1
|
Minuti A, Raffaele I, Scuruchi M, Lui M, Muscarà C, Calabrò M. Role and Functions of Irisin: A Perspective on Recent Developments and Neurodegenerative Diseases. Antioxidants (Basel) 2025; 14:554. [PMID: 40427436 PMCID: PMC12108254 DOI: 10.3390/antiox14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Irisin is a peptide derived from fibronectin type III domain-containing protein 5 (FNDC5) and is primarily produced by muscle fibers under the regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) during exercise. Irisin has been the subject of extensive research due to its potential as a metabolic regulator and its antioxidant properties. Notably, it has been associated with protective actions within the brain. Despite growing interest, many questions remain regarding the molecular mechanisms underlying its effects. This review summarizes recent findings on irisin, highlighting its pleiotropic functions and the biological processes and molecular cascades involved in its action, with a particular focus on the central nervous system. Irisin plays a crucial role in neuron survival, differentiation, growth, and development, while also promoting mitochondrial homeostasis, regulating apoptosis, and facilitating autophagy-processes essential for normal neuronal function. Emerging evidence suggests that irisin may improve conditions associated with non-communicable neurological diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and multiple sclerosis. Given its diverse benefits, irisin holds promise as a novel therapeutic agent for preventing and treating neurological diseases.
Collapse
Affiliation(s)
- Aurelio Minuti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Ivana Raffaele
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Maria Lui
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Claudia Muscarà
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Marco Calabrò
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| |
Collapse
|
2
|
Cosio PL, Moreno-Simonet L, Fernández D, Lloret M, Padulles X, Padulles JM, Farran-Codina A, Rodas G, Cadefau JA. Football (soccer) match-derived hamstring muscles residual fatigue can be monitored using early rate of torque development. Eur J Appl Physiol 2025; 125:1449-1461. [PMID: 39725689 DOI: 10.1007/s00421-024-05694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE The aim of this study was to determine whether a soccer match affects the rapid force-generating capacity of the hamstring muscles, given their key role in both horizontal ground reaction force production during sprint biomechanics, and in the deceleration of the shank during the late swing phase, where rapid force production is essential owing to time constraints. Therefore, the research objective was to determine soccer match-induced hamstrings residual fatigue and recovery through rate of torque development (RTD) and associated biochemical parameters. METHODS The recovery kinetics of hamstrings RTD metrics by the 90°hip:20°knee test, together with serum biomarkers (creatine kinase, mitochondrial creatine kinase, transaminases, malondialdehyde, irisin), were assessed in 19 male, regional first-division soccer players (age = 20.9 ± 2.0 years, mass = 72.6 ± 11.9 kg, height = 175.9 ± 6.9 cm [mean ± SD]), before a soccer match (MD) and post-24 h (MD+1), post-48 h (MD+2) and post-72 h (MD+3), through a repeated measures design. RESULTS Early RTD to 50 ms (p < 0.001, g = -1.24) and 100 ms (p < 0.001, g = -1.06) remained unrecovered on MD+3 in both hamstring muscles. However, maximal voluntary isometric contraction (MVIC) torque of the dominant and non-dominant hamstrings was unrecovered on MD+2 (p = 0.004, g = -0.91; and p = 0.002, g = -0.98, respectively) and recovered on MD+3 (p = 0.057 and p = 0.070, respectively). Further, neuromuscular deficits were coupled with myocyte structural (p = 0.002, g = 1.11) and mitochondrial damage (p = 0.004, g = 0.92) biomarkers. CONCLUSION Based in the findings, early RTD0-50 and RTD0-100 monitoring, through the 90°hip:20°knee IPC test, is a cost-effective method for assessing soccer match-induced hamstring muscles residual fatigue and recovery. Overall, soccer match-induced hamstring residual fatigue is not recovered within a 3-day recovery period. Practitioners can use rapid force production metrics through isometric assessments, providing a simple, non-exhaustive tool, for assessing residual fatigue status during congested competitive periods, to comprehensively balance muscle recovery with optimizing training.
Collapse
Affiliation(s)
- Pedro L Cosio
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Lia Moreno-Simonet
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Daniel Fernández
- Sports Performance Department, Futbol Club Barcelona, Rink Hockey, 08970, Barcelona, Spain
| | - Mario Lloret
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Xavier Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Josep M Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science, and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat of Barcelona (UB), 08921, Barcelona, Spain
| | - Gil Rodas
- Sports Medicine Unit, Hospital Clinic and Sant Joan de Déu, 08036, Barcelona, Spain
- Medical Department, Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation Hub, 08970, Barcelona, Spain
| | - Joan A Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain.
- Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036, Barcelona, Spain.
| |
Collapse
|
3
|
Lage SL, Bricker-Holt K, Rocco JM, Rupert A, Donovan FX, Abramzon YA, Chandrasekharappa SC, McNinch C, Cook L, Amaral EP, Rosenfeld G, Dalhuisen T, Eun A, Hoh R, Fehrman E, Martin JN, Deeks SG, Henrich TJ, Peluso MJ, Sereti I. Persistent immune dysregulation and metabolic alterations following SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.16.25325949. [PMID: 40321289 PMCID: PMC12047922 DOI: 10.1101/2025.04.16.25325949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
SARS-CoV-2 can cause a variety of post-acute sequelae including Long COVID19 (LC), a complex, multisystem disease characterized by a broad range of symptoms including fatigue, cognitive impairment, and post-exertional malaise. The pathogenesis of LC is incompletely understood. In this study, we performed comprehensive cellular and transcriptional immunometabolic profiling within a cohort that included SARS-CoV-2-naïve controls (NC, N=30) and individuals with prior COVID-19 (~4-months) who fully recovered (RC, N=38) or went on to experience Long COVID symptoms (N=58). Compared to the naïve controls, those with prior COVID-19 demonstrated profound metabolic and immune alterations at the proteomic, cellular, and epigenetic level. Specifically, there was an enrichment in immature monocytes with sustained inflammasome activation and oxidative stress, elevated arachidonic acid levels, decreased tryptophan, and variation in the frequency and phenotype of peripheral T-cells. Those with LC had increased CD8 T-cell senescence and a distinct transcriptional profile within CD4 and CD8 T-cells and monocytes by single cell RNA sequencing. Our findings support a profound and persistent immunometabolic dysfunction that follows SARS-CoV-2 which may form the pathophysiologic substrate for LC. Our findings suggest that trials of therapeutics that help restore immune and metabolic homeostasis may be warranted to prevent, reduce, or resolve LC symptoms.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Katherine Bricker-Holt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Joseph M. Rocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Adam Rupert
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research; Frederick, USA
| | - Frank X. Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute; Bethesda, USA
| | - Yevgeniya A. Abramzon
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute; Bethesda, USA
| | | | - Colton McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Logan Cook
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Eduardo Pinheiro Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Gabriel Rosenfeld
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Thomas Dalhuisen
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Avery Eun
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Emily Fehrman
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco; San Francisco, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Timothy J. Henrich
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Michael J. Peluso
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Irini Sereti
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| |
Collapse
|
4
|
Cosio PL, Moreno-Simonet L, Mechó S, de Blas Foix X, Lloret M, Padulles X, Padulles JM, Farran-Codina A, Rodas G, Cadefau JA. Neuromuscular and biochemical responses of the hamstrings to a Flywheel Russian belt Deadlift in women and men. J Sports Sci 2025; 43:456-467. [PMID: 39905784 DOI: 10.1080/02640414.2025.2461939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The purpose of the study was to analyze hamstrings muscle damage and recovery after a novel Flywheel Russian belt Deadlift (FRBD) exercise using neuromuscular tests and associated biochemical markers of structural damage. Maximal voluntary isometric contraction (MVIC) torque and rate of force development (RFD) over several time-intervals by the 90ºhip:20ºknee test (standing isometric test for the hamstrings) and range of motion (ROM) Jurdan test (combination of active knee extension test and modified Thomas test), together with serum biomarkers of muscle damage and oxidative stress, were tested at baseline and +24h, +48h and +72h in healthy, untrained and physically active 15 females (age= 21.5±3.4 years) and 15 males (age= 21.4±1.9 years). FRBD-induced muscle damage was observed as a reduction in MVIC torque and RFD at all time-intervals until +72h. Also, hamstrings neuromuscular capacity reductions were associated with serum biomarkers of structural and oxidative damage. However, only males showed ROM changes. Overall, the FRBD triggered a decrease in hamstrings neuromuscular capacities, and an upregulation of biochemical markers of structural and oxidative damage until +72h. The 90ºhip:20ºknee test provides an adequate reliability to screen hamstrings recovery in both women and men after flywheel training, through MVIC torque and both early and late RFD.
Collapse
Affiliation(s)
- Pedro Luis Cosio
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Lia Moreno-Simonet
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Mechó
- Department of Radiology, Hospital of Barcelona, SCIAS, Barcelona, Spain
| | - Xavier de Blas Foix
- Faculty of Psychology, Education Sciences and Sport Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Mario Lloret
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep Maria Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science, and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Gil Rodas
- Medical Department, Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation Hub, Barcelona, Spain
| | - Joan Aureli Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Wen H, Yano N, Zhao T, Wei L, Zhao TC. The protective effect of irisin against hemorrhagic injury is mediated by PI3K and p38 pathways in hemorrhage/resuscitation. J Pharmacol Exp Ther 2025; 392:100027. [PMID: 39892988 DOI: 10.1124/jpet.124.002238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
The objective of this study was to investigate whether phosphoinositide 3-kinase (PI3K) and p38 mitogen-activated kinase contribute to the protection of irisin during hemorrhage/resuscitation. Experimental groups were divided based on the different treatments during resuscitation as follows: (1) hemorrhage: adult male CD-1 mice were subjected to hemorrhage at a mean arterial blood pressure of 35-45 mm Hg for 60 minutes, followed by resuscitation with shed blood and lactated Ringer's solution (n = 13); (2) hemorrhage + irisin: receiving irisin (5 μg/kg; n = 13); (3) hemorrhage + irisin + PI3K inhibitor: receiving both Ly294002 (1 mg/kg, i.v.) and irisin (n = 6); and (4) hemorrhage + irisin + p38 inhibitor: receiving SB202190 (1 mg/kg, i.v.) and irisin (n = 6). Compared with hemorrhage/resuscitation control, irisin improved cardiac function and the recovery of hemodynamics in association with the decreased systemic interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α, which were completely abrogated by PI3K or p38 inhibitions. Furthermore, the inhibition of PI3K or p38 abolished irisin-induced reduction of the inflammatory cell infiltration and terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling-positive apoptosis in the cardiac and skeletal muscles. Irisin reduced TNF-α and IL-6 expression in cardiac and skeletal muscles, which was abrogated by the inhibition of PI3K or p38. Irisin-treated hemorrhage increases the phosphorylation of PI3K and p38 in both cardiac and skeletal muscles, which was mitigated by the inhibition of PI3K or p38. PI3K and p38 play an important role in modulating the protective effect of irisin during the hemorrhage/resuscitation. SIGNIFICANCE STATEMENT: This study has identified a critical pathway in the regulation of trauma/hemorrhage by using a preclinical trauma model, in which irisin, as a hormone factor, stimulates PI3K and p38 pathways to induce protection against traumatic conditions. The study holds promise for developing a new therapeutic strategy to target irisin and its pathways related to PI3K and p38 to treat trauma and its comorbidities to reduce mortality for clinical implications.
Collapse
Affiliation(s)
- Huai Wen
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Naohiro Yano
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Thomas Zhao
- Department of Biology, Boston University, Boston, Massachusetts
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Ting C Zhao
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island; Department of Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
| |
Collapse
|
6
|
Chen Q, Wang J, Li K, Luan JQ, Li JM, Wang YT. Irisin in thyroid diseases. Clin Chim Acta 2025; 564:119929. [PMID: 39154700 DOI: 10.1016/j.cca.2024.119929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Irisin, a hormone-like adipo-myokine, has garnered considerable attention in recent years for its potential impact in metabolic diseases. Its physiological effects are similar to those of thyroid hormones, prompting numerous investigations into potential correlations and interactions between irisin and thyroid function through various in vitro and animal experiments. However, existing studies suggest that the relationship between irisin and thyroid diseases is highly complex and multifaceted. In this paper, we have summarized the research results on serum irisin and thyroid function, providing an overview of advancements and constraints in current research on irisin and thyroid hormones. The aim is to offer insights and directions for future clinical trials in this field.
Collapse
Affiliation(s)
- Qi Chen
- Department of outpatient, Shijiazhuang No.8 Retired Cadre Retirement Home of Hebei Military Region, Shijiazhuang 050000, China
| | - Jing Wang
- Department of Cardionephrology, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China
| | - Kang Li
- Department of oncology, hematology and endocrinology, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China
| | - Jun-Qin Luan
- Clinical laboratory, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China
| | - Jing-Mei Li
- Department of oncology, hematology and endocrinology, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China
| | - Ya-Ting Wang
- Department of oncology, hematology and endocrinology, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
7
|
Laurindo LF, Rodrigues VD, Laurindo LF, Cherain LMA, de Lima EP, Boaro BL, da Silva Camarinha Oliveira J, Chagas EFB, Catharin VCS, Dos Santos Haber JF, Dos Santos Bueno PC, Direito R, Barbalho SM. Targeting AMPK with Irisin: Implications for metabolic disorders, cardiovascular health, and inflammatory conditions - A systematic review. Life Sci 2025; 360:123230. [PMID: 39532260 DOI: 10.1016/j.lfs.2024.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Irisin-based interventions have gained attention for their potential to modulate the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in various diseases. Physiologically, irisin is a myokine released during physical exercise that exerts anti-inflammatory effects and is a metabolic and cardiometabolic enhancer. On the other hand, AMPK is crucial for maintaining energy balance and metabolic homeostasis. Therefore, individuals presenting low blood levels of irisin and AMPK dysregulation are more predisposed to metabolic disorders and cardiovascular health inflammatory conditions since regulating energy balance and metabolic homeostasis are crucial for preventing or treating these disorders. In light of those mentioned above and considering that no review has addressed the intricate relationships between irisin and AMPK regulation in the realm of metabolic disorders, cardiovascular health, and inflammatory conditions, we comprehensively reviewed studies involving irisin's effects on AMPK signaling in different models and interventions. Our systematic analysis involved in vitro studies, animal models, and their relevant clinical implications of irisin targeting AMPK due to the absence of relevant clinical trials. The outcomes and limitations of the included studies were extensively highlighted. Objectively, irisin improved metabolic disorders by enhancing β-cell function and insulin secretion in diabetes, mitigating myocardial injury in cardiovascular conditions, and reducing inflammation and oxidative stress in various injury models by targeting AMPK. However, the lack of clinical trials limits the generalizability of these findings to human subjects. Future research should focus on translating these findings into clinical applications and exploring the broader implications of irisin-based interventions in human health.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil.
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, 15090-000 São Paulo, Brazil
| | - Luana Maria Amaral Cherain
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | | | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, 17500-000 São Paulo, Brazil; UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| |
Collapse
|
8
|
Kaya H, Boyaci H, Argun Baris S, Basyigit I, Ozsoy OD, Maral Kir H. The predictive effects of adiponectin and irisin hormones on diagnosis and clinical involvement of Sarcoidosis. BMC Pulm Med 2024; 24:623. [PMID: 39695541 DOI: 10.1186/s12890-024-03412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sarcoidosis is a chronic disease of unknown etiology characterised by systemic non-caseating granulomas that can affect any organ in the body, especially the lungs and in which genetic and environmental factors are thought to play a role in its pathophysiology. Adipokines and myokines secreted from adipose and muscle tissue play a role in the pathogenesis or protection against many inflammatory and autoimmune diseases in which inflammation and immunity form the basis. In our study, we aimed to investigate the role of the irisin and adiponectin in sarcoidosis. METHODS The study included 90 sarcoidosis patients and 86 healthy subjects. Adiponectin and irisin levels were analysed in addition to standard tests for diagnosis and follow-up of patients with sarcoidosis. The sensitivity and specificity of serum irisin levels for the diagnosis of sarcoidosis were evaluate dusing ROC analysis. RESULTS Irisin levels were significantly lower in the patient group than in the control group (3.28-5.25, p < 0.001). There was no association between irisin levels and extrapulmonary involvement. The cut-off irisin value for the diagnosis of sarcoidosis was ≤ 4.2662 with 95% confidence interval, and the sensitivity and specificity were calculated as 84% and 55.8%, respectively. CONCLUSIONS To our knowledge, this is the first study to investigate irisin in sarcoidosis patients. Based on the available evidence, anti-inflammatory, anti-oxidant and anti-apoptocic effects of irisin may play a role in the pathophysiology of sarcoidosis. Although no significant difference was found in our study, we believe that a comprehensive evaluation of adiponectin in sarcoidosis is important.
Collapse
Affiliation(s)
- Huseyin Kaya
- Chest Diseases, Kocaeli City Hospital, Kocaeli, Turkey.
| | - Hasim Boyaci
- Chest Diseases, University of Kocaeli, Kocaeli, Turkey
| | | | | | - Ozgur Doga Ozsoy
- Department of Biochemistry, University of Kocaeli, Kocaeli, Turkey
| | - Hala Maral Kir
- Department of Biochemistry, University of Kocaeli, Kocaeli, Turkey
| |
Collapse
|
9
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Us Altay D, Kaya Y, Mataraci Değirmenci D, Kocyiğit E, Üner A, Noyan T. Non-alcoholic fatty liver disease: The importance of physical activity and nutrition education-A randomized controlled study. J Gastroenterol Hepatol 2024; 39:2723-2734. [PMID: 39343724 DOI: 10.1111/jgh.16756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of excess fat in the liver, causing liver cell damage, increased inflammation, and weight gain. Despite its high prevalence, diagnosis and follow-up of the disease is difficult. Irisin, a slimming myokine produced in response to physical activity (PA), exhibits anti-inflammatory and anti-obesity effects. This study aimed to investigate changes in irisin levels, inflammation markers (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]), and myeloid differentiation factor-2 (MD2) levels in NAFLD, as well as anthropometric and routine biochemical parameters, by providing PA recommendations and nutrition education (NE) to individuals diagnosed with NAFLD over a period of 12 weeks. METHODS The study included 62 patients diagnosed with NAFLD who did not use alcohol. They were divided into groups: PA, NE, both (NE + PA), and untreated (control) patients. Patients receiving NE were provided with 1-h NE sessions every 4 weeks for 12 weeks, and their personal information, nutritional status, 24-h retrospective food consumption record, and anthropometric measurements were recorded at the beginning (day 0) and end (week 12) of the study. The PA group was recommended aerobic walking for 30 min, 5 days a week. At the beginning (day 0) and end (week 12) of the study, patients' anthropometric and routine biochemical tests were conducted, and irisin, MD2, TNF-α, and IL-6 levels were measured using the ELISA method. RESULTS All groups were similar in demographic characteristics and dietary habits. After 12 weeks, there were no significant differences in biochemical parameters among the groups. Glucose levels increased in the untreated group but decreased in the PA and PA + NE groups compared to baseline, with a significant decrease in the PA group. Insulin levels significantly decreased in the NE group. The PA + NE group showed decreased aspartate aminotransferase (AST), gamma-glutamyl transferase, alkaline phosphatase, total cholesterol, low-density lipoprotein, and triglyceride levels and significant decrease in ALT levels. AST decreased significantly in the PA group while high-density lipoprotein increased significantly. There were no statistically significant differences between the groups in irisin, MD2, IL-6, and TNF-α levels. After 12 weeks, irisin levels significantly increased in nutrition and PA groups except the untreated group. There were no statistically significant differences in IL-6 and MD2 levels compared with baseline after 12 weeks. PA recommendations alone were not effective in observing significant changes in anthropometric measurements in individuals with NAFLD. It was detected that only nutritional recommendations provided a significant decrease in body fat ratio but were insufficient for the change in other anthropometric measurements. In the group where NE and PA were recommended together, a significant decrease in anthropometric measurements was found. The NE group significantly reduced their energy and carbohydrates (%EI) intake after 12 weeks of intervention compared with the baseline. CONCLUSION NE and PA recommendations led to improvements in liver-related biochemical parameters and significant reductions in anthropometric measurements among individuals with NAFLD. Moreover, patients receiving NE experienced a decrease in energy and carbohydrates intake as a percentage of total energy intake (%EI). Increased irisin levels in NE, PA, and NE + PA groups may have contributed to the decrease in body fat percentage.
Collapse
Affiliation(s)
- Diler Us Altay
- Department of Nutrition and Dietetics, Faculty of Health Science, Ordu University, Ordu, Turkey
| | - Yasemin Kaya
- Department of Internal Medicine, Faculty of Medicine, Ordu University, Ordu, Turkey
| | | | - Emine Kocyiğit
- Department of Nutrition and Dietetics, Faculty of Health Science, Ordu University, Ordu, Turkey
| | - Abdullah Üner
- Department of Medical Biochemistry, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Tevfik Noyan
- Department of Medical Biochemistry, Faculty of Medicine, Ordu University, Ordu, Turkey
| |
Collapse
|
11
|
Xie A, Li W, Ye D, Yin Y, Wang R, Wang M, Yu R. Sodium Propionate Alleviates Atopic Dermatitis by Inhibiting Ferroptosis via Activation of LTBP2/FABP4 Signaling Pathway. J Inflamm Res 2024; 17:10047-10064. [PMID: 39634285 PMCID: PMC11615016 DOI: 10.2147/jir.s495271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
Background Atopic dermatitis (AD) is a common pediatric skin disease, with recent studies suggesting a role for ferroptosis in its pathogenesis. Sodium propionate (SP) has shown therapeutic potential in AD, yet its mechanism, particularly regarding ferroptosis modulation, remains unclear. This study aims to explore whether SP alleviates AD by modulating ferroptosis-related pathways through bioinformatic and in vitro analyses. Methods We analyzed the GEO AD cohort (GSE107361). Ferroptosis-related genes was compiled from the GeneCards Database and SP-associated therapeutic target genes were obtained from Swiss Target Prediction. To explore potential biological mechanisms, we employed Gene Set Variation Analysis (GSVA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis identified key gene modules. We also established TNF-α/IFN-γ induced AD cell models using HaCat cells and collected cell samples for further experiments. Results The GSVA analysis demonstrated that ferroptosis-related genes could differentiate between healthy children and those with AD. The identified module includes genes with correlated expression patterns specifically linked to AD. Analysis using three algorithms identified potential therapeutic targets of SP. We screened 51 key genes related to AD and ferroptosis, selecting cyclin-dependent kinase 1 (CDK1) and latent transforming growth factor beta binding protein 2 (LTBP2) as co-expressed genes. Machine learning identified fatty acid binding protein 4 (FABP4) as a significant gene intersection of the 51 key genes. The bioinformatics analysis results were validated through cell experiments, showing that SP treatment increased the expression of the damaged skin genes loricrin (LOR) and filaggrin (FLG). Conclusion Our study indicates that SP may alleviate AD symptoms by modulating ferroptosis through the LTBP2/FABP4 pathway.
Collapse
Affiliation(s)
- Anni Xie
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Weijia Li
- Department of Biochemistry and Molecular Biology, Franklin & Marshall College, Lancaster, PA, 17603, USA
| | - Danni Ye
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Yue Yin
- Suzhou Medical College, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ran Wang
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Min Wang
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| |
Collapse
|
12
|
Munakarmi S, Gurau Y, Shrestha J, Chand L, Park HS, Lee GH, Jeong YJ. trans-chalcone ameliorates CCl4-induced acute liver injury by suppressing endoplasmic reticulum stress, oxidative stress and inflammation. Pathol Res Pract 2024; 263:155663. [PMID: 39437640 DOI: 10.1016/j.prp.2024.155663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Acute liver injury serves as a crucial marker for detecting liver damage due to toxic, viral, metabolic, and autoimmune exposures. Due to the response to adverse external stimuli and various cellular homeostasis, Endoplasmic reticulum stress (ERS), Oxidative stress, and Inflammation have great potential for treating liver injury. Trans-chalcones (TC) is a polyphenolic compound derived from a natural plant with anti-oxidative and anti-inflammatory abilities. Here, TC was aimed to attenuate liver injury by triggering ER stress, oxidative stress, inflammation, and apoptosis. A single dose of carbon tetrachloride (CCl4) 1 mL/kg was administered intraperitoneally into C57BL6 mice to construct an in vivo NAFLD model, whereas AML12 cells were treated with lipopolysaccharides (LPS) to construct an in vitro NAFLD model. The mice used in the experiment were randomly assigned to two groups: a 12-hour set and a 24-hour set. Forty-nine mice were randomly divided into seven groups, the control group (Group I), TC group (Group II) 10 mg/kg TC, negative control group (Group III) CCl4, TC + CCl4 groups (Groups IV-VI), mice were subcutaneously treated with (5, 10, and 20) mg/kg of TC for three consecutive days before the CCl4 injection and the positive control group (Group VII) received 10 mg/kg Silymarin. After the experiment, serum transaminase, liver histological pathology, hepatic expression levels ERS, oxidative stress, and inflammation-related markers were assessed. TC pre-treatment significantly alleviates the expression of ER stress, oxidative stress, inflammatory cytokines, and apoptosis in both in vivo and in vitro models of liver injury. TC treatment significantly reduced serum transaminase levels (ALT and AST), and improved liver histopathological scores. TC administration also led to a reduction in MDA levels and the suppression of ROS generated by CCl4 in hepatic tissue, which contributed to an increase in GSH levels. The protective effect of TC on the liver injury mouse model was achieved by inhibiting hepatocyte apoptosis. Moreover, TC pre-treatment dramatically decreased the protein levels of ER stress indicators such as CHOP, Bip, Ero-Lα, IRE1α, PERK, Calnexin, and PDI when compared to the CCl4-only treated group. TC exerts hepatoprotective effects against CCl4-induced acute liver injuries in mice by modulating ERS, oxidative stress, and inflammation. These results suggest that TC pre-treatment at a dose of (20 mg/kg BW) was as effective as silymarin (10 mg/kg) in preventing CCl4-induced acute liver injury. Further investigations are necessary to elucidate the precise molecular mechanisms underlying the hepatoprotective effects of TC and to explore its therapeutic potential in clinical trials.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea.
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea.
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal.
| | - Lokendra Chand
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea; Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea; Department of Pathology, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Research Institute, Jeonbuk National Hospital, Jeonju 54907, Korea.
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea; Division of Pediatric Surgery, Department of Surgery, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea.
| |
Collapse
|
13
|
Meng S, Chen X, Zhao J, Huang X, Huang Y, Huang T, Zhou Z, Ren W, Hong T, Duan J, Yu L, Wang H. Reduced FNDC5-AMPK signaling in diabetic atrium increases the susceptibility of atrial fibrillation by impairing mitochondrial dynamics and activating NLRP3 inflammasome. Biochem Pharmacol 2024; 229:116476. [PMID: 39128588 DOI: 10.1016/j.bcp.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) exerts potential anti-arrhythmic effects. However, the function and mechanism of FNDC5 in diabetes-associated atrial fibrillation (AF) remain unknown. In this study, bioinformatics analysis, in vivo and in vitro experiments were conducted to explore the alteration and role of FNDC5 in diabetes-related atrial remodeling and AF susceptibility. RNA sequencing data from atrial samples of permanent AF patients and diabetic mice exhibited significantly decreased FNDC5 at the transcriptional level, which was in line with the protein expression in diabetic mice as well as high glucose and palmitic acid (HG+PA) injured atrial myocytes. Diabetic mice exhibited adverse atrial remodeling and increased AF inducibility. Moreover, reduced atrial FNDC5 was accompanied with exacerbated NOD-like receptor pyrin domain containing 3 (NLRP3) activation and disturbed mitochondrial fission and fusion processes, as evidenced by decreased expressions of optic atrophy 1 (OPA-1), mitofusin (MFN-1, MFN-2) and increased phosphorylation of dynamin-related protein 1 (Ser616). These effects were validated in HG+PA-treated atrial myocytes. Critically, FNDC5 overexpression remarkably enhanced cellular antioxidant capacity by upregulating the expressions of superoxide dismutase (SOD1, SOD2) level. In addition, HG+PA-induced mitochondrial dysfunction was ameliorated by FNDC5 overexpression as evidenced by improved mitochondrial dynamics and membrane potential. Moreover, NLRP3 inflammasome-mediated inflammation was reduced by FNDC5 overexpression, and AMPK signaling might serve as the key down-stream effector. The present study demonstrated that reduced atrial FNDC5-AMPK signaling contributed to the pathogenesis of diabetes- associated AF by impairing mitochondrial dynamics and activating the NLRP3 inflammasome. These findings provide promising therapeutic avenues for diabetes-associated AF.
Collapse
Affiliation(s)
- Shan Meng
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xin Chen
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xinyi Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Wenpu Ren
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Postgraduate College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China
| | - Tao Hong
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Postgraduate College, Dalian Medical University, Dalian, Liaoning, 116000, PR China
| | - Jinfeng Duan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Postgraduate College, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Huishan Wang
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
14
|
Cho SJ, Jung S, Lee MY, Park CH. Sex-Specific Association of Low Muscle Mass with Depression Status in Asymptomatic Adults: A Population-Based Study. Brain Sci 2024; 14:1093. [PMID: 39595856 PMCID: PMC11591987 DOI: 10.3390/brainsci14111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The objective of this study was to examine the correlation between low muscle mass (LMM) and depression, with a specific focus on identifying the sex-specific relationship between LMM and depression in a large sample. METHODS This population-based cross-sectional study involved 292,922 community-dwelling adults from 2012 to 2019. Measurements were taken using the Center for Epidemiological Studies Depression (CESD) scale and body composition analyses. Depression was defined as a CESD score ≥ 16, and severe depression as a CESD score ≥ 22. LMM was defined as an appendicular muscle mass/height2 below 7.0 kg/m2 in men and below 5.4 kg/m2 in women. Sex-based multivariable logistic regression analyzed the LMM-depression association, adjusting for confounders, with depression status and severe depression status as dependent variables. RESULTS Both men and women in the LMM group had an increased odds of depression (men, adjusted odds ratio = 1.13 [95% confidence interval = 1.03-1.12]; women, 1.07 [1.03-1.23]) and severe depression (men, 1.20 [1.05-1.36]; women, 1.10 [1.04-1.15]) compared to those in the control group. Men showed a stronger association between LMM and the presence of depression (p for interaction = 0.025) and the presence of severe depression (p for interaction = 0.025) compared to women. CONCLUSIONS Decreased muscle mass was independently associated with increased chances of depression and severe depression in both sexes, with a significantly stronger association in men compared to women. This highlights the potential significance of LMM as a predictor of depression, particularly in men.
Collapse
Affiliation(s)
- Sung Joon Cho
- Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
- Workplace Mental Health Institute, Kangbuk Samsung Hospital, Seoul 04514, Republic of Korea
| | - Sra Jung
- Department of Psychiatry, CHA University Ilsan CHA Hospital, Goyang-si 10414, Republic of Korea;
| | - Mi-Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
| | - Chul Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| |
Collapse
|
15
|
Liu Y, Fu X, Zhao X, Cui R, Yang W. The role of exercise-related FNDC5/irisin in depression. Front Pharmacol 2024; 15:1461995. [PMID: 39484160 PMCID: PMC11524886 DOI: 10.3389/fphar.2024.1461995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
The complexity of depression presents a significant challenge to traditional treatment methods, such as medication and psychotherapy. Recent studies have shown that exercise can effectively reduce depressive symptoms, offering a new alternative for treating depression. However, some depressed patients are unable to engage in regular physical activity due to age, physical limitations, and other factors. Therefore, pharmacological agents that mimic the effects of exercise become a potential treatment option. A newly discovered myokine, irisin, which is produced during exercise via cleavage of its precursor protein fibronectin type III domain-containing protein 5 (FNDC5), plays a key role in regulating energy metabolism, promoting adipose tissue browning, and improving insulin resistance. Importantly, FNDC5 can promote neural stem cell differentiation, enhance neuroplasticity, and improve mood and cognitive function. This review systematically reviews the mechanisms of action of exercise in the treatment of depression, outlines the physiology of exercise-related irisin, explores possible mechanisms of irisin's antidepressant effects. The aim of this review is to encourage future research and clinical applications of irisin in the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xing Zhao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Gluvic Z, Obradovic M, Manojlovic M, Vincenza Giglio R, Maria Patti A, Ciaccio M, Suri JS, Rizzo M, Isenovic ER. Impact of different hormones on the regulation of nitric oxide in diabetes. Mol Cell Endocrinol 2024; 592:112325. [PMID: 38968968 DOI: 10.1016/j.mce.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polymetabolic syndrome achieved pandemic proportions and dramatically influenced public health systems functioning worldwide. Chronic vascular complications are the major contributors to increased morbidity, disability, and mortality rates in diabetes patients. Nitric oxide (NO) is among the most important vascular bed function regulators. However, NO homeostasis is significantly deranged in pathological conditions. Additionally, different hormones directly or indirectly affect NO production and activity and subsequently act on vascular physiology. In this paper, we summarize the recent literature data related to the effects of insulin, estradiol, insulin-like growth factor-1, ghrelin, angiotensin II and irisin on the NO regulation in physiological and diabetes circumstances.
Collapse
Affiliation(s)
- Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mia Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Manfredi Rizzo
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Rahman MM, Hwang SM, Go EJ, Kim YH, Park CK. Irisin alleviates CFA-induced inflammatory pain by modulating macrophage polarization and spinal glial cell activation. Biomed Pharmacother 2024; 178:117157. [PMID: 39042964 DOI: 10.1016/j.biopha.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Although the potent anti-inflammatory effects of irisin have been documented in various inflammatory disorders, its efficacy against inflammatory pain remains unexplored. Herein, we examined the therapeutic effects of irisin in a mouse model of inflammatory pain induced by complete Freund's adjuvant (CFA). Mice were divided into three groups: normal control, CFA-injected (CFA), and CFA plus irisin-treated (CFA+Irisin). The irisin-treated group exhibited a gradual reduction in mechanical allodynia and thermal hyperalgesia when compared with the CFA group. Moreover, treatment with irisin significantly upregulated the expression of M2 macrophage markers (interleukin [IL]-4 and IL-10) and downregulated M1 macrophage markers (IL-1β, IL-6, and tumor necrosis factor-α) in the local paw tissue, dorsal root ganglion, and spinal cord tissue. However, there was no significant difference in the total number of F4/80+ macrophages in the paw tissue and dorsal root ganglion, indicating phenotypic exchange. Treatment with irisin also downregulated the expression of the glial cell activation-related markers Iba-1 and GFAP in the spinal cord tissue. To elucidate the underlying mechanisms, we detected the expression of Toll-like receptor 4 (TLR4), MyD88, and interferon regulatory factor 5 (IRF5) in paw tissues, dorsal root ganglion, and spinal tissues, revealing that irisin could downregulate the expression of these proteins. Irisin alleviated inflammatory pain by modulating local tissue inflammation and peripheral and central neuroinflammation and reducing glial cell activation and M2 macrophage polarization by modulating the TLR4-MyD88-IRF5 signaling pathway. Accordingly, irisin is a promising candidate for treating inflammatory pain in various diseases.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea.
| |
Collapse
|
18
|
Duan Y, Lv X, Cao X, Sun W. Effect of METTL3 Gene on Lipopolysaccharide Induced Damage to Primary Small Intestinal Epithelial Cells in Sheep. Int J Mol Sci 2024; 25:9316. [PMID: 39273267 PMCID: PMC11395331 DOI: 10.3390/ijms25179316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Newborn lambs are susceptible to pathogenic bacterial infections leading to enteritis, which affects their growth and development and causes losses in sheep production. It has been reported that N6-methyladenosine (m6A) is closely related to innate immunity, but the effect of m6A on sheep small intestinal epithelial cells (IECs) and the mechanism involved have not been elucidated. Here, we investigated the effects of m6A on lipopolysaccharide (LPS)-induced inflammatory responses, apoptosis and oxidative stress in primary sheep IECs. First, the extracted IECs were identified by immunofluorescence using the epithelial cell signature protein cytokeratin 18 (CK18), and the cellular activity of IECs induced by different concentrations of LPS was determined by the CCK8 assay. Meanwhile, LPS could induce the upregulation of mRNA and protein levels of IECs cytokines IL1β, IL6 and TNFα and the apoptosis marker genes caspase-3, caspase-9, Bax, and apoptosis rate, reactive oxygen species (ROS) levels and mRNA levels of CAT, Mn-SOD and CuZn-SOD, and METTL3 were found to be upregulated during induction. It was hypothesized that METTL3 may have a potential effect on the induction of IECs by LPS. Overexpression and knockdown of METTL3 in IECs revealed that a low-level expression of METTL3 could reduce the inflammatory response, apoptosis and ROS levels in LPS-induced IECs to some extent. The results suggest that METTL3 may be a genetic marker for potential resistance to cellular damage.
Collapse
Affiliation(s)
- Yanjun Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Ozdemir-Kumral ZN, Akgün T, Haşim C, Ulusoy E, Kalpakçıoğlu MK, Yüksel MF, Okumuş T, Us Z, Akakın D, Yüksel M, Gören Z, Yeğen BÇ. Intracerebroventricular administration of the exercise hormone irisin or acute strenuous exercise alleviates epileptic seizure-induced neuroinflammation and improves memory dysfunction in rats. BMC Neurosci 2024; 25:36. [PMID: 39103771 DOI: 10.1186/s12868-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Status epilepticus is a common and potentially life-threatening neurological emergency with a high risk for cognitive and neurobiological impairment. Our aim was to evaluate the neuroprotective effects of centrally administered irisin and acute exhausting exercise against oxidative brain injury and memory dysfunction due to a pentylenetetrazole (PTZ)-induced single seizure. Male Sprague Dawley rats with intracerebroventricular (icv) cannulas were randomly divided into intraperitoneally (ip) saline-injected control and PTZ-injected (45 mg/kg) seizure groups. Both the control and PTZ groups were then treated with irisin (7.5 µg/kg, 2 µl, icv), saline (2 µl, icv) or were forced to an acute bout of strenuous exercise before the ip injection of saline (control) or PTZ. Seizures were evaluated using the Racine score. To evaluate memory performance, a passive avoidance test was performed before and after PTZ injection. Following euthanasia at the 24th hour of seizure induction, brain tissues were removed for histopathological examination and for evaluating oxidative damage, antioxidant capacity, and neurotransmitter levels. RESULTS Glutamate/GABA imbalance observed in PTZ rats was corrected by irisin administration (p < 0.001/p < 0.01), while irisin prevented the generation of reactive oxygen species and lipid peroxidation (p < 0.05 - 0.001) and replenished the antioxidant catalase and glutathione levels (p < 0.01-0.01) in the cerebral tissue, and reduced the histologically evident neuronal injury due to a single seizure (p < 0.05 - 0.01). Irisin also delayed the onset of seizures (p < 0.05) and improved memory dysfunction (p < 0.05), but did not affect the severity of seizures. The acute exhaustive swimming exercise completed before PTZ-seizure depressed glutamate level (p < 0.001), maintained the oxidant/antioxidant balance, alleviated neuronal injury (p < 0.05 - 0.01) and upregulated cerebral BDNF expression (p < 0.05). CONCLUSION In conclusion, acute high-intensity exercise or exogenously administered irisin provides neuroprotection by maintaining the balance of excitatory/inhibitory neurotransmitters and oxidant/antioxidant systems.
Collapse
Affiliation(s)
- Zarife Nigâr Ozdemir-Kumral
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Tuğçe Akgün
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Ceren Haşim
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Ezgi Ulusoy
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | | | | | - Tunahan Okumuş
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Zeynep Us
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health Services, İstanbul, Türkiye
| | - Zafer Gören
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye.
| |
Collapse
|
20
|
Russo C, Santangelo R, Malaguarnera L, Valle MS. The "Sunshine Vitamin" and Its Antioxidant Benefits for Enhancing Muscle Function. Nutrients 2024; 16:2195. [PMID: 39064638 PMCID: PMC11279438 DOI: 10.3390/nu16142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Pathological states marked by oxidative stress and systemic inflammation frequently compromise the functional capacity of muscular cells. This progressive decline in muscle mass and tone can significantly hamper the patient's motor abilities, impeding even the most basic physical tasks. Muscle dysfunction can lead to metabolic disorders and severe muscle wasting, which, in turn, can potentially progress to sarcopenia. The functionality of skeletal muscle is profoundly influenced by factors such as environmental, nutritional, physical, and genetic components. A well-balanced diet, rich in proteins and vitamins, alongside an active lifestyle, plays a crucial role in fortifying tissues and mitigating general weakness and pathological conditions. Vitamin D, exerting antioxidant effects, is essential for skeletal muscle. Epidemiological evidence underscores a global prevalence of vitamin D deficiency, which induces oxidative harm, mitochondrial dysfunction, reduced adenosine triphosphate production, and impaired muscle function. This review explores the intricate molecular mechanisms through which vitamin D modulates oxidative stress and its consequent effects on muscle function. The aim is to evaluate if vitamin D supplementation in conditions involving oxidative stress and inflammation could prevent decline and promote or maintain muscle function effectively.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Rosa Santangelo
- Department of Medicine and Health Sciences, University of Catania, Via Santa Sofia, 97, 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
21
|
Guo X, Huang X, Yang Y, Dong L, Kong D, Zhang J. FNDC5/Irisin in dementia and cognitive impairment: update and novel perspective. Braz J Med Biol Res 2024; 57:e13447. [PMID: 38985081 PMCID: PMC11249199 DOI: 10.1590/1414-431x2024e13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/23/2024] [Indexed: 07/11/2024] Open
Abstract
Epidemiological surveys show that the incidence of age-related dementia and cognitive impairment is increasing and it has been a heavy burden for society, families, and healthcare systems, making the preservation of cognitive function in an increasingly aging population a major challenge. Exercise is beneficial for brain health, and FDNC5/irisin, a new exercise-induced myokine, is thought to be a beneficial mediator to cognitive function and plays an important role in the crosstalk between skeletal muscle and brain. This review provides a critical assessment of the recent progress in both fundamental and clinical research of FDNC5/irisin in dementia and cognitive impairment-related disorders. Furthermore, we present a novel perspective on the therapeutic effectiveness of FDNC5/irisin in alleviating these conditions.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Endocrinology and Metabolism, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong, China
| | - Xiaocheng Huang
- Department of Health Examination, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
| | - Yachao Yang
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
| | - Luying Dong
- Department of Health Examination, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
| | - Dehuan Kong
- Department of Endocrinology and Metabolism, Taian City Central Hospital, Taian, Shandong, China
| | - Jianmei Zhang
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
- Department of Geriatrics, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, Shandong, China
| |
Collapse
|
22
|
Chen J, Guo L, Wang C, Peng P, Wu J, Zhang H, Liu F, Li Q. Can irisin be developed as the molecular evolutionary clock based on the origin and functions? Gen Comp Endocrinol 2024; 352:114515. [PMID: 38582177 DOI: 10.1016/j.ygcen.2024.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Irisin, a myokine identified in 2012, has garnered research interest for its capacity to induce browning of adipocytes and improve metabolic parameters. As such, the potential therapeutic applications of this exercise-induced peptide continue to be explored. Though present across diverse animal species, sequence analysis has revealed subtle variation in the irisin protein. In this review, we consider the effects of irisin on disease states in light of its molecular evolution. We summarize current evidence for irisin's influence on pathologies and discuss how sequence changes may inform development of irisin-based therapies. Furthermore, we propose that the phylogenetic variations in irisin could potentially be leveraged as a molecular clock to elucidate evolutionary relationships.
Collapse
Affiliation(s)
- Junyu Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China
| | - Lijun Guo
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China
| | - Chenglong Wang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China
| | - Peng Peng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China
| | - Jiaming Wu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China
| | - Huaidong Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, PR China
| | - Feng Liu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, PR China.
| | - Qin Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, PR China.
| |
Collapse
|
23
|
Horwitz A, Birk R. Irisin Ameliorate Acute Pancreatitis and Acinar Cell Viability through Modulation of the Unfolded Protein Response (UPR) and PPARγ-PGC1α-FNDC5 Pathways. Biomolecules 2024; 14:643. [PMID: 38927047 PMCID: PMC11201894 DOI: 10.3390/biom14060643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Acute pancreatitis (AP) entails pancreatic inflammation, tissue damage and dysregulated enzyme secretion, including pancreatic lipase (PL). The role of irisin, an anti-inflammatory and anti-apoptotic cytokine, in AP and exocrine pancreatic stress is unclear. We have previously shown that irisin regulates PL through the PPARγ-PGC1α-FNDC5 pathway. In this study, we investigated irisin and irisin's pathway on AP in in vitro (AR42J-B13) and ex vivo (rat primary acinar) models using molecular, biochemical and immunohistochemistry methodology. Pancreatitis induction (cerulein (cer)) resulted in a significant up-regulation of the PPARγ-PGC1α-FNDC5 axis, PL expression and secretion and endoplasmic reticulum (ER) stress unfolded protein response (UPR) signal-transduction markers (CHOP, XBP-1 and ATF6). Irisin addition in the cer-pancreatitis state resulted in a significant down-regulation of the PPARγ-PGC1α-FNDC5 axis, PPARγ nucleus-translocation and inflammatory state (TNFα and IL-6) in parallel to diminished PL expression and secretion (in vitro and ex vivo models). Irisin addition up-regulated the expression of pro-survival UPR markers (ATF6 and XBP-1) and reduced UPR pro-apoptotic markers (CHOP) under cer-pancreatitis and induced ER stress (tunicamycin), consequently increasing cells viability. Irisin's pro-survival effect under cer-pancreatitis state was abolished under PPARγ inhibition. Our findings suggest irisin as a potential therapeutic option for AP via its ability to up-regulate pro-survival UPR signals and activate the PPARγ-PGC1α-FNDC5 pathway.
Collapse
Affiliation(s)
| | - Ruth Birk
- Nutrition Department, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
24
|
Jeong D, Park K, Lee J, Choi J, Du H, Jeong H, Li L, Sakai K, Kang S. Effects of Resistance Exercise and Essential Amino Acid Intake on Muscle Quality, Myokine, and Inflammation Factors in Young Adult Males. Nutrients 2024; 16:1688. [PMID: 38892621 PMCID: PMC11174838 DOI: 10.3390/nu16111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Recently, many studies have been devoted to discovering nutrients for exercise-like effects. Resistance exercise and the intake of essential amino acids (EAAs) are known to be factors that can affect muscle mass and strength improvement. The purpose of this study was to investigate changes in muscle quality, myokines, and inflammation in response to resistance exercise and EAA supplementation. METHODS Thirty-four males volunteered to participate in this study. They were assigned to four groups: (1) placebo (CO), (2) resistance exercise (RE), (3) EAA supplementation, and (4) RE + EAA supplementation. Body composition, muscle quality, myokines, and inflammation were measured at baseline and four weeks after treatment. RESULTS Lean body fat had decreased in both RE and RE + EAA groups. Lean body mass had increased in only the RE + EAA group. In all groups except for CO, irisin, myostatin A, and TNF-α levels had decreased. The grip strength of the right hand and trunk flexion peak torque increased in the RE group. The grip strength of the left hand, trunk flexion peak torque, and knee flexion peak torque of the left leg were increased in RE + EAA. CONCLUSIONS RE, EAA, and RE + EAA could effectively improve the muscle quality, myokine, and inflammation factors of young adult males. This finding highlights the importance of resistance exercise and amino acid intake.
Collapse
Affiliation(s)
- Deokhwa Jeong
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (D.J.); (J.C.); (H.D.)
| | - Kyumin Park
- Center for Sports Science in Gangwon, Chuncheon 24239, Gangwon-do, Republic of Korea;
| | - Jinseok Lee
- Department of Sport Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (J.L.); (H.J.); (L.L.)
| | - Jiye Choi
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (D.J.); (J.C.); (H.D.)
| | - Haifeng Du
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (D.J.); (J.C.); (H.D.)
| | - Hyeongmo Jeong
- Department of Sport Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (J.L.); (H.J.); (L.L.)
| | - Liangliang Li
- Department of Sport Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (J.L.); (H.J.); (L.L.)
| | - Kenji Sakai
- Chemicals & Life Science Division, Nagase Korea Corporation, Seoul 04527, Republic of Korea;
| | - Sunghwun Kang
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (D.J.); (J.C.); (H.D.)
- Department of Sport Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (J.L.); (H.J.); (L.L.)
| |
Collapse
|
25
|
Ali NH, Alhamdan NA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Irisin/PGC-1α/FNDC5 pathway in Parkinson's disease: truth under the throes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1985-1995. [PMID: 37819389 DOI: 10.1007/s00210-023-02726-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Parkinson's disease (PD) is considered one of the most common neurodegenerative brain diseases which involves the deposition of α-synuclein. Irisin hormone, a newly discovered adipokine, has a valuable role in diverse neurodegenerative diseases. Therefore, this review aims to elucidate the possible role of the irisin hormone in PD neuropathology. Irisin hormone has a neuroprotective effect against the development and progression of various neurodegenerative disorders by increasing the expression of brain-derived neurotrophic factor (BDNF). Irisin hormone has anti-inflammatory, anti-apoptotic, and anti-oxidative impacts, thereby reducing the expression of the pro-inflammatory cytokines and the progression of neuroinflammation. Irisin-induced PGC-1α could potentially prevent α-synuclein-induced dopaminergic injury, neuroinflammation, and neurotoxicity in PD. Inhibition of NF-κB by irisin improves PGC-1α and FNDC5 signaling pathway with subsequent attenuation of PD neuropathology. Therefore, the irisin/PGC-1α/FNDC5 pathway could prevent dopaminergic neuronal injury. In conclusion, the irisin hormone has a neuroprotective effect through its anti-inflammatory and antioxidant impacts with the amelioration of brain BDNF levels. Further preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Nourah Ahmad Alhamdan
- Department of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
26
|
Pinkas M, Brzozowski T. The Role of the Myokine Irisin in the Protection and Carcinogenesis of the Gastrointestinal Tract. Antioxidants (Basel) 2024; 13:413. [PMID: 38671861 PMCID: PMC11047509 DOI: 10.3390/antiox13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Recently discovered irisin, a member of the myokines family, is a potential mediator of exercise-induced energy metabolism and a factor promoting browning of the white adipose tissue. Recent evidence indicates that this myokine, released from contracting muscles, can mediate the beneficial effects of exercise on health. Irisin may be a potential therapeutic agent against obesity and has been shown to play an important role in the protection of various cells, tissues, and organs due to its anti-inflammatory, antioxidative, and anti-cancer properties. Our aim was to review the recent experimental and clinical studies on irisin and its expression, release into the bloodstream, tissue targets, and potential contribution to the protective effects of exercise in the gastrointestinal tract. Particular emphasis was placed on inflammatory bowel disease, intestinal ischemia/reperfusion injury, periodontitis, and other digestive tract disorders, including carcinogenesis. Overall, irisin holds significant potential as a novel target molecule, offering a safe and therapeutic approach to treating various gastrointestinal diseases.
Collapse
Affiliation(s)
- Monika Pinkas
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland;
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland;
| |
Collapse
|
27
|
Ferreira J, Afonso J, Longatto-Filho A, Roque S, Carneiro A, Vila I, Silva C, Cunha C, Mesquita A, Cotter J, Correia-Neves M, Mansilha A, Cunha P. Inflammation Is a Histological Characteristic of Skeletal Muscle in Chronic Limb Threatening Ischemia. Ann Vasc Surg 2024; 99:10-18. [PMID: 37931803 DOI: 10.1016/j.avsg.2023.09.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The loss of skeletal muscle is a prognostic factor in several diseases including in patients with chronic limb threatening ischemia (CLTI). Patients with CLTI also have a lower skeletal mass and area when compared to those with claudication. However, there are no currently available data regarding the histological characteristics of core muscles in patients with CLTI. This study aims to determine the differences in core skeletal muscles between patients with claudication and those with CLTI. The second aim is to evaluate the differences in myokines, which are molecules secreted by skeletal muscle, between patients with claudication and those with CLTI. METHODS An observational, prospective study was conducted from January 2018 to July 2022 involving consecutive patients with peripheral arterial disease (PAD). The clinical characteristics were registered. In PAD patients with surgical indication for common femoral artery approach, samples of sartorius skeletal muscle (and not from the limb muscles directly involved in the ischemic process) were collected. The samples were submitted to histological characterization on hematoxylin-eosin and to immunohistochemical analysis to detect CD45+ leukocytes and CD163+ macrophages. The extent of the inflammatory cells (leukocytes and macrophages) was semiquantitatively assessed using a 0-to-4 grade scale as follows: absent (0†), mild (†), moderate (††), severe (†††), and very severe (††††). Serum levels of myokines: irisin, myostatin, IL-8, and lL-6 were determined with multiplex bead-based immunoassay. RESULTS 119 patients (mean age: 67.58 ± 9.60 years old, 79.80% males) 64 with claudication and 54 with CLTI were enrolled in the study. No differences were registered between patients with claudication and those with CLTI on age, gender, cardiovascular risk factors, and medication, except on smoking habits. There was a significantly higher prevalence of smokers and a higher smoking load in the claudication group. Samples of sartorius skeletal muscle from 40 patients (14 with claudication and 26 with CLTI) were submitted to histological analysis. No differences were found in skeletal muscle fibers preservation, trauma, or hemorrhage (on hematoxylin-eosin staining). However, in the immunohistochemistry study, we found more inflammatory cells CD45+ leukocytes in patients with CLTI when compared to those with claudication [CD45+ ≥ moderate (††): claudication (n = 14): 4; 28.57%; CLTI (n = 25): 16; 64.00%; P = 0.034]. Patients with CLTI also had higher tissue levels of CD163+ macrophages, but this difference was not significant [CD163+ ≥ moderate (††): claudication (n = 13): 7; 53.85%; CLTI (n = 27): 21; 77.78%; P = 0.122]. The serum levels of the myokines, irisin, and myostatin were below the lower limit of detection, in the majority of patients, so no valid results were obtained. However, patients with CLTI had a higher serum level of Interleukin (IL)-6 and IL-8. CONCLUSIONS CLTI patients exhibit increased quantities of leukocytes in their sartorius muscle, as well as elevated serum levels of myokines IL-8 and IL-6. Inflamed skeletal muscle can contribute to the loss of muscle mass and account for the lower density of skeletal muscle observed in CLTI. Additionally, inflamed skeletal muscle may contribute to the development of systemic inflammation through the secretion of pro-inflammatory cytokines into the systemic circulation. Halting the inflammatory process could eventually improve the prognosis of CLTI patients.
Collapse
Affiliation(s)
- Joana Ferreira
- Vascular Surgery Department - Physiology and Surgery, Centro Hospitalar Universitário de São João, Porto, Portugal; Life and Health Science Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal; Academic Center Hospital da Senhora da Oliveira, Guimarães, Portugal; Clinical Academic Center Hospital de Trás-os-Montes e Alto Douro-Professor Doutor Nuno Grande-CACTMAD, Vila Real, Portugal.
| | - Julieta Afonso
- Life and Health Science Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Science Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal; Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Susana Roque
- Life and Health Science Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Alexandre Carneiro
- Radiology Department, Unidade Local de Saúde Alto Minho, Viana do Castelo, Portugal
| | - Isabel Vila
- Academic Center Hospital da Senhora da Oliveira, Guimarães, Portugal; Medicine Department, Hospital da Senhora da Oliveira, Guimarães, Portugal; Internal Medicine Department, Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Hospital da Senhora da Oliveira, Guimarães, Portugal
| | - Cristina Silva
- Academic Center Hospital da Senhora da Oliveira, Guimarães, Portugal; Medicine Department, Hospital da Senhora da Oliveira, Guimarães, Portugal; Internal Medicine Department, Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Hospital da Senhora da Oliveira, Guimarães, Portugal
| | - Cristina Cunha
- Academic Center Hospital da Senhora da Oliveira, Guimarães, Portugal; Medicine Department, Hospital da Senhora da Oliveira, Guimarães, Portugal; Internal Medicine Department, Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Hospital da Senhora da Oliveira, Guimarães, Portugal
| | - Amílcar Mesquita
- Vascular Surgery Department, Hospital da Senhora da Oliveira, Guimarães, Portugal
| | - Jorge Cotter
- Life and Health Science Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal; Academic Center Hospital da Senhora da Oliveira, Guimarães, Portugal; Medicine Department, Hospital da Senhora da Oliveira, Guimarães, Portugal; Internal Medicine Department, Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Hospital da Senhora da Oliveira, Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Science Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Armando Mansilha
- Vascular Surgery Department - Physiology and Surgery, Centro Hospitalar Universitário de São João, Porto, Portugal; Department of Angiology and Vascular Surgery, Centro Hospitalar Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Cunha
- Life and Health Science Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal; Academic Center Hospital da Senhora da Oliveira, Guimarães, Portugal; Medicine Department, Hospital da Senhora da Oliveira, Guimarães, Portugal; Internal Medicine Department, Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Hospital da Senhora da Oliveira, Guimarães, Portugal
| |
Collapse
|
28
|
Kaminska B, Kurowicka B, Kiezun M, Dobrzyn K, Kisielewska K, Gudelska M, Kopij G, Szymanska K, Zarzecka B, Koker O, Zaobidna E, Smolinska N, Kaminski T. The Role of Adipokines in the Control of Pituitary Functions. Animals (Basel) 2024; 14:353. [PMID: 38275812 PMCID: PMC10812442 DOI: 10.3390/ani14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The pituitary gland is a key endocrine gland in all classes of vertebrates, including mammals. The pituitary gland is an important component of hypothalamus-pituitary-target organ hormonal regulatory axes and forms a functional link between the nervous system and the endocrine system. In response to hypothalamic stimuli, the pituitary gland secretes a number of hormones involved in the regulation of metabolism, stress reactions and environmental adaptation, growth and development, as well as reproductive processes and lactation. In turn, hormones secreted by target organs at the lowest levels of the hormonal regulatory axes regulate the functions of the pituitary gland in the process of hormonal feedback. The pituitary also responds to other peripheral signals, including adipose-tissue-derived factors. These substances are a broad group of peptides known as adipocytokines or adipokines that act as endocrine hormones mainly involved in energy homeostasis. Adipokines, including adiponectin, resistin, apelin, chemerin, visfatin, and irisin, are also expressed in the pituitary gland, and they influence the secretory functions of this gland. This review is an overview of the existing knowledge of the relationship between chosen adipose-derived factors and endocrine functions of the pituitary gland, with an emphasis on the pituitary control of reproductive processes.
Collapse
Affiliation(s)
- Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Beata Kurowicka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Barbara Zarzecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Oguzhan Koker
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| |
Collapse
|
29
|
Zhang QX, Zhang LJ, Zhao N, Chang SH, Yang L. FNDC5/Irisin protects neurons through Caspase3 and Bax pathways. Cell Biochem Funct 2024; 42:e3912. [PMID: 38269519 DOI: 10.1002/cbf.3912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Irisin is a glycosylated protein formed from the hydrolysis of fibronectin type III domain-containing protein 5 (FNDC5). Recent studies have demonstrated that FNDC5/Irisin is involved in the regulation of glucose and lipid metabolism, it can inhibit inflammation and have neuroprotective effects. However, the effect and mechanism of FNDC5/Irisin on motor neuron-like cell lines (NSC-34) have not been reported. In this study, we used lipopolysaccharide to construct cellular oxidative stress injury models and investigated the potential roles of FNDC5/Irisin on neurons by different cellular and molecular pathways. Taken together, our findings showed that FNDC5/Irisin can protect neurons, and this effect might be associated with Caspase3 and Bax pathways. These results laid the foundation for neuronal protection and clinical translation of FNDC5/Irisin therapy.
Collapse
Affiliation(s)
- Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Sheng-Hui Chang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Wang Y, Yang Y, Song Y. Cardioprotective Effects of Exercise: The Role of Irisin and Exosome. Curr Vasc Pharmacol 2024; 22:316-334. [PMID: 38808716 DOI: 10.2174/0115701611285736240516101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Exercise is an effective measure for preventing and treating cardiovascular diseases, although the exact molecular mechanism remains unknown. Previous studies have shown that both irisin and exosomes can improve the course of cardiovascular disease independently. Therefore, it is speculated that the cardiovascular protective effect of exercise is also related to its ability to regulate the concentrations of irisin and exosomes in the circulatory system. In this review, the potential synergistic interactions between irisin and exosomes are examined, as well as the underlying mechanisms including the AMPK/PI3K/AKT pathway, the TGFβ1/Smad2/3 pathway, the PI3K/AKT/VEGF pathway, and the PTEN/PINK1/Parkin pathway are examined. This paper provides evidence to propose that exercise promotes the release of exosomes enriched with irisin, miR-486-5p and miR-342-5p from skeletal muscles, which results in the activation protective networks in the cardiovascular system. Moreover, the potential synergistic effect in exosomal cargo can provide new ideas for clinical research of exercise mimics.
Collapse
Affiliation(s)
- Yuehuan Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Yi Yang
- Fitness Monitoring and Chronic Disease Intervention research center, Wuhan Sports University, Wuhan, 430079, China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China
| | - Yanjuan Song
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| |
Collapse
|
31
|
Zhao ZW, Lin XX, Guo YZ, He X, Zhang XT, Huang Y. Irisin alleviates hyperoxia-induced bronchopulmonary dysplasia through activation of Nrf2/HO-1 pathway. Peptides 2023; 170:171109. [PMID: 37804931 DOI: 10.1016/j.peptides.2023.171109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common pulmonary injury among premature infants, which is often caused by hyperoxia exposure. Irisin is a novel hormone-like myokine derived mainly from skeletal muscles as well as adipose tissues. Many studies have indicated that Irisin exert a variety of properties against hyperoxia-induced inflammation and oxidative stress (OS). We aimed to evaluate the effects of irisin on hyperoxia-induced lung injury explore the underlying mechanisms. METHODS BPD model was established after exposing newborn mouse to 85% oxygen. BPD mouse received continuous intraperitoneal injection of irisin at a dose of 25 μg/kg/day. Lung tissues were collected for histological examination at 7 and 14 days after birth. The alveolarization and alveolar vascularization of each animal was assessed. Levels of oxidative stress indicators, and the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in lung tissues were detected at 14 days after birth. RESULTS Hyperoxia exposure induced a markedly alveolar simplification and a disrupted alveolar angiogenesis, which was ameliorated by irisin treatment. The hyperoxia-induced increase in these oxidative stress indicators was significantly reversed by irisin treatment. The Nrf2/HO-1 pathway is inducted in the hyperoxia-induced BPD mouse model, which is further activated by irisin treatment. CONCLUSION Our results demonstrated the beneficial effects of irisin in reducing the OS, enhancing alveolarization, and promoting vascular development through activation of Nrf2/HO-1 axis in a hyperoxia-induced experimental model of BPD.
Collapse
Affiliation(s)
- Zi-Wen Zhao
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Xiao-Xia Lin
- Department of Pediatrics, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China
| | - Yong-Zhe Guo
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China
| | - Xi He
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China
| | - Xin-Tao Zhang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China
| | - Yu Huang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
32
|
Wang Y, Wang M, Wang Y. Irisin: A Potentially Fresh Insight into the Molecular Mechanisms Underlying Vascular Aging. Aging Dis 2023; 15:2491-2506. [PMID: 38029393 PMCID: PMC11567262 DOI: 10.14336/ad.2023.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Aging is a natural process that affects all living organisms, including humans. Aging is a complex process that involves the gradual deterioration of various biological processes and systems, including the cardiovascular system. Vascular aging refers to age-related changes in blood vessels. These changes can increase the risk of developing cardiovascular diseases, such as hypertension, atherosclerosis, and stroke. Recently, an exercise-induced muscle factor, irisin, was found to directly improve metabolism and regulate the balance of glucolipid metabolism, thereby counteracting obesity and insulin resistance. Based on a growing body of evidence, irisin modulates vascular aging. Adenosine monophosphate-activated protein kinase (AMPK) serves as a pivotal cellular energy sensor and metabolic modulator, acting as a central signaling cascade to coordinate various cellular processes necessary for maintaining vascular homeostasis. The vascular regulatory effects of irisin are closely intertwined with its interaction with the AMPK pathway. In conclusion, understanding the molecular processes used by irisin to regulate changes in vascular diseases caused by aging may inspire the development of techniques that promote healthy vascular aging. This review sought to describe the impact of irisin on the molecular mechanisms of vascular aging, including inflammation, oxidative stress, and epigenetics, from the perspective of endothelial cell function and vascular macroregulation, and summarize the multiple signaling pathways used by irisin to regulate vascular aging.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
33
|
Nikbin S, Fardad G, Yazdi S, Bahman MH, Ettefagh P, Khalegi F, Molaei M, Azizbeigi K, Guerra-Balic M, Montané J, Zargani M, Azarbayjani MA. Aerobic exercise training reduces deep-frying oil-induced apoptosis of hippocampal tissue by reducing oxidative stress in male rats. J Chem Neuroanat 2023; 133:102328. [PMID: 37652270 DOI: 10.1016/j.jchemneu.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Deep-frying oil (DFO) contains high amounts of free radicals, and consuming foods prepared with this method causes damage to nervous tissue due to oxidative stress (OS). Since moderate-intensity aerobic exercise training (AT) reduces OS, the current search investigated the effects of AT on OS, apoptosis, and neurogenesis markers in the hippocampal tissue of DFO-fed rats. Eighteen Wistar male rats (200-280 gr) were randomly allocated to a control group fed with normal food (Con-ND), a control group receiving DFO (Con-DFO), and a group receiving DFO-aerobic exercise (EX-DFO) (n = 6 in each). DFO was gavaged for four weeks, five days a week, with a dose of 2 ml. AT included running on a treadmill for four weeks and five sessions per week (40 min per session). The expression of genes B-cell lymphoma 2 (BCL-2), Protein X associated with Bcl-2 (BAX), Caspase-3 (Casp-3), and Caspase-9 (Casp-9) was measured by PCR method. The ELISA method was used to calculate levels of Superoxide dismutase (SOD) and Catalase (CAT) activity, malondialdehyde (MDA), and Brain-Derived Neurotrophic Factor (BDNF). Also, the expression of the proteins Cannabinoid receptor type 1(CB1), Cannabinoid receptor type2 (CB2), Glial fibrillary acidic protein (GFAP), Neuronal nuclei (NeuN), and DNA fragmentation was evaluated by Immunohistochemical and TUNEL staining. DFO feeding led to a significant increase in apoptotic markers, such as BAX, Casp-3, and Casp-9 gene expression, and DNA fragmentation (p ≤ 0.05) while decreasing BDNF concentration SOD activity (p ≤ 0.05). AT significantly reduced the BAX, Casp-3, Casp-9, MDA, CB1, GFAP, and DNA fragmentation (p ≤ 0.05). In conclusion, AT can reduce the harmful effects of feeding with DFO on the hippocampal tissue.
Collapse
Affiliation(s)
- Sina Nikbin
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gita Fardad
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sara Yazdi
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Hosseini Bahman
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Ettefagh
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khalegi
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mino Molaei
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kamal Azizbeigi
- Exercise Physiology, Department of Physical Education, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Myriam Guerra-Balic
- Research Group on Health, Physical Activity and Sport (SAFE), Faculty of Psychology, Education and Sport Sciences Blanquerna, Ramon Llull University, Barcelona, Spain
| | - Joel Montané
- Research Group on Health, Physical Activity and Sport (SAFE), Faculty of Psychology, Education and Sport Sciences Blanquerna, Ramon Llull University, Barcelona, Spain
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Azarbayjani
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
34
|
Hou Q, Song R, Zhao X, Yang C, Feng Y. Lower circulating irisin levels in type 2 diabetes mellitus patients with chronic complications: A meta-analysis. Heliyon 2023; 9:e21859. [PMID: 38027674 PMCID: PMC10658327 DOI: 10.1016/j.heliyon.2023.e21859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The aim of this study was to provide evidence of the differences in circulating irisin levels between type 2 diabetes mellitus (T2DM) patients with and without chronic complications. Methods We performed a meta-analysis to compare circulating irisin levels between different groups. Literature search was conducted in PubMed, Cochrane Library, Embase, WanFang, and China National Knowledge Infrastructure databases from inception through December 2022. Random effects model and standard mean difference (SMD) was used to calculate the pooled outcomes with 95 % confidence intervals (CIs). Results Forty-two studies that matched the inclusion criteria were analyzed. Circulating irisin levels were significantly lower in T2DM patients with chronic complications than those in T2DM patients without chronic complications (SMD: -1.43; 95 % CI: -1.76 to -1.09; p < 0.00001) and healthy control group (SMD: -2.40; 95 % CI: -3.02 to -1.77; p < 0.00001). Moreover, irisin levels further decrease with the aggravation of complications in T2DM patients with diabetic nephropathy or diabetic retinopathy. Conclusion Compared with T2DM patients without chronic complications, T2DM patients with chronic complications had lower circulating irisin levels. In addition, irisin levels were negatively correlated with the severity of chronic complications.
Collapse
Affiliation(s)
- Qiaoyu Hou
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
- Department of Pharmacy, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China
| | - Rongjing Song
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Xuecheng Zhao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
35
|
Bellettini-Santos T, Batista-Silva H, Marcolongo-Pereira C, Quintela-Castro FCDA, Barcelos RM, Chiepe KCMB, Rossoni JV, Passamani-Ambrosio R, da Silva BS, Chiarelli-Neto O, Garcez ML. Move Your Body toward Healthy Aging: Potential Neuroprotective Mechanisms of Irisin in Alzheimer's Disease. Int J Mol Sci 2023; 24:12440. [PMID: 37569815 PMCID: PMC10420140 DOI: 10.3390/ijms241512440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, having a significant global burden and increasing prevalence. Current treatments for AD only provide symptomatic relief and do not cure the disease. Physical activity has been extensively studied as a potential preventive measure against cognitive decline and AD. Recent research has identified a hormone called irisin, which is produced during exercise, that has shown promising effects on cognitive function. Irisin acts on the brain by promoting neuroprotection by enhancing the growth and survival of neurons. It also plays a role in metabolism, energy regulation, and glucose homeostasis. Furthermore, irisin has been found to modulate autophagy, which is a cellular process involved in the clearance of protein aggregates, which are a hallmark of AD. Additionally, irisin has been shown to protect against cell death, apoptosis, oxidative stress, and neuroinflammation, all of which are implicated in AD pathogenesis. However, further research is needed to fully understand the mechanisms and therapeutic potential of irisin in AD. Despite the current gaps in knowledge, irisin holds promise as a potential therapeutic target for slowing cognitive decline and improving quality of life in AD patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Michelle Lima Garcez
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo 29703-858, Brazil; (T.B.-S.); (H.B.-S.); (C.M.-P.); (F.C.d.A.Q.-C.); (R.M.B.); (K.C.M.B.C.); (J.V.R.J.); (R.P.-A.); (B.S.d.S.); (O.C.-N.)
| |
Collapse
|
36
|
Hu P, Li K, Peng XX, Kan Y, Yao TJ, Wang ZY, Li Z, Liu HY, Cai D. Curcumin derived from medicinal homologous foods: its main signals in immunoregulation of oxidative stress, inflammation, and apoptosis. Front Immunol 2023; 14:1233652. [PMID: 37497225 PMCID: PMC10368479 DOI: 10.3389/fimmu.2023.1233652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
It has been for thousands of years in China known medicinal homologous foods that can be employed both as foods and medicines to benefit human and animal health. These edible herbal materials perform divert roles in the regulation of metabolic disorders, cancers, and immune-related diseases. Curcumin, the primary component derived from medicinal homologous foods like curcuma longa rhizome, is reported to play vital actions in organic activities, such as the numerous pharmacological functions including anti-oxidative stress, anti-inflammation and anti/pro-apoptosis in treating various diseases. However, the potential mechanisms of curcumin-derived modulation still need to be developed and attract more attention worldwide. Given that these signal pathways are enrolled in important bioactive reactions, we collected curcumin's last achievements predominantly on the immune-regulation signals with the underlying targetable strategies in the last 10 years. This mini-review will be helpful to accelerate curcumin and other extracts from medicinal homologous foods use in future human clinical applications.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Xu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong-Jia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
37
|
Han F, Ding ZF, Shi XL, Zhu QT, Shen QH, Xu XM, Zhang JX, Gong WJ, Xiao WM, Wang D, Chen WW, Hu LH, Lu GT. Irisin inhibits neutrophil extracellular traps formation and protects against acute pancreatitis in mice. Redox Biol 2023; 64:102787. [PMID: 37392517 DOI: 10.1016/j.redox.2023.102787] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023] Open
Abstract
INTRODUCTION Irisin is a newly discovered myokine which links exercise to inflammation and inflammation-related diseases through macrophage regulation. However, the effect of irisin on the activity of inflammation related immune cells (such as neutrophils) has not been clearly described. OBJECTIVES The objective of our study was to explore the effect of irisin on the neutrophil extracellular traps (NETs) formation. METHODS Phorbol-12-myristate-13-acetate (PMA) was used to construct a classic neutrophil inflammation model that was used to observe the formation of NETs in vitro. We studied the effect of irisin on NETs formation and its regulation mechanism. Subsequently, acute pancreatitis (AP) was used to verify the protective effect of irisin in vivo, which was an acute aseptic inflammatory response disease model closely related to NETs. RESULTS Our study found that addition of irisin significantly reduced the formation of NETs via regulation of the P38/MAPK pathway through integrin αVβ5, which might be the one of key pathways in NETs formation, and which could theoretically offset the immunoregulatory effect of irisin. Systemic treatment with irisin reduced the severity of tissue damage common in the disease and inhibited the formation of NETs in pancreatic necrotic tissue of two classical AP mouse models. CONCLUSION The findings confirmed for the first time that irisin could inhibit NETs formation and protect mice from pancreatic injury, which further elucidated the protective effect of exercise on acute inflammatory injury.
Collapse
Affiliation(s)
- Fei Han
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zi-Fan Ding
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; International Sport Management, Health and Life Sciences, Northumbria University Newcastle, NE1 8ST, UK
| | - Xiao-Lei Shi
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qing-Tian Zhu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qin-Hao Shen
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xing-Meng Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Xian Zhang
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei-Juan Gong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei-Ming Xiao
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Wang
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wei-Wei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Liang-Hao Hu
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Guo-Tao Lu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
38
|
Carmona-Maurici J, Rosa A, Azcona-Granada N, Peña E, Ricart-Jané D, Viñas A, López-Tejero MD, Domingo JC, Miñarro A, Baena-Fustegueras JA, Peinado-Onsurbe J, Pardina E. Irisin as a Novel Biomarker of Subclinical Atherosclerosis in Severe Obesity. Int J Mol Sci 2023; 24:ijms24098171. [PMID: 37175880 PMCID: PMC10179106 DOI: 10.3390/ijms24098171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Severe obesity (SO) can accelerate atherosclerosis and the onset of acute cardiovascular events. The diagnosis of atherosclerosis in the context of a high body mass index (BMI) can be challenging, making the identification of biomarkers clinically relevant. We aimed to assess the usefulness of irisin as a biomarker for subclinical atherosclerosis in participants with SO. This prospective observational study included 61 participants undergoing bariatric surgery for SO, defined as a BMI >40 kg/m2 or >35 kg/m2 with at least one comorbidity. Atherosclerotic plaques were detected by ultrasound. Plasma samples were obtained 1 month before and at 6 and 12 months after bariatric surgery to measure irisin by ELISA. Additionally, subcutaneous samples of adipose tissue were taken and genotyped to identify irisin polymorphism rs3480. Irisin levels were positively correlated with BMI (r = 0.23, p = 0.0064), negatively correlated with atheroma-related parameters (e.g., carotid intima-media thickness), and lower in subjects with atheroma (p < 0.0002). Irisin also showed good overall accuracy for discriminating plaque presence (AUC, 0.81; 95% CI, 0.6956-0.9156). However, the rs3480 polymorphism correlated with neither the irisin levels nor the presence of atheromas. Iirisin could identify subclinical atherosclerosis in SO and might facilitate clinical diagnosis.
Collapse
Affiliation(s)
- Júlia Carmona-Maurici
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Araceli Rosa
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Centre for Biomedical Research Network on Mental Health (CIBERSAM), Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Natalia Azcona-Granada
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Elionora Peña
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - David Ricart-Jané
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Anna Viñas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Maria Dolores López-Tejero
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Joan Carles Domingo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Antonio Miñarro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Juan Antonio Baena-Fustegueras
- Gastrointestinal Surgery Department, Arnau de Vilanova University Hospital, IRB Lleida, University of Lleida, 25198 Lleida, Spain
| | - Julia Peinado-Onsurbe
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Eva Pardina
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
39
|
Us Altay D, Onder S, Etgu F, Uner A, Noyan T. A newly identified myokine: irisin, and its relationship with chronic spontaneous urticaria and inflammation. Arch Dermatol Res 2023; 315:437-442. [PMID: 35948647 PMCID: PMC9365215 DOI: 10.1007/s00403-022-02378-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022]
Abstract
Chronic spontaneous urticaria (CSU) is an important dermatological disease involving severe itchy urticaria lesions and/or angioedema. Urticaria and angioedema occur in the community at a rate of 25-30%. Many factors, such as inflammation, have been implicated in the etiology of CSU. Irisin is a newly identified adipocytokine shown by research to exhibit anti-inflammatory properties in addition to its many other effects. The aim of the study was to investigate, for the first time in the literature, the significance of serum irisin levels in patients with CSU. Seventy-eight individuals were evaluated. The study group included 44 patients diagnosed with CSU, and the control group consisted of 34 healthy individuals. Serum samples were collected, and serum irisin, Interleukin-2 (IL-2), Interleukin-3 (IL-3), Tumor Necrosis Factor-alpha (TNF-α), and Interferon-ɣ (IF-ɣ) levels were determined using the enzyme-linked immunosorbent assay (ELISA) method. Irisin was studied for the first time in patients with CSU and exhibited a significantly higher level in the control group than in the patient group (p = 0.020). IL-2, IL-3, and IF-ɣ levels were higher in the CSU group than in the control group, although the results were not statistically significant. Only TNF-α results increased significantly. Correlation analysis was applied to determine the relationships between irisin and IF-ɣ and IL-3 levels. This revealed that the irisin parameter was significantly and positively correlated with IF-ɣ and IL-3 in patients with CSU (r = 0.518, p = 0.016 and r = 0.536, p = 0.022, respectively). This is the first report to evaluate irisin as an inflammatory biomarker in CSU. Irisin levels in patients with CSU were low, suggesting that irisin may pay a role in the pathogenesis of CSU and may be a marker showing the severity of the disease.
Collapse
Affiliation(s)
- Diler Us Altay
- grid.412366.40000 0004 0399 5963Faculty of Health Sciences, Department of Nutrition and Dietetics, Ordu University, Ordu, Turkey
| | - Sevda Onder
- grid.412366.40000 0004 0399 5963Faculty of Medicine, Department of Dermatology, Ordu University, Ordu, Turkey
| | - Fatma Etgu
- grid.412366.40000 0004 0399 5963Faculty of Medicine, Department of Dermatology, Ordu University, Ordu, Turkey
| | - Abdullah Uner
- grid.412366.40000 0004 0399 5963Faculty of Medicine, Department of Medical Biochemistry, Ordu University, Ordu, Turkey
| | - Tevfik Noyan
- grid.412366.40000 0004 0399 5963Faculty of Medicine, Department of Medical Biochemistry, Ordu University, Ordu, Turkey
| |
Collapse
|
40
|
Jiang X, Yan Q, Lao W, Lin Q, Cao H, Chen L, Chen J, Yu X, Liu F. Irisin attenuates ethanol-induced behavioral deficits in mice through activation of Nrf2 and inhibition of NF-κB pathways. Metab Brain Dis 2023; 38:1643-1656. [PMID: 36947333 DOI: 10.1007/s11011-023-01202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
This study aims to investigate the effect of irisin on ethanol-induced behavioral deficits and explore the underlying mechanisms. A mouse model of ethanol addiction/withdrawal was constructed through chronic ethanol administration. Depressive-like behaviors were evaluated by the tail suspension test and forced swimming test, and anxiety-like behaviors were evaluated by the marble-burying test and elevated plus maze test. The expression of Nrf2 was measured by western blotting. Levels of inflammatory mediators (NF-κB, TNF-α, IL-1β and IL-6) and oxidative stress factors (ROS, MDA, GSH and SOD) were detected by ELISA. The ethanol-induced PC12/BV2 cell injury model was used to elucidate whether the effect of irisin on ethanol-induced neurological injury was related to anti-inflammatory and antioxidant mechanisms. Ethanol-induced ethanol preference and emotional deficits were improved by chronic irisin treatment; however, these improvements were partly reversed by cotreatment with the Nrf2 inhibitor ML385. Further results implied that the improvement effect of irisin on behavioral abnormalities may be related to its anti-inflammatory and antioxidant effects. In detail, irisin inhibited ethanol-induced abnormal expression of ROS and MDA and upregulated the expression of GSH and SOD. Meanwhile, irisin treatment inhibited ethanol-induced overexpression of NF-κB, TNF-α, IL-1β and IL-6 in the hippocampus and cerebral cortex. The regulation of oxidative stress factors by irisin was reversed after ML385 treatment. In the in vitro study, overexpression of oxidative stress factors in ethanol-treated PC12 cells was inhibited by irisin treatment; however, the prevention was reversed after the knockdown of Nrf2 siRNA. Moreover, ethanol-induced overexpression of inflammatory mediators in BV2 cells was also inhibited by irisin treatment. Irisin improved depressive and anxiety-like behaviors induced by ethanol addiction/withdrawal in mice, and this protection was greatly associated with the NF-κB-mediated anti-inflammatory signaling pathway and Nrf2-mediated antioxidative stress signaling pathway.
Collapse
Affiliation(s)
- Xi Jiang
- Zhejiang University Mingzhou Hospital, 315000, Ningbo, China
| | - Qizhi Yan
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, China
| | - Wendie Lao
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China
| | - Qian Lin
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Haoran Cao
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China
| | - Lei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China
| | - Jin Chen
- Zhejiang University Mingzhou Hospital, 315000, Ningbo, China
| | - Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China.
- Department of Pharmacy, Zhejiang Pharmaceutical College, No.888 Yinxian Avenue East Section, Ningbo, 315000, China.
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China.
- Department of Pharmacy, Zhejiang Pharmaceutical College, No.888 Yinxian Avenue East Section, Ningbo, 315000, China.
| |
Collapse
|
41
|
Xu X, Zhou R, Ying J, Li X, Lu R, Qu Y, Mu D. Irisin prevents hypoxic-ischemic brain damage in rats by inhibiting oxidative stress and protecting the blood-brain barrier. Peptides 2023; 161:170945. [PMID: 36623553 DOI: 10.1016/j.peptides.2023.170945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is associated with excessive inflammation, blood-brain barrier dysfunction, and oxidative stress. Irisin can reduce inflammation and ameliorate oxidative stress; however, its effects on hypoxic-ischemic brain damage in newborns are unknown. Newborn Sprague-Dawley rats were subjected to hypoxic-ischemic injury and irisin treatment. TUNEL staining assays, the albumin-Evans blue dye extravasation method, an antioxidants detection kit, quantitative reverse-transcriptase PCR, enzyme linked immunosorbent assay, Western blot analysis, immunohistochemistry, and electron microscopy were used to investigate the possible mechanisms underlying the prevention of HIE by irisin. We discovered that rats affected by HIE and administered irisin had lower levels of IL-6 (but not TNF-α or IL-1β) less oxidative stress, and enhanced blood-brain barrier integrity. Irisin can effectively attenuate brain damage by reducing oxidative stress and protecting the blood-brain barrier.
Collapse
Affiliation(s)
- Xuanpei Xu
- Department of Pediatrics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot 010011, China
| | - Ruixi Zhou
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoxue Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruifeng Lu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Wang T, Yu M, Li H, Qin S, Ren W, Ma Y, Bo W, Xi Y, Cai M, Tian Z. FNDC5/Irisin Inhibits the Inflammatory Response and Mediates the Aerobic Exercise-Induced Improvement of Liver Injury after Myocardial Infarction. Int J Mol Sci 2023; 24:ijms24044159. [PMID: 36835571 PMCID: PMC9962088 DOI: 10.3390/ijms24044159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Myocardial infarction (MI) causes peripheral organ injury, in addition to cardiac dysfunction, including in the liver, which is known as cardiac hepatopathy. Aerobic exercise (AE) can effectively improve liver injury, although the mechanism and targets are currently not well established. Irisin, mainly produced by cleavage of the fibronectin type III domain-containing protein 5 (FNDC5), is a responsible for the beneficial effects of exercise training. In this study, we detected the effect of AE on MI-induced liver injury and explored the role of irisin alongside the benefits of AE. Wildtype and Fndc5 knockout mice were used to establish an MI model and subjected to AE intervention. Primary mouse hepatocytes were treated with lipopolysaccharide (LPS), rhirisin, and a phosphoinositide 3-kinase (PI3K) inhibitor. The results showed that AE significantly promoted M2 polarization of macrophages and improved MI-induced inflammation, upregulated endogenous irisin protein expression and activated the PI3K/ protein kinase B (Akt) signaling pathway in the liver of MI mice, while knockout of Fndc5 attenuated the beneficial effects of AE. Exogenous rhirisin significantly inhibited the LPS-induced inflammatory response, which was attenuated by the PI3K inhibitor. These results suggest that AE could effectively activate the FNDC5/irisin-PI3K/Akt signaling pathway, promote the polarization of M2 macrophages, and inhibit the inflammatory response of the liver after MI.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | - Mengyuan Yu
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | - Hangzhuo Li
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shuguang Qin
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | - Wujing Ren
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | - Yixuan Ma
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | - Wenyan Bo
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | - Yue Xi
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | - Mengxin Cai
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
- Correspondence: (M.C.); (Z.T.)
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi’an 710119, China
- Correspondence: (M.C.); (Z.T.)
| |
Collapse
|
43
|
Trettel CDS, Pelozin BRDA, Barros MP, Bachi ALL, Braga PGS, Momesso CM, Furtado GE, Valente PA, Oliveira EM, Hogervorst E, Fernandes T. Irisin: An anti-inflammatory exerkine in aging and redox-mediated comorbidities. Front Endocrinol (Lausanne) 2023; 14:1106529. [PMID: 36843614 PMCID: PMC9951776 DOI: 10.3389/fendo.2023.1106529] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Human beings lead largely sedentary lives. From an evolutionary perspective, such lifestyle is not beneficial to health. Exercise can promote many enabling pathways, particularly through circulating exerkines, to optimize individual health and quality of life. Such benefits might explain the protective effects of exercise against aging and noncommunicable diseases. Nevertheless, the miRNA-mediated molecular mechanisms and exerkine interorgan crosstalk that underlie the beneficial effects of exercise remain poorly understood. In this mini review, we focused on the exerkine, irisin, mainly produced by muscle contraction during adaptation to exercise and its beneficial effects on body homeostasis. Herein, the complex role of irisin in metabolism and inflammation is described, including its subsequent effects on thermogenesis through browning to control obesity and improve glycemic regulation for diabetes mellitus control, its potential to improve cognitive function (via brain derived neurotrophic factor), and its pathways of action and role in aging.
Collapse
Affiliation(s)
- Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Pedro Gabriel Senger Braga
- Laboratory of Metabolism and Lipids, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Guilherme Eustáquio Furtado
- Applied Research Institute, Polytechnic Institute of Coimbra, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2020), Faculty of Sport Sciences and Physical Education (FCDEF-UC), Coimbra, Portugal
| | - Pedro Afonso Valente
- Research Centre for Sport and Physical Activity, Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Eef Hogervorst
- National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, United Kingdom
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
44
|
Salivary irisin level is higher and related with interleukin-6 in generalized periodontitis. Clin Oral Investig 2023:10.1007/s00784-023-04903-9. [PMID: 36763144 DOI: 10.1007/s00784-023-04903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES Irisin plays an important role in energy homeostasis, inflammation, glucose, and lipid metabolism, and it is shown to have relations with many inflammatory diseases. The aim of the study was to determine saliva and serum irisin and IL-6 levels in patients with stage III/grade B periodontitis compared with individuals with healthy periodontium. MATERIALS AND METHODS Twenty patients with stage III grade B periodontitis (P) and 20 periodontally healthy subjects (control; C) were included in this study. Clinical periodontal measurements were recorded. Saliva and serum levels of irisin and interleukin-6 (IL-6) were analyzed by enzyme-linked immunosorbent assay. RESULTS Salivary irisin and IL-6 levels were significantly higher in the periodontitis group (p < 0.001, p = 0.002, respectively). Furthermore, serum IL-6 levels were found significantly higher in the periodontitis group compared with controls (p = 0.011). There was no significant difference between the periodontitis and control for serum irisin levels (p > 0.05). Significant positive correlations were found between all periodontal parameters and salivary irisin and IL-6 (p < 0.05) and also between BMI and saliva and serum IL-6 (respectively; r = 0.530, r = 0.329, p < 0.05). There was a positive correlation between salivary irisin and IL-6 (r = 0.369, p < 0.05). CONCLUSIONS Monitoring of salivary irisin and IL-6 might be potential biomarker for predicting the susceptibility to periodontitis. CLINICAL RELEVANCE Scientific rationale for the study: Irisin is a novel adipomyokine that has played an important role in energy homeostasis, glucose and lipid metabolism, angiogenesis, immunity, and inflammation. Irisin is involved in the pathogenesis of diseases affecting many body systems. IL-6, another adipomyokine, is a major inflammatory mediator and homeostatic regulator of glucose and lipid metabolism and is associated with periodontitis. No studies investigated the relationship between advanced periodontal disease, irisin, and IL-6 together. PRINCIPAL FINDINGS The salivary irisin and IL-6 levels were significantly higher and positively correlated in patients with periodontitis relative to healthy controls. Furthermore, serum IL-6 levels were significantly increased in patients with periodontitis. PRACTICAL IMPLICATIONS The study shows that irisin and IL-6 can be candidate salivary biomarkers for periodontitis and predict to periodontal status.
Collapse
|
45
|
Ercan Z, Deniz G, Yentur SB, Arikan FB, Karatas A, Alkan G, Koca SS. Effects of acute aerobic exercise on cytokines, klotho, irisin, and vascular endothelial growth factor responses in rheumatoid arthritis patients. Ir J Med Sci 2023; 192:491-497. [PMID: 35296975 DOI: 10.1007/s11845-022-02970-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that causes cartilage and bone damage as well as disability. AIMS : The aim of this study was to examine the effects of acute aerobic exercise on cytokines such as serum interleukin-6 (IL-6), interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α) and irisin, vascular endothelial growth factor(VEGF) and klotho in RA patients. METHODS: Forty RA patient and 40 healthy volunteers of the same age participated in this study. All participants walked on the treadmill for 30 minutes at 60-80% of maximal heart rate. Blood samples were taken before and immediately after the exercise. Serum levels of IL-6, IL1β, TNF-α and irisin, VEGF and klotho were measured by enzyme-linked immunosorbent analysis. RESULTS: Baseline levels of inflammatory cytokines, irisin, VEGF and klotho were found to be higher in RA patients compared to the control group. In both groups, there was an increase in serum klotho levels after exercise compared to baseline (p<0.05), while a decrease in IL1β, TNF-α levels were observed. While serum VEGF level decreased in RA group, it increased in the control group(p<0.05). Irisin levels decreased in both groups. IL-6 level did not change in the control group, while it increased in RA group. A single exercise session had an acute anti-inflammatory effect in RA patients. CONCLUSION It can be concluded that acute aerobic exercise can be beneficial for patients with RA through cytokine, irisin, klotho and VEGF levels, and also it can be safely implemented to the RA rehabilitation program for additional anti-inflammatory effects. Trial registration ClinicalTrials.gov: NCT04439682.
Collapse
Affiliation(s)
- Zubeyde Ercan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Firat University, Elazig, Turkey.
| | - Gulnihal Deniz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Songül Baglan Yentur
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Firat University, Elazig, Turkey
| | - Funda Bulut Arikan
- Department of Physiology, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ahmet Karatas
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gokhan Alkan
- Department of Physical Therapy and Rehabilitation, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Suleyman Serdar Koca
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
46
|
Algul S, Ozcelik O. Evaluating the energy regulatory hormones of nesfatin-1, irisin, adropin and preptin in multiple sclerosis. Mult Scler Relat Disord 2022; 68:104221. [PMID: 36228401 DOI: 10.1016/j.msard.2022.104221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Nesfatin-1, irisin, adropin and preptin were originally introduced as energy regulatory hormones. However, the results of studies revealed that these hormones may also have important roles in inflammation, immune function and neurological impairment. Multiple sclerosis (MS) is a chronic autoimmune disease, characterized by progressive inflammation, demyelination, and axonal loss in the central nervous system. We aimed to evaluate nesfatin-1, irisin, adropin and preptin hormones in patients with MS accompanied by inflammation and central nervous system dysfunction. MATERIALS AND METHODS A total of 110 subjects (65 patients with relapsing-remitting MS and 45 healthy individuals as control group) were included in this study. Venous blood samples were collected between 7:30 a.m. and 9:00 a.m. Serum concentrations of all markers were measured by enzyme linked immunoassay methods. The unpaired t-test was used to investigate between-group differences. RESULTS The nesfatin-1, irisin, adropin and preptin levels were found to be significantly lower in the MS group compared to the control group (p < 0.05). CONCLUSION In the present study, circulating nesfatin-1, irisin, adropin and preptin levels were decreased in patients with MS. However, the pathogenesis of MS and the underlying molecular mechanism of these hormones in MS have still not been elucidated. Further investigations with larger sample sizes and longer periods are required to obtain satisfactory information. In conclusion, the energy regulatory hormones of nesfatin-1, irisin, adropin and preptin may have potential for the development of new therapeutic targets for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Sermin Algul
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Oguz Ozcelik
- Department of Physiology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
47
|
The serum irisin response to prolonged physical activity in temperate and hot environments in older men with hypertension or type 2 diabetes. J Therm Biol 2022; 110:103344. [PMID: 36462879 DOI: 10.1016/j.jtherbio.2022.103344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
Current labor demographics are changing, with the number of older adults increasingly engaged in physically demanding occupations expected to continually rise, which are often performed in the heat. Given an age-related decline in whole-body heat loss, older adults are at an elevated risk of developing heat injuries that may be exacerbated by hypertension (HTN) and type 2 diabetes (T2D). Elevated irisin production may play a role in mitigating the excess oxidative stress and acute inflammation associated with physically demanding work in the heat. However, the effects of HTN and T2D on this response remain unclear. Therefore, we evaluated serum irisin before and after 3-h of moderate intensity exercise (metabolic rate: 200 W/m2) and at the end of 60-min of post-exercise recovery in a temperate (wet-bulb globe temperature (WBGT) 16 °C) and high-heat stress (WBGT 32 °C) environment in 12 healthy older men (mean ± SD; 59 ± 4 years), 10 men with HTN (60 ± 4 years), and 9 men with T2D (60 ± 5 years). Core temperature (Tco) was measured continuously. In the heat, total exercise duration was significantly lower in older men with HTN and T2D (both, p ≤ 0.049). Despite Tco not being different between groups, Tco was higher in the hot compared to the temperate condition for all groups (p < 0.001). Similarly, serum irisin concentrations did not differ between groups under either condition but were elevated relative to the temperate condition during post-exercise and end-recovery in the heat (+93.9 pg/mL SEM 26 and + 70.5 pg/mL SEM 38 respectively; both p ≤ 0.014). Thus, our findings indicate similar irisin responses in HTN and T2D compared to healthy, age-matched controls, despite reduced exercise tolerance during prolonged exercise in the heat. Therefore, older workers with HTN and T2D may exhibit greater cellular stress during prolonged exercise in the heat, underlying greater vulnerability to heat-induced cellular injury.
Collapse
|
48
|
Cosio PL, Pelaez M, Cadefau JA, Farran-Codina A. Systematic Review and Meta-Analysis of Circulating Irisin Levels Following Endurance Training: Results of Continuous and Interval Training. Biol Res Nurs 2022:10998004221142580. [DOI: 10.1177/10998004221142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Irisin has been suggested as a helpful hormone for adverse metabolic conditions. However, the interaction between acute endurance exercises and irisin is still unclear. The purpose of this systematic review and meta-analysis was to determine the acute effect of endurance training, either continuous or interval training, on circulating irisin in healthy adults. Methods Literature search was conducted in Web of Science, PubMed, Scopus and CINAHL until September 2022. Clinical trials measuring irisin levels following a single session of interval or continuous endurance training in healthy adults were eligible. Cohen’s d effect size (95% confidence level), subgroup analyses and univariate meta-regression were calculated using a random-effects model. The procedures described by PRISMA were followed and the protocol was prospectively registered with PROSPERO (CRD 42021240971). Results Data of the 16 included studies comprising 412 individuals showed a significant increase following one session of continuous endurance training (d = 0.33, 95% CI: 0.20 to 0.46 , p < 0.001), while interval training did not change circulating irisin (d = 0.16, 95% CI: −0.12 to 0.44 , p = 0.202). Both subgroup and univariate meta-regression analyses showed non-significant differences in the change of circulating irisin comparing blood measurement, exercise mode or previous level of physical activity of the participants and circulating irisin at baseline, duration, or intensity of the exercise, respectively. Conclusion Continuous method for endurance training increases circulating irisin in healthy adults, while studies measuring circulating irisin following interval training in healthy adults are still limited to be conclusive.
Collapse
Affiliation(s)
- Pedro L. Cosio
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Mireia Pelaez
- Faculty of Health Sciences, Universidad Europea del Atlántico, Santander, Spain
- Onkologikoa Fundazioa, Donostia, Spain
| | - Joan A. Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science, and Gastronomy, XIA, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
49
|
Yu J, Cheng Y, Cui Y, Zhai Y, Zhang W, Zhang M, Xin W, Liang J, Pan X, Wang Q, Sun H. Anti-Seizure and Neuronal Protective Effects of Irisin in Kainic Acid-Induced Chronic Epilepsy Model with Spontaneous Seizures. Neurosci Bull 2022; 38:1347-1364. [PMID: 35821335 PMCID: PMC9672298 DOI: 10.1007/s12264-022-00914-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.
Collapse
Affiliation(s)
- Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenshen Zhang
- The Sixth Scientific Research Department, Shandong Institute of Nonmetallic Materials, Jinan, 250031, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
50
|
Ambrogio F, Sanesi L, Oranger A, Barlusconi C, Dicarlo M, Pignataro P, Zerlotin R, Romita P, Favoino E, Cazzato G, Cassano N, Vena GA, Foti C, Grano M. Circulating Irisin Levels in Patients with Chronic Plaque Psoriasis. Biomolecules 2022; 12:1096. [PMID: 36008990 PMCID: PMC9406124 DOI: 10.3390/biom12081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Irisin is an adipo-myokine, mainly synthetized in skeletal muscles and adipose tissues, that is involved in multiple processes. Only a few studies have evaluated serum irisin in psoriatic patients. This study aims to analyze serum irisin levels in patients with chronic plaque psoriasis, to compare them with values in controls, and to assess whether concentration of circulating irisin correlates with the severity of psoriasis, calculated by means of Psoriasis Area and Severity Index (PASI). We enrolled 46 patients with chronic plaque psoriasis; the control group included 46 sex- and age-matched subjects without any skin or systemic diseases. Serum irisin levels were measured by competitive enzyme linked immunosorbent assay. Our results showed a non-significant increase in serum irisin concentration in psoriatic patients compared to controls. A negative non-linear correlation between PASI and irisin levels was detected in psoriatic patients. Indeed, dividing patients according to psoriasis severity, the negative association between irisin and PASI was stronger in patients with mild psoriasis than in patients with higher PASI scores. Several control variables we tested showed no significant impact on serum irisin. However, erythrocyte sedimentation rate in the normal range was associated with significantly higher irisin levels in psoriatic patients. In conclusion, although irisin levels were not significantly different between controls and psoriatic patients, irisin was found to be negatively associated with psoriasis severity, especially in subjects with low PASI scores; however, further studies are needed to clarify the role of irisin in subjects with psoriasis.
Collapse
Affiliation(s)
- Francesca Ambrogio
- Department of Biomedical Science and Human Oncology, Unit of Dermatology, University of Bari, 70124 Bari, Italy
| | - Lorenzo Sanesi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy
| | - Angela Oranger
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy
| | - Chiara Barlusconi
- Department of Biomedical Science and Human Oncology, Unit of Dermatology, University of Bari, 70124 Bari, Italy
| | - Manuela Dicarlo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy
| | - Patrizia Pignataro
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy
| | - Roberta Zerlotin
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy
| | - Paolo Romita
- Department of Biomedical Science and Human Oncology, Unit of Dermatology, University of Bari, 70124 Bari, Italy
| | - Elvira Favoino
- Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari, 70124 Bari, Italy
| | - Nicoletta Cassano
- Dermatology and Venereology Private Practice, 76121 Barletta, Italy
- Dermatology and Venereology Private Practice, 70125 Bari, Italy
| | - Gino Antonio Vena
- Dermatology and Venereology Private Practice, 76121 Barletta, Italy
- Dermatology and Venereology Private Practice, 70125 Bari, Italy
| | - Caterina Foti
- Department of Biomedical Science and Human Oncology, Unit of Dermatology, University of Bari, 70124 Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy
| |
Collapse
|