1
|
Devasia AG, Ramasamy A, Leo CH. Current Therapeutic Landscape for Metabolic Dysfunction-Associated Steatohepatitis. Int J Mol Sci 2025; 26:1778. [PMID: 40004240 PMCID: PMC11855529 DOI: 10.3390/ijms26041778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been proposed to better connect liver disease to metabolic dysfunction, which is the most common chronic liver disease worldwide. MASLD affects more than 30% of individuals globally, and it is diagnosed by the combination of hepatic steatosis and obesity, type 2 diabetes, or two metabolic risk factors. MASLD begins with the buildup of extra fat, often greater than 5%, within the liver, causing liver hepatocytes to become stressed. This can proceed to a more severe form, metabolic dysfunction-associated steatohepatitis (MASH), in 20-30% of people, where inflammation in the liver causes tissue fibrosis, which limits blood flow over time. As fibrosis worsens, MASH may lead to cirrhosis, liver failure, or even liver cancer. While the pathophysiology of MASLD is not fully known, the current "multiple-hits" concept proposes that dietary and lifestyle factors, metabolic factors, and genetic or epigenetic factors contribute to elevated oxidative stress and inflammation, causing liver fibrosis. This review article provides an overview of the pathogenesis of MASLD and evaluates existing therapies as well as pharmacological drugs that are currently being studied in clinical trials for MASLD or MASH.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
2
|
Leo CH, Ong ES. Recent advances in the combination of organic solvent-free extraction, chemical standardization, antioxidant assay, and cell culture metabolomics for functional food and its by-product. Crit Rev Food Sci Nutr 2024; 64:11919-11933. [PMID: 37574586 DOI: 10.1080/10408398.2023.2245040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Functional foods and their by-products contain a wide range of bioactive components with an array of health benefits and were proposed to improve public health, well-being, and others. To achieve a circular economy, the processing and extraction of flavonoids, phenolic compounds, and others from functional food and agri-food wastes will require the use of environmentally friendly, sustainable, and a low-cost solution. Extraction methods that can eliminate the use of organic solvents, suitable for use in the laboratory and production of extracts will be covered. This will include subcritical water extraction (SBE), pressurized hot water extraction (PHWE), supercritical fluid extraction (SFE), and others. Based on the selected analytical methods, the determination of the marker or bioactive compounds and chemical fingerprints will provide the control measures to identify the batch-to-batch variation of the composition of the functional food products obtained. The combination of chemical standardization with antioxidant assay, such as DPPH and ABTS+ will provide further information on the quality of the extracts. Lastly, to ascertain the biological and physiological relevance of the antioxidant properties of the target sample, treatment of the antioxidant compounds or extracts was carried out using cellular models, and validated using other experimental endpoints, such as metabolomics.
Collapse
Affiliation(s)
- Chen Huei Leo
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore, Singapore
| | - Eng Shi Ong
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
| |
Collapse
|
3
|
Devasia AG, Shanmugham M, Ramasamy A, Bellanger S, Parry LJ, Leo CH. Therapeutic potential of relaxin or relaxin mimetics in managing cardiovascular complications of diabetes. Biochem Pharmacol 2024; 229:116507. [PMID: 39182735 DOI: 10.1016/j.bcp.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Diabetes mellitus is a metabolic disease with an escalating global prevalence. Despite the abundance and relative efficacies of current therapeutic approaches, they primarily focus on attaining the intended glycaemic targets, but patients ultimately still suffer from various diabetes-associated complications such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis. There is a need to explore innovative and effective diabetic treatment strategies that not only address the condition itself but also combat its complications. One promising option is the reproductive hormone relaxin, an endogenous ligand of the RXFP1 receptor. Relaxin is known to exert beneficial actions on the cardiovascular system through its vasoprotective, anti-inflammatory and anti-fibrotic effects. Nevertheless, the native relaxin peptide exhibits a short biological half-life, limiting its therapeutic potential. Recently, several relaxin mimetics and innovative delivery technologies have been developed to extend its biological half-life and efficacy. The current review provides a comprehensive landscape of the cardiovascular effects of relaxin, focusing on its potential therapeutic applications in managing complications associated with diabetes. The latest advancements in the development of relaxin mimetics and delivery methods for the treatment of cardiometabolic disorders are also discussed.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Laura J Parry
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
4
|
Yan M, Su L, Wu K, Mei Y, Liu Z, Chen Y, Zeng W, Xiao Y, Zhang J, Cai G, Bai Y. USP7 promotes cardiometabolic disorders and mitochondrial homeostasis dysfunction in diabetic mice via stabilizing PGC1β. Pharmacol Res 2024; 205:107235. [PMID: 38815879 DOI: 10.1016/j.phrs.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes and is characterized by left ventricular dysfunction. Currently, there is a lack of effective treatments for DCM. Ubiquitin-specific protease 7 (USP7) plays a key role in various diseases. However, whether USP7 is involved in DCM has not been established. In this study, we demonstrated that USP7 was upregulated in diabetic mouse hearts and NMCMs co-treated with HG+PA or H9c2 cells treated with PA. Abnormalities in diabetic heart morphology and function were reversed by USP7 silencing through conditional gene knockout or chemical inhibition. Proteomic analysis coupled with biochemical validation confirmed that PCG1β was one of the direct protein substrates of USP7 and aggravated myocardial damage through coactivation of the PPARα signaling pathway. USP7 silencing restored the expression of fatty acid metabolism-related proteins and restored mitochondrial homeostasis by inhibiting mitochondrial fission and promoting fusion events. Similar effects were also observed in vitro. Our data demonstrated that USP7 promoted cardiometabolic metabolism disorders and mitochondrial homeostasis dysfunction via stabilizing PCG1β and suggested that silencing USP7 may be a therapeutic strategy for DCM.
Collapse
Affiliation(s)
- Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Liyan Su
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
| | - Kaile Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Mei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhou Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yifan Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenru Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingfei Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guida Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunlong Bai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Chronic Disease Research Institute, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
5
|
Jin S, Li Y, Luo C, Cheng X, Tao W, Li H, Wang W, Qin M, Xie G, Han F. Corydalis tomentella Franch. Exerts anti-inflammatory and analgesic effects by regulating the calcium signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117499. [PMID: 38042392 DOI: 10.1016/j.jep.2023.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis tomentella Franch. is a perennial cespitose plant commonly used to treat stomachaches as a folk medicine. The C. tomentella total alkaloids have good protective effects against acute liver injury and potential anti-hepatoma and anti-Alzheimer's disease activities. AIM OF THE STUDY To establish an effective purification process for total alkaloids from C. tomentella and investigate the mechanism of their anti-inflammatory effects. MATERIALS AND METHODS Corydalis tomentella were purified using macroporous resin. Then the crude and purified C. tomentella extracts (cCTE and pCTE) were qualitatively analyzed using UPLC-Triple-TOF-MS/MS. The cCTE and pCTE were used to investigate and compare their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW264.7 cells. Doses at 100, 200 and 400 mg/kg/d of pCTE were used to study their anti-inflammatory and analgesic activities in mice with xylene-induced ear swelling and acetic acid-induced writhing tests. Content of nitric oxide (NO), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were determined both in RAW264.7 cells and mice. Network pharmacology was used to predict the anti-inflammatory mechanism of C. tomentella, and the key enzymes were validated using qPCR and Western Blot analysis. Concentration of intracellular Ca2+ was detected using flow cytometric analysis. RESULTS The C. tomentella total alkaloid purity increased from 6.29% to 47.34% under optimal purification conditions. A total of 54 alkaloids were identified from CTE. Both cCTE and pCTE could suppress the LPS-induced production of NO, IL-6, IL-1β, and TNF-α in RAW264.7 cells. The pCTE exhibited a more potent anti-inflammatory effect; it also inhibited pain induced by xylene and acetic acid in mice. The calcium signaling pathway is associated with the anti-inflammatory and analgesic activities of C. tomentella. The mRNA expression of nitric oxide synthase (NOS) 2, NOS3 and calmodulin1 (CALM1) was regulated by C. tomentella through the reduction of inflammation-induced Ca2+ influx, and it also exhibited a more pronounced effect than the positive control (L-NG-nitro arginine methyl ester). CONCLUSIONS Purified C. tomentella extract shows anti-inflammatory effect both in vitro and in vivo. It exerts anti-inflammatory and analgesic effects through the calcium signaling pathway by down-regulating NOS2 and CALM1 expression and up-regulating NOS3 expression in LPS-induced RAW264.7 cells, and decreasing intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Shuyi Jin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yveting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chuan Luo
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| | - Xinyi Cheng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Tao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hongting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wanli Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Han
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| |
Collapse
|
6
|
Acar-Sahan S, Guner O, Ates M, Kaya-Temiz T, Durmus N. In vitro effect of relaxin in the rat corpus cavernosum under hyperglycemic and normoglycemic conditions. Int J Impot Res 2024; 36:72-77. [PMID: 36509910 DOI: 10.1038/s41443-022-00653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Relaxin, an endogenous peptide hormone, elicits vascular relaxation by its direct effect or by modulating the endothelium-dependent relaxation response and is clinically evaluated for the treatment of coronary artery disease. However, its effect on penile tissue has not been explored yet. This study aimed to investigate the effect of serelaxin, recombinant human relaxin-2, on rat corpus cavernosum (CC) under healthy and hyperglycemic conditions. Strips of CC obtained from thirty-nine male Wistar rats weighing 300-350 g were used in organ baths for isometric tension studies to investigate the serelaxin-mediated relaxation (10-12-10-7 M) under normoglycemic conditions and the effect of serelaxin on endothelium-dependent [nitric oxide (NO)- and prostacyclin-mediated] relaxation responses under hyperglycemic conditions. The in vitro hyperglycemia model was created by 3 h of incubation with 44 mM glucose monohydrate +120 μM methylglyoxal. NO-dependent relaxation responses were evaluated by cumulative acetylcholine (10-9-10-4 M) administration in the presence of indomethacin (10-6 M). Prostacyclin-mediated relaxation was evaluated by cumulative administration of iloprost (10-9-10-6 M), a prostacyclin analog. Maximum relaxation responses to serelaxin were not significantly different compared to the time-control (p = 0.480). Three hours of incubation of rat CC in hyperglycemic conditions impaired NO- and prostacyclin-mediated relaxation responses (p = 0.032 and p = 0.047, respectively). Serelaxin coincubation worsened NO-mediated relaxation responses (p = 0.016) but did not affect prostacyclin-mediated responses (p = 0.425). Together, our results demonstrate that in vitro administration of serelaxin does not cause relaxation in penile tissue and short-term in vitro serelaxin treatment in hyperglycemic conditions mimicked diabetes modulates endothelium-dependent responses by worsening NO-mediated responses. Serelaxin exerts different effects via different mechanism on endothelium-dependent responses depending on the dose and duration of exposure. Therefore, proper timing and dosing of serelaxin administration in the penile tissue need to be investigated in further studies in diabetic animal models.
Collapse
Affiliation(s)
- Selin Acar-Sahan
- Dokuz Eylul University, Institute of Health Sciences, Izmir, Turkey
| | - Ozge Guner
- University of Health Sciences Istanbul Kanuni Sultan Süleyman Education and Research Hospital, Medical Pharmacology, Istanbul, Turkey
| | - Mehmet Ates
- Dokuz Eylul University, Vocational School of Health Services, Izmir, Turkey
| | - Tijen Kaya-Temiz
- Izmir Katip Celebi University, Faculty of Medicine, Department of Pharmacology, Izmir, Turkey
| | - Nergiz Durmus
- Dokuz Eylul University, Faculty of Medicine, Department of Pharmacology, Izmir, Turkey.
| |
Collapse
|
7
|
Leo CH, Ou JLM, Ong ES, Qin CX, Ritchie RH, Parry LJ, Ng HH. Relaxin elicits renoprotective actions accompanied by increasing bile acid levels in streptozotocin-induced diabetic mice. Biomed Pharmacother 2023; 162:114578. [PMID: 36996678 DOI: 10.1016/j.biopha.2023.114578] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The peptide hormone relaxin has potent anti-fibrotic and anti-inflammatory properties in various organs, including the kidneys. However, the protective effects of relaxin in the context of diabetic kidney complications remain controversial. Here, we aimed to evaluate the effects of relaxin treatment on key markers of kidney fibrosis, oxidative stress, and inflammation and their subsequent impact on bile acid metabolism in the streptozotocin-induced diabetes mouse model. METHODS AND RESULTS Male mice were randomly allocated to placebo-treated control, placebo-treated diabetes or relaxin-treated diabetes groups (0.5 mg/kg/d, final 2 weeks of diabetes). After 12 weeks of diabetes or sham, the kidney cortex was harvested for metabolomic and gene expression analyses. Diabetic mice exhibited significant hyperglycaemia and increased circulating levels of creatine, hypoxanthine and trimethylamine N-oxide in the plasma. This was accompanied by increased expression of key markers of oxidative stress (Txnip), inflammation (Ccl2 and Il6) and fibrosis (Col1a1, Mmp2 and Fn1) in the diabetic kidney cortex. Relaxin treatment for the final 2 weeks of diabetes significantly reduced these key markers of renal fibrosis, inflammation, and oxidative stress in diabetic mice. Furthermore, relaxin treatment significantly increased the levels of bile acid metabolites, deoxycholic acid and sodium glycodeoxycholic acid, which may in part contribute to the renoprotective action of relaxin in diabetes. CONCLUSION In summary, this study shows the therapeutic potential of relaxin and that it may be used as an adjunctive treatment for diabetic kidney complications.
Collapse
|
8
|
Bakhshian Nik A, Ng HH, Ashbrook SK, Sun P, Iacoviello F, Shearing PR, Bertazzo S, Mero D, Khomtchouk BB, Hutcheson JD. Epidermal growth factor receptor inhibition prevents vascular calcifying extracellular vesicle biogenesis. Am J Physiol Heart Circ Physiol 2023; 324:H553-H570. [PMID: 36827229 PMCID: PMC10042607 DOI: 10.1152/ajpheart.00280.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) increases the risk of cardiovascular disease, including vascular calcification, leading to higher mortality. The release of calcifying extracellular vesicles (EVs) by vascular smooth muscle cells (VSMCs) promotes ectopic mineralization of vessel walls. Caveolin-1 (CAV1), a structural protein in the plasma membrane, plays a major role in calcifying EV biogenesis in VSMCs. Epidermal growth factor receptor (EGFR) colocalizes with and influences the intracellular trafficking of CAV1. Using a diet-induced mouse model of CKD followed by a high-phosphate diet to promote vascular calcification, we assessed the potential of EGFR inhibition to prevent vascular calcification. Furthermore, we computationally analyzed 7,651 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA) and Framingham cohorts to assess potential correlations between coronary artery calcium and single-nucleotide polymorphisms (SNPs) associated with elevated serum levels of EGFR. Mice with CKD developed widespread vascular calcification, associated with increased serum levels of EGFR. In both the CKD mice and human VSMC culture, EGFR inhibition significantly reduced vascular calcification by mitigating the release of CAV1-positive calcifying EVs. EGFR inhibition also increased bone mineral density in CKD mice. Individuals in the MESA and Framingham cohorts with SNPs associated with increased serum EGFR exhibit elevated coronary artery calcium. Given that EGFR inhibitors exhibit clinical safety and efficacy in other pathologies, the current data suggest that EGFR may represent an ideal target to prevent pathological vascular calcification in CKD.NEW & NOTEWORTHY Here, we investigate the potential of epidermal growth factor receptor (EGFR) inhibition to prevent vascular calcification, a leading indicator of and contributor to cardiovascular morbidity and mortality. EGFR interacts and affects the trafficking of the plasma membrane scaffolding protein caveolin-1. Previous studies reported a key role for caveolin-1 in the development of specialized extracellular vesicles that mediate vascular calcification; however, no role of EGFR has been reported. We demonstrated that EGFR inhibition modulates caveolin-1 trafficking and hinders calcifying extracellular vesicle formation, which prevents vascular calcification. Given that EGFR inhibitors are clinically approved for other indications, this may represent a novel therapeutic strategy for vascular calcification.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
| | - Hooi Hooi Ng
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States
| | - Sophie K Ashbrook
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
| | - Patrick Sun
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, United States
| | - Francesco Iacoviello
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - Paul R Shearing
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Deniel Mero
- Dock Therapeutics, Inc., Middletown, Delaware, United States
| | - Bohdan B Khomtchouk
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, United States
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States
| |
Collapse
|
9
|
Leo CH, Foo SY, Tan JCW, Tan UX, Chua CK, Ong ES. Green Extraction of Orange Peel Waste Reduces TNFα-Induced Vascular Inflammation and Endothelial Dysfunction. Antioxidants (Basel) 2022; 11:antiox11091768. [PMID: 36139842 PMCID: PMC9495443 DOI: 10.3390/antiox11091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Orange peel waste (OPW) is known to contain an abundant amount of polyphenols compounds such as flavonoids, well-reported for their antioxidant and anti-inflammatory properties. While OPW is generally regarded as a food waste, the opportunity to extract bioactive compounds from these “wastes” arises due to their abundance, allowing the investigation of their potential effects on endothelial cells. Hence, this study aims to use a green extraction method and pressurized hot water extraction (PHWE) to extract bioactive compounds from OPW. Liquid chromatography with UV detection (LC/UV) and liquid chromatography mass spectrometry (LC/MS) were subsequently used to identify the bioactive compounds present. Through the optimization of the extraction temperature for PHWE, our results demonstrated that extraction temperatures of 60 °C and 80 °C yield distinct bioactive compounds and resulted in better antioxidant capacity compared to other extraction temperatures or organic solvent extraction. Despite having similar antioxidant capacity, their effects on endothelial cells were distinct. Specifically, treatment of endothelial cells with 60 °C OPW extracts inhibited TNFα-induced vascular inflammation and endothelial dysfunction in vitro, suggesting that OPW possess vasoprotective effects likely mediated by anti-inflammatory effects.
Collapse
Affiliation(s)
- Chen Huei Leo
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore
- Correspondence: ; Tel.: +65-6434-8213
| | - Su Yi Foo
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore
| | - Joseph Choon Wee Tan
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore
| | - U-Xuan Tan
- Pillar of Engineering Product Development, Singapore University of Technology & Design, Singapore 487372, Singapore
| | - Chee Kai Chua
- Pillar of Engineering Product Development, Singapore University of Technology & Design, Singapore 487372, Singapore
| | - Eng Shi Ong
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore
| |
Collapse
|
10
|
Relaxin-2 as a Potential Biomarker in Cardiovascular Diseases. J Pers Med 2022; 12:jpm12071021. [PMID: 35887517 PMCID: PMC9317583 DOI: 10.3390/jpm12071021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
The pleiotropic hormone relaxin-2 plays a pivotal role in the physiology and pathology of the cardiovascular system. Relaxin-2 exerts relevant regulatory functions in cardiovascular tissues through the specific receptor relaxin family peptide receptor 1 (RXFP1) in the regulation of cardiac metabolism; the induction of vasodilatation; the reversion of fibrosis and hypertrophy; the reduction of inflammation, oxidative stress, and apoptosis; and the stimulation of angiogenesis, with inotropic and chronotropic effects as well. Recent preclinical and clinical outcomes have encouraged the potential use of relaxin-2 (or its recombinant form, known as serelaxin) as a therapeutic strategy during cardiac injury and/or in patients suffering from different cardiovascular disarrangements, especially heart failure. Furthermore, relaxin-2 has been proposed as a promising biomarker of cardiovascular health and disease. In this review, we emphasize the relevance of the endogenous hormone relaxin-2 as a useful diagnostic biomarker in different backgrounds of cardiovascular pathology, such as heart failure, atrial fibrillation, myocardial infarction, ischemic heart disease, aortic valve disease, hypertension, and atherosclerosis, which could be relevant in daily clinical practice and could contribute to comprehending the specific role of relaxin-2 in cardiovascular diseases.
Collapse
|
11
|
Pressurized Hot Water Extraction of Okra Seeds Reveals Antioxidant, Antidiabetic and Vasoprotective Activities. PLANTS 2021; 10:plants10081645. [PMID: 34451690 PMCID: PMC8399463 DOI: 10.3390/plants10081645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/19/2022]
Abstract
Abelmoschus esculentus L. Moench (okra) is a commonly consumed vegetable that consists of the seeds and peel component which are rich in polyphenolic compounds. The aim of this study is to utilize pressurized hot water extraction (PHWE) for the extraction of bioactive phytochemicals from different parts of okra. A single step PHWE was performed at various temperatures (60 °C, 80 °C, 100 °C and 120 °C) to determine which extraction temperature exhibits the optimum phytochemical profile, antioxidant and antidiabetic activities. The optimum temperature for PHWE extraction was determined at 80 °C and the biological activities of the different parts of okra (Inner Skin, Outer Skin and Seeds) were characterized using antioxidant (DPPH and ABTS), α-glucosidase and vasoprotective assays. Using PHWE, the different parts of okra displayed distinct phytochemical profiles, which consist of primarily polyphenolic compounds. The okra Seeds were shown to have the most antioxidant capacity and antidiabetic effects compared to other okra parts, likely to be attributed to their higher levels of polyphenolic compounds. Similarly, okra Seeds also reduced vascular inflammation by downregulating TNFα-stimulated VCAM-1 and SELE expression. Furthermore, metabolite profiling by LC/MS also provided evidence of the cytoprotective effect of okra Seeds in endothelial cells. Therefore, the use of PHWE may be an alternative approach for the environmentally friendly extraction and evaluation of plant extracts for functional food applications.
Collapse
|
12
|
Serelaxin activates eNOS, suppresses inflammation, attenuates developmental delay and improves cognitive functions of neonatal rats after germinal matrix hemorrhage. Sci Rep 2020; 10:8115. [PMID: 32415164 PMCID: PMC7229117 DOI: 10.1038/s41598-020-65144-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Germinal matrix hemorrhage (GMH) is a detrimental form of neonatal CNS injury. Following GMH-mediated eNOS inhibition, inflammation arises, contributing to GMH-induced brain injury. We investigated the beneficial effects of Serelaxin, a clinical tested recombinant Relaxin-2 protein, on brain injury after GMH in rats. We investigated whether effects of Serelaxin are mediated by its ability to activate the GMH-suppressed eNOS pathway resulting in attenuation of inflammatory marker overproduction. GMH was induced by intraparenchymal injection of bacterial collagenase (0.3U). Seven day old Sprague–Dawley rat pups (P7) were used (n = 63). GMH animals were divided in vehicle or serelaxin treated (3 µg once, 30 µg once, 30 µg multiple, i.p., starting 30 after GMH and then daily). Sham operated animals were used. We monitored the developmental profile working memory and spatial function (T-maze and open field test respectively). At day 28, all rats underwent MRI-scans for assessment of changes in cortical thickness and white matter loss. Effects of Serelaxin on eNOS pathway activation and post-GMH inflammation were evaluated. We demonstrated that Serelaxin dose-dependently attenuated GMH-induced developmental delay, protected brain and improved cognitive functions of rats after GMH. That was associated with the decreased post-GMH inflammation, mediated at least partly by amelioration of GMH-induced eNOS inhibition.
Collapse
|
13
|
Hampel U, Chinnery HR, Garreis F, Paulsen F, de Iongh R, Bui BV, Nguyen C, Parry L, Huei Leo C. Ocular Phenotype of Relaxin Gene Knockout (Rln -/-) Mice. Curr Eye Res 2020; 45:1211-1221. [PMID: 32141786 DOI: 10.1080/02713683.2020.1737714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: To test if relaxin deficiency affects ocular structure and function we investigated expression of relaxin (Rln) and RXFP receptors (Rxfp1, Rxfp2), and compared ocular phenotypes in relaxin gene knockout (Rln-/- ) and wild type (Rln+/+ ) mice. Materials and Methods: Rln, Rxfp1 and Rxfp2 mRNA expression was detected in ocular tissues of Rln+/+ mice using RT-PCR. The eyes of 11 Rln-/- and 5 Rln+/+ male mice were investigated. Corneal and retinal thickness was assessed using optical coherence tomography. Intraocular pressure was measured using a rebound tonometer. Retinal, choroidal and sclera morphology and thickness were evaluated histologically. Eyes were collected and fixed for immunofluorescence staining or used for RNA extraction to evaluate mRNA expression using real-time PCR. Results: Rln mRNA was expressed only in the retina, whereas Rxfp1 transcripts were detected in the retina, cornea and sclera/choroid. Rxfp2 was only present in the cornea. None of these genes were expressed in the lacrimal gland, eyelid or lens. Intraocular pressure was higher and central cornea of Rln-/- mice was significantly thicker and had significantly larger endothelial cells and a lower endothelial cell density than Rln+/+ mice. Immunohistochemistry demonstrated no significant difference in AQP3 and AQP5 staining in the cornea or other regions between wildtype and Rln-/- mice. mRNA expression of Aqp4 was significantly higher in Rln-/- than in Rln+/+ corneas, whereas Col1a2, Mmp9, Timp1 and Timp2 were significantly decreased. Expression of Aqp1, Aqp4, Aqp5, Vim and Tjp1 was significantly decreased in Rln-/- compared to Rln+/+ uvea. No significant differences in these genes were detected in the retina. Retinal, choroidal and scleral thicknesses were not different and morphology appeared normal. Conclusion: The findings indicate that loss of Rln affects expression of several genes in the uvea and cornea and results in thicker corneas with altered endothelial cells. Many of the gene changes suggest alterations in extracellular matrix and fluid transport between cells.
Collapse
Affiliation(s)
- Ulrike Hampel
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz , Mainz, Germany.,Department of Anatomy II, Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Erlangen, Germany
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne , Parkville, Australia
| | - Fabian Garreis
- Department of Anatomy II, Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Erlangen, Germany
| | - Friedrich Paulsen
- Department of Anatomy II, Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Erlangen, Germany.,Department of Topographic Anatomy and Operative Surgery, Sechenov University , Moscow, Russia
| | - Robb de Iongh
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne , Parkville, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne , Parkville, Australia
| | - Christine Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne , Parkville, Australia
| | - Laura Parry
- School of BioSciences, The University of Melbourne , Parkville, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne , Parkville, Australia.,Science & Math, Singapore University of Technology & Design , Singapore
| |
Collapse
|
14
|
The Novel Small-molecule Annexin-A1 Mimetic, Compound 17b, Elicits Vasoprotective Actions in Streptozotocin-induced Diabetic Mice. Int J Mol Sci 2020; 21:ijms21041384. [PMID: 32085666 PMCID: PMC7073122 DOI: 10.3390/ijms21041384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022] Open
Abstract
The formyl peptide receptor (FPR) family are a group of G-protein coupled receptors that play an important role in the regulation of inflammatory processes. It is well-established that activation of FPRs can have cardioprotective properties. Recently, more stable small-molecule FPR1/2 agonists have been described, including both Compound 17b (Cmpd17b) and Compound 43 (Cmpd43). Both agonists activate a range of signals downstream of FPR1/2 activation in human-engineered FPR-expressing cells, including ERK1/2 and Akt. Importantly, Cmpd17b (but not Cmpd43) favours bias away from intracellular Ca2+ mobilisation in this context, which has been associated with greater cardioprotection in response to Cmpd17b over Cmpd43. However, it is unknown whether these FPR agonists impact vascular physiology and/or elicit vasoprotective effects in the context of diabetes. First, we localized FPR1 and FPR2 receptors predominantly in vascular smooth muscle cells in the aortae of male C57BL/6 mice. We then analysed the vascular effects of Cmpd17b and Cmpd43 on the aorta using wire-myography. Cmpd17b but not Cmpd43 evoked a concentration-dependent relaxation of the mouse aorta. Removal of the endothelium or blockade of endothelium-derived relaxing factors using pharmacological inhibitors had no effect on Cmpd17b-evoked relaxation, demonstrating that its direct vasodilator actions were endothelium-independent. In aortae primed with elevated K+ concentration, increasing concentrations of CaCl2 evoked concentration-dependent contraction that is abolished by Cmpd17b, suggesting the involvement of the inhibition of Ca2+ mobilisation via voltage-gated calcium channels. Treatment with Cmpd17b for eight weeks reversed endothelial dysfunction in STZ-induced diabetic aorta through the upregulation of vasodilator prostanoids. Our data indicate that Cmpd17b is a direct endothelium-independent vasodilator, and a vasoprotective molecule in the context of diabetes.
Collapse
|
15
|
Leo CH, Ng HH, Marshall SA, Jelinic M, Rupasinghe T, Qin C, Roessner U, Ritchie RH, Tare M, Parry LJ. Relaxin reduces endothelium-derived vasoconstriction in hypertension: Revealing new therapeutic insights. Br J Pharmacol 2019; 177:217-233. [PMID: 31479151 DOI: 10.1111/bph.14858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelium-derived vasoconstriction is a hallmark of vascular dysfunction in hypertension. In some cases, an overproduction of endothelium-derived prostacyclin (PGI2 ) can cause contraction rather than relaxation. Relaxin is well known for its vasoprotective actions, but the possibility that this peptide could also reverse endothelium-derived vasoconstriction has never been investigated. We tested the hypothesis that short-term relaxin treatment mitigates endothelium-derived vasoconstriction in spontaneously hypertensive rats (SHR). EXPERIMENTAL APPROACH Male Wistar Kyoto rats (WKY) and SHR were subcutaneously infused with either vehicle (20 mmol·L-1 sodium acetate) or relaxin (13.3 μg·kg-1 ·hr-1 ) using osmotic minipumps for 3 days. Vascular reactivity to the endothelium-dependent agonist ACh was assessed in vitro by wire myography. Quantitative PCR and LC-MS were used to identify changes in gene expression of prostanoid pathways and PG production, respectively. KEY RESULTS Relaxin treatment ameliorated hypertension-induced endothelial dysfunction by increasing NO-dependent relaxation and reducing endothelium-dependent contraction. Notably, short-term relaxin treatment up-regulated mesenteric PGI2 receptor (IP) expression, permitting PGI2 -IP-mediated vasorelaxation. In the aorta, reversal of contraction was accompanied by suppression of the hypertension-induced increase in prostanoid-producing enzymes and reduction in PGI2 -evoked contractions. CONCLUSIONS AND IMPLICATIONS Relaxin has region-dependent vasoprotective actions in hypertension. Specifically, relaxin has distinct effects on endothelium-derived contracting factors and their associated vasoconstrictor pathways in mesenteric arteries and the aorta. Taken together, these observations reveal the potential of relaxin as a new therapeutic agent for vascular disorders that are associated with endothelium-derived vasoconstriction including hypertension.
Collapse
Affiliation(s)
- Chen Huei Leo
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Hooi Hooi Ng
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Sarah A Marshall
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Maria Jelinic
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - Ute Roessner
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.,Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Monash University, Clayton, VIC, Australia
| | - Marianne Tare
- Monash Rural Health, Monash University, Churchill, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Laura J Parry
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Takenouchi Y, Tsuboi K, Ohsuka K, Nobe K, Ohtake K, Okamoto Y, Kasono K. Chronic Treatment with α-Lipoic Acid Improves Endothelium-Dependent Vasorelaxation of Aortas in High-Fat Diet-Fed Mice. Biol Pharm Bull 2019; 42:1456-1463. [DOI: 10.1248/bpb.b18-00800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University
| | | | - Kenji Ohsuka
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Kazuo Ohtake
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University
| | | | - Keizo Kasono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
17
|
Valkovic AL, Bathgate RA, Samuel CS, Kocan M. Understanding relaxin signalling at the cellular level. Mol Cell Endocrinol 2019; 487:24-33. [PMID: 30592984 DOI: 10.1016/j.mce.2018.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
Abstract
The peptide hormone relaxin mediates many biological actions including anti-fibrotic, vasodilatory, angiogenic, anti-inflammatory, anti-apoptotic, and organ protective effects across a range of tissues. At the cellular level, relaxin binds to the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1) to activate a variety of downstream signal transduction pathways. This signalling cascade is complex and also varies in diverse cellular backgrounds. Moreover, RXFP1 signalling shows crosstalk with other receptors to mediate some of its physiological functions. This review summarises known signalling pathways induced by acute versus chronic treatment with relaxin across a range of cell types, it describes RXFP1 crosstalk with other receptors, signalling pathways activated by other ligands targeting RXFP1, and it also outlines physiological relevance of RXFP1 signalling outputs. Comprehensive understanding of the mechanism of relaxin actions in fibrosis, vasodilation, as well as organ protection, will further support relaxin's clinical potential.
Collapse
Affiliation(s)
- Adam L Valkovic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ross Ad Bathgate
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
18
|
Recent developments in relaxin mimetics as therapeutics for cardiovascular diseases. Curr Opin Pharmacol 2019; 45:42-48. [PMID: 31048209 DOI: 10.1016/j.coph.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/23/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease is the most common cause of mortality worldwide, accounting for almost 50% of all deaths globally. Vascular endothelial dysfunction and fibrosis are critical in the pathophysiology of cardiovascular disease. Relaxin, an insulin-like peptide, is known to have beneficial actions in the cardiovascular system through its vasoprotective and anti-fibrotic effects. However, relaxin has several limitations of peptide-based drugs such as poor oral bioavailability, laborious, and expensive to synthesize. This review will focus on recent developments in relaxin mimetics, their pharmacology, associated signalling mechanisms, and their therapeutic potential for the management and treatment of cardiovascular disease.
Collapse
|
19
|
Marshall SA, Cox AG, Parry LJ, Wallace EM. Targeting the vascular dysfunction: Potential treatments for preeclampsia. Microcirculation 2018; 26:e12522. [PMID: 30556222 DOI: 10.1111/micc.12522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a pregnancy-specific disorder, primarily characterized by new-onset hypertension in combination with a variety of other maternal or fetal signs. The pathophysiological mechanisms underlying the disease are still not entirely clear. Systemic maternal vascular dysfunction underlies the clinical features of preeclampsia. It is a result of oxidative stress and the actions of excessive anti-angiogenic factors, such as soluble fms-like tyrosine kinase, soluble endoglin, and activin A, released by a dysfunctional placenta. The vascular dysfunction then leads to impaired regulation and secretion of relaxation factors and an increase in sensitivity/production of constrictors. This results in a more constricted vasculature rather than the relaxed vasodilated state associated with normal pregnancy. Currently, the only effective "treatment" for preeclampsia is delivery of the placenta and therefore the baby. Often, this means a preterm delivery to save the life of the mother, with all the attendant risks and burdens associated with fetal prematurity. To lessen this burden, there is a pressing need for more effective treatments that target the maternal vascular dysfunction that underlies the hypertension. This review details the vascular effects of key drugs undergoing clinical assessment as potential treatments for women with preeclampsia.
Collapse
Affiliation(s)
- Sarah A Marshall
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Annie G Cox
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Euan M Wallace
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Ng HH, Leo CH, Parry LJ, Ritchie RH. Relaxin as a Therapeutic Target for the Cardiovascular Complications of Diabetes. Front Pharmacol 2018; 9:501. [PMID: 29867503 PMCID: PMC5962677 DOI: 10.3389/fphar.2018.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular complications are the major cause of mortality in patients with diabetes. This is closely associated with both macrovascular and microvascular complications of diabetes, which lead to organ injuries in diabetic patients. Previous studies have consistently demonstrated the beneficial effects of relaxin treatment for protection of the vasculature, with evidence of antioxidant and anti-remodeling actions. Relaxin enhances nitric oxide, prostacyclin and endothelium-derived hyperpolarization (EDH)-type-mediated relaxation in various vascular beds. These effects of relaxin on the systemic vasculature, coupled with its cardiac actions, reduce pulmonary capillary wedge pressure and pulmonary artery pressure. This results in an overall decrease in systemic and pulmonary vascular resistance in heart failure patients. The anti-fibrotic actions of relaxin are well established, a desirable property in the context of diabetes. Further, relaxin ameliorates diabetic wound healing, with accelerated angiogenesis and vasculogenesis. Relaxin-mediated stimulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1-α, as well as regulation of metalloproteinase expression, ameliorates cardiovascular fibrosis in diabetic mice. In the heart, relaxin is a cardioprotective molecule in several experimental animal models, exerting anti-fibrotic, anti-hypertrophy and anti-apoptotic effects in diabetic pathologies. Collectively, these studies provide a foundation to propose the therapeutic potential for relaxin as an adjunctive agent in the prevention or treatment of diabetes-induced cardiovascular complications. This review provides a comprehensive overview of the beneficial effects of relaxin, and identifies its therapeutic possibilities for alleviating diabetes-related cardiovascular injury.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Science and Math Cluster, Singapore University of Technology and Design, Singapore, Singapore
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology & Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Aragón-Herrera A, Feijóo-Bandín S, Rodríguez-Penas D, Roselló-Lletí E, Portolés M, Rivera M, Bigazzi M, Bani D, Gualillo O, González-Juanatey JR, Lago F. Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes. Endocrine 2018; 60:103-111. [PMID: 29411306 DOI: 10.1007/s12020-018-1534-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Many evidences show that the hormone relaxin plays a pivotal role in the physiology and pathology of the cardiovascular system. This pleiotropic hormone exerts regulatory functions through specific receptors in cardiovascular tissues: in experimental animal models it was shown to induce coronary vasodilation, prevent cardiac damage induced by ischemia/reperfusion and revert cardiac hypertrophy and fibrosis. A tight relationship between this hormone and important metabolic pathways has been suggested, but it is at present unknown if relaxin could regulate cardiac metabolism. Our aim was to study the possible effects of relaxin on cardiomyocyte metabolism. METHODS Neonatal rat cardiomyocytes were treated with relaxin and (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays (MTT) were performed to assess metabolic activity; while 2-deoxy-D-[3H] glucose and BODIPY-labelled fatty acid incorporations were analyzed to measure glucose and fatty acid uptakes, and western blot was utilized to study the intracellular signaling pathways activated by the hormone. RESULTS We observed that relaxin at 10 ng/ml was able to increase the level of metabolic activity of cultured neonatal rat cardiomyocytes; the rate of 2-deoxy-D-[3H]glucose incorporation demonstrated that relaxin also induced an increase in glucose uptake. First evidence is also offered that relaxin can activate the master energy sensor and regulator AMPK in cardiomyocytes. Moreover, the treatment of cardiomyocytes with relaxin also induced dose-dependent increases in ERK1/2, AKT, and AS160 phosphorylation. That raise in AS160 phosphorylation induced by relaxin was prevented by the pretreatment with AMPK and AKT pathways inhibitors, indicating that both molecules play important roles in the relaxin effects reported. CONCLUSION Relaxin can regulate cardiomyocyte metabolism and activate AMPK, the central sensor of energy status that maintains cellular energy homeostasis, and also ERK and AKT, two molecular sensing nodes that coordinate dynamic responses of the cell's metabolic responses.
Collapse
Affiliation(s)
- A Aragón-Herrera
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
| | - S Feijóo-Bandín
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain.
- CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| | - D Rodríguez-Penas
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
| | - E Roselló-Lletí
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Cardiocirculatory Unit, Health Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - M Portolés
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Cardiocirculatory Unit, Health Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - M Rivera
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Cardiocirculatory Unit, Health Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - M Bigazzi
- Prosperius Institute, Florence, Italy
| | - D Bani
- Prosperius Institute, Florence, Italy
| | - O Gualillo
- Neuroendocrine Interaccions in Rheumatology and Inflammatory Diseases Unit, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
| | - J R González-Juanatey
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - F Lago
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Marshall SA, Senadheera SN, Jelinic M, O'Sullivan K, Parry LJ, Tare M. Relaxin Deficiency Leads to Uterine Artery Dysfunction During Pregnancy in Mice. Front Physiol 2018; 9:255. [PMID: 29623045 PMCID: PMC5874303 DOI: 10.3389/fphys.2018.00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 11/16/2022] Open
Abstract
The uterine vasculature undergoes profound adaptations in response to pregnancy. Augmentation of endothelial vasodilator function and reduced smooth muscle reactivity are factors contributing to uterine artery adaptation and are critical for adequate placental perfusion. The peptide hormone relaxin has an important role in mediating the normal maternal renal vascular adaptations during pregnancy through a reduction in myogenic tone and an increase in flow-mediated vasodilation. Little is known however about the influence of endogenous relaxin on the uterine artery during pregnancy. We tested the hypothesis that relaxin deficiency increases myogenic tone and impairs endothelial vasodilator function in uterine arteries of late pregnant relaxin deficient (Rln−/−) mice. Reactivity of main uterine arteries from non-pregnant and late pregnant wild-type (Rln+/+) and Rln−/− mice was studied using pressure and wire myography and changes in gene expression explored using PCR. Myogenic tone was indistinguishable in arteries from non-pregnant mice. In late pregnancy uterine artery myogenic tone was halved in Rln+/+ mice (P < 0.0001), an adaptation that failed to occur in arteries from pregnant Rln−/− mice. The role of vasodilator prostanoids in the regulation of myogenic tone was significantly reduced in arteries of pregnant Rln−/− mice (P = 0.02). Agonist-mediated endothelium-dependent vasodilation was significantly impaired in non-pregnant Rln−/− mice. With pregnancy, differences in total endothelial vasodilator function were resolved, although there remained an underlying deficiency in the role of vasodilator prostanoids and alterations to the contributions of calcium-activated K+ channels. Fetuses of late pregnant Rln−/− mice were ~10% lighter (P < 0.001) than those of Rln+/+ mice. In conclusion, relaxin deficiency is associated with failed suppression of uterine artery myogenic tone in pregnancy, which likely contributes to reduced uteroplacental perfusion and fetal growth restriction.
Collapse
Affiliation(s)
- Sarah A Marshall
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Maria Jelinic
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kelly O'Sullivan
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Marianne Tare
- Department of Physiology and Monash Rural Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Marshall SA, Leo CH, Girling JE, Tare M, Beard S, Hannan NJ, Parry LJ. Relaxin treatment reduces angiotensin II-induced vasoconstriction in pregnancy and protects against endothelial dysfunction†. Biol Reprod 2018; 96:895-906. [PMID: 28379296 DOI: 10.1093/biolre/iox023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/31/2017] [Indexed: 01/31/2023] Open
Abstract
The peptide relaxin has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in cardiovascular disease. In this study, we tested the hypothesis that relaxin treatment alleviates systemic vascular dysfunction characteristic of hypertensive diseases of pregnancy. We investigated vascular effects and mechanisms of relaxin action in (i) pregnant relaxin-deficient (Rln-/-) mice with enhanced responses to angiotensin II (AngII) and (ii) arteries pre-incubated ex vivo in trophoblast conditioned media (TCM) to induce endothelial dysfunction. Pregnant Rln-/- mice received 0.5 μg/h recombinant human H2 relaxin (rhRLX: n = 5) or placebo (20 nM sodium acetate; n = 7) subcutaneously via osmotic minipumps for 5 days prior to gestational day 17.5. This treatment protocol significantly reduced AngII-mediated contraction of mesenteric arteries and increased plasma 6-keto prostaglandin F1α. These vascular effects were endothelium independent and likely involve smooth muscle-derived vasodilator prostanoids. In the second study, mesenteric arteries were incubated ex vivo for 24 h at 37°C in TCM, which contained high levels of soluble Flt-1 (>20 ng/ml) and soluble Eng (>1 ng/ml). TCM incubation caused significant reduction in endothelium-dependent relaxation and increased sensitivity to AngII. Co-incubation of arteries with rhRLX for 24 h (n = 6-16/treatment) prevented endothelial dysfunction but had no effect on AngII-mediated contraction. In conclusion, relaxin treatment prevents and/or reverses vascular dysfunction in mesenteric arteries, but acts through different vascular pathways depending on duration of relaxin treatment and type of vascular dysfunction. Overall, our data suggest that relaxin is a potential therapeutic to alleviate maternal systemic vascular dysfunction associated with hypertensive diseases in pregnant women.
Collapse
Affiliation(s)
- Sarah A Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women's Hospital, Parkville, Victoria, Australia
| | - Marianne Tare
- Department of Physiology, Monash University, Victoria, Australia.,Monash Rural Health, Monash University, Victoria, Australia
| | - Sally Beard
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Natalie J Hannan
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Lv W, Booz GW, Fan F, Wang Y, Roman RJ. Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Front Physiol 2018; 9:105. [PMID: 29503620 PMCID: PMC5820314 DOI: 10.3389/fphys.2018.00105] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant worldwide healthcare problem. Regardless of the initial injury, renal fibrosis is the common final pathway leading to end stage renal disease. Although the underlying mechanisms are not fully defined, evidence indicates that besides inflammation, oxidative stress plays a crucial role in the etiology of renal fibrosis. Oxidative stress results from an imbalance between the production of free radicals that are often increased by inflammation and mitochondrial dysfunction, and reduced anti-oxidant defenses. Several studies have demonstrated that oxidative stress may occur secondary to activation of transforming growth factor β1 (TGF-β1) activity, consistent with its role to increase nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity. A number of other oxidative stress-related signal pathways have also been identified, such as nuclear factor erythroid-2 related factor 2 (Nrf2), the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway, and the peroxisome proliferator-activated receptor gamma (PPARγ) pathway. Several antioxidant and renoprotective agents, including cysteamine bitartrate, epoxyeicosatrienoic acids (EETs), and cytoglobin (Cygb) have demonstrated ameliorative effects on renal fibrosis in preclinical or clinical studies. The mechanism of action of many traditional Chinese medicines used to treat renal disorders is based on their antioxidant properties, which could form the basis for new therapeutic approaches. This review focuses on the signaling pathways triggered by oxidative stress that lead to renal fibrosis and provides an update on the development of novel anti-oxidant therapies for CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
25
|
Feijóo-Bandín S, Aragón-Herrera A, Rodríguez-Penas D, Portolés M, Roselló-Lletí E, Rivera M, González-Juanatey JR, Lago F. Relaxin-2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives. Front Physiol 2017; 8:599. [PMID: 28868039 PMCID: PMC5563388 DOI: 10.3389/fphys.2017.00599] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Despite the great effort of the medical community during the last decades, cardiovascular diseases remain the leading cause of death worldwide, increasing their prevalence every year mainly due to our new way of life. In the last years, the study of new hormones implicated in the regulation of energy metabolism and inflammation has raised a great interest among the scientific community regarding their implications in the development of cardiometabolic diseases. In this review, we will summarize the main actions of relaxin, a pleiotropic hormone that was previously suggested to improve acute heart failure and that participates in both metabolism and inflammation regulation at cardiovascular level, and will discuss its potential as future therapeutic target to prevent/reduce cardiovascular diseases.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Miguel Rivera
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - José R. González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| |
Collapse
|
26
|
Marshall SA, O'Sullivan K, Ng H, Bathgate RA, Parry LJ, Hossain MA, Leo CH. B7-33 replicates the vasoprotective functions of human relaxin-2 (serelaxin). Eur J Pharmacol 2017; 807:190-197. [DOI: 10.1016/j.ejphar.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/21/2023]
|
27
|
Ng HH, Yildiz GS, Ku JM, Miller AA, Woodman OL, Hart JL. Chronic NaHS treatment decreases oxidative stress and improves endothelial function in diabetic mice. Diab Vasc Dis Res 2017; 14:246-253. [PMID: 28467198 DOI: 10.1177/1479164117692766] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulphide (H2S) is endogenously produced in vascular tissue and has anti-oxidant and vasoprotective properties. This study investigates whether chronic treatment using the fast H2S donor NaHS could elicit a vasoprotective effect in diabetes. Diabetes was induced in male C57BL6/J mice with streptozotocin (60 mg/kg daily, ip for 2 weeks) and confirmed by elevated blood glucose and glycated haemoglobin levels. Diabetic mice were then treated with NaHS (100 µmol/kg/day) for 4 weeks, and aortae collected for functional and biochemical analyses. In the diabetic group, both endothelium-dependent vasorelaxation and basal nitric oxide (NO•) bioactivity were significantly reduced ( p < 0.05), and maximal vasorelaxation to the NO• donor sodium nitroprusside was impaired ( p < 0.05) in aorta compared to control mice. Vascular superoxide generation via nicotine adenine dinucleotide phosphate (NADPH) oxidase ( p < 0.05) was elevated in aorta from diabetic mice which was associated with increased expression of NOX2 ( p < 0.05). NaHS treatment of diabetic mice restored endothelial function and exogenous NO• efficacy back to control levels. NaHS treatment also reduced the diabetes-induced increase in NADPH oxidase activity, but did not affect NOX2 protein expression. These data show that chronic NaHS treatment reverses diabetes-induced vascular dysfunction by restoring NO• efficacy and reducing superoxide production in the mouse aorta.
Collapse
MESH Headings
- Animals
- Antioxidants/administration & dosage
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Glycated Hemoglobin/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- NADPH Oxidase 2/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress/drug effects
- Sulfides/administration & dosage
- Superoxides/metabolism
- Time Factors
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Hooi H Ng
- 1 School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Gunes S Yildiz
- 2 School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jacqueline M Ku
- 2 School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Alyson A Miller
- 2 School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Owen L Woodman
- 2 School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joanne L Hart
- 2 School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
28
|
Leo CH, Fernando DT, Tran L, Ng HH, Marshall SA, Parry LJ. Serelaxin Treatment Reduces Oxidative Stress and Increases Aldehyde Dehydrogenase-2 to Attenuate Nitrate Tolerance. Front Pharmacol 2017; 8:141. [PMID: 28377719 PMCID: PMC5359255 DOI: 10.3389/fphar.2017.00141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/07/2017] [Indexed: 02/01/2023] Open
Abstract
Background: Glyceryl trinitrate (GTN) is a commonly prescribed treatment for acute heart failure patients. However, prolonged GTN treatment induces tolerance, largely due to increased oxidative stress and reduced aldehyde dehydrogenase-2 (ALDH-2) expression. Serelaxin has several vasoprotective properties, which include reducing oxidative stress and augmenting endothelial function. We therefore tested the hypothesis in rodents that serelaxin treatment could attenuate low-dose GTN-induced tolerance. Methods and Results: Co-incubation of mouse aortic rings ex vivo with GTN (10 μM) and serelaxin (10 nM) for 1 h, restored GTN responses, suggesting that serelaxin prevented the development of GTN tolerance. Male Wistar rats were subcutaneously infused with ethanol (control), low-dose GTN+placebo or low-dose GTN+serelaxin via osmotic minipumps for 3 days. Aortic vascular function and superoxide levels were assessed using wire myography and lucigenin-enhanced chemiluminescence assay respectively. Changes in aortic ALDH-2 expression were measured by qPCR and Western blot respectively. GTN+placebo infusion significantly increased superoxide levels, decreased ALDH-2 and attenuated GTN-mediated vascular relaxation. Serelaxin co-treatment with GTN significantly enhanced GTN-mediated vascular relaxation, reduced superoxide levels and increased ALDH-2 expression compared to GTN+placebo-treated rats. Conclusion: Our data demonstrate that a combination of serelaxin treatment with low dose GTN attenuates the development of GTN-induced tolerance by reducing superoxide production and increasing ALDH-2 expression in the rat aorta. We suggest that serelaxin may improve nitrate efficacy in a clinical setting.
Collapse
Affiliation(s)
- Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | | | - Lillie Tran
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | - Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | - Sarah A Marshall
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville VIC, Australia
| |
Collapse
|
29
|
Cimini D, Corte KD, Finamore R, Andreozzi L, Stellavato A, Pirozzi AVA, Ferrara F, Formisano R, De Rosa M, Chino M, Lista L, Lombardi A, Pavone V, Schiraldi C. Production of human pro-relaxin H2 in the yeast Pichia pastoris. BMC Biotechnol 2017; 17:4. [PMID: 28088197 PMCID: PMC5237503 DOI: 10.1186/s12896-016-0319-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Initially known as the reproductive hormone, relaxin was shown to possess other therapeutically useful properties that include extracellular matrix remodeling, anti-inflammatory, anti-ischemic and angiogenic effects. All these findings make relaxin a potential drug for diverse medical applications. Its precursor, pro-relaxin, is an 18 kDa protein, that shows activity in in vitro assays. Since extraction of relaxin from animal tissues raises several issues, prokaryotes and eukaryotes were both used as expression systems for recombinant relaxin production. Most productive results were obtained when using Escherichia coli as a host for human relaxin expression. However, in such host, relaxin precipitated in the form of inclusion bodies and, therefore, required several expensive recovery steps as cell lysis, refolding and reduction. Results To overcome the issues related to prokaryotic expression here we report the production and purification of secreted human pro-relaxin H2 by using the methylotrophic yeast Pichia pastoris as expression host. The methanol inducible promoter AOX1 was used to drive expression of the native and histidine tagged forms of pro-relaxin H2 in dual phase fed-batch experiments on the 22 L scale. Both protein forms presented the correct structure, as determined by mass spectrometry and western blotting analyses, and demonstrated to be biologically active in immune enzymatic assays. The presence of the tag allowed to simplify pro-relaxin purification obtaining higher purity. Conclusions This work presents a strategy for microbial production of recombinant human pro-relaxin H2 in Pichia pastoris that allowed the obtainment of biologically active pro-hormone, with a final concentration in the fermentation broth ranging between 10 and 14 mg/L of product, as determined by densitometric analyses. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Cimini
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy.
| | - K Della Corte
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - R Finamore
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - L Andreozzi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - A Stellavato
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - A V A Pirozzi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - F Ferrara
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - R Formisano
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - M De Rosa
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - M Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - L Lista
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - A Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - V Pavone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - C Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
30
|
Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes. Sci Rep 2017; 7:39604. [PMID: 28067255 PMCID: PMC5220363 DOI: 10.1038/srep39604] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Serelaxin prevents endothelial dysfunction in the mouse aorta ex vivo and inhibits apoptosis in cardiomyocytes under acute hyperglycaemia. Less is known about the effects of serelaxin in an in vivo mouse model of diabetes. Therefore, we tested the hypothesis in streptozotocin (STZ)-treated mice that serelaxin is able to reverse diabetes-induced vascular dysfunction and cardiac remodelling. Mice were divided into citrate buffer + placebo, STZ + placebo and STZ + serelaxin (0.5 mg/kg/d, 2 weeks) groups. After 12 weeks of diabetes, sensitivity to the endothelium-dependent agonist acetylcholine (ACh) was reduced in the mesenteric artery. This was accompanied by an enhanced vasoconstrictor prostanoid contribution and a decrease in endothelium-derived hyperpolarisation (EDH)-mediated relaxation. Serelaxin restored endothelial function by increasing nitric oxide (NO)-mediated relaxation but not EDH. It also normalised the contribution of vasoconstrictor prostanoids to endothelial dysfunction and suppressed diabetes-induced hyper-responsiveness of the mesenteric artery to angiotensin II. Similarly, diabetes reduced ACh-evoked NO-mediated relaxation in the aorta which was reversed by serelaxin. In the left ventricle, diabetes promoted apoptosis, hypertrophy and fibrosis; serelaxin treatment reversed this ventricular apoptosis and hypertrophy, but had no effect on fibrosis. In summary, serelaxin reversed diabetes-induced endothelial dysfunction by enhancing NO-mediated relaxation in the mouse vasculature and attenuating left ventricular hypertrophy and apoptosis.
Collapse
|
31
|
Ng HH, Leo CH, O'Sullivan K, Alexander SA, Davies MJ, Schiesser CH, Parry LJ. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress. Biochem Pharmacol 2016; 128:34-45. [PMID: 28027880 DOI: 10.1016/j.bcp.2016.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Hyperglycaemia increases the generation of reactive oxidants in blood vessels and is a major cause of endothelial dysfunction. A water-soluble selenium-containing sugar (1,4-Anhydro-4-seleno-d-talitol, SeTal) has potent antioxidant activity in vitro and is a promising treatment to accelerate wound healing in diabetic mice. One possible mechanism of SeTal action is a direct effect on blood vessels. Therefore, we tested the hypothesis that SeTal prevents endothelial dysfunction by scavenging reactive oxidants in isolated mouse aorta under conditions of acute oxidative stress induced by hyperglycaemia. Aortae were isolated from C57BL/6 male mice and mounted on a wire-myograph to assess vascular function. In the presence of a superoxide radical generator, pyrogallol, 300μM and 1mM of SeTal effectively prevented endothelial dysfunction compared to other selenium-containing compounds. In a second set of ex vivo experiments, mouse aortae were incubated for three days with either normal or high glucose, and co-incubated with SeTal at 37°C in 5% CO2. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh), increased superoxide production and decreased basal nitric oxide (NO) availability. SeTal (1mM) co-treatment prevented high glucose-induced endothelial dysfunction and oxidative stress in the mouse aorta. The presence of a cyclooxygenase inhibitor, indomethacin significantly improved the sensitivity to ACh in high glucose-treated aortae, but had no effect in SeTal-treated aortae. Our data show that SeTal has potent antioxidant activity in isolated mouse aortae and prevents high glucose-induced endothelial dysfunction by decreasing superoxide levels, increasing basal NO availability and normalising the contribution of vasoconstrictor prostanoids.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Kelly O'Sullivan
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stefanie-Ann Alexander
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Carl H Schiesser
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
32
|
Leo CH, Jelinic M, Ng HH, Marshall SA, Novak J, Tare M, Conrad KP, Parry LJ. Vascular actions of relaxin: nitric oxide and beyond. Br J Pharmacol 2016; 174:1002-1014. [PMID: 27590257 DOI: 10.1111/bph.13614] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/28/2022] Open
Abstract
The peptide hormone relaxin regulates the essential maternal haemodynamic adaptations in early pregnancy through direct actions on the renal and systemic vasculature. These vascular actions of relaxin occur mainly through endothelium-derived NO-mediated vasodilator pathways and improvements in arterial compliance in small resistance-size arteries. This work catalysed a plethora of studies which revealed quite heterogeneous responses across the different regions of the vasculature, and also uncovered NO-independent mechanisms of relaxin action. In this review, we first describe the role of endogenous relaxin in maintaining normal vascular function, largely referring to work in pregnant and male relaxin-deficient animals. We then discuss the diversity of mechanisms mediating relaxin action in different vascular beds, including the involvement of prostanoids, VEGF, endothelium-derived hyperpolarisation and antioxidant activity in addition to the classic NO-mediated vasodilatory pathway. We conclude the review with current perspectives on the vascular remodelling capabilities of relaxin. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- C H Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - M Jelinic
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - H H Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - S A Marshall
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - J Novak
- Division of Mathematics and Science, Walsh University, North Canton, OH, USA
| | - M Tare
- Department of Physiology, Monash University, Clayton, VIC, Australia.,School of Rural Health, Monash University, Clayton, VIC, Australia
| | - K P Conrad
- Department of Physiology and Functional Genomics, Department of Obstetrics and Gynaecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - L J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Kahlberg N, Qin CX, Anthonisz J, Jap E, Ng HH, Jelinic M, Parry LJ, Kemp-Harper BK, Ritchie RH, Leo CH. Adverse vascular remodelling is more sensitive than endothelial dysfunction to hyperglycaemia in diabetic rat mesenteric arteries. Pharmacol Res 2016; 111:325-335. [DOI: 10.1016/j.phrs.2016.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/15/2016] [Accepted: 06/26/2016] [Indexed: 11/26/2022]
|
34
|
Serelaxin: A Novel Therapeutic for Vascular Diseases. Trends Pharmacol Sci 2016; 37:498-507. [PMID: 27130518 DOI: 10.1016/j.tips.2016.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
Vascular dysfunction is an important hallmark of cardiovascular disease. It is characterized by increased sensitivity to vasoconstrictors, decreases in the endothelium-derived vasodilators nitric oxide (NO) and prostacyclin (PGI2), and endothelium-derived hyperpolarization (EDH). Serelaxin (recombinant human relaxin) has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in acute heart failure. In this review we first describe the contribution of endogenous relaxin to vascular homeostasis. We then provide a comprehensive overview of the novel mechanisms of serelaxin action in blood vessels that differentiate it from other vasodilator drugs and explain how this peptide could be used more widely as a therapeutic to alleviate vascular dysfunction in several cardiovascular diseases.
Collapse
|