1
|
D'Addario SL, Rosina E, Massaro Cenere M, Bagni C, Mercuri NB, Ledonne A. ErbB inhibition rescues nigral dopamine neuron hyperactivity and repetitive behaviors in a mouse model of fragile X syndrome. Mol Psychiatry 2025; 30:2183-2196. [PMID: 39543371 PMCID: PMC12014506 DOI: 10.1038/s41380-024-02831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Repetitive stereotyped behaviors are core symptoms of autism spectrum disorders (ASD) and fragile X syndrome (FXS), the prevalent genetic cause of intellectual disability and autism. The nigrostriatal dopamine (DA) circuit rules movement and creation of habits and sequential behaviors; therefore, its dysregulation could promote autistic repetitive behaviors. Nevertheless, inspection of substantia nigra pars compacta (SNpc) DA neurons in ASD models has been overlooked and specific evidence of their altered activity in ASD and FXS is absent. Here, we show that hyperactivity of SNpc DA neurons is an early feature of FXS. The underlying mechanism relies on an interplay between metabotropic glutamate receptor 1 (mGluR1) and ErbB tyrosine kinases, receptors for the neurotrophic and differentiation factors known as neuregulins. Up-regulation of ErbB4 and ErbB2 in nigral DA neurons drives neuronal hyperactivity and repetitive behaviors of the FXS mouse, concurrently rescued by ErbB inhibition. In conclusion, beyond providing the first evidence that nigral DA neuron hyperactivity is a signature of FXS and nigral mGluR1 and ErbB4/2 play a relevant role in FXS etiology, we demonstrate that inhibiting ErbB is a valuable pharmacological approach to attenuate stereotyped repetitive behaviors, thus opening an avenue toward innovative therapies for ASD and FXS treatment.
Collapse
Affiliation(s)
| | - Eleonora Rosina
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Nicola B Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
- Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.
- Pharmacology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
2
|
Almaguer-Melian W, Mercerón-Martínez D, Alacán-Ricardo L, Piña AEV, Hsieh C, Bergado-Rosado JA, Sacktor TC. Amygdala stimulation transforms short-term memory into remote memory by persistent activation of atypical protein kinase C in the anterior cingulate cortex. Neuroscience 2025; 569:288-297. [PMID: 39900220 DOI: 10.1016/j.neuroscience.2025.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Although many studies have addressed the role of the amygdala in modulating long-term memory, it is not known whether weak training plus amygdala stimulation can transform a short-term memory into a remote memory. Object place recognition (OPR) memory after strong training remains hippocampus-dependent through the persistent action of protein kinase Mzeta (PKMζ) for at least 6 days, but it is unknown whether weak training plus amygdala stimulation can transform short-term memory into an even longer memory, and whether such memory is stored through more persistent action of PKMζ in hippocampus. We trained male rats (150 total in our study) to acquire OPR and 15 min or 5 h later induced a brief pattern of electrical stimulation in basolateral amygdala (BLA). Our results reveal that a short-term memory lasting < 4h can be converted into remote memory lasting at least 3 weeks if the BLA is activated 15 min, but not 5 h after learning. To examine how this remote memory is maintained, we injected ZIP, an inhibitor of atypical protein kinase Cs (aPKCs), PKMζ and PKCι/λ, into either hippocampal CA1, dentate gyrus (DG), or anterior cingulate cortex (ACC). Our data reveal amygdala stimulation produces consolidation into remote memory, not by persistent aPKC activation in the hippocampal formation, but in ACC. Our data establish a powerful modulating role of the BLA in forming remote memory and open a path in the search for neurological restoration of memory, based on enhancing synaptic plasticity in aging or neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Daymara Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Laura Alacán-Ricardo
- Facultad de Medicina Victoria de Girón Universidad Médica de La Habana La Habana Cuba
| | | | - Changchi Hsieh
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA
| | | | - Todd Charlton Sacktor
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA; Departments of Neurology and Anesthesiology, State University of New York Downstate Health Sciences University NY USA.
| |
Collapse
|
3
|
Zota I, Chanoumidou K, Gravanis A, Charalampopoulos I. Stimulating myelin restoration with BDNF: a promising therapeutic approach for Alzheimer's disease. Front Cell Neurosci 2024; 18:1422130. [PMID: 39285941 PMCID: PMC11402763 DOI: 10.3389/fncel.2024.1422130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder constituting the most common form of dementia (60%-70% of cases). Although AD presents majorly a neurodegenerative pathology, recent clinical evidence highlights myelin impairment as a key factor in disease pathogenesis. The lack of preventive or restorative treatment is emphasizing the need to develop novel therapeutic approaches targeting to the causes of the disease. Recent studies in animals and patients have highlighted the loss of myelination of the neuronal axons as an extremely aggravating factor in AD, in addition to the formation of amyloid plaques and neurofibrillary tangles that are to date the main pathological hallmarks of the disease. Myelin breakdown represents an early stage event in AD. However, it is still unclear whether myelin loss is attributed only to exogenous factors like inflammatory processes of the tissue or to impaired oligodendrogenesis as well. Neurotrophic factors are well established protective molecules under many pathological conditions of the neural tissue, contributing also to proper myelination. Due to their inability to be used as drugs, many research efforts are focused on substituting neurotrophic activity with small molecules. Our research team has recently developed novel micromolecular synthetic neurotrophin mimetics (MNTs), selectively acting on neurotrophin receptors, and thus offering a unique opportunity for innovative therapies against neurodegenerative diseases. These small sized, lipophilic molecules address the underlying biological effect of these diseases (neuroprotective action), but also they exert significant neurogenic actions inducing neuronal replacement of the disease areas. One of the significant neurotrophin molecules in the Central Nervous System is Brain-Derived-Neurotrophin-Factor (BDNF). BDNF is a neurotrophin that not only supports neuroprotection and adult neurogenesis, but also mediates pro-myelinating effects in the CNS. BDNF binds with high-affinity on the TrkB neurotrophin receptor and enhances myelination by increasing the density of oligodendrocyte progenitor cells (OPCs) and playing an important role in CNS myelination. Conclusively, in the present review, we discuss the myelin pathophysiology in Alzheimer's Diseases, as well as the role of neurotrophins, and specifically BDNF, in myelin maintenance and restoration, revealing its valuable therapeutic potential against AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
4
|
Kim YK, Jo D, Arjunan A, Ryu Y, Lim YH, Choi SY, Kim HK, Song J. Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer's Disease Mice via Transcriptomic and Cellular Analysis. Int J Mol Sci 2024; 25:2567. [PMID: 38473814 DOI: 10.3390/ijms25052567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer's disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer's disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer's disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeongseo Ryu
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeong-Hwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Seo Yoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Hee Kyung Kim
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| |
Collapse
|
5
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
6
|
Neuregulin-1/PI3K signaling effects on oligodendrocyte proliferation, remyelination and behaviors deficit in a male mouse model of ischemic stroke. Exp Neurol 2023; 362:114323. [PMID: 36690057 DOI: 10.1016/j.expneurol.2023.114323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.
Collapse
|
7
|
Low-intensity pulsed ultrasound promotes proliferation and myelinating genes expression of Schwann cells through NRG1/ErbB signaling pathway. Tissue Cell 2023; 80:101985. [PMID: 36459840 DOI: 10.1016/j.tice.2022.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Schwann cells (SCs) are the major component of myelin sheath in the peripheral nervous system, which are necessary in the development, function maintenance, and repair of peripheral nerves. This study aimed to investigate the potential mechanism of low-intensity pulsed ultrasound (LIPUS) affecting the proliferation and myelinating activity of SCs. Rat Schwann cell line RSC96 were cultured and exposed to LIPUS of different duty ratios (control, 20 %, 50 %, 80 %). Results demonstrated that LIPUS with a duty ratio of 50 % showing the maximal effect in facilitating proliferation of SCs. The expressions of Krox20 and myelin basic protein (MBP), the key molecules of SC myelination, and the potent inducer of myelination neuregulin 1 (NRG1) and its receptors ErbB2 and ErbB3 increased significantly by LIPUS. The reaction of these factors to LIPUS were both time- and duty ratio-dependent: namely LIPUS with higher duty ratios took effects when applied repeatedly over more consecutive days. These observations indicated that NRG1/ErbB signaling pathway might contribute to the effects of LIPUS on the proliferation and myelinating status of SCs, which could be one of the mechanisms in the protective role of LIPUS in nerve repair and regeneration. Our work provided novel insights for promising strategies of nerve repair therapy.
Collapse
|
8
|
Laufer BI, Hasegawa Y, Zhang Z, Hogrefe CE, Del Rosso LA, Haapanen L, Hwang H, Bauman MD, Van de Water J, Taha AY, Slupsky CM, Golub MS, Capitanio JP, VandeVoort CA, Walker CK, LaSalle JM. Multi-omic brain and behavioral correlates of cell-free fetal DNA methylation in macaque maternal obesity models. Nat Commun 2022; 13:5538. [PMID: 36130949 PMCID: PMC9492781 DOI: 10.1038/s41467-022-33162-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Maternal obesity during pregnancy is associated with neurodevelopmental disorder (NDD) risk. We utilized integrative multi-omics to examine maternal obesity effects on offspring neurodevelopment in rhesus macaques by comparison to lean controls and two interventions. Differentially methylated regions (DMRs) from longitudinal maternal blood-derived cell-free fetal DNA (cffDNA) significantly overlapped with DMRs from infant brain. The DMRs were enriched for neurodevelopmental functions, methylation-sensitive developmental transcription factor motifs, and human NDD DMRs identified from brain and placenta. Brain and cffDNA methylation levels from a large region overlapping mir-663 correlated with maternal obesity, metabolic and immune markers, and infant behavior. A DUX4 hippocampal co-methylation network correlated with maternal obesity, infant behavior, infant hippocampal lipidomic and metabolomic profiles, and maternal blood measurements of DUX4 cffDNA methylation, cytokines, and metabolites. We conclude that in this model, maternal obesity was associated with changes in the infant brain and behavior, and these differences were detectable in pregnancy through integrative analyses of cffDNA methylation with immune and metabolic factors.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Lori Haapanen
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
| | - Judy Van de Water
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Mari S Golub
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - John P Capitanio
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychology, University of California Davis, Davis, CA, 95616, USA
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Cheryl K Walker
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Stacho M, Manahan-Vaughan D. The Intriguing Contribution of Hippocampal Long-Term Depression to Spatial Learning and Long-Term Memory. Front Behav Neurosci 2022; 16:806356. [PMID: 35548697 PMCID: PMC9084281 DOI: 10.3389/fnbeh.2022.806356] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) comprise the principal cellular mechanisms that fulfill established criteria for the physiological correlates of learning and memory. Traditionally LTP, that increases synaptic weights, has been ascribed a prominent role in learning and memory whereas LTD, that decreases them, has often been relegated to the category of "counterpart to LTP" that serves to prevent saturation of synapses. In contradiction of these assumptions, studies over the last several years have provided functional evidence for distinct roles of LTD in specific aspects of hippocampus-dependent associative learning and information encoding. Furthermore, evidence of the experience-dependent "pruning" of excitatory synapses, the majority of which are located on dendritic spines, by means of LTD has been provided. In addition, reports exist of the temporal and physical restriction of LTP in dendritic compartments by means of LTD. Here, we discuss the role of LTD and LTP in experience-dependent information encoding based on empirical evidence derived from conjoint behavioral and electrophysiological studies conducted in behaving rodents. We pinpoint the close interrelation between structural modifications of dendritic spines and the occurrence of LTP and LTD. We report on findings that support that whereas LTP serves to acquire the general scheme of a spatial representation, LTD enables retention of content details. We argue that LTD contributes to learning by engaging in a functional interplay with LTP, rather than serving as its simple counterpart, or negator. We propose that similar spatial experiences that share elements of neuronal representations can be modified by means of LTD to enable pattern separation. Therewith, LTD plays a crucial role in the disambiguation of similar spatial representations and the prevention of generalization.
Collapse
|
10
|
Nakamura JP, Schroeder A, Gibbons A, Sundram S, Hill RA. Timing of maternal immune activation and sex influence schizophrenia-relevant cognitive constructs and neuregulin and GABAergic pathways. Brain Behav Immun 2022; 100:70-82. [PMID: 34808289 DOI: 10.1016/j.bbi.2021.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/17/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Maternal immune activation (MIA) during pregnancy is an established environmental risk factor for schizophrenia. Timing of immune activation exposure as well as sex of the exposed offspring are critical factors in defining the effects of MIA. However, the specificity of MIA on the component structure of schizophrenia, especially cognition, has been difficult to assess due to a lack of translational validity of maze-like testing paradigms. We aimed to assess cognitive domains relevant to schizophrenia using highly translational touchscreen-based tasks in male and female mice exposed to the viral mimetic, poly(I:C) (5 mg/k, i.p.), during early (gestational day (GD) 9-11) and late (GD13-15) gestational time points. Gene expression of schizophrenia candidate pathways were assessed in fetal brain immediately following poly(I:C) exposure and in adulthood to identify its influence on neurodevelopmental processes. Sex and window specific alterations in cognitive performance were found with the early window of MIA exposure causing female-specific disruptions to working memory and reduced perseverative behaviour, while late MIA exposure caused male-specific changes to working memory and deficits in reversal learning. GABAergic specification marker, Nkx2.1 gene expression was reduced in fetal brains and reelin expression was reduced in adult hippocampus of both early and late poly(I:C) exposed mice. Neuregulin and EGF signalling were initially upregulated in the fetal brain, but were reduced in the adult hippocampus, with male mice exposed in the late window showing reduced Nrg3 expression. Serine racemase was reduced in both fetal and adult brain, but again, adult reductions were specific to male mice exposed at the late time point. Overall, we show that cognitive constructs relevant to schizophrenia are altered by in utero exposure to maternal immune activation, but are highly dependent on the timing of infection and the sex of the offspring. Glutamatergic and epidermal growth factor pathways were similarly altered by MIA in a timing and sex dependent manner, while MIA-induced GABAergic deficits were independent of timing or sex.
Collapse
Affiliation(s)
- J P Nakamura
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - A Schroeder
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - A Gibbons
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - S Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia; Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - R A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
11
|
Mukhin VN, Borovets IR, Sizov VV, Pavlov KI, Klimenko VM. Differential Influence of Amyloid-β on the Kinetics of Dopamine Release in the Dorsal and Ventral Striatum of Rats. Neurotox Res 2021; 39:1285-1292. [PMID: 33991320 DOI: 10.1007/s12640-021-00371-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Dopaminergic dysfunction is a part of Alzheimer's disease pathology. The brain accumulation of amyloid-β of toxic form is a key link of the pathology, which, according to the literature, is also true for dopaminergic dysfunction. An increase in the amyloid-β level in the brain changes the maximum of the evoked dopamine release in the dorsal and ventral parts of the striatum of the experimental animals. Theoretically, this may be due to the change in the intensity of dopamine release from the nerve terminals or its reuptake. However, it has not been studied. To fill this gap, we examined the amyloid-β induced changes in the kinetics of the evoked dopamine release in the dorsal striatum and the nucleus accumbens core and shell. Amyloid-β solution (fragments 25-35) was injected into the ventricular system of the anesthetized male Wistar rats. Before and after injection, electrically evoked dopamine kinetics was registered with fast-scan cyclic voltammetry. The results had shown that the amount of dopamine release decreases in the dorsal striatum and increases in the nucleus accumbens shell. No changes were found in the intensity of dopamine reuptake.
Collapse
Affiliation(s)
- Valery N Mukhin
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia.
| | - Ivan R Borovets
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| | - Vadim V Sizov
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| | - Konstantin I Pavlov
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| | - Victor M Klimenko
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| |
Collapse
|
12
|
Anirudhan A, Angulo-Bejarano PI, Paramasivam P, Manokaran K, Kamath SM, Murugesan R, Sharma A, Ahmed SSSJ. RPL6: A Key Molecule Regulating Zinc- and Magnesium-Bound Metalloproteins of Parkinson's Disease. Front Neurosci 2021; 15:631892. [PMID: 33790735 PMCID: PMC8006920 DOI: 10.3389/fnins.2021.631892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with no definite molecular markers for diagnosis. Metal exposure may alter cellular proteins that contribute to PD. Exploring the cross-talk between metal and its binding proteins in PD could reveal a new strategy for PD diagnosis. We performed a meta-analysis from different PD tissue microarray datasets to identify differentially expressed genes (DEGs) common to the blood and brain. Among common DEGs, we extracted 280 metalloprotein-encoding genes to construct protein networks describing the regulation of metalloproteins in the PD blood and brain. From the metalloprotein network, we identified three important functional hubs. Further analysis shows 60S ribosomal protein L6 (RPL6), a novel intermediary molecule connecting the three hubs of the metalloproteins network. Quantitative real-time PCR analysis showed that RPL6 was downregulated in PD peripheral blood mononuclear cell (PBMC) samples. Simultaneously, trace element analysis revealed altered serum zinc and magnesium concentrations in PD samples. The Pearson's correlation analysis shows that serum zinc and magnesium regulate the RPL6 gene expression in PBMC. Thus, metal-regulating RPL6 acts as an intermediary molecule connecting the three hubs that are functionally associated with PD. Overall our study explores the understanding of metal-mediated pathogenesis in PD, which provides a serum metal environment regulating the cellular gene expression that may light toward metal and gene expression-based biomarkers for PD diagnosis.
Collapse
Affiliation(s)
- Athira Anirudhan
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | | | - Prabu Paramasivam
- Department of Neurology, School of Medicine, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, United States
| | - Kalaivani Manokaran
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - S Manjunath Kamath
- Department of Pharmacology, Saveetha Dental College (SDC), Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ram Murugesan
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ashutosh Sharma
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro, Mexico
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
13
|
Wang X, Li Z, Zhu Y, Yan J, Liu H, Huang G, Li W. Maternal folic acid impacts DNA methylation profile in male rat offspring implicated in neurodevelopment and learning/memory abilities. GENES AND NUTRITION 2021; 16:1. [PMID: 33430764 PMCID: PMC7802276 DOI: 10.1186/s12263-020-00681-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022]
Abstract
Background Periconceptional folic acid (FA) supplementation not only reduces the incidence of neural tube defects, but also improves cognitive performances in offspring. However, the genes or pathways that are epigenetically regulated by FA in neurodevelopment were rarely reported. Methods To elucidate the underlying mechanism, the effect of FA on the methylation profiles in brain tissue of male rat offspring was assessed by methylated DNA immunoprecipitation chip. Differentially methylated genes (DMGs) and gene network analysis were identified using DAVID and KEGG pathway analysis. Results Compared with the folate-normal diet group, 1939 DMGs were identified in the folate-deficient diet group, and 1498 DMGs were identified in the folate-supplemented diet group, among which 298 DMGs were overlapped. The pathways associated with neurodevelopment and learning/memory abilities were differentially methylated in response to maternal FA intake during pregnancy, and there were some identical and distinctive potential mechanisms under FA deficiency or FA-supplemented conditions. Conclusions In conclusion, genes and pathways associated with neurodevelopment and learning/memory abilities were differentially methylated in male rat offspring in response to maternal FA deficiency or supplementation during pregnancy.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.,Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
14
|
Ledonne A, Mercuri NB. Insights on the Functional Interaction between Group 1 Metabotropic Glutamate Receptors (mGluRI) and ErbB Receptors. Int J Mol Sci 2020; 21:ijms21217913. [PMID: 33114459 PMCID: PMC7662933 DOI: 10.3390/ijms21217913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
It is well-appreciated that phosphorylation is an essential post-translational mechanism of regulation for several proteins, including group 1 metabotropic glutamate receptors (mGluRI), mGluR1, and mGluR5 subtypes. While contributions of various serine/threonine protein kinases on mGluRI modulation have been recognized, the functional role of tyrosine kinases (TKs) is less acknowledged. Here, while describing current evidence supporting that mGluRI are targets of TKs, we mainly focus on the modulatory roles of the ErbB tyrosine kinases receptors—activated by the neurotrophic factors neuregulins (NRGs)—on mGluRI function. Available evidence suggests that mGluRI activity is tightly dependent on ErbB signaling, and that ErbB’s modulation profoundly influences mGluRI-dependent effects on neurotransmission, neuronal excitability, synaptic plasticity, and learning and memory processes.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-06-50170-3160
| | - Nicola B. Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Medicine, Università di Roma “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
15
|
Mouton-Liger F, Dumurgier J, Cognat E, Hourregue C, Zetterberg H, Vanderstichele H, Vanmechelen E, Bouaziz-Amar E, Blennow K, Hugon J, Paquet C. CSF levels of the BACE1 substrate NRG1 correlate with cognition in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:88. [PMID: 32690068 PMCID: PMC7372801 DOI: 10.1186/s13195-020-00655-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
Abstract
Background The presynaptic protein neuregulin1 (NRG1) is cleaved by beta-site APP cleaving enzyme 1 (BACE1) in a similar way as amyloid precursor protein (APP) NRG1 can activate post-synaptic receptor tyrosine-protein kinase erbB4 (ErbB4) and was linked to schizophrenia. The NRG1/ErbB4 complex is neuroprotective, can trigger synaptogenesis and plasticity, increases the expression of NMDA and GABA receptors, and can induce neuroinflammation. This complex can reduce memory formation. In Alzheimer’s disease (AD) brains, NRG1 accumulates in neuritic plaques. It is difficult to determine if NRG1 has beneficial and/or detrimental effects in AD. BACE1 levels are increased in AD brains and cerebrospinal fluid (CSF) and may lead to enhanced NRG1 secretion, but no study has assessed CSF NRG1 levels in AD and mild cognitive impairment (MCI) patients. Methods This retrospective study included 162 patients suffering from AD dementia (54), MCI with progression to AD dementia (MCI-AD) (27), non-AD MCI (30), non-AD dementias (30), and neurological controls (27). All patients had neurological examinations, brain MRI, and neuropsychological evaluations. After written informed consent and using enzyme-linked immunosorbent assays (ELISAs), CSF samples were evaluated for Aβ1–42, Aβ1–40, total tau (T-tau), phosphorylated tau on threonine 181 (P-tau), BACE1, growth-associated protein 43 (GAP 43), neurogranin (Ng), and NRG1. Results Levels of NRG1 were significantly increased in the CSF of AD (+ 36%) and MCI-AD (+ 28%) patients compared to neurological controls and also non-AD MCI and non-AD dementias. In addition, in AD and MCI-AD patients, NRG1 levels positively correlated with Aβ1–42 but not with T-tau, P-tau, and BACE1 levels and negatively correlated with MMSE scores. A longitudinal follow-up study of AD patients revealed a trend (p = 0.08) between CSF NRG1 levels and cognitive decline. In the overall population, NRG1 correlated with MMSE and the synaptic biomarkers GAP 43 and neurogranin. Conclusions Our results showed that CSF NRG1 levels are increased in AD and MCI-AD as compared to controls and other dementias. CSF NRG1 levels are associated with cognitive evolution, and a major outcome of our findings is that synaptic NRG1 could be involved in the pathophysiology of AD. Modulating brain NRG1 activity may represent a new therapeutic target in AD.
Collapse
Affiliation(s)
- François Mouton-Liger
- Inserm U 1144, University de Paris, Paris, France.,Université de Paris, Paris, France
| | - Julien Dumurgier
- Inserm U 1144, University de Paris, Paris, France.,Université de Paris, Paris, France.,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France
| | - Emmanuel Cognat
- Inserm U 1144, University de Paris, Paris, France.,Université de Paris, Paris, France.,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France
| | - Claire Hourregue
- Université de Paris, Paris, France.,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | - Elodie Bouaziz-Amar
- Inserm U 1144, University de Paris, Paris, France.,Department of Biochemistry, Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jacques Hugon
- Inserm U 1144, University de Paris, Paris, France. .,Université de Paris, Paris, France. .,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France.
| | - Claire Paquet
- Inserm U 1144, University de Paris, Paris, France.,Université de Paris, Paris, France.,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France
| |
Collapse
|
16
|
Lüscher Dias T, Schuch V, Beltrão-Braga PCB, Martins-de-Souza D, Brentani HP, Franco GR, Nakaya HI. Drug repositioning for psychiatric and neurological disorders through a network medicine approach. Transl Psychiatry 2020; 10:141. [PMID: 32398742 PMCID: PMC7217930 DOI: 10.1038/s41398-020-0827-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Psychiatric and neurological disorders (PNDs) affect millions worldwide and only a few drugs achieve complete therapeutic success in the treatment of these disorders. Due to the high cost of developing novel drugs, drug repositioning represents a promising alternative method of treatment. In this manuscript, we used a network medicine approach to investigate the molecular characteristics of PNDs and identify novel drug candidates for repositioning. Using IBM Watson for Drug Discovery, a powerful machine learning text-mining application, we built knowledge networks containing connections between PNDs and genes or drugs mentioned in the scientific literature published in the past 50 years. This approach revealed several drugs that target key PND-related genes, which have never been used to treat these disorders to date. We validate our framework by detecting drugs that have been undergoing clinical trial for treating some of the PNDs, but have no published results in their support. Our data provides comprehensive insights into the molecular pathology of PNDs and offers promising drug repositioning candidates for follow-up trials.
Collapse
Affiliation(s)
- Thomaz Lüscher Dias
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane Schuch
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- D'Or Institute of Reasearch and Education (IDOR), São Paulo, Brazil
| | - Helena Paula Brentani
- Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), São Paulo, Brazil
| | - Glória Regina Franco
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helder Imoto Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
- Scientific Platform Pasteur USP, São Paulo, Brazil.
| |
Collapse
|
17
|
Ledonne A, Mercuri NB. On the Modulatory Roles of Neuregulins/ErbB Signaling on Synaptic Plasticity. Int J Mol Sci 2019; 21:ijms21010275. [PMID: 31906113 PMCID: PMC6981567 DOI: 10.3390/ijms21010275] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Neuregulins (NRGs) are a family of epidermal growth factor-related proteins, acting on tyrosine kinase receptors of the ErbB family. NRGs play an essential role in the development of the nervous system, since they orchestrate vital functions such as cell differentiation, axonal growth, myelination, and synapse formation. They are also crucially involved in the functioning of adult brain, by directly modulating neuronal excitability, neurotransmission, and synaptic plasticity. Here, we provide a review of the literature documenting the roles of NRGs/ErbB signaling in the modulation of synaptic plasticity, focusing on evidence reported in the hippocampus and midbrain dopamine (DA) nuclei. The emerging picture shows multifaceted roles of NRGs/ErbB receptors, which critically modulate different forms of synaptic plasticity (LTP, LTD, and depotentiation) affecting glutamatergic, GABAergic, and DAergic synapses, by various mechanisms. Further, we discuss the relevance of NRGs/ErbB-dependent synaptic plasticity in the control of brain processes, like learning and memory and the known involvement of NRGs/ErbB signaling in the modulation of synaptic plasticity in brain’s pathological conditions. Current evidence points to a central role of NRGs/ErbB receptors in controlling glutamatergic LTP/LTD and GABAergic LTD at hippocampal CA3–CA1 synapses, as well as glutamatergic LTD in midbrain DA neurons, thus supporting that NRGs/ErbB signaling is essential for proper brain functions, cognitive processes, and complex behaviors. This suggests that dysregulated NRGs/ErbB-dependent synaptic plasticity might contribute to mechanisms underlying different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Correspondence: ; Tel.: +3906-501703160; Fax: +3906-501703307
| | - Nicola B. Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier no 1, 00133 Rome, Italy
| |
Collapse
|
18
|
Han YY, Chen ZH, Shang YJ, Yan WW, Wu BY, Li CH. Cordycepin improves behavioral-LTP and dendritic structure in hippocampal CA1 area of rats. J Neurochem 2019; 151:79-90. [PMID: 31314908 DOI: 10.1111/jnc.14826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Cordycepin, an adenosine analog, has been reported to improve cognitive function, but which seems to be inconsistent with the reports showing that cordycepin inhibited long-term potentiation (LTP). Behavioral-LTP is usually used to study long-term synaptic plasticity induced by learning tasks in freely moving animals. In order to investigate simultaneously the effects of cordycepin on LTP and behavior in rats, we applied the model of behavioral-LTP induced by Y-maze learning task through recording population spikes in hippocampal CA1 region. Golgi staining and Sholl analysis were employed to assess the morphological structure of dendrites in pyramidal cells of hippocampal CA1 area, and western blotting was used to examine the level of adenosine A1 receptors and A2A receptors (A2AR). We found that cordycepin significantly improved behavioral-LTP magnitude, accompanied by increases in the total length of dendrites, the number of intersections and spine density but did not affect Y-maze learning task. Furthermore, cordycepin obviously reduced A2AR level without altering adenosine A1 receptors level; and the agonist of A2AR (CGS 21680) rather than antagonist (SCH 58261) could reverse the potentiation of behavioral-LTP induced by cordycepin. These results suggested that cordycepin improved behavioral-LTP and morphological structure of dendrite in hippocampal CA1 but did not contribute to the improvement of learning and memory. And cordycepin improved behavioral-LTP may be through reducing the level of A2AR in hippocampus. Collectively, the effects of cordycepin on cognitive function and LTP were complex and involved multiple mechanisms.
Collapse
Affiliation(s)
- Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou, China
| | - Zhao-Hui Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Wen-Wen Yan
- School of Life Science, South China Normal University, Guangzhou, China
| | - Bao-Yan Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
19
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
20
|
Ledonne A, Mercuri NB. mGluR1-Dependent Long Term Depression in Rodent Midbrain Dopamine Neurons Is Regulated by Neuregulin 1/ErbB Signaling. Front Mol Neurosci 2018; 11:346. [PMID: 30327588 PMCID: PMC6174199 DOI: 10.3389/fnmol.2018.00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/04/2018] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence demonstrates that the neurotrophic factor Neuregulin 1 (NRG1) and its receptors, ErbB tyrosine kinases, modulate midbrain dopamine (DA) transmission. We have previously reported that NRG1/ErbB signaling is essential for proper metabotropic glutamate receptors 1 (mGluR1) functioning in midbrain DA neurons, thus the functional interaction between ErbB receptors and mGluR1 regulates neuronal excitation and in vivo striatal DA release. While it is widely recognized that mGluR1 play a pivotal role in long-term modifications of synaptic transmission in several brain areas, specific mGluR1-dependent forms of synaptic plasticity in substantia nigra pars compacta (SNpc) DA neurons have not been described yet. Here, first we aimed to detect and characterize mGluR1-dependent glutamatergic long-term depression (LTD) in SNpc DA neurons. Second, we tested the hypothesis that endogenous ErbB signaling, by affecting mGluR1, fine-tunes glutamatergic synaptic plasticity in DA cells. We found that either pharmacological or synaptic activation of mGluR1 causes an LTD of AMPAR-mediated transmission in SNpc DA neurons from mice and rat slices, which is reliant on endogenous NRG1/ErbB signaling. Indeed, LTD is counteracted by a broad spectrum ErbB inhibitor. Moreover, the intracellular injection of pan-ErbB- or ErbB2 inhibitors inside DA neurons reduces mGluR1-dependent LTD, suggesting an involvement of ErbB2/ErbB4-containing receptors. Interestingly, exogenous NRG1 fosters LTD expression during minimal mGluRI activation. These results enlarge our cognizance on mGluR1 relevance in the induction of a novel form of long-term synaptic plasticity in SNpc DA neurons and describe a new NRG1/ErbB-dependent mechanism shaping glutamatergic transmission in DA cells. This might have important implications either in DA-dependent behaviors and learning/memory processes or in DA-linked diseases.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|