relationships between plasma acylcarnitine with DR in T2DM. METHODS From May 2015 to August 2016, data of 1032 T2DM patients were extracted from tertiary hospitals. Potential non-linear associations were tested by binary logistic regression models, and ORs and 95% CIs of the research variables were obtained. Correlation heat map was used to analyze the correlation between variables. The change of predictive ability was judged by the area under the receiver operating characteristic curve. RESULTS Of the 1032 patients with T2DM, 162 suffered from DR. After adjusting for several confounding variables, C2 (OR:0.55, 95%CI:0.39-0.76), C14DC (OR:0.64, 95%CI:0.49-0.84), C16 (OR:0.64, 95%CI:0.49-0.84), C18:1OH (OR:0.51, 95%CI:0.36-0.71) and C18:1 (OR:0.60, 95%CI:0.44-0.83) were negatively correlated with DR. The area under the curve increased from 0.794 (95% CI 0.745 to 0.842) to 0.840 (95% CI 0.797 to 0.833) when C2, C14DC, C18:1OH and C18:1 added to the traditional risk factor model. CONCLUSION There was a negative correlation between C2, C14DC, C16, C18:1OH, and C18:1 and the risk of retinopathy in patients with T2DM. C2, C14DC, C18:1OH, and C18:1 may be new predictors and diagnostic markers of DR.
Collapse
|
13
|
Liepinsh E, Kuka J, Vilks K, Svalbe B, Stelfa G, Vilskersts R, Sevostjanovs E, Goldins NR, Groma V, Grinberga S, Plaas M, Makrecka-Kuka M, Dambrova M. Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage. Free Radic Biol Med 2021; 177:370-380. [PMID: 34728372 DOI: 10.1016/j.freeradbiomed.2021.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.
Collapse
Affiliation(s)
- Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia.
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
| | - Karlis Vilks
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
| | - Gundega Stelfa
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
| | - Reinis Vilskersts
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia; Riga Stradins University, Dzirciema Str 16, Riga, LV1007, Latvia
| | - Eduards Sevostjanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
| | | | - Valerija Groma
- Riga Stradins University, Dzirciema Str 16, Riga, LV1007, Latvia
| | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
| | - Mario Plaas
- Laboratory Animal Center, University of Tartu, Ravila 14b, Tartu, 50411, Estonia
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia; Riga Stradins University, Dzirciema Str 16, Riga, LV1007, Latvia
| |
Collapse
|
14
|
Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7493190. [PMID: 34367467 PMCID: PMC8342141 DOI: 10.1155/2021/7493190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Long-chain ω-3 polyunsaturated fatty acids (PUFAs) are known to induce cardiometabolic benefits, but the metabolic pathways of their biosynthesis ensuring sufficient bioavailability require further investigation. Here, we show that a pharmacological decrease in overall fatty acid utilization promotes an increase in the levels of PUFAs and attenuates cardiometabolic disturbances in a Zucker rat metabolic syndrome model. Metabolome analysis showed that inhibition of fatty acid utilization by methyl-GBB increased the concentration of PUFAs but not the total fatty acid levels in plasma. Insulin sensitivity was improved, and the plasma insulin concentration was decreased. Overall, pharmacological modulation of fatty acid handling preserved cardiac glucose and pyruvate oxidation, protected mitochondrial functionality by decreasing long-chain acylcarnitine levels, and decreased myocardial infarct size twofold. Our work shows that partial pharmacological inhibition of fatty acid oxidation is a novel approach to selectively increase the levels of PUFAs and modulate lipid handling to prevent cardiometabolic disturbances.
Collapse
|
15
|
Long-Chain Acylcarnitines Decrease the Phosphorylation of the Insulin Receptor at Tyr1151 Through a PTP1B-Dependent Mechanism. Int J Mol Sci 2021; 22:ijms22126470. [PMID: 34208786 PMCID: PMC8235348 DOI: 10.3390/ijms22126470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/26/2023] Open
Abstract
The accumulation of lipid intermediates may interfere with energy metabolism pathways and regulate cellular energy supplies. As increased levels of long-chain acylcarnitines have been linked to insulin resistance, we investigated the effects of long-chain acylcarnitines on key components of the insulin signalling pathway. We discovered that palmitoylcarnitine induces dephosphorylation of the insulin receptor (InsR) through increased activity of protein tyrosine phosphatase 1B (PTP1B). Palmitoylcarnitine suppresses protein kinase B (Akt) phosphorylation at Ser473, and this effect is not alleviated by the inhibition of PTP1B by the insulin sensitizer bis-(maltolato)-oxovanadium (IV). This result indicates that palmitoylcarnitine affects Akt activity independently of the InsR phosphorylation level. Inhibition of protein kinase C and protein phosphatase 2A does not affect the palmitoylcarnitine-mediated inhibition of Akt Ser473 phosphorylation. Additionally, palmitoylcarnitine markedly stimulates insulin release by suppressing Akt Ser473 phosphorylation in insulin-secreting RIN5F cells. In conclusion, long-chain acylcarnitines activate PTP1B and decrease InsR Tyr1151 phosphorylation and Akt Ser473 phosphorylation, thus limiting the cellular response to insulin stimulation.
Collapse
|
16
|
Makrecka-Kuka M, Korzh S, Videja M, Vilks K, Cirule H, Kuka J, Dambrova M, Liepinsh E. Empagliflozin Protects Cardiac Mitochondrial Fatty Acid Metabolism in a Mouse Model of Diet-Induced Lipid Overload. Cardiovasc Drugs Ther 2021; 34:791-797. [PMID: 32424653 DOI: 10.1007/s10557-020-06989-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Sodium-glucose cotransporter 2 (SGLT2) inhibitors prevent heart failure and decrease cardiovascular mortality in patients with type 2 diabetes. Heart failure is associated with detrimental changes in energy metabolism, and the preservation of cardiac mitochondrial function is crucial for the failing heart. However, to date, there are no data to support the hypothesis that treatment with a SGLT2 inhibitor might alter mitochondrial bioenergetics in diabetic failing hearts. Thus, the aim of this study was to investigate the protective effects of empagliflozin on mitochondrial fatty acid metabolism. METHODS Mitochondrial dysfunction was induced by 18 weeks of high-fat diet (HFD)-induced lipid overload. Empagliflozin was administered at a dose of 10 mg/kg in a chow for 18 weeks. Palmitate metabolism in vivo, cardiac mitochondrial functionality and biochemical parameters were measured. RESULTS In HFD-fed mice, palmitate uptake was 1.7, 2.3, and 1.9 times lower in the heart, liver, and kidneys, respectively, compared with that of the normal chow control group. Treatment with empagliflozin increased palmitate uptake and decreased the accumulation of metabolites of incomplete fatty acid oxidation in cardiac tissues, but not other tissues, compared with those of the HFD control group. Moreover, empagliflozin treatment resulted in fully restored fatty acid oxidation pathway-dependent respiration in permeabilized cardiac fibers. Treatment with empagliflozin did not affect the biochemical parameters related to hyperglycemia or hyperlipidemia. CONCLUSION Empagliflozin treatment preserves mitochondrial fatty acid oxidation in the heart under conditions of chronic lipid overload.
Collapse
Affiliation(s)
| | - Stanislava Korzh
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Melita Videja
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.,Faculty of Pharmacy, Riga Stradins University, Dzirciema 16, Riga, 1007, Latvia
| | - Karlis Vilks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.,Faculty of Pharmacy, Riga Stradins University, Dzirciema 16, Riga, 1007, Latvia
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| |
Collapse
|
17
|
Pereyra AS, Rajan A, Ferreira CR, Ellis JM. Loss of Muscle Carnitine Palmitoyltransferase 2 Prevents Diet-Induced Obesity and Insulin Resistance despite Long-Chain Acylcarnitine Accumulation. Cell Rep 2020; 33:108374. [PMID: 33176143 PMCID: PMC7680579 DOI: 10.1016/j.celrep.2020.108374] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
To assess the effects of acylcarnitine accumulation on muscle insulin sensitivity, a model of muscle acylcarnitine accumulation was generated by deleting carnitine palmitoyltransferase 2 (CPT2) specifically from skeletal muscle (Cpt2Sk-/- mice). CPT2 is an irreplaceable enzyme for mitochondrial long-chain fatty acid oxidation, converting matrix acylcarnitines to acyl-CoAs. Compared with controls, Cpt2Sk-/- muscles do not accumulate anabolic lipids but do accumulate ∼22-fold more long-chain acylcarnitines. High-fat-fed Cpt2Sk-/- mice resist weight gain, adiposity, glucose intolerance, insulin resistance, and impairments in insulin-induced Akt phosphorylation. Obesity resistance of Cpt2Sk-/- mice could be attributed to increases in lipid excretion via feces, GFD15 production, and energy expenditure. L-carnitine supplement intervention lowers acylcarnitines and improves insulin sensitivity independent of muscle mitochondrial fatty acid oxidative capacity. The loss of muscle CPT2 results in a high degree of long-chain acylcarnitine accumulation, simultaneously protecting against diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA
| | - Arvind Rajan
- Department of Chemistry, East Carolina University, Greenville, NC 27834, USA
| | | | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA.
| |
Collapse
|
18
|
Makrecka-Kuka M, Korzh S, Videja M, Vilskersts R, Sevostjanovs E, Zharkova-Malkova O, Arsenyan P, Kuka J, Dambrova M, Liepinsh E. Inhibition of CPT2 exacerbates cardiac dysfunction and inflammation in experimental endotoxaemia. J Cell Mol Med 2020; 24:11903-11911. [PMID: 32896106 PMCID: PMC7578905 DOI: 10.1111/jcmm.15809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
The suppression of energy metabolism is one of cornerstones of cardiac dysfunction in sepsis/endotoxaemia. To investigate the role of fatty acid oxidation (FAO) in the progression of inflammation‐induced cardiac dysfunction, we compared the effects of FAO‐targeting compounds on mitochondrial and cardiac function in an experimental model of lipopolysaccharide (LPS)‐induced endotoxaemia. In LPS‐treated mice, endotoxaemia‐induced inflammation significantly decreased cardiac FAO and increased pyruvate metabolism, while cardiac mechanical function was decreased. AMP‐activated protein kinase activation by A769662 improved mitochondrial FAO without affecting cardiac function and inflammation‐related gene expression during endotoxaemia. Fatty acid synthase inhibition by C75 restored both cardiac and mitochondrial FAO; however, no effects on inflammation‐related gene expression and cardiac function were observed. In addition, the inhibition of carnitine palmitoyltransferase 2 (CPT2)‐dependent FAO by aminocarnitine resulted in the accumulation of FAO intermediates, long‐chain acylcarnitines, in the heart. As a result, cardiac pyruvate metabolism was inhibited, which further exacerbated inflammation‐induced cardiac dysfunction. In conclusion, although inhibition of CPT2‐dependent FAO is detrimental to cardiac function during endotoxaemia, present findings show that the restoration of cardiac FAO alone is not sufficient to recover cardiac function. Rescue of cardiac FAO should be combined with anti‐inflammatory therapy to ameliorate cardiac dysfunction in endotoxaemia.
Collapse
Affiliation(s)
| | | | - Melita Videja
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Reinis Vilskersts
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | | | | | | | - Janis Kuka
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | | |
Collapse
|
19
|
Metformin decreases bacterial trimethylamine production and trimethylamine N-oxide levels in db/db mice. Sci Rep 2020; 10:14555. [PMID: 32884086 PMCID: PMC7471276 DOI: 10.1038/s41598-020-71470-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
The current study aimed to explore whether metformin, the most widely prescribed oral medication for the treatment of type 2 diabetes, alters plasma levels of cardiometabolic disease-related metabolite trimethylamine N-oxide (TMAO) in db/db mice with type 2 diabetes. TMAO plasma concentration was up to 13.2-fold higher in db/db mice when compared to control mice, while in db/db mice fed choline-enriched diet, that mimics meat and dairy product intake, TMAO plasma level was increased 16.8-times. Metformin (250 mg/kg/day) significantly decreased TMAO concentration by up to twofold in both standard and choline-supplemented diet-fed db/db mice plasma. In vitro, metformin significantly decreased the bacterial production rate of trimethylamine (TMA), the precursor of TMAO, from choline up to 3.25-fold in K. pneumoniae and up to 26-fold in P. Mirabilis, while significantly slowing the growth of P. Mirabilis only. Metformin did not affect the expression of genes encoding subunits of bacterial choline-TMA-lyase microcompartment, the activity of the enzyme itself and choline uptake, suggesting that more complex regulation beyond the choline-TMA-lyase is present. To conclude, the TMAO decreasing effect of metformin could be an additional mechanism behind the clinically observed cardiovascular benefits of the drug.
Collapse
|
20
|
Yu EA, Yu T, Jones DP, Ramirez-Zea M, Stein AD. Metabolomic Profiling After a Meal Shows Greater Changes and Lower Metabolic Flexibility in Cardiometabolic Diseases. J Endocr Soc 2020; 4:bvaa127. [PMID: 33134764 PMCID: PMC7584117 DOI: 10.1210/jendso/bvaa127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Context Metabolic flexibility is the physiologic acclimatization to differing energy availability and requirement states. Effectively maintaining metabolic flexibility remains challenging, particularly since metabolic dysregulations in meal consumption during cardiometabolic disease (CMD) pathophysiology are incompletely understood. Objective We compared metabolic flexibility following consumption of a standardized meal challenge among adults with or without CMDs. Design, Setting, and Participants Study participants (n = 349; age 37-54 years, 55% female) received a standardized meal challenge (520 kcal, 67.4 g carbohydrates, 24.3 g fat, 8.0 g protein; 259 mL). Blood samples were collected at baseline and 2 hours postchallenge. Plasma samples were assayed by high-resolution, nontargeted metabolomics with dual-column liquid chromatography and ultrahigh-resolution mass spectrometry. Metabolome-wide associations between features and meal challenge timepoint were assessed in multivariable linear regression models. Results Sixty-five percent of participants had ≥1 of 4 CMDs: 33% were obese, 6% had diabetes, 39% had hypertension, and 50% had metabolic syndrome. Log2-normalized ratios of feature peak areas (postprandial:fasting) clustered separately among participants with versus without any CMDs. Among participants with CMDs, the meal challenge altered 1756 feature peak areas (1063 reversed-phase [C18], 693 hydrophilic interaction liquid chromatography [HILIC]; all q < 0.05). In individuals without CMDs, the meal challenge changed 1383 feature peak areas (875 C18; 508 HILIC; all q < 0.05). There were 108 features (60 C18; 48 HILIC) that differed by the meal challenge and CMD status, including dipeptides, carnitines, glycerophospholipids, and a bile acid metabolite (all P < 0.05). Conclusions Among adults with CMDs, more metabolomic features differed after a meal challenge, which reflected lower metabolic flexibility relative to individuals without CMDs.
Collapse
Affiliation(s)
- Elaine A Yu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Tianwei Yu
- School of Data Science, Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong Province, China
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Manuel Ramirez-Zea
- Institute of Nutrition of Central America and Panama Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala
| | - Aryeh D Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
21
|
Blackburn ML, Ono-Moore KD, Sobhi HF, Adams SH. Carnitine palmitoyltransferase 2 knockout potentiates palmitate-induced insulin resistance in C 2C 12 myotubes. Am J Physiol Endocrinol Metab 2020; 319:E265-E275. [PMID: 32459525 DOI: 10.1152/ajpendo.00515.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Saturated fatty acids (SFAs) are implicated in muscle inflammation/cell stress and insulin resistance, but the catalog of factors involved is incomplete. SFA derivatives that accumulate with mismatched FA availability and FA oxidation (FAO) are likely involved, and evidence has emerged that select acylcarnitines should be considered. To understand if excessive long-chain acylcarnitine accumulation and limited FAO associate with lipotoxicity, carnitine palmitoyltransferase 2 knockout C2C12 cells were generated (CPT2 KO). CPT2 KO was confirmed by Western blot, increased palmitoylcarnitine accumulation, and loss of FAO capacity. There was no effect of CPT2 KO on palmitic acid (PA) concentration-dependent increases in media IL-6 or adenylate kinase. PA at 200 and 500 µM did not trigger cell stress responses (phospho-Erk, -JNK, or -p38) above that of vehicle in WT or CPT2 KO cells. In contrast, loss of CPT2 exacerbated PA-induced insulin resistance (acute phospho-Akt; 10 or 100 nM insulin) by as much as ~50-96% compared with WT. Growing cells in carnitine-free media abolished differences between WT and CPT2 KO, but this did not fully rescue PA-induced insulin resistance. The results suggest that PA-induced insulin resistance stems in part from palmitoylcarnitine accumulation, further supporting the hypothesis that select acylcarnitines participate in cell signaling and, when in excess, can compromise cell function. Since carnitine-free conditions could not fully rescue insulin signaling, and CPT2 KO did not alter cell stress responses, the majority of PA-induced "lipotoxicity" in C2C12 myotubes cannot be attributed to palmitoylcarnitine alone.
Collapse
Affiliation(s)
- Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Hany F Sobhi
- Center for Organic Synthesis, Department of Natural Sciences, Coppin State University, Baltimore, Maryland
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
22
|
Løvsletten NG, Rustan AC, Laurens C, Thoresen GH, Moro C, Nikolić N. Primary defects in lipid handling and resistance to exercise in myotubes from obese donors with and without type 2 diabetes. Appl Physiol Nutr Metab 2020; 45:169-179. [PMID: 31276628 DOI: 10.1139/apnm-2019-0265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Several studies have shown that human primary myotubes retain the metabolic characteristic of their donors in vitro. We have demonstrated, along with other researchers, a reduced lipid turnover and fat oxidation rate in myotubes derived from obese donors with and without type 2 diabetes (T2D). Because exercise is known to increase fat oxidative capacity in skeletal muscle, we investigated if in vitro exercise could restore primary defects in lipid handling in myotubes of obese individuals with and without T2D compared with lean nondiabetic donors. Primary myotubes cultures were derived from biopsies of lean, obese, and T2D subjects. One single bout of long-duration exercise was mimicked in vitro by electrical pulse stimulation (EPS) for 24 h. Lipid handling was measured using radiolabeled palmitate, metabolic gene expression by real-time qPCR, and proteins by Western blot. We first showed that myotubes from obese and T2D donors had increased uptake and incomplete oxidation of palmitate. This was associated with reduced mitochondrial respiratory chain complex II, III, and IV protein expression in myotubes from obese and T2D subjects. EPS stimulated palmitate oxidation in lean donors, while myotubes from obese and T2D donors were refractory to this effect. Interestingly, EPS increased total palmitate uptake in myotubes from lean donors while myotubes from T2D donors had a reduced rate of palmitate uptake into complex lipids and triacylglycerols. Novelty Myotubes from obese and T2D donors are characterized by primary defects in palmitic acid handling. Both obese and T2D myotubes are partially refractory to the beneficial effect of exercise on lipid handling.
Collapse
Affiliation(s)
- Nils Gunnar Løvsletten
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo 0316, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo 0316, Norway
| | - Claire Laurens
- CNRS, University of Strasbourg, IPHC UMR 7178, Strasbourg, France
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo 0316, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0316, Norway
| | - Cedric Moro
- Inserm 1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Nataša Nikolić
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
23
|
Bruls YM, de Ligt M, Lindeboom L, Phielix E, Havekes B, Schaart G, Kornips E, Wildberger JE, Hesselink MK, Muoio D, Schrauwen P, Schrauwen-Hinderling VB. Carnitine supplementation improves metabolic flexibility and skeletal muscle acetylcarnitine formation in volunteers with impaired glucose tolerance: A randomised controlled trial. EBioMedicine 2019; 49:318-330. [PMID: 31676389 PMCID: PMC6945245 DOI: 10.1016/j.ebiom.2019.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Type 2 diabetes patients and individuals at risk of developing diabetes are characterized by metabolic inflexibility and disturbed glucose homeostasis. Low carnitine availability may contribute to metabolic inflexibility and impaired glucose tolerance. Here, we investigated whether carnitine supplementation improves metabolic flexibility and insulin sensitivity in impaired glucose tolerant (IGT) volunteers. METHODS Eleven IGT- volunteers followed a 36-day placebo- and L-carnitine treatment (2 g/day) in a randomised, placebo-controlled, double blind crossover design. A hyperinsulinemic-euglycemic clamp (40 mU/m2/min), combined with indirect calorimetry (ventilated hood) was performed to determine insulin sensitivity and metabolic flexibility. Furthermore, metabolic flexibility was assessed in response to a high-energy meal. Skeletal muscle acetylcarnitine concentrations were measured in vivo using long echo time proton magnetic resonance spectroscopy (1H-MRS, TE=500 ms) in the resting state (7:00AM and 5:00PM) and after a 30-min cycling exercise. Twelve normal glucose tolerant (NGT) volunteers were included without any intervention as control group. RESULTS Metabolic flexibility of IGT-subjects completely restored towards NGT control values upon carnitine supplementation, measured during a hyperinsulinemic-euglycemic clamp and meal test. In muscle, carnitine supplementation enhanced the increase in resting acetylcarnitine concentrations over the day (delta 7:00 AM versus 5:00 PM) in IGT-subjects. Furthermore, carnitine supplementation increased post-exercise acetylcarnitine concentrations and reduced long-chain acylcarnitine species in IGT-subjects, suggesting the stimulation of a more complete fat oxidation in muscle. Whole-body insulin sensitivity was not affected. CONCLUSION Carnitine supplementation improves acetylcarnitine formation and rescues metabolic flexibility in IGT-subjects. Future research should investigate the potential of carnitine in prevention/treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Yvonne Mh Bruls
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands; Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Marlies de Ligt
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Lucas Lindeboom
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands; Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Bas Havekes
- Department of Internal Medicine, Division of Endocrinology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Esther Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Matthijs Kc Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Deborah Muoio
- Department of Medicine, Duke University Medical Center, Durham, NC NC22704, United States of America
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands; Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
24
|
Abstract
The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.
Collapse
|
25
|
Kong Y, Gao Y, Lan D, Zhang Y, Zhan R, Liu M, Zhu Z, Zeng G, Huang Q. Trans-repression of NFκB pathway mediated by PPARγ improves vascular endothelium insulin resistance. J Cell Mol Med 2018; 23:216-226. [PMID: 30398029 PMCID: PMC6307800 DOI: 10.1111/jcmm.13913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Previous study has shown that thiazolidinediones (TZDs) improved endothelium insulin resistance (IR) induced by high glucose concentration (HG)/hyperglycaemia through a PPARγ‐dependent‐NFκB trans‐repression mechanism. However, it is unclear, whether changes in PPARγ expression affect the endothelium IR and what the underlying mechanism is. In the present study, we aimed to address this issue. HG‐treated human umbilical vascular endothelial cells (HUVEC) were transfected by either PPARγ‐overexpressing (Ad‐PPARγ) or PPARγ‐shRNA‐containing (Ad‐PPARγ‐shRNA) adenoviral vectors. Likewise, the rats fed by high‐fat diet (HFD) were infected by intravenous administration of Ad‐PPARγ or Ad‐PPARγ‐shRNA. The levels of nitric oxide (NO), endothelin‐1 (ET‐1) and cytokines (TNFα, IL‐6, sICAM‐1 and sVCAM‐1) and the expression levels of PPARγ, eNOS, AKT, p‐AKT, IKKα/β and p‐IKKα/β and IκBα were examined; and the interaction between PPARγ and NFκB‐P65 as well as vascular function were evaluated. Our present results showed that overexpression of PPARγ notably increased the levels of NO, eNOS, p‐AKT and IκBα as well as the interaction of PPARγ and NFκB‐P65, and decreased the levels of ET‐1, p‐IKKα/β, TNFα, IL‐6, sICAM‐1 and sVCAM‐1. In contrast, down‐expression of PPARγ displayed the opposite effects. The results demonstrate that the overexpression of PPARγ improves while the down‐expression worsens the endothelium IR via a PPARγ‐mediated NFκB trans‐repression dependent manner. The findings suggest PPARγ is a potential therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Ying Kong
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Gao
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Dongyi Lan
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Zhang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Rixin Zhan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Meiqi Liu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Zhouan Zhu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
27
|
Takagi H, Ikehara T, Kashiwagi Y, Hashimoto K, Nanchi I, Shimazaki A, Nambu H, Yukioka H. ACC2 Deletion Enhances IMCL Reduction Along With Acetyl-CoA Metabolism and Improves Insulin Sensitivity in Male Mice. Endocrinology 2018; 159:3007-3019. [PMID: 29931154 DOI: 10.1210/en.2018-00338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Intramyocellular lipid (IMCL) accumulation in skeletal muscle greatly contributes to lipid-induced insulin resistance. Because acetyl-coenzyme A (CoA) carboxylase (ACC) 2 negatively modulates mitochondrial fatty acid oxidation (FAO) in skeletal muscle, ACC2 inhibition is expected to reduce IMCL via elevation of FAO and to attenuate insulin resistance. However, the concept of substrate competition suggests that enhanced FAO results in reduced glucose use because of an excessive acetyl-CoA pool in mitochondria. To identify how ACC2-regulated FAO affects IMCL accumulation and glucose metabolism, we generated ACC2 knockout (ACC2-/-) mice and investigated skeletal muscle metabolites associated with fatty acid and glucose metabolism, as well as whole-body glucose metabolism. ACC2-/- mice displayed higher capacity of glucose disposal at the whole-body levels. In skeletal muscle, ACC2-/- mice exhibited enhanced acylcarnitine formation and reduced IMCL levels without alteration in glycolytic intermediate levels. Notably, these changes were accompanied by decreased acetyl-CoA content and enhanced mitochondrial pathways related to acetyl-CoA metabolism, such as the acetylcarnitine production and tricarboxylic acid cycle. Furthermore, ACC2-/- mice exhibited lower levels of IMCL and acetyl-CoA even under HFD conditions and showed protection against HFD-induced insulin resistance. Our findings suggest that ACC2 deletion leads to IMCL reduction without suppressing glucose use via an elevation in acetyl-CoA metabolism even under HFD conditions and offer new mechanistic insight into the therapeutic potential of ACC2 inhibition on insulin resistance.
Collapse
Affiliation(s)
- Hiroyuki Takagi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Tatsuya Ikehara
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Yuto Kashiwagi
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Kumi Hashimoto
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Isamu Nanchi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Atsuyuki Shimazaki
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hirohide Nambu
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hideo Yukioka
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The role of mitochondria in the development of skeletal muscle insulin resistance has been an area of intense investigation and debate for over 20 years. The mitochondria is a multifaceted organelle that plays an integral part in substrate metabolism and cellular signalling. This article aims to summarize the current findings and thought regarding the relationship between mitochondria and insulin resistance in skeletal muscle. RECENT FINDINGS Skeletal muscle insulin resistance was earlier thought to result from deficiency in mitochondrial oxidative capacity and ectopic lipid accumulation. Recent evidence suggests that skeletal muscle insulin resistance in high-energy intake models (i.e. obesity) results primarily from disrupted mitochondrial bioenergetics and alterations in mitochondrial-associated cell signalling. These signalling pathways include reactive oxygen species and redox balance, fatty acid β-oxidation intermediates, mitochondrial derived peptides, sirtuins, microRNAs and novel nuclear-encoded, mitochondria-acting peptides. SUMMARY The pathophysiology of skeletal muscle insulin resistance is likely multifactorial involving many coordinated physiological processes. However, it is apparent that the mitochondria play an essential role in skeletal muscle insulin sensitivity in health, ageing and in numerous metabolic diseases. Deciphering the manifold functions of the mitochondria will allow us to understand the complex relationship between mitochondria and skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- William Todd Cade
- Program in Physical Therapy & Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Bene J, Hadzsiev K, Melegh B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr Diabetes 2018; 8:8. [PMID: 29549241 PMCID: PMC5856836 DOI: 10.1038/s41387-018-0017-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/05/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes is a highly prevalent chronic metabolic disorder characterized by hyperglycemia and associated with several complications such as retinopathy, hyperlipidemia and polyneuropathy. The dysregulated fatty acid metabolism along with tissue lipid accumulation is generally assumed to be associated in the development of insulin resistance and T2D. Moreover, several studies suggest a central role for oxidative stress in the pathogenesis of the disease. Since L-carnitine (LC) has an indispensable role in lipid metabolism via its involvement in the β-oxidation of long-chain fatty acids and it has antioxidant properties as well, carnitine supplementation may prove to be an effective tool in the management of the clinical course of T2D. In this review we summarize the results from animal and clinical studies demonstrating the effects of supplementation with LC or LC derivatives (acetyl-LC, propionyl-LC) on various metabolic and clinical parameters associated with T2D.
Collapse
Affiliation(s)
- Judit Bene
- Department of Medical Genetics, University of Pécs, Medical School, Szigeti 12, Pécs, H-7624, Hungary. .,Szentágothai Research Centre, University of Pécs, Ifjúság 20, Pécs, H-7624, Hungary.
| | - Kinga Hadzsiev
- Department of Medical Genetics, University of Pécs, Medical School, Szigeti 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság 20, Pécs, H-7624, Hungary
| | - Bela Melegh
- Department of Medical Genetics, University of Pécs, Medical School, Szigeti 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság 20, Pécs, H-7624, Hungary
| |
Collapse
|
30
|
Goetzman ES, Gong Z, Schiff M, Wang Y, Muzumdar RH. Metabolic pathways at the crossroads of diabetes and inborn errors. J Inherit Metab Dis 2018; 41:5-17. [PMID: 28952033 PMCID: PMC6757345 DOI: 10.1007/s10545-017-0091-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Research over the past two decades has led to advances in our understanding of the genetic and metabolic factors that underlie the pathogenesis of type 2 diabetes mellitus (T2DM). While T2DM is defined by its hallmark metabolic symptoms, the genetic risk factors for T2DM are more immune-related than metabolism-related, and the observed metabolic disease may be secondary to chronic inflammation. Regardless, these metabolic changes are not benign, as the accumulation of some metabolic intermediates serves to further drive the inflammation and cell stress, eventually leading to insulin resistance and ultimately to T2DM. Because many of the biochemical changes observed in the pre-diabetic state (i.e., ectopic lipid storage, increased acylcarnitines, increased branched-chain amino acids) are also observed in patients with rare inborn errors of fatty acid and amino acid metabolism, an interesting question is raised regarding whether isolated metabolic gene defects can confer an increased risk for T2DM. In this review, we attempt to address this question by summarizing the literature regarding the metabolic pathways at the crossroads of diabetes and inborn errors of metabolism. Studies using cell culture and animal models have revealed that, within a given pathway, disrupting some genes can lead to insulin resistance while for others there may be no effect or even improved insulin sensitivity. This differential response to ablating a single metabolic gene appears to be dependent upon the specific metabolic intermediates that accumulate and whether these intermediates subsequently activate inflammatory pathways. This highlights the need for future studies to determine whether certain inborn errors may confer increased risk for diabetes as the patients age.
Collapse
Affiliation(s)
- Eric S Goetzman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- Children's Hospital of Pittsburgh, Rangos 5117, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - Zhenwei Gong
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Manuel Schiff
- UMR1141, PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
| | - Yan Wang
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Radhika H Muzumdar
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| |
Collapse
|
31
|
Makrecka-Kuka M, Sevostjanovs E, Vilks K, Volska K, Antone U, Kuka J, Makarova E, Pugovics O, Dambrova M, Liepinsh E. Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues. Sci Rep 2017; 7:17528. [PMID: 29235526 PMCID: PMC5727517 DOI: 10.1038/s41598-017-17797-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 01/14/2023] Open
Abstract
Increased plasma concentrations of acylcarnitines (ACs) are suggested as a marker of metabolism disorders. The aim of the present study was to clarify which tissues are responsible for changes in the AC pool in plasma. The concentrations of medium- and long-chain ACs were changing during the fed-fast cycle in rat heart, muscles and liver. After 60 min running exercise, AC content was increased in fasted mice muscles, but not in plasma or heart. After glucose bolus administration in fasted rats, the AC concentrations in plasma decreased after 30 min but then began to increase, while in the muscles and liver, the contents of medium- and long-chain ACs were unchanged or even increased. Only the heart showed a decrease in medium- and long-chain AC contents that was similar to that observed in plasma. In isolated rat heart, but not isolated-contracting mice muscles, the significant efflux of medium- and long-chain ACs was observed. The efflux was reduced by 40% after the addition of glucose and insulin to the perfusion solution. Overall, these results indicate that during fed-fast cycle shifting the heart determines the medium- and long-chain AC profile in plasma, due to a rapid response to the availability of circulating energy substrates.
Collapse
Affiliation(s)
- Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.
| | - Eduards Sevostjanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Karlis Vilks
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.,University of Latvia, Faculty of Biology, Jelgavas Str. 1, Riga, LV-1004, Latvia
| | - Kristine Volska
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.,Riga Stradins University, Faculty of Pharmacy, Dzirciema Str. 16, Riga, LV-1007, Latvia
| | - Unigunde Antone
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Elina Makarova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Osvalds Pugovics
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.,Riga Stradins University, Faculty of Pharmacy, Dzirciema Str. 16, Riga, LV-1007, Latvia
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| |
Collapse
|
32
|
Ruiz-Canela M, Hruby A, Clish CB, Liang L, Martínez-González MA, Hu FB. Comprehensive Metabolomic Profiling and Incident Cardiovascular Disease: A Systematic Review. J Am Heart Assoc 2017; 6:e005705. [PMID: 28963102 PMCID: PMC5721826 DOI: 10.1161/jaha.117.005705] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Metabolomics is a promising tool of cardiovascular biomarker discovery. We systematically reviewed the literature on comprehensive metabolomic profiling in association with incident cardiovascular disease (CVD). METHODS AND RESULTS We searched MEDLINE and EMBASE from inception to January 2016. Studies were eligible if they pertained to adult humans; followed an agnostic and/or comprehensive approach; used serum or plasma (not urine or other biospecimens); conducted metabolite profiling at baseline in the context of examining prospective disease; and included myocardial infarction, stroke, and/or CVD death in the CVD outcome definition. We identified 12 original articles (9 cohort and 3 nested case-control studies); participant numbers ranged from 67 to 7256. Mass spectrometry was the predominant analytical method. The number and chemical diversity of metabolites were very heterogeneous, ranging from 31 to >10 000 features. Four studies used untargeted profiling. Different types of metabolites were associated with CVD risk: acylcarnitines, dicarboxylacylcarnitines, and several amino acids and lipid classes. Only tiny improvements in CVD prediction beyond traditional risk factors were observed using these metabolites (C index improvement ranged from 0.006 to 0.05). CONCLUSIONS There are a limited number of longitudinal studies assessing associations between comprehensive metabolomic profiles and CVD risk. Quantitatively synthesizing the literature is challenging because of the widely varying analytical tools and the diversity of methodological and statistical approaches. Although some results are promising, more research is needed, notably standardization of metabolomic techniques and statistical approaches. Replication and combinations of novel and holistic methodological approaches would move the field toward the realization of its promise.
Collapse
Affiliation(s)
- Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IDISNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Adela Hruby
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Clary B Clish
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Miguel A Martínez-González
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IDISNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Liepinsh E, Makrecka-Kuka M, Makarova E, Volska K, Vilks K, Sevostjanovs E, Antone U, Kuka J, Vilskersts R, Lola D, Loza E, Grinberga S, Dambrova M. Acute and long-term administration of palmitoylcarnitine induces muscle-specific insulin resistance in mice. Biofactors 2017; 43:718-730. [PMID: 28759135 DOI: 10.1002/biof.1378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/03/2023]
Abstract
Acylcarnitine accumulation has been linked to perturbations in energy metabolism pathways. In this study, we demonstrate that long-chain (LC) acylcarnitines are active metabolites involved in the regulation of glucose metabolism in vivo. Single-dose administration of palmitoylcarnitine (PC) in fed mice induced marked insulin insensitivity, decreased glucose uptake in muscles, and elevated blood glucose levels. Increase in the content of LC acylcarnitine induced insulin resistance by impairing Akt phosphorylation at Ser473. The long-term administration of PC using slow-release osmotic minipumps induced marked hyperinsulinemia, insulin resistance, and glucose intolerance, suggesting that the permanent accumulation of LC acylcarnitines can accelerate the progression of insulin resistance. The decrease of acylcarnitine content significantly improved glucose tolerance in a mouse model of diet-induced glucose intolerance. In conclusion, we show that the physiological increase in content of acylcarnitines ensures the transition from a fed to fasted state in order to limit glucose metabolism in the fasted state. In the fed state, the inability of insulin to inhibit LC acylcarnitine production induces disturbances in glucose uptake and metabolism. The reduction of acylcarnitine content could be an effective strategy to improve insulin sensitivity. © 2017 BioFactors, 43(5):718-730, 2017.
Collapse
Affiliation(s)
| | | | - Elina Makarova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Kristine Volska
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Karlis Vilks
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| | | | | | - Janis Kuka
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Reinis Vilskersts
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Daina Lola
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Einars Loza
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| |
Collapse
|
34
|
Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders. CURRENT GENETIC MEDICINE REPORTS 2017; 5:132-142. [PMID: 29177110 DOI: 10.1007/s40142-017-0125-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of review This review focuses on advances made in the past three years with regards to understanding the mitochondrial fatty acid oxidation (FAO) pathway, the pathophysiological ramifications of genetic lesions in FAO enzymes, and emerging therapies for FAO disorders. Recent findings FAO has now been recognized to play a key energetic role in pulmonary surfactant synthesis, T-cell differentiation and memory, and the response of the proximal tubule to kidney injury. Patients with FAO disorders may face defects in these cellular systems as they age. Aspirin, statins, and nutritional supplements modulate the rate of FAO under normal conditions and could be risk factors for triggering symptoms in patients with FAO disorders. Patients have been identified with mutations in the ACAD9 and ECHS1 genes, which may represent new FAO disorders. New interventions for long-chain FAODs are in clinical trials. Finally, post-translational modifications that regulate fatty acid oxidation protein activities have been characterized that represent important new therapeutic targets. Summary Recent research has led to a deeper understanding of FAO. New therapeutic avenues are being pursued that may ultimately cause a paradigm shift for patient care.
Collapse
|
35
|
Decrease in Long-Chain Acylcarnitine Tissue Content Determines the Duration of and Correlates with the Cardioprotective Effect of Methyl-GBB. Basic Clin Pharmacol Toxicol 2017; 121:106-112. [DOI: 10.1111/bcpt.12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022]
|
36
|
Liepinsh E, Makarova E, Sevostjanovs E, Hartmane D, Cirule H, Zharkova-Malkova O, Grinberga S, Dambrova M. Carnitine and γ-Butyrobetaine Stimulate Elimination of Meldonium due to Competition for OCTN2-mediated Transport. Basic Clin Pharmacol Toxicol 2017; 120:450-456. [PMID: 27983775 DOI: 10.1111/bcpt.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023]
Abstract
Meldonium (3-(2,2,2-trimethylhydrazinium)propionate) is the most potent clinically used inhibitor of organic cation transporter 2 (OCTN2). Inhibition of OCTN2 leads to a decrease in carnitine and acylcarnitine contents in tissues and energy metabolism optimization-related cardioprotective effects. The recent inclusion of meldonium in the World Anti-Doping Agency List of Prohibited Substances and Methods has raised questions about the pharmacokinetics of meldonium and its unusually long elimination time. Therefore, in this study, the rate of meldonium washout after the end of the treatment was tested with and without administration of carnitine, γ-butyrobetaine (GBB) and furosemide to evaluate the importance of competition for OCTN2 transport in mice. Here, we show that carnitine and GBB administration during the washout period effectively stimulated the elimination of meldonium. GBB induced a more pronounced effect on meldonium elimination than carnitine due to the higher affinity of GBB for OCTN2. The diuretic effect of furosemide did not significantly affect the elimination of meldonium, carnitine and GBB. In conclusion, the competition of meldonium, carnitine and GBB for OCTN2-mediated transport determines the pharmacokinetic properties of meldonium. Thus, due to their affinity for OCTN2, GBB and carnitine but not furosemide stimulated meldonium elimination. During long-term treatment, OCTN2-mediated transport ensures a high muscle content of meldonium, while tissue clearance depends on relatively slow diffusion, thus resulting in the unusually long complete elimination period of meldonium.
Collapse
Affiliation(s)
| | | | | | - Dace Hartmane
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| |
Collapse
|
37
|
Long-chain acylcarnitines determine ischaemia/reperfusion-induced damage in heart mitochondria. Biochem J 2016; 473:1191-202. [PMID: 26936967 DOI: 10.1042/bcj20160164] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
The accumulation of long-chain fatty acids (FAs) and their CoA and carnitine esters is observed in the ischaemic myocardium after acute ischaemia/reperfusion. The aim of the present study was to identify harmful FA intermediates and their detrimental mechanisms of action in mitochondria and the ischaemic myocardium. In the present study, we found that the long-chain acyl-CoA and acylcarnitine content is increased in mitochondria isolated from an ischaemic area of the myocardium. In analysing the FA derivative content, we discovered that long-chain acylcarnitines, but not acyl-CoAs, accumulate at concentrations that are harmful to mitochondria. Acylcarnitine accumulation in the mitochondrial intermembrane space is a result of increased carnitine palmitoyltransferase 1 (CPT1) and decreased carnitine palmitoyltransferase 2 (CPT2) activity in ischaemic myocardium and it leads to inhibition of oxidative phosphorylation, which in turn induces mitochondrial membrane hyperpolarization and stimulates the production of reactive oxygen species (ROS) in cardiac mitochondria. Thanks to protection mediated by acyl-CoA-binding protein (ACBP), the heart is much better guarded against the damaging effects of acyl-CoAs than against acylcarnitines. Supplementation of perfusion buffer with palmitoylcarnitine (PC) before occlusion resulted in a 2-fold increase in the acylcarnitine content of the heart and increased the infarct size (IS) by 33%. A pharmacologically induced decrease in the mitochondrial acylcarnitine content reduced the IS by 44%. Long-chain acylcarnitines are harmful FA intermediates, accumulating in ischaemic heart mitochondria and inducing inhibition of oxidative phosphorylation. Therefore, decreasing the acylcarnitine content via cardioprotective drugs may represent a novel treatment strategy.
Collapse
|