1
|
Sun W, Lin R, Li Y, Yao Y, Lu B, Yu Y. Circulating branched-chain amino acids and the risk of major adverse cardiovascular events in the UK biobank. Front Endocrinol (Lausanne) 2025; 16:1510910. [PMID: 40052157 PMCID: PMC11882422 DOI: 10.3389/fendo.2025.1510910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
Objective To investigate the relationship between circulating branched-chain amino acids (BCAAs) and the risk of major adverse cardiovascular events (MACE) in a national population-based cohort study. Methods UK Biobank, a prospective study involving 22 recruitment centers across the United Kingdom. For this analysis, we included 266,840 participants from the UK Biobank who had available BCAA data and no history of MACE at baseline. Cox regression analysis was conducted to evaluate these associations, adjusting for potential confounders. Results During a 13.80 ± 0.83-year follow-up, 52,598 participants experienced MACE, with the incidence of MACE increasing progressively across quintiles of circulating BCAAs, isoleucine, leucine, and valine. Overall, the fifth quintile exhibited a 7-12% higher MACE risk compared to the second quintile. In males, BCAAs were not associated with MACE risk. However, increased risks were observed for isoleucine (8-12% in higher quintiles), leucine (9% in the first quintile and 6% in the fifth quintile), and valine (8% in the first quintile). In females, higher quintiles of BCAAs, isoleucine, leucine, and valine were associated with increased MACE risk, ranging from 9% to 12%. Among participants under 65y, higher quintiles of BCAAs, isoleucine, and leucine were associated with increased MACE risk, while valine showed no significant association. No association was found in participants aged 65 and older. These analyses were adjusted for multiple potential confounders. Conclusion Generally, higher levels of BCAAs, isoleucine, leucine, and valine were associated with an increased risk of MACE, except in participants older than 65. Additionally, in males, the lowest quintiles of leucine and valine were also associated with an increased risk of MACE.
Collapse
Affiliation(s)
- Wanwan Sun
- Department of Endocrinology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ruilang Lin
- Department of Biostatistics, School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ye Yao
- Department of Biostatistics, School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Bin Lu
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
3
|
Karkoutly S, Takeuchi Y, Mehrazad Saber Z, Ye C, Tao D, Aita Y, Murayama Y, Shikama A, Masuda Y, Izumida Y, Matsuzaka T, Kawakami Y, Shimano H, Yahagi N. FoxO transcription factors regulate urea cycle through Ass1. Biochem Biophys Res Commun 2024; 739:150594. [PMID: 39191148 DOI: 10.1016/j.bbrc.2024.150594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
When amino acids are plentiful in the diet, the liver upregulates most enzymes responsible for amino acid degradation. In particular, the activity of urea cycle enzymes increases in response to high-protein diets to facilitate the excretion of excess nitrogen. KLF15 has been established as a critical regulator of amino acid catabolism including ureagenesis and we have recently identified FoxO transcription factors as an important upstream regulator of KLF15 in the liver. Therefore, we explored the role of FoxOs in amino acid metabolism under high-protein diet. Our findings revealed that the concentrations of two urea cycle-related amino acids, arginine and ornithine, were significantly altered by FoxOs knockdown. Additionally, using KLF15 knockout mice and an in vivo Ad-luc analytical system, we confirmed that FoxOs directly regulate hepatic Ass1 expression under high-protein intake independently from KLF15. Moreover, ChIP analysis showed that the high-protein diet increased FoxOs DNA binding without altering the nuclear protein amount. Therefore, FoxOs play a direct role in regulating ureagenesis via a KLF15-independent pathway in response to high-protein intake.
Collapse
Affiliation(s)
- Samia Karkoutly
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshinori Takeuchi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Zahra Mehrazad Saber
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Chen Ye
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Duhan Tao
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuichi Aita
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukari Masuda
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoya Yahagi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
4
|
Jian H, Li R, Huang X, Li J, Li Y, Ma J, Zhu M, Dong X, Yang H, Zou X. Branched-chain amino acids alleviate NAFLD via inhibiting de novo lipogenesis and activating fatty acid β-oxidation in laying hens. Redox Biol 2024; 77:103385. [PMID: 39426289 PMCID: PMC11536022 DOI: 10.1016/j.redox.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The adverse metabolic impacts of branched-chain amino acids (BCAA) have been elucidated are mediated by isoleucine and valine. Dietary restriction of isoleucine promotes metabolic health and increases lifespan. However, a high protein diet enriched in BCAA is presently the most useful therapeutic strategy for nonalcoholic fatty liver disease (NAFLD), yet, its underlying mechanism remains largely unknown. Fatty liver hemorrhagic syndrome (FLHS), a specialized laying hen NAFLD model, can spontaneously develop fatty liver and hepatic steatosis under a high-energy and high-protein dietary background that the pathogenesis of FLHS is similar to human NAFLD. The mechanism underlying dietary BCAA control of NAFLD development in laying hens remains unclear. Herein, we demonstrate that dietary supplementation with 67 % High BCAA has unique mitigative impacts on NAFLD in laying hens. A High BCAA diet alleviates NAFLD, by inhibiting the tryptophan-ILA-AHR axis and MAPK9-mediated de novo lipogenesis (DNL), promoting ketogenesis and energy metabolism, and activating PPAR-RXR and pexophagy to promote fatty acid β-oxidation. Furthermore, we uncover that High BCAA strongly activates ubiquitin-proteasome autophagy via downregulating UFMylation to trigger MAPK9-mediated DNL, fatty acid elongation and lipid droplet formation-related proteins ubiquitination degradation, activating PPAR-RXR and pexophagy mediated fatty acid β-oxidation and lipolysis. Together, our data highlight moderating intake of high BCAA by inhibiting the AHR/MAPK9 are promising new strategies in NAFLD and FLHS treatment.
Collapse
Affiliation(s)
- Huafeng Jian
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ru Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Xuan Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Jiankui Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Yan Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | | | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyang Dong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoting Zou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Sink WJ, Fling R, Yilmaz A, Nault R, Goniwiecha D, Harkema JR, Graham SF, Zacharewski T. 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) elicited dose-dependent shifts in the murine urinary metabolome associated with hepatic AHR-mediated differential gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619714. [PMID: 39484576 PMCID: PMC11526911 DOI: 10.1101/2024.10.22.619714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Epidemiological evidence suggests an association between dioxin and dioxin-like compound (DLC) exposure and human liver disease. The prototypical DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been shown to induce the progression of reversible hepatic steatosis to steatohepatitis with periportal fibrosis and biliary hyperplasia in mice. Although the effects of TCDD toxicity are mediated by aryl hydrocarbon receptor (AHR) activation, the underlying mechanisms of TCDD-induced hepatotoxicity are unresolved. In the present study, male C57BL/6NCrl mice were gavaged every 4 days for 28 days with 0.03 - 30 μg/kg TCDD and evaluated for liver histopathology and gene expression as well as complementary 1-dimensional proton magnetic resonance (1D- 1H NMR) urinary metabolic profiling. Urinary trimethylamine (TMA), trimethylamine N-oxide (TMAO), and 1-methylnicotinamide (1MN) levels were altered by TCDD at doses ≤ 3 μg/kg; other urinary metabolites, like glycolate, urocanate, and 3-hydroxyisovalerate, were only altered at doses that induced moderate to severe steatohepatitis. Bulk liver RNA-seq data suggested altered urinary metabolites correlated with hepatic differential gene expression corresponding to specific metabolic pathways. In addition to evaluating whether altered urinary metabolites were liver-dependent, published single-nuclear RNA-seq (snRNA-seq), AHR ChIP-seq, and AHR knockout gene expression datasets provide further support for hepatic cell-type and AHR-regulated dependency, respectively. Overall, TCDD-induced liver effects were preceded by and occurred with changes in urinary metabolite levels due to AHR-mediated changes in hepatic gene expression.
Collapse
Affiliation(s)
- Warren J Sink
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Russell Fling
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Ali Yilmaz
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
| | - Rance Nault
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, MI 48824, USA
| | - Delanie Goniwiecha
- Middlebury College, Neuroscience Faculty, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - Jack R Harkema
- Michigan State University, Pathobiology & Diagnostic Investigation, East Lansing, MI, United States of America
| | - Stewart F Graham
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Timothy Zacharewski
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Jiang X, Lian X, Wei K, Zhang J, Yu K, Li H, Ma H, Cai Y, Pang L. Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects. Stem Cell Res Ther 2024; 15:354. [PMID: 39380099 PMCID: PMC11462682 DOI: 10.1186/s13287-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.
Collapse
Affiliation(s)
- Xi Jiang
- Health management center, the First Hospital of Jilin University, Changchun, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Kun Wei
- Department of Rehabilitation, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jie Zhang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Kaihua Yu
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haoming Li
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haichun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
7
|
Chou MY, Lee CH, Hsieh PL, Chao SC, Yu CH, Liao YW, Lee SP, Yu CC, Fan JY. Targeting microRNA-190a halts the persistent myofibroblast activation and oxidative stress accumulation through upregulation of Krüppel-like factor 15 in oral submucous fibrosis. J Dent Sci 2024; 19:1999-2006. [PMID: 39347084 PMCID: PMC11437311 DOI: 10.1016/j.jds.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Oral submucous fibrosis (OSF) is a condition characterized by inflammation and excessive collagen deposition, which has been identified as a potentially malignant disorder. Recently, several microRNAs (miRNAs) have been shown to be implicated in various disorders associated with fibrosis. However, how these miRNAs modulate OSF development is poorly understood. Therefore, the study aimed to identify the specific miRNAs that contribute to the progression of OSF and to investigate their molecular mechanisms in promoting fibrosis. Materials and methods The expression and clinical significance of potential pro-fibrosis miRNA in the OSF cohort and primary buccal mucosal fibroblasts were confirmed through RNA sequencing and qRT-PCR. Luciferase reporter activity assay, miRNA mimic or inhibitor, and short-hairpin RNA silencing were used to elucidate the molecular mechanism of miRNA. Transwell migration, collagen contraction, and reactive oxygen species (ROS) generation detection were used to investigate the effects of this mechanism on the myofibroblast phenotype and cellular pro-fibrosis capacity. Results This study demonstrated that miR-190a was overexpressed in fibrotic buccal mucosal fibroblasts (fBMFs). Transfecting fBMFs with miR-190a inhibitor resulted in reduced cell migration, collagen gel contraction, ROS generation, and expression of fibrotic markers. Furthermore, miR-190a exerted this pro-fibrosis property by direct binding to its target, Krüppel-like factor 15 (KLF15). The results also indicated that the aberrant upregulation of miR-190a, in turn, downregulated the expression of KLF15, which resulted in the activation of myofibroblast. Conclusion Our findings demonstrated that miR-190a was involved in myofibroblast activation, suggesting that targeting the miR-190a/KLF15 axis may be a feasible approach in the therapy of OSF.
Collapse
Affiliation(s)
- Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Hsuan Lee
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiao-Pieng Lee
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jun-Yang Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
8
|
Jha PK, Valekunja UK, Reddy AB. An integrative analysis of cell-specific transcriptomics and nuclear proteomics of sleep-deprived mouse cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.611806. [PMID: 39386443 PMCID: PMC11463534 DOI: 10.1101/2024.09.24.611806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sleep regulation follows a homeostatic pattern. The mammalian cerebral cortex is the repository of homeostatic sleep drive and neurons and astrocytes of the cortex are principal responders of sleep need. The molecular mechanisms by which these two cell types respond to sleep loss are not yet clearly understood. By combining cell-type specific transcriptomics and nuclear proteomics we investigated how sleep loss affects the cellular composition and molecular profiles of these two cell types in a focused approach. The results indicate that sleep deprivation regulates gene expression and nuclear protein abundance in a cell-type-specific manner. Our integrated multi-omics analysis suggests that this distinction arises because neurons and astrocytes employ different gene regulatory strategies under accumulated sleep pressure. These findings provide a comprehensive view of the effects of sleep deprivation on gene regulation in neurons and astrocytes.
Collapse
Affiliation(s)
- Pawan K. Jha
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Utham K. Valekunja
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akhilesh B. Reddy
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Durumutla HB, Prabakaran AD, Soussi FEA, Akinborewa O, Latimer H, McFarland K, Piczer K, Werbrich C, Jain MK, Haldar SM, Quattrocelli M. Glucocorticoid chrono-pharmacology unveils novel targets for the cardiomyocyte-specific GR-KLF15 axis in cardiac glucose metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572210. [PMID: 38187555 PMCID: PMC10769285 DOI: 10.1101/2023.12.18.572210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Circadian time-of-intake gates the cardioprotective effects of glucocorticoid administration in both healthy and infarcted hearts. The cardiomyocyte-specific glucocorticoid receptor (GR) and its co-factor, Krüppel-like factor (Klf15), play critical roles in maintaining normal heart function in the long-term and serve as pleiotropic regulators of cardiac metabolism. Despite this understanding, the cardiomyocyte-autonomous metabolic targets influenced by the concerted epigenetic action of GR-Klf15 axis remain undefined. Here, we demonstrate the critical roles of the cardiomyocyte-specific GR and Klf15 in orchestrating a circadian-dependent glucose oxidation program within the heart. Combining integrated transcriptomics and epigenomics with cardiomyocyte-specific inducible ablation of GR or Klf15, we identified their synergistic role in the activation of adiponectin receptor expression (Adipor1) and the mitochondrial pyruvate complex (Mpc1/2), thereby enhancing insulin-stimulated glucose uptake and pyruvate oxidation. Furthermore, in obese diabetic (db/db) mice exhibiting insulin resistance and impaired glucose oxidation, light-phase prednisone administration, as opposed to dark-phase prednisone dosing, effectively restored cardiomyocyte glucose oxidation and improved diastolic function towards control-like levels in a sex-independent manner. Collectively, our findings uncover novel cardiomyocyte-autonomous metabolic targets of the GR-Klf15 axis. This study highlights the circadian-dependent cardioprotective effects of glucocorticoids on cardiomyocyte glucose metabolism, providing critical insights into chrono-pharmacological strategies for glucocorticoid therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fadoua El Abdellaoui Soussi
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Olukunle Akinborewa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pharmacology, Physiology and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin Piczer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cole Werbrich
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mukesh K Jain
- Dept Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Saptarsi M Haldar
- Amgen Research, South San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA and Dept Medicine, Cardiology Division, UCSF, San Francisco, CA, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Wang T, Zhang Y, Jia L, Li Y, Wang L, Zhu Y, Jiang Y, Zhao F, Wang S, Song D. LC-MS/MS-based bioanalysis of branched-chain and aromatic amino acids in human serum. Bioanalysis 2024; 16:693-704. [PMID: 39157863 PMCID: PMC11389736 DOI: 10.1080/17576180.2024.2387467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Aim: Branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) were suggested as potential biomarkers in liver disease. This study aimed to develop and validate a simple and rapid LC-MS/MS method to simultaneously measure serum BCAAs and AAAs levels in patients with liver injury, and further establish reference intervals of Chinese healthy adult populations.Patients & methods: Samples were prepared by a one-step protein precipitation and analysis time was 4 min per run.Results: The validation results showed good linearity (r2 >0.9969), satisfactory accuracy (94.44% - 107.75%) and precision (0.10% - 5.90%).Conclusion: This method proved to be suitable for high-throughput routine clinical use and could be a valuable adjunct diagnosis tool for liver injury and other clinical applications.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of GCP, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| | - Yalian Zhang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Luan Jia
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Ying Li
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Lu Wang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Yanru Zhu
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Yuxin Jiang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P.R. China
| | - Furong Zhao
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P.R. China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, P.R. China
| | - Shuang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, P.R. China
| | - Dan Song
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, P.R. China
| |
Collapse
|
11
|
Simonson M, Cueff G, Thibaut MM, Giraudet C, Salles J, Chambon C, Boirie Y, Bindels LB, Gueugneau M, Guillet C. Skeletal Muscle Proteome Modifications following Antibiotic-Induced Microbial Disturbances in Cancer Cachexia. J Proteome Res 2024; 23:2452-2473. [PMID: 38965921 DOI: 10.1021/acs.jproteome.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cancer cachexia is an involuntary loss of body weight, mostly of skeletal muscle. Previous research favors the existence of a microbiota-muscle crosstalk, so the aim of the study was to evaluate the impact of microbiota alterations induced by antibiotics on skeletal muscle proteins expression. Skeletal muscle proteome changes were investigated in control (CT) or C26 cachectic mice (C26) with or without antibiotic treatment (CT-ATB or C26-ATB, n = 8 per group). Muscle protein extracts were divided into a sarcoplasmic and myofibrillar fraction and then underwent label-free liquid chromatography separation, mass spectrometry analysis, Mascot protein identification, and METASCAPE platform data analysis. In C26 mice, the atrogen mafbx expression was 353% higher than CT mice and 42.3% higher than C26-ATB mice. No effect on the muscle protein synthesis was observed. Proteomic analyses revealed a strong effect of antibiotics on skeletal muscle proteome outside of cachexia, with adaptative processes involved in protein folding, growth, energy metabolism, and muscle contraction. In C26-ATB mice, proteome adaptations observed in CT-ATB mice were blunted. Differentially expressed proteins were involved in other processes like glucose metabolism, oxidative stress response, and proteolysis. This study confirms the existence of a microbiota-muscle axis, with a muscle response after antibiotics that varies depending on whether cachexia is present.
Collapse
Affiliation(s)
- Mathilde Simonson
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Gwendal Cueff
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Morgane M Thibaut
- MNUT Research group, Louvain Drug Research Institute, Université catholique de Louvain, LDRI, Avenue Mounier 73/B1.73.11, Brussels 1200, Belgium
| | - Christophe Giraudet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Jérôme Salles
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Christophe Chambon
- Animal Products Quality Unit (QuaPA), INRAE, Clermont-Ferrand 63122, France
- Metabolomic and Proteomic Exploration Facility, Clermont Auvergne University, INRAE, Clermont-Ferrand 63122, France
| | - Yves Boirie
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
- CHU Clermont-Ferrandservice de Nutrition clinique, Université Clermont Auvergne, Service de nutrition clinique, CHU de Clermont-Ferrand. 58, rue Montalember, Cedex 1, Clermont-Ferrand 63003, France
| | - Laure B Bindels
- MNUT Research group, Louvain Drug Research Institute, Université catholique de Louvain, LDRI, Avenue Mounier 73/B1.73.11, Brussels 1200, Belgium
- Welbio Department, WEL Research Institute, avenue Pasteur, 6, Wavre 1300, Belgium
| | - Marine Gueugneau
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Christelle Guillet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| |
Collapse
|
12
|
Choi BH, Hyun S, Koo SH. The role of BCAA metabolism in metabolic health and disease. Exp Mol Med 2024; 56:1552-1559. [PMID: 38956299 PMCID: PMC11297153 DOI: 10.1038/s12276-024-01263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 07/04/2024] Open
Abstract
It has long been postulated that dietary restriction is beneficial for ensuring longevity and extending the health span of mammals, including humans. In particular, a reduction in protein consumption has been shown to be specifically linked to the beneficial effect of dietary restriction on metabolic disorders, presumably by reducing the activity of the mechanistic target of rapamycin complex (mTORC) 1 and the reciprocal activation of AMP-activated protein kinase (AMPK) and sirtuin pathways. Although it is widely used as a dietary supplement to delay the aging process in humans, recent evidence suggests that branched-chain amino acids (BCAAs) might be a major cause of the deteriorating effect of a protein diet on aging and related disorders. In this review, we delineate the regulation of metabolic pathways for BCAAs at the tissue-specific level and summarize recent findings regarding the role of BCAAs in the control of metabolic health and disease in mammals.
Collapse
Affiliation(s)
| | - Seunghoon Hyun
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
13
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
14
|
Wei J, Duan X, Chen J, Zhang D, Xu J, Zhuang J, Wang S. Metabolic adaptations in pressure overload hypertrophic heart. Heart Fail Rev 2024; 29:95-111. [PMID: 37768435 DOI: 10.1007/s10741-023-10353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This review article offers a detailed examination of metabolic adaptations in pressure overload hypertrophic hearts, a condition that plays a pivotal role in the progression of heart failure with preserved ejection fraction (HFpEF) to heart failure with reduced ejection fraction (HFrEF). The paper delves into the complex interplay between various metabolic pathways, including glucose metabolism, fatty acid metabolism, branched-chain amino acid metabolism, and ketone body metabolism. In-depth insights into the shifts in substrate utilization, the role of different transporter proteins, and the potential impact of hypoxia-induced injuries are discussed. Furthermore, potential therapeutic targets and strategies that could minimize myocardial injury and promote cardiac recovery in the context of pressure overload hypertrophy (POH) are examined. This work aims to contribute to a better understanding of metabolic adaptations in POH, highlighting the need for further research on potential therapeutic applications.
Collapse
Affiliation(s)
- Jinfeng Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuefei Duan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaying Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dengwen Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jindong Xu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Sheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
15
|
Yu L, Huang T, Zhao J, Zhou Z, Cao Z, Chi Y, Meng S, Huang Y, Xu Y, Xia L, Jiang H, Yin Z, Wang H. Branched-chain amino acid catabolic defect in vascular smooth muscle cells drives thoracic aortic dissection via mTOR hyperactivation. Free Radic Biol Med 2024; 210:25-41. [PMID: 37956909 DOI: 10.1016/j.freeradbiomed.2023.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Metabolic reprogramming of vascular smooth muscle cell (VSMC) plays a critical role in the pathogenesis of thoracic aortic dissection (TAD). Previous researches have mainly focused on dysregulation of fatty acid or glucose metabolism, while the impact of amino acids catabolic disorder in VSMCs during the development of TAD remains elusive. Here, we identified branched-chain amino acid (BCAA) catabolic defect as a metabolic hallmark of TAD. The bioinformatics analysis and data from human aorta revealed impaired BCAA catabolism in TAD individuals. This was accompanied by upregulated branched-chain α-ketoacid dehydrogenase kinase (BCKDK) expression and BCKD E1 subunit alpha (BCKDHA) phosphorylation, enhanced vascular inflammation, and hyperactivation of mTOR signaling. Further in vivo experiments demonstrated that inhibition of BCKDK with BT2 (a BCKDK allosteric inhibitor) treatment dephosphorylated BCKDHA and re-activated BCAA catabolism, attenuated VSMCs phenotypic switching, alleviated aortic remodeling, mitochondrial reactive oxygen species (ROS) damage and vascular inflammation. Additionally, the beneficial actions of BT2 were validated in a TNF-α challenged murine VSMC cell line. Meanwhile, rapamycin conferred similar beneficial effects against VSMC phenotypic switching, cellular ROS damage as well as inflammatory response. However, co-treatment with MHY1485 (a classic mTOR activator) reversed the beneficial effects of BT2 by reactivating mTOR signaling. Taken together, the in vivo and in vitro evidence showed that impairment of BCAA catabolism resulted in aortic accumulation of BCAA and further caused VSMC phenotypic switching, mitochondrial ROS damage and inflammatory response via mTOR hyperactivation. BCKDK and mTOR signaling may serve as the potential drug targets for the prevention and treatment of TAD.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Jikai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Cao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China
| | - Yanbang Chi
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Shan Meng
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China
| | - Yuting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Lin Xia
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Hui Jiang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zongtao Yin
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
16
|
Takeuchi Y, Murayama Y, Aita Y, Mehrazad Saber Z, Karkoutly S, Tao D, Katabami K, Ye C, Shikama A, Masuda Y, Izumida Y, Miyamoto T, Matsuzaka T, Kawakami Y, Shimano H, Yahagi N. GR-KLF15 pathway controls hepatic lipogenesis during fasting. FEBS J 2024; 291:259-271. [PMID: 37702262 DOI: 10.1111/febs.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
During periods of fasting, the body undergoes a metabolic shift from carbohydrate utilization to the use of fats and ketones as an energy source, as well as the inhibition of de novo lipogenesis and the initiation of gluconeogenesis in the liver. The transcription factor sterol regulatory element-binding protein-1 (SREBP-1), which plays a critical role in the regulation of lipogenesis, is suppressed during fasting, resulting in the suppression of hepatic lipogenesis. We previously demonstrated that the interaction of fasting-induced Kruppel-like factor 15 (KLF15) with liver X receptor serves as the essential mechanism for the nutritional regulation of SREBP-1 expression. However, the underlying mechanisms of KLF15 induction during fasting remain unclear. In this study, we show that the glucocorticoid receptor (GR) regulates the hepatic expression of KLF15 and, subsequently, lipogenesis through the KLF15-SREBP-1 pathway during fasting. KLF15 is necessary for the suppression of SREBP-1 by GR, as demonstrated through experiments using KLF15 knockout mice. Additionally, we show that GR is involved in the fasting response, with heightened binding to the KLF15 enhancer. It has been widely known that the hypothalamic-pituitary-adrenal (HPA) axis regulates the secretion of glucocorticoids and plays a significant role in the metabolic response to undernutrition. These findings demonstrate the importance of the HPA-axis-regulated GR-KLF15 pathway in the regulation of lipid metabolism in the liver during fasting.
Collapse
Affiliation(s)
- Yoshinori Takeuchi
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zahra Mehrazad Saber
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Samia Karkoutly
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Duhan Tao
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kyoka Katabami
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Chen Ye
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasushi Kawakami
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
17
|
Song Z, Yang Z, Tian L, Liu Y, Guo Z, Zhang Q, Zhang Y, Wen T, Xu H, Li Z, Wang Y. Targeting mitochondrial circadian rhythms: The potential intervention strategies of Traditional Chinese medicine for myocardial ischaemia‒reperfusion injury. Biomed Pharmacother 2023; 166:115432. [PMID: 37673019 DOI: 10.1016/j.biopha.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
Coronary artery disease has one of the highest mortality rates in the country, and methods such as thrombolysis and percutaneous coronary intervention (PCI) can effectively improve symptoms and reduce mortality, but most patients still experience symptoms such as chest pain after PCI, which seriously affects their quality of life and increases the incidence of adverse cardiovascular events (myocardial ischaemiareperfusion injury, MIRI). MIRI has been shown to be closely associated with circadian rhythm disorders and mitochondrial dysfunction. Mitochondria are a key component in the maintenance of normal cardiac function, and new research shows that mitochondria have circadian properties. Traditional Chinese medicine (TCM), as a traditional therapeutic approach characterised by a holistic concept and evidence-based treatment, has significant advantages in the treatment of MIRI, and there is an interaction between the yin-yang theory of TCM and the circadian rhythm of Western medicine at various levels. This paper reviews the clinical evidence for the treatment of MIRI in TCM, basic experimental studies on the alleviation of MIRI by TCM through the regulation of mitochondria, the important role of circadian rhythms in the pathophysiology of MIRI, and the potential mechanisms by which TCM regulates mitochondrial circadian rhythms to alleviate MIRI through the regulation of the biological clock transcription factor. It is hoped that this review will provide new insights into the clinical management, basic research and development of drugs to treat MIRI.
Collapse
Affiliation(s)
- Zhihui Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tian
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yangxi Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehui Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuju Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haowei Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenzhen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
18
|
Abstract
Research conducted in the past 15 years has yielded crucial insights that are reshaping our understanding of the systems physiology of branched-chain amino acid (BCAA) metabolism and the molecular mechanisms underlying the close relationship between BCAA homeostasis and cardiovascular health. The rapidly evolving literature paints a complex picture, in which numerous tissue-specific and disease-specific modes of BCAA regulation initiate a diverse set of molecular mechanisms that connect changes in BCAA homeostasis to the pathogenesis of cardiovascular diseases, including myocardial infarction, ischaemia-reperfusion injury, atherosclerosis, hypertension and heart failure. In this Review, we outline the current understanding of the major factors regulating BCAA abundance and metabolic fate, highlight molecular mechanisms connecting impaired BCAA homeostasis to cardiovascular disease, discuss the epidemiological evidence connecting BCAAs with various cardiovascular disease states and identify current knowledge gaps requiring further investigation.
Collapse
Affiliation(s)
- Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Division of Cardiology, Duke University, Durham, NC, USA.
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Chen H, Li LL, Du Y. Krüppel-like factor 15 in liver diseases: Insights into metabolic reprogramming. Front Pharmacol 2023; 14:1115226. [PMID: 36937859 PMCID: PMC10017497 DOI: 10.3389/fphar.2023.1115226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Liver diseases, characterized by metabolic disorder, have become a global public health problem with high morbidity and mortality. Krüppel-like factor 15 (KLF15) is a zinc-finger transcription factor mainly enriched in liver. Increasing evidence suggests that hepatic KLF15 is activated rapidly during fasting, and contributes to the regulation of gluconeogenesis, lipid, amino acid catabolism, bile acids, endobiotic and xenobiotic metabolism. This review summarizes the latest advances of KLF15 in metabolic reprogramming, and explore the function of KLF15 in acute liver injury, hepatitis B virus, and autoimmune hepatitis. which aims to evaluate the potential of KLF15 as a therapeutic target and prognostic biomarker for liver diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Lan-Lan Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yan Du
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yan Du,
| |
Collapse
|
20
|
Kim M, Son GI, Cho YH, Kim GH, Yun SE, Kim YJ, Chung J, Lee E, Park JJ. Reduced branched-chain aminotransferase activity alleviates metabolic vulnerability caused by dim light exposure at night in Drosophila. J Neurogenet 2022:1-11. [DOI: 10.1080/01677063.2022.2144292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Mari Kim
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Gwang-Ic Son
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yun-Ho Cho
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Gye-Hyeong Kim
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sung-Eun Yun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jongkyeong Chung
- SRC Center for Systems Geroscience, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Eunil Lee
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Joong-Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
21
|
The circadian rhythm regulates branched-chain amino acids metabolism in fast muscle of Chinese perch ( Siniperca chuatsi) during short-term fasting by Clock-KLF15-Bcat2 pathway. Br J Nutr 2022:1-12. [PMID: 36373572 DOI: 10.1017/s0007114522003646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as KLF15 and Bcat2 is highly responsive to short-term fasting in fast muscle of Siniperca chuatsi, and the correlation coefficient between Clock and KLF15 expression is enhanced after fasting treatment. Furthermore, we demonstrate that the transcriptional expression of KLF15 is regulated by Clock, and the transcriptional expression of Bcat2 is regulated by KLF15 by using dual-luciferase reporter gene assay and Vivo-morpholinos-mediated gene knockdown technique. Therefore, fasting imposes a dynamic coordination of transcription between the circadian rhythm and BCAA metabolic pathways. The findings highlight the interaction between circadian rhythm and BCAA metabolism and suggest that fasting induces a switch in KLF15 expression through affecting the rhythmic expression of Clock, and then KLF15 promotes the transcription of Bcat2 to enhance the metabolism of BCAA, thus maintaining energy homoeostasis and providing energy for skeletal muscle as well as other tissues.
Collapse
|
22
|
Flam E, Jang C, Murashige D, Yang Y, Morley MP, Jung S, Kantner DS, Pepper H, Bedi KC, Brandimarto J, Prosser BL, Cappola T, Snyder NW, Rabinowitz JD, Margulies KB, Arany Z. Integrated landscape of cardiac metabolism in end-stage human nonischemic dilated cardiomyopathy. NATURE CARDIOVASCULAR RESEARCH 2022; 1:817-829. [PMID: 36776621 PMCID: PMC9910091 DOI: 10.1038/s44161-022-00117-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/08/2022] [Indexed: 01/03/2023]
Abstract
Heart failure (HF) is a leading cause of mortality. Failing hearts undergo profound metabolic changes, but a comprehensive evaluation in humans is lacking. We integrate plasma and cardiac tissue metabolomics of 678 metabolites, genome-wide RNA-sequencing, and proteomic studies to examine metabolic status in 87 explanted human hearts from 39 patients with end-stage HF compared with 48 nonfailing donors. We confirm bioenergetic defects in human HF and reveal selective depletion of adenylate purines required for maintaining ATP levels. We observe substantial reductions in fatty acids and acylcarnitines in failing tissue, despite plasma elevations, suggesting defective import of fatty acids into cardiomyocytes. Glucose levels, in contrast, are elevated. Pyruvate dehydrogenase, which gates carbohydrate oxidation, is de-repressed, allowing increased lactate and pyruvate burning. Tricarboxylic acid cycle intermediates are significantly reduced. Finally, bioactive lipids are profoundly reprogrammed, with marked reductions in ceramides and elevations in lysoglycerophospholipids. These data unveil profound metabolic abnormalities in human failing hearts.
Collapse
Affiliation(s)
- Emily Flam
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Danielle Murashige
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Yifan Yang
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Morley
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Daniel S. Kantner
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hannah Pepper
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kenneth C. Bedi
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeff Brandimarto
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin L. Prosser
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas Cappola
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kenneth B. Margulies
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Zolt Arany
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
The role of branched chain amino acids metabolic disorders in tumorigenesis and progression. Biomed Pharmacother 2022; 153:113390. [DOI: 10.1016/j.biopha.2022.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
|
24
|
Meijboom KE, Sutton ER, McCallion E, McFall E, Anthony D, Edwards B, Kubinski S, Tapken I, Bünermann I, Hazell G, Ahlskog N, Claus P, Davies KE, Kothary R, Wood MJA, Bowerman M. Dysregulation of Tweak and Fn14 in skeletal muscle of spinal muscular atrophy mice. Skelet Muscle 2022; 12:18. [PMID: 35902978 PMCID: PMC9331072 DOI: 10.1186/s13395-022-00301-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons, leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle atrophy as well as muscle proliferation, differentiation, and metabolism in adults. However, it is not clear whether this pathway would be important in highly dynamic and developing muscle. METHODS We thus investigated the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn-/-; SMN2 and the less severe Smn2B/- SMA mice, which undergo a progressive neuromuscular decline in the first three post-natal weeks. We also used experimental models of denervation and muscle injury in pre-weaned wild-type (WT) animals and siRNA-mediated knockdown in C2C12 muscle cells to conduct additional mechanistic investigations. RESULTS Here, we report significantly dysregulated expression of Tweak, Fn14, and previously proposed downstream effectors during disease progression in skeletal muscle of the two SMA mouse models. In addition, siRNA-mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the TWEAK/Fn14 pathway. Further analyses of SMA, Tweak-/-, and Fn14-/- mice revealed dysregulated myopathy, myogenesis, and glucose metabolism pathways as a common skeletal muscle feature, providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn. Finally, administration of the TWEAK/Fn14 agonist Fc-TWEAK improved disease phenotypes in the two SMA mouse models. CONCLUSIONS Our study provides mechanistic insights into potential molecular players that contribute to muscle pathology in SMA and into likely differential responses of the TWEAK/Fn14 pathway in developing muscle.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Gene Therapy Center, UMass Medical School, Worcester, USA
| | - Emma R Sutton
- School of Medicine, Keele University, Staffordshire, UK
| | - Eve McCallion
- School of Medicine, Keele University, Staffordshire, UK
| | - Emily McFall
- Regenerative Medicine Program and Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Benjamin Edwards
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sabrina Kubinski
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Ines Tapken
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Ines Bünermann
- SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Peter Claus
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Rashmi Kothary
- Regenerative Medicine Program and Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,School of Medicine, Keele University, Staffordshire, UK. .,Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK.
| |
Collapse
|
25
|
Fan L, Sweet DR, Fan EK, Prosdocimo DA, Madera A, Jiang Z, Padmanabhan R, Haldar SM, Vinayachandran V, Jain MK. Transcription factors KLF15 and PPARδ cooperatively orchestrate genome-wide regulation of lipid metabolism in skeletal muscle. J Biol Chem 2022; 298:101926. [PMID: 35413288 PMCID: PMC9190004 DOI: 10.1016/j.jbc.2022.101926] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle dynamically regulates systemic nutrient homeostasis through transcriptional adaptations to physiological cues. In response to changes in the metabolic environment (e.g., alterations in circulating glucose or lipid levels), networks of transcription factors and coregulators are recruited to specific genomic loci to fine-tune homeostatic gene regulation. Elucidating these mechanisms is of particular interest as these gene regulatory pathways can serve as potential targets to treat metabolic disease. The zinc-finger transcription factor Krüppel-like factor 15 (KLF15) is a critical regulator of metabolic homeostasis; however, its genome-wide distribution in skeletal muscle has not been previously identified. Here, we characterize the KLF15 cistrome in vivo in skeletal muscle and find that the majority of KLF15 binding is localized to distal intergenic regions and associated with genes related to circadian rhythmicity and lipid metabolism. We also identify critical interdependence between KLF15 and the nuclear receptor PPARδ in the regulation of lipid metabolic gene programs. We further demonstrate that KLF15 and PPARδ colocalize genome-wide, physically interact, and are dependent on one another to exert their transcriptional effects on target genes. These findings reveal that skeletal muscle KLF15 plays a critical role in metabolic adaptation through its direct actions on target genes and interactions with other nodal transcription factors such as PPARδ.
Collapse
Affiliation(s)
- Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Erica K Fan
- University of Pittsburgh School of Medicine, Department of Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, USA
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; The Webb Law Firm, Pittsburgh, Pennsylvania, USA
| | - Annmarie Madera
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Zhen Jiang
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Roshan Padmanabhan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA; Department of Medicine, Division of Cardiology, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Vinesh Vinayachandran
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
26
|
Li G, Jin B, Fan Z. Mechanisms Involved in Gut Microbiota Regulation of Skeletal Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2151191. [PMID: 35633886 PMCID: PMC9132697 DOI: 10.1155/2022/2151191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the largest organs in the body and is essential for maintaining quality of life. Loss of skeletal muscle mass and function can lead to a range of adverse consequences. The gut microbiota can interact with skeletal muscle by regulating a variety of processes that affect host physiology, including inflammatory immunity, protein anabolism, energy, lipids, neuromuscular connectivity, oxidative stress, mitochondrial function, and endocrine and insulin resistance. It is proposed that the gut microbiota plays a role in the direction of skeletal muscle mass and work. Even though the notion of the gut microbiota-muscle axis (gut-muscle axis) has been postulated, its causal link is still unknown. The impact of the gut microbiota on skeletal muscle function and quality is described in detail in this review.
Collapse
Affiliation(s)
- Guangyao Li
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
27
|
Takeuchi Y, Yahagi N, Aita Y, Mehrazad-Saber Z, Ho MH, Huyan Y, Murayama Y, Shikama A, Masuda Y, Izumida Y, Miyamoto T, Matsuzaka T, Kawakami Y, Shimano H. FoxO-KLF15 pathway switches the flow of macronutrients under the control of insulin. iScience 2021; 24:103446. [PMID: 34988390 PMCID: PMC8710527 DOI: 10.1016/j.isci.2021.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/18/2021] [Accepted: 11/11/2021] [Indexed: 11/15/2022] Open
Abstract
KLF15 is a transcription factor that plays an important role in the activation of gluconeogenesis from amino acids as well as the suppression of lipogenesis from glucose. Here we identified the transcription start site of liver-specific KLF15 transcript and showed that FoxO1/3 transcriptionally regulates Klf15 gene expression by directly binding to the liver-specific Klf15 promoter. To achieve this, we performed a precise in vivo promoter analysis combined with the genome-wide transcription-factor-screening method "TFEL scan", using our original Transcription Factor Expression Library (TFEL), which covers nearly all the transcription factors in the mouse genome. Hepatic Klf15 expression is significantly increased via FoxOs by attenuating insulin signaling. Furthermore, FoxOs elevate the expression levels of amino acid catabolic enzymes and suppress SREBP-1c via KLF15, resulting in accelerated amino acid breakdown and suppressed lipogenesis during fasting. Thus, the FoxO-KLF15 pathway contributes to switching the macronutrient flow in the liver under the control of insulin.
Collapse
Affiliation(s)
- Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Zahra Mehrazad-Saber
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Man Hei Ho
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yiren Huyan
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takafumi Miyamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasushi Kawakami
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
28
|
Mehrazad Saber Z, Takeuchi Y, Sawada Y, Aita Y, Ho MH, Karkoutly S, Tao D, Katabami K, Ye C, Murayama Y, Shikama A, Masuda Y, Izumida Y, Miyamoto T, Matsuzaka T, Sugasawa T, Takekoshi K, Kawakami Y, Shimano H, Yahagi N. High protein diet-induced metabolic changes are transcriptionally regulated via KLF15-dependent and independent pathways. Biochem Biophys Res Commun 2021; 582:35-42. [PMID: 34688045 DOI: 10.1016/j.bbrc.2021.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023]
Abstract
High protein diet (HPD) is an affordable and positive approach in prevention and treatment of many diseases. It is believed that transcriptional regulation is responsible for adaptation after HPD feeding and Kruppel-like factor 15 (KLF15), a zinc finger transcription factor that has been proved to perform transcriptional regulation over amino acid, lipid and glucose metabolism, is known to be involved at least in part in this HPD response. To gain more insight into molecular mechanisms by which HPD controls expressions of genes involved in amino acid metabolism in the liver, we performed RNA-seq analysis of mice fed HPD for a short period (3 days). Compared to a low protein diet, HPD feeding significantly increased hepatic expressions of enzymes involved in the breakdown of all the 20 amino acids. Moreover, using KLF15 knockout mice and in vivo Ad-luc analytical system, we were able to identify Cth (cystathionine gamma-lyase) as a new target gene of KLF15 transcription as well as Ast (aspartate aminotransferase) as an example of KLF15-independent gene despite its remarkable responsiveness to HPD. These findings provide us with a clue to elucidate the entire transcriptional regulatory mechanisms of amino acid metabolic pathways.
Collapse
Affiliation(s)
- Zahra Mehrazad Saber
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshikazu Sawada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Man Hei Ho
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Samia Karkoutly
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Duhan Tao
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kyoka Katabami
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Chen Ye
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takafumi Miyamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takehito Sugasawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuhiro Takekoshi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
29
|
Betts CA, Jagannath A, van Westering TLE, Bowerman M, Banerjee S, Meng J, Falzarano MS, Cravo L, McClorey G, Meijboom KE, Bhomra A, Lim WF, Rinaldi C, Counsell JR, Chwalenia K, O'Donovan E, Saleh AF, Gait MJ, Morgan JE, Ferlini A, Foster RG, Wood MJ. Dystrophin involvement in peripheral circadian SRF signalling. Life Sci Alliance 2021; 4:4/10/e202101014. [PMID: 34389686 PMCID: PMC8363758 DOI: 10.26508/lsa.202101014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.
Collapse
Affiliation(s)
- Corinne A Betts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Melissa Bowerman
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,School of Medicine, Keele University, Staffordshire, Wolfson Centre for Inherited Neuromuscular Disease, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Subhashis Banerjee
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Jinhong Meng
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Maria Sofia Falzarano
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Lara Cravo
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Graham McClorey
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | | | - Amarjit Bhomra
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - John R Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Katarzyna Chwalenia
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Elizabeth O'Donovan
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Amer F Saleh
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.,Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jennifer E Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Alessandra Ferlini
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Matthew Ja Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A 2021; 118:2102895118. [PMID: 34426497 DOI: 10.1073/pnas.2102895118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle atrophy is caused by various conditions, including aging, disuse related to a sedentary lifestyle and lack of physical activity, and cachexia. Our insufficient understanding of the molecular mechanism underlying muscle atrophy limits the targets for the development of effective pharmacologic treatments and preventions. Here, we identified Krüppel-like factor 5 (KLF5), a zinc-finger transcription factor, as a key mediator of the early muscle atrophy program. KLF5 was up-regulated in atrophying myotubes as an early response to dexamethasone or simulated microgravity in vitro. Skeletal muscle-selective deletion of Klf5 significantly attenuated muscle atrophy induced by mechanical unloading in mice. Transcriptome- and genome-wide chromatin accessibility analyses revealed that KLF5 regulates atrophy-related programs, including metabolic changes and E3-ubiquitin ligase-mediated proteolysis, in coordination with Foxo1. The synthetic retinoic acid receptor agonist Am80, a KLF5 inhibitor, suppressed both dexamethasone- and microgravity-induced muscle atrophy in vitro and oral Am80 ameliorated disuse- and dexamethasone-induced atrophy in mice. Moreover, in three independent sets of transcriptomic data from human skeletal muscle, KLF5 expression significantly increased with age and the presence of sarcopenia and correlated positively with the expression of the atrophy-related ubiquitin ligase genes FBXO32 and TRIM63 These findings demonstrate that KLF5 is a key transcriptional regulator mediating muscle atrophy and that pharmacological intervention with Am80 is a potentially preventive treatment.
Collapse
|
31
|
Rivera ME, Vaughan RA. Comparing the effects of palmitate, insulin, and palmitate-insulin co-treatment on myotube metabolism and insulin resistance. Lipids 2021; 56:563-578. [PMID: 34382222 DOI: 10.1002/lipd.12315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022]
Abstract
Previous studies have shown various metabolic stressors such as saturated fatty acids (SFA) and excess insulin promote insulin resistance in metabolically meaningful cell types (such as skeletal muscle). Additionally, these stressors have been linked with suppressed mitochondrial metabolism, which is also a common characteristic of skeletal muscle of diabetics. This study characterized the individual and combined effects of excess lipid and excess insulin on myotube metabolism and related metabolic gene and protein expression. C2C12 myotubes were treated with either 500 μM palmitate (PAM), 100 nM insulin (IR), or both (PAM-IR). qRT-PCR and western blot were used to measure metabolic gene and protein expression, respectively. Oxygen consumption was used to measure mitochondrial metabolism. Glycolytic metabolism and insulin-mediated glucose uptake were measured via extracellular acidification rate. Cellular lipid and mitochondrial content were measured using Nile Red and NAO staining, respectively. IR and PAM-IR treatments led to reductions in p-Akt expression. IR treatment reduced insulin mediated glucose metabolism while PAM and PAM-IR treatment showed increases with concurrent reductions in mitochondrial metabolism. All three treatments showed suppression in mitochondrial metabolism. PAM and PAM-IR also showed increases in glycolytic metabolism. While PAM and PAM-IR significantly increased lipid content, expression of inflammatory and lipogenic proteins were unaltered. Lastly, PAM-IR reduced BCAT2 protein expression, a regulator of BCAA metabolism. Both stressors independently reduced insulin signaling, mitochondrial function, and cell metabolism, however, only PAM-IR co-treatment significantly reduced the expression of regulators of metabolism not seen with individual stressors, suggesting an additive effect of stressors on metabolic programming.
Collapse
Affiliation(s)
- Madison E Rivera
- Department of Exercise Science, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, North Carolina, USA
| |
Collapse
|
32
|
Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front Physiol 2021; 12:702826. [PMID: 34354601 PMCID: PMC8329528 DOI: 10.3389/fphys.2021.702826] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are critical for skeletal muscle and whole-body anabolism and energy homeostasis. They also serve as signaling molecules, for example, being able to activate mammalian/mechanistic target of rapamycin complex 1 (mTORC1). This has implication for macronutrient metabolism. However, elevated circulating levels of BCAAs and of their ketoacids as well as impaired catabolism of these amino acids (AAs) are implicated in the development of insulin resistance and its sequelae, including type 2 diabetes, cardiovascular disease, and of some cancers, although other studies indicate supplements of these AAs may help in the management of some chronic diseases. Here, we first reviewed the catabolism of these AAs especially in skeletal muscle as this tissue contributes the most to whole body disposal of the BCAA. We then reviewed emerging mechanisms of control of enzymes involved in regulating BCAA catabolism. Such mechanisms include regulation of their abundance by microRNA and by post translational modifications such as phosphorylation, acetylation, and ubiquitination. We also reviewed implications of impaired metabolism of BCAA for muscle and whole-body metabolism. We comment on outstanding questions in the regulation of catabolism of these AAs, including regulation of the abundance and post-transcriptional/post-translational modification of enzymes that regulate BCAA catabolism, as well the impact of circadian rhythm, age and mTORC1 on these enzymes. Answers to such questions may facilitate emergence of treatment/management options that can help patients suffering from chronic diseases linked to impaired metabolism of the BCAAs.
Collapse
Affiliation(s)
| | | | | | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
33
|
Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proc Natl Acad Sci U S A 2021; 118:2104650118. [PMID: 34088848 DOI: 10.1073/pnas.2104650118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homeothermic vertebrates produce heat in cold environments through thermogenesis, in which brown adipose tissue (BAT) increases mitochondrial oxidation along with uncoupling of the electron transport chain and activation of uncoupling protein 1 (UCP1). Although the transcription factors regulating the expression of UCP1 and nutrient oxidation genes have been extensively studied, only a few other proteins essential for BAT function have been identified. We describe the discovery of FAM195A, a BAT-enriched RNA binding protein, which is required for cold-dependent thermogenesis in mice. FAM195A knockout (KO) mice display whitening of BAT and an inability to thermoregulate. In BAT of FAM195A KO mice, enzymes involved in branched-chain amino acid (BCAA) metabolism are down-regulated, impairing their response to cold. Knockdown of FAM195A in brown adipocytes in vitro also impairs expression of leucine oxidation enzymes, revealing FAM195A to be a regulator of BCAA metabolism and a potential target for metabolic disorders.
Collapse
|
34
|
Lemoine GG, Scott-Boyer MP, Ambroise B, Périn O, Droit A. GWENA: gene co-expression networks analysis and extended modules characterization in a single Bioconductor package. BMC Bioinformatics 2021; 22:267. [PMID: 34034647 PMCID: PMC8152313 DOI: 10.1186/s12859-021-04179-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Network-based analysis of gene expression through co-expression networks can be used to investigate modular relationships occurring between genes performing different biological functions. An extended description of each of the network modules is therefore a critical step to understand the underlying processes contributing to a disease or a phenotype. Biological integration, topology study and conditions comparison (e.g. wild vs mutant) are the main methods to do so, but to date no tool combines them all into a single pipeline. RESULTS Here we present GWENA, a new R package that integrates gene co-expression network construction and whole characterization of the detected modules through gene set enrichment, phenotypic association, hub genes detection, topological metric computation, and differential co-expression. To demonstrate its performance, we applied GWENA on two skeletal muscle datasets from young and old patients of GTEx study. Remarkably, we prioritized a gene whose involvement was unknown in the muscle development and growth. Moreover, new insights on the variations in patterns of co-expression were identified. The known phenomena of connectivity loss associated with aging was found coupled to a global reorganization of the relationships leading to expression of known aging related functions. CONCLUSION GWENA is an R package available through Bioconductor ( https://bioconductor.org/packages/release/bioc/html/GWENA.html ) that has been developed to perform extended analysis of gene co-expression networks. Thanks to biological and topological information as well as differential co-expression, the package helps to dissect the role of genes relationships in diseases conditions or targeted phenotypes. GWENA goes beyond existing packages that perform co-expression analysis by including new tools to fully characterize modules, such as differential co-expression, additional enrichment databases, and network visualization.
Collapse
Affiliation(s)
- Gwenaëlle G. Lemoine
- Département de médecine moléculaire, Faculté de médecine, Université Laval, 2325 rue de l’Université, Québec, G1V 0A6 Canada
| | - Marie-Pier Scott-Boyer
- Centre de recherche du Chu de Quebec-Université Laval, 2705 boulevard Laurier Québec, Québec, G1V 4G2 Canada
| | - Bathilde Ambroise
- L’Oréal Research and Innovation, 15 rue Pierre Dreyfus, 92110 Clichy, France
| | - Olivier Périn
- L’Oréal Research and Innovation, 15 rue Pierre Dreyfus, 92110 Clichy, France
| | - Arnaud Droit
- Département de médecine moléculaire, Faculté de médecine, Université Laval, 2325 rue de l’Université, Québec, G1V 0A6 Canada
- Centre de recherche du Chu de Quebec-Université Laval, 2705 boulevard Laurier Québec, Québec, G1V 4G2 Canada
| |
Collapse
|
35
|
Fan L, Sweet DR, Prosdocimo DA, Vinayachandran V, Chan ER, Zhang R, Ilkayeva O, Lu Y, Keerthy KS, Booth CE, Newgard CB, Jain MK. Muscle Krüppel-like factor 15 regulates lipid flux and systemic metabolic homeostasis. J Clin Invest 2021; 131:139496. [PMID: 33586679 PMCID: PMC7880311 DOI: 10.1172/jci139496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle is a major determinant of systemic metabolic homeostasis that plays a critical role in glucose metabolism and insulin sensitivity. By contrast, despite being a major user of fatty acids, and evidence that muscular disorders can lead to abnormal lipid deposition (e.g., nonalcoholic fatty liver disease in myopathies), our understanding of skeletal muscle regulation of systemic lipid homeostasis is not well understood. Here we show that skeletal muscle Krüppel-like factor 15 (KLF15) coordinates pathways central to systemic lipid homeostasis under basal conditions and in response to nutrient overload. Mice with skeletal muscle-specific KLF15 deletion demonstrated (a) reduced expression of key targets involved in lipid uptake, mitochondrial transport, and utilization, (b) elevated circulating lipids, (c) insulin resistance/glucose intolerance, and (d) increased lipid deposition in white adipose tissue and liver. Strikingly, a diet rich in short-chain fatty acids bypassed these defects in lipid flux and ameliorated aspects of metabolic dysregulation. Together, these findings establish skeletal muscle control of lipid flux as critical to systemic lipid homeostasis and metabolic health.
Collapse
Affiliation(s)
- Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David R. Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Domenick A. Prosdocimo
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- The Webb Law Firm, Pittsburgh, Pennsylvania, USA
| | - Vinesh Vinayachandran
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ernest R. Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rongli Zhang
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yuan Lu
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Charles River Laboratories, Ashland, Ohio, USA
| | - Komal S. Keerthy
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Chloe E. Booth
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Departments of Medicine and Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Just PA, Charawi S, Denis RGP, Savall M, Traore M, Foretz M, Bastu S, Magassa S, Senni N, Sohier P, Wursmer M, Vasseur-Cognet M, Schmitt A, Le Gall M, Leduc M, Guillonneau F, De Bandt JP, Mayeux P, Romagnolo B, Luquet S, Bossard P, Perret C. Lkb1 suppresses amino acid-driven gluconeogenesis in the liver. Nat Commun 2020; 11:6127. [PMID: 33257663 PMCID: PMC7705018 DOI: 10.1038/s41467-020-19490-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive glucose production by the liver is a key factor in the hyperglycemia observed in type 2 diabetes mellitus (T2DM). Here, we highlight a novel role of liver kinase B1 (Lkb1) in this regulation. We show that mice with a hepatocyte-specific deletion of Lkb1 have higher levels of hepatic amino acid catabolism, driving gluconeogenesis. This effect is observed during both fasting and the postprandial period, identifying Lkb1 as a critical suppressor of postprandial hepatic gluconeogenesis. Hepatic Lkb1 deletion is associated with major changes in whole-body metabolism, leading to a lower lean body mass and, in the longer term, sarcopenia and cachexia, as a consequence of the diversion of amino acids to liver metabolism at the expense of muscle. Using genetic, proteomic and pharmacological approaches, we identify the aminotransferases and specifically Agxt as effectors of the suppressor function of Lkb1 in amino acid-driven gluconeogenesis. Excessive glucose production by the liver contributes to poor blood glucose control in type 2 diabetes. Here the authors report that the liver kinase B1 (Lkb1) suppresses amino acid driven postprandial glucose production in the liver through the aminotransferase Agxt.
Collapse
Affiliation(s)
- Pierre-Alexandre Just
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,APHP, Centre-Université de Paris, Paris, France
| | - Sara Charawi
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Raphaël G P Denis
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche Scientifique, Unité Mixte de Recherche 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Mathilde Savall
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Massiré Traore
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Sultan Bastu
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | | | - Nadia Senni
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Pierre Sohier
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Maud Wursmer
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRA 1392, Sorbonne Universités Paris and Institut d'Ecologie et des Sciences de l'Environnement de Paris, Bondy, France
| | - Alain Schmitt
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,Electron Miscroscopy Facility, Institut Cochin, F75014, Paris, France
| | - Morgane Le Gall
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Marjorie Leduc
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - François Guillonneau
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | | | - Patrick Mayeux
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Béatrice Romagnolo
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche Scientifique, Unité Mixte de Recherche 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Pascale Bossard
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Christine Perret
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.
| |
Collapse
|
37
|
Venkatesh S, Baljinnyam E, Tong M, Kashihara T, Yan L, Liu T, Li H, Xie LH, Nakamura M, Oka SI, Suzuki CK, Fraidenraich D, Sadoshima J. Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells. Am J Physiol Regul Integr Comp Physiol 2020; 320:R547-R562. [PMID: 33112656 DOI: 10.1152/ajpregu.00207.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria play key roles in the differentiation and maturation of human cardiomyocytes (CMs). As human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold potential in the treatment of heart diseases, we sought to identify key mitochondrial pathways and regulators, which may provide targets for improving cardiac differentiation and maturation. Proteomic analysis was performed on enriched mitochondrial protein extracts isolated from hiPSC-CMs differentiated from dermal fibroblasts (dFCM) and cardiac fibroblasts (cFCM) at time points between 12 and 115 days of differentiation, and from adult and neonatal mouse hearts. Mitochondrial proteins with a twofold change at time points up to 120 days relative to 12 days were subjected to ingenuity pathway analysis (IPA). The highest upregulation was in metabolic pathways for fatty acid oxidation (FAO), the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and branched chain amino acid (BCAA) degradation. The top upstream regulators predicted to be activated were peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1-α), the insulin receptor (IR), and the retinoblastoma protein (Rb1) transcriptional repressor. IPA and immunoblotting showed upregulation of the mitochondrial LonP1 protease-a regulator of mitochondrial proteostasis, energetics, and metabolism. LonP1 knockdown increased FAO in neonatal rat ventricular cardiomyocytes (nRVMs). Our results support the notion that LonP1 upregulation negatively regulates FAO in cardiomyocytes to calibrate the flux between glucose and fatty acid oxidation. We discuss potential mechanisms by which IR, Rb1, and LonP1 regulate the metabolic shift from glycolysis to OXPHOS and FAO. These newly identified factors and pathways may help in optimizing the maturation of iPSC-CMs.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Mingming Tong
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Toshihide Kashihara
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Lin Yan
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Tong Liu
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Hong Li
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Shin-Ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
38
|
Li H, Pan Y, Bao L, Li Y, Cheng C, Liu L, Xiang J, Cheng J, Zhang J, Chu W, Shen Y. Impact of short-term starvation and refeeding on the expression of KLF15 and regulatory mechanism of branched-chain amino acids metabolism in muscle of Chinese soft-shelled turtle (Pelodiscus sinensis). Gene 2020; 752:144782. [PMID: 32442577 DOI: 10.1016/j.gene.2020.144782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/21/2020] [Accepted: 05/14/2020] [Indexed: 10/25/2022]
Abstract
The branched-chain amino acids (BCAA) play an important role in muscle energy metabolism, and Krüppel-like factor 15 (KLF15) is an essential regulator of BCAA metabolism in muscle under nutritional deficiency. In this study, we analyzed the effect of normal feeding (starvation for 0 day), starvation for 3, 7, 10, 15 days, and refeeding for 7 days after 15 days of starvation on the expression of KLF15 and BCAA metabolism in muscle of Chinese soft-shelled turtles by a fasting-refeeding trial. The results showed that the level of KLF15 transcription was increased first and then decreased in muscle during short-term starvation, and the protein level was gradually increased. Both the mRNA and protein level of the KLF15 returned to normal feeding level after refeeding for 7 days. The changing trend of the activities of branched-chain aminotransferase (BCAT) and alanine aminotransferase (ALT) was consistent to that of KLF15 mRNA, but at the transcription level, the expression of BCAT mRNA was consistent with the change of enzyme activity as well as ALT continued to increase in muscle under starvation. In addition, BCAA content showed a trend that decreased first and then increased under starvation, while the alanine (Ala) was the contrary. The above results indicated that the regulatory role of KLF15 in BCAA catabolism of muscle in Chinese soft-shelled turtles under nutritional deficiency, which might be activated the catabolism of BCAA in muscle to provide energy and maintain the homeostasis by KLF15-BACC signaling axis.
Collapse
Affiliation(s)
- Honghui Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yaxiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Lingsheng Bao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yulong Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Congyi Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Li Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China; Hunan Fisheries Science Institute, Changsha 410153, China
| | - Jing Xiang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jia Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jianshe Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Wuying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
39
|
Li H, An X, Bao L, Li Y, Pan Y, He J, Liu L, Zhu X, Zhang J, Cheng J, Chu W. MiR-125a-3p-KLF15-BCAA Regulates the Skeletal Muscle Branched-Chain Amino Acid Metabolism in Nile Tilapia ( Oreochromis niloticus) During Starvation. Front Genet 2020; 11:852. [PMID: 32849831 PMCID: PMC7431957 DOI: 10.3389/fgene.2020.00852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The branched-chain amino acids (BCAAs) play a key role in the energy metabolism of the muscle tissue and the Krüppel-like factor 15 (KLF15) as a transcription factor, which is a key regulator of BCAA metabolism in the skeletal muscle. This study assessed the effect of starvation for 0, 3, 7, and 15 days on BCAA metabolism in the skeletal muscle of Nile tilapia. The results showed that the expression of KLF15 showed a trend of increasing first and then decreasing during starvation, as well as the expression and activity of branched-chain aminotransferase 2 (BCAT2) and alanine aminotransferase (ALT). On the other hand, the content of BCAA was at first decreased and then upregulated, and it reached the lowest level after starvation for 3 days. In addition, through dual-luciferase reporter assay and injection experiments, it was found that KLF15 is the target gene of miR-125a-3p, which further verified that miR-125a-3p can regulate the BCAA metabolism by targeting KLF15 in the skeletal muscle. Thus, our work investigated the possible mechanisms of BCAA metabolism adapting to nutritional deficiency in the skeletal muscle of Nile tilapia and illustrated the regulation of BCAA metabolism through the miR-125a-3p-KLF15-BCAA pathway in the skeletal muscle.
Collapse
Affiliation(s)
- Honghui Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoling An
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Lingsheng Bao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yulong Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yaxiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jinggang He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Li Liu
- Hunan Fisheries Science Institute, Changsha, China
| | - Xin Zhu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianshe Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jia Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wuying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW This review summarizes the important role that metabolism plays in driving maturation of human pluripotent stem cell-derived cardiomyocytes. RECENT FINDINGS Human pluripotent stem cell-derived cardiomyocytes provide a model system for human cardiac biology. However, these models have been unable to fully recapitulate the maturity observed in the adult heart. By simulating the glucose to fatty acid transition observed in neonatal mammals, human pluripotent stem cell-derived cardiomyocytes undergo structural and functional maturation also accompanied by transcriptional changes and cell cycle arrest. The role of metabolism in energy production, signaling, and epigenetic modifications illustrates that metabolism and cellular phenotype are intimately linked. Further understanding of key metabolic factors driving cardiac maturation will facilitate the generation of more mature human pluripotent stem cell-derived cardiomyocyte models. This will increase our understanding of cardiac biology and potentially lead to novel therapeutics to enhance heart function.
Collapse
|
41
|
Zhou J, Zhao X, Xie S, Zhou R. Transcriptome analysis of Klf15‑mediated inhibitory functions in a mouse deep venous thrombosis model. Int J Mol Med 2020; 45:1735-1752. [PMID: 32186780 PMCID: PMC7169954 DOI: 10.3892/ijmm.2020.4538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
Krüppel-like family (KLF) members are important regulators of proinflammatory activation in the vasculature. A transcriptome study involving RNA sequencing (RNA-seq) and quantitative PCR (qPCR) was performed to investigate Klf15 and Klf15-regulated gene levels in C57BL/6 mice with inferior vena cava thrombi and in control (Blank) mice. A total of 2,206 differentially expressed genes (DEGs), including 1,330 upregulated and 876 downregulated genes, were identified between the deep venous thrombosis (DVT) group and the Blank group. Additionally, 1,041 DEGs (235 upregulated and 806 downregulated) were identified between the Klf15-small interfering RNA (siRNA) and Klf15-negative control (NC) groups. The DEGs were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, and qPCR was conducted to validate the results. A total of seven significant DEGs were selected from the RNA-seq results. Matrix metalloproteinases (Mmp)12, Mmp13, Mmp19, Arg1, Ccl2, heme oxygenase-1 and Fmo3 levels were significantly higher, while Klf15 levels were lower, in the DVT group than in the Blank group. Fmo3 and Mmp19 have not been previously identified as DVT-associated DEGs. Klf15, Mmp12 and Mmp13 levels were compared between the Klf15-siRNA and Klf15-NC groups. Mmp12 and Mmp13 expression was significantly higher, while that of Klf15 was lower, in the Klf15-siRNA group than in the Klf15-NC group. Critical roles of Klf15, Mmp12 and Mmp13 have been identified, which have not previously been shown to help regulate DVT initiation and progression. Moreover, Klf15-mediated regulation of DVT may be modulated by downregulation of various genes, such as Mmp12 and Mmp13, potentially providing a theoretical foundation and diagnostic criteria for DVT treatment.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xueling Zhao
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shiwei Xie
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rudan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
42
|
Tedesco L, Rossi F, Ragni M, Ruocco C, Brunetti D, Carruba MO, Torrente Y, Valerio A, Nisoli E. A Special Amino-Acid Formula Tailored to Boosting Cell Respiration Prevents Mitochondrial Dysfunction and Oxidative Stress Caused by Doxorubicin in Mouse Cardiomyocytes. Nutrients 2020; 12:nu12020282. [PMID: 31973180 PMCID: PMC7071384 DOI: 10.3390/nu12020282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
Anthracycline anticancer drugs, such as doxorubicin (DOX), can induce cardiotoxicity supposed to be related to mitochondrial damage. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem), supplemented with drinking water to middle-aged mice, was able to promote mitochondrial biogenesis in cardiac and skeletal muscle. To maximally favor and increase oxidative metabolism and mitochondrial function, here we tested a new original formula, composed of essential amino acids, tricarboxylic acid cycle precursors and co-factors (named α5), in HL-1 cardiomyocytes and mice treated with DOX. We measured mitochondrial biogenesis, oxidative stress, and BCAA catabolic pathway. Moreover, the molecular relevance of endothelial nitric oxide synthase (eNOS) and mechanistic/mammalian target of rapamycin complex 1 (mTORC1) was studied in both cardiac tissue and HL-1 cardiomyocytes. Finally, the role of Krüppel-like factor 15 (KLF15), a critical transcriptional regulator of BCAA oxidation and eNOS-mTORC1 signal, was investigated. Our results demonstrate that the α5 mixture prevents the DOX-dependent mitochondrial damage and oxidative stress better than the previous BCAAem, implying a KLF15/eNOS/mTORC1 signaling axis. These results could be relevant for the prevention of cardiotoxicity in the DOX-treated patients.
Collapse
Affiliation(s)
- Laura Tedesco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Dario Brunetti
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Michele O. Carruba
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Yvan Torrente
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
- Correspondence: (A.V.); (E.N.); Tel.: +39-030-3717504 (A.V.); +39-02-50316956 (E.N.); Fax: +39-030-3717529 (A.V.); +39-02-50317118 (E.N.)
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
- Correspondence: (A.V.); (E.N.); Tel.: +39-030-3717504 (A.V.); +39-02-50316956 (E.N.); Fax: +39-030-3717529 (A.V.); +39-02-50317118 (E.N.)
| |
Collapse
|
43
|
|
44
|
Man AWC, Xia N, Daiber A, Li H. The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. Br J Pharmacol 2019; 177:1278-1293. [PMID: 31465555 PMCID: PMC7056468 DOI: 10.1111/bph.14850] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are secondary metabolites of plants that have been widely studied for their health benefits as antioxidants. In the last decade, several clinical trials and epidemiological studies have shown that long‐term consumption of polyphenol‐rich diet protects against chronic diseases such as cancers and cardiovascular diseases. Current cardiovascular studies have also suggested an important role of gut microbiota and circadian rhythm in the pathogenesis metabolic and cardiovascular diseases. It is known that polyphenols can modulate the composition of core gut microbiota and interact with circadian clocks. In this article, we summarize recent findings, review the molecular mechanisms and the potential of polyphenols as dietary supplements for regulating gut microbiota and circadian rhythms, and discuss future research directions. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
45
|
Rivera ME, Lyon ES, Vaughan RA. Effect of metformin on myotube BCAA catabolism. J Cell Biochem 2019; 121:816-827. [PMID: 31385363 DOI: 10.1002/jcb.29327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023]
Abstract
Metformin has antihyperglycemic properties and is a commonly prescribed drug for type II diabetes mellitus. Metformin functions in part by activating 5'-AMP-activated protein kinase, reducing hepatic gluconeogenesis and blood glucose. Metformin also upregulates peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α). Several population studies have shown levels of circulating branched-chain amino acids (BCAA) positively correlate with insulin resistance. Because BCAA catabolic enzyme content is regulated by PGC-1α, we hypothesized metformin may alter BCAA catabolism. Therefore, the purpose of this work was to investigate the effect of metformin at varying concentrations on myotube metabolism and related gene and protein expression. C2C12 myotubes were treated with metformin at 30 uM (physiological) or 2 mM (supraphysiological) for up to 24 hours. Metabolic gene expression was measured via quantitative real time polymerase chain reaction, protein expression was measured using Western blot, and mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Supraphysiological metformin upregulated PGC-1α mRNA expression along with related downstream targets, yet the reduced expression of electron transport chain components as well as basal and peak cell metabolism. Supraphysiological metformin also suppressed branched-chain aminotransferase 2 (BCAT2) and branched-chain-alpha-keto acid dehydrogenase E1a (BCKDHa) mRNA expression as well as BCAT2 protein expression and BCKDHa activity, which was accompanied by decreased Kruppel-like factor 15 protein expression. Physiological levels of metformin suppressed BCKDHa and cytochrome c oxidase mRNA expression at early time points (4-12 hours) but had no effect on any other outcomes. Together these data suggest metformin may suppress BCAA catabolic enzyme expression or activity, possibly reducing levels of circulating gluconeogenic substrates.
Collapse
Affiliation(s)
- Madison E Rivera
- Department of Exercise Science, High Point University, High Point, North Carolina
| | - Emily S Lyon
- Department of Exercise Science, High Point University, High Point, North Carolina
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, North Carolina
| |
Collapse
|
46
|
Biswas D, Duffley L, Pulinilkunnil T. Role of branched‐chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J 2019; 33:8711-8731. [DOI: 10.1096/fj.201802842rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dipsikha Biswas
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Luke Duffley
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| |
Collapse
|
47
|
Sweet DR, Fan L, Jain MK. Taking KLF9 to "Cort" for crimes against metabolism. J Clin Invest 2019; 129:2178-2180. [PMID: 31033481 DOI: 10.1172/jci128481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids (GCs) are essential for proper glycemic control, but in excess, can lead to hyperglycemia and diabetes. In this issue of the JCI, Cui et al. elucidate a mechanism by which GCs regulate gluconeogenesis utilizing the transcription factor Krüppel-like factor 9 (KLF9) in physiology and disease settings. They report that KLF9 is a GC-inducible factor that ultimately increases the transcription of proliferator-activated receptor γ coactivator 1 α (PGC1α), resulting in gluconeogenesis. Given the high incidence of GC-induced diabetes, identification of this signaling axis provides, not only critical scientific insight, but also a foundation for preventative therapies for patients receiving chronic GC treatment.
Collapse
Affiliation(s)
- David R Sweet
- Case Cardiovascular Research Institute and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Liyan Fan
- Case Cardiovascular Research Institute and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
48
|
Zhao Y, Song W, Wang L, Rane MJ, Han F, Cai L. Multiple roles of KLF15 in the heart: Underlying mechanisms and therapeutic implications. J Mol Cell Cardiol 2019; 129:193-196. [PMID: 30831134 DOI: 10.1016/j.yjmcc.2019.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Although there is an increasing understanding of the signaling pathways that promote cardiac hypertrophy, negative regulatory factors of this process have received less attention. Increasing evidence indicates that Krüppel-like factor 15 (KLF15) plays an important role in maintaining cardiac function by controlling the transcriptional pathways that regulating cardiac metabolism. Recent studies have also revealed a vital role for KLF15 as an inhibitor of pathological cardiac hypertrophy and fibrosis via its effects on factors such as myocyte enhancer factor 2 (MEF2), GATA-binding protein 4 (GATA4), transforming growth factor-β (TGF-β), and myocardin. KLF15 may therefore be an effective therapeutic target for the treatment of heart failure and other cardiovascular diseases. In this review, we focus on the physiological and pathophysiological roles of KLF15 in the heart and the potential mechanisms through which KLF15 is regulated in various cardiac diseases.
Collapse
Affiliation(s)
- Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lizhe Wang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Madhavi J Rane
- Departments of Medicine, Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
49
|
Hsieh PN, Fan L, Sweet DR, Jain MK. The Krüppel-Like Factors and Control of Energy Homeostasis. Endocr Rev 2019; 40:137-152. [PMID: 30307551 PMCID: PMC6334632 DOI: 10.1210/er.2018-00151] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/05/2018] [Indexed: 12/16/2022]
Abstract
Nutrient handling by higher organisms is a complex process that is regulated at the transcriptional level. Studies over the past 15 years have highlighted the critical importance of a family of transcriptional regulators termed the Krüppel-like factors (KLFs) in metabolism. Within an organ, distinct KLFs direct networks of metabolic gene targets to achieve specialized functions. This regulation is often orchestrated in concert with recruitment of tissue-specific transcriptional regulators, particularly members of the nuclear receptor family. Upon nutrient entry into the intestine, gut, and liver, KLFs control a range of functions from bile synthesis to intestinal stem cell maintenance to effect nutrient acquisition. Subsequently, coordinated KLF activity across multiple organs distributes nutrients to sites of storage or liberates them for use in response to changes in nutrient status. Finally, in energy-consuming organs like cardiac and skeletal muscle, KLFs tune local metabolic programs to precisely match substrate uptake, flux, and use, particularly via mitochondrial function, with energetic demand; this is achieved in part via circulating mediators, including glucocorticoids and insulin. Here, we summarize current understanding of KLFs in regulation of nutrient absorption, interorgan circulation, and tissue-specific use.
Collapse
Affiliation(s)
- Paishiun N Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
50
|
Yu M, Hong W, Ruan S, Guan R, Tu L, Huang B, Hou B, Jian Z, Ma L, Jin H. Genome-Wide Profiling of Prognostic Alternative Splicing Pattern in Pancreatic Cancer. Front Oncol 2019; 9:773. [PMID: 31552163 PMCID: PMC6736558 DOI: 10.3389/fonc.2019.00773] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) has a critical role in tumor progression and prognosis. Our study aimed to investigate pancreatic cancer-specific AS events using RNA-seq data, gaining systematic insights into potential prognostic predictors. We downloaded 10,623 genes with 45,313 pancreatic cancer-specific AS events from the Cancer Genome Atlas (TCGA) and SpliceSeq database. Cox univariate analyses of overall survival suggested there was a remarkable association between 6,711 AS events and overall survival in pancreatic cancer patients (P < 0.05). The area under the curves (AUC) of the receiver operator characteristic curves (ROC) of risk score was 0.89 for final prognostic predictor. Results indicated that AS events of DAZAP1, RBM4, ESRP1, QKI, and SF1 were significantly associated with overall survival. The results of FunRich showed that transcription factors KLF7, GABPA, and SP1 were the most highly related to survival-associated AS genes. Furthermore, using DriverDBv2, we identified 13 driver genes associated with survival-associated AS events, including TP53 and CDC27. Thus, we concluded that the aberrant AS patterns in pancreatic cancer patients might serve as prognostic predictors.
Collapse
Affiliation(s)
- Min Yu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Min Yu
| | - Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Renguo Guan
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lei Tu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Haosheng Jin
| |
Collapse
|