1
|
Gilyazova I, Timasheva Y, Karunas A, Kazantseva A, Sufianov A, Mashkin A, Korytina G, Wang Y, Gareev I, Khusnutdinova E. COVID-19: Mechanisms, risk factors, genetics, non-coding RNAs and neurologic impairments. Noncoding RNA Res 2023; 8:240-254. [PMID: 36852336 PMCID: PMC9946734 DOI: 10.1016/j.ncrna.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The novel coronavirus infection (COVID-19) causes a severe acute illness with the development of respiratory distress syndrome in some cases. COVID-19 is a global problem of mankind to this day. Among its most important aspects that require in-depth study are pathogenesis and molecular changes in severe forms of the disease. A lot of literature data is devoted to the pathogenetic mechanisms of COVID-19. Without dwelling in detail on some paths of pathogenesis discussed, we note that at present there are many factors of development and progression. Among them, this is the direct role of both viral non-coding RNAs (ncRNAs) and host ncRNAs. One such class of ncRNAs that has been extensively studied in COVID-19 is microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Moreover, Initially, it was believed that this COVID-19 was limited to damage to the respiratory system. It has now become clear that COVID-19 affects not only the liver and kidneys, but also the nervous system. In this review, we summarized the current knowledge of mechanisms, risk factors, genetics and neurologic impairments in COVID-19. In addition, we discuss and evaluate evidence demonstrating the involvement of miRNAs and lnRNAs in COVID-19 and use this information to propose hypotheses for future research directions.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Alexandra Karunas
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Anastasiya Kazantseva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Albert Sufianov
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Andrey Mashkin
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| | - Gulnaz Korytina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Yaolou Wang
- Harbin Medical University, 157 Baojian Rd, Nangang, Harbin, Heilongjiang, 150088, China
| | - Ilgiz Gareev
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| |
Collapse
|
2
|
Hagiwara J, Bunya N, Harada K, Nakase H, Narimatsu E. Fatal Gastrointestinal Disorders Due to COVID-19: A Case Series. Cureus 2023; 15:e40286. [PMID: 37448415 PMCID: PMC10336742 DOI: 10.7759/cureus.40286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) primarily develop respiratory symptoms, which sometimes can be serious. Respiratory failure is the most common cause of death from COVID-19. This disease also causes gastrointestinal (GI) symptoms. However, there are limited reports that severe GI disorders caused by COVID-19 can be fatal. Herein, we report three cases of fatal GI disorders caused by COVID-19. All patients developed severe pneumonia requiring mechanical ventilation and venovenous extracorporeal membrane oxygenation (V-V ECMO) support. The respiratory status improved, and the patients could be weaned off support. However, severe watery diarrhea (over a few liters per day) developed after the onset of respiratory failure. The CT, endoscopic, and pathological findings were similar to those observed in GI graft-versus-host disease (GI-GVHD). Despite various efforts, the GI disorders did not improve, and all patients died of multiple organ failures associated with sepsis due to intestinal mucosal disruption. COVID-19 can cause fatal GI disorders and may have similar characteristics to GI-GVHD. Further investigation will contribute to a comprehensive understanding of fatal GI disorders due to COVID-19.
Collapse
Affiliation(s)
- Junya Hagiwara
- Intensive Care Unit, Sapporo Medical University, Sapporo, JPN
| | - Naofumi Bunya
- Intensive Care Unit, Sapporo Medical University, Sapporo, JPN
| | - Keisuke Harada
- Intensive Care Unit, Sapporo Medical University, Sapporo, JPN
| | - Hiroshi Nakase
- Gastroenterology and Hepatology, Sapporo Medical University, Sapporo, JPN
| | - Eichi Narimatsu
- Intensive Care Unit, Sapporo Medical University, Sapporo, JPN
| |
Collapse
|
3
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
4
|
Ali M, Wani SUD, Masoodi MH, Khan NA, Shivakumar HG, Osmani RMA, Khan KA. Global Effect of COVID-19 Pandemic on Cancer Patients and its Treatment: A Systematic Review. CLINICAL COMPLEMENTARY MEDICINE AND PHARMACOLOGY 2022; 2:100041. [PMID: 36377228 PMCID: PMC9035683 DOI: 10.1016/j.ccmp.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/11/2023]
Abstract
Background At a global level, the COVID-19 disease outbreak has had a major impact on health services and has induced disruption in routine care of health institutions, exposing cancer patients to severe risks. To provide uninterrupted tumor treatment throughout a pandemic lockdown is a major obstacle. Coronavirus disease (COVID-19) and its causative virus, SARS-CoV-2, stance considerable challenges for the management of oncology patients. COVID-19 presents particularly severe respiratory and systemic infection in aging and immunosuppressed individuals, including patients with cancer. Objective In the present review, we focused on emergent evidence from cancer sufferers that have been contaminated with COVID-19 and cancer patients who were at higher risk of severe COVID-19, and indicates that anticancer treatment may either rise COVID-19 susceptibility or have a duple therapeutic impact on cancer as well as COVID-19; moreover, how SARS-CoV-2 infection impacts cancer cells. Also, to assess the global effect of the COVID-19 disease outbreak on cancer and its treatment. Methods A literature survey was conducted using PubMed, Web of Science (WOS), Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and VIral Protein domain DataBase (VIP DB) between Dec 1, 2019 and Sep 23, 2021, for studies on anticancer treatments in patients with COVID-19. The characteristics of the patients, treatment types, mortality, and other additional outcomes were extracted and pooled for synthesis. Results This disease has a huge effect on sufferers who have cancer(s). Sufferers of COVID-19 have a greater percentage of tumor diagnoses than the rest of the population. Likewise, cancer and highest proportion is lung cancer sufferers are more susceptible to COVID-19 constriction than the rest of the population. Conclusion Sufferers who have both COVID-19 and tumor have a considerably elevated death risk than single COVID-19 positive patients overall. During the COVID-19 pandemic, there was a reduction in the screening of cancer and detection, and also deferral of routine therapies, which may contribute to an increase in cancer mortality there in future.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560001, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Nisar Ahmad Khan
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - H G Shivakumar
- College of Pharmacy, JSS Academy of Technical Education, Noida 201301, India
| | - Riyaz M Ali Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Khalid Ahmed Khan
- Assistant Drugs Controller, Drugs Control Department, Government of Karnataka, Bengaluru, Karnataka 560004, India
| |
Collapse
|
5
|
Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines 2022; 10:biomedicines10082026. [PMID: 36009573 PMCID: PMC9406088 DOI: 10.3390/biomedicines10082026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
DPP4/CD26 is a single-pass transmembrane protein with multiple functions on glycemic control, cell migration and proliferation, and the immune system, among others. It has recently acquired an especial relevance due to the possibility to act as a receptor or co-receptor for SARS-CoV-2, as it has been already demonstrated for other coronaviruses. In this review, we analyze the evidence for the role of DPP4 on COVID-19 risk and clinical outcome, and its contribution to COVID-19 physiopathology. Due to the pathogenetic links between COVID-19 and diabetes mellitus and the hyperinflammatory response, with the hallmark cytokine storm developed very often during the disease, we dive deep into the functions of DPP4 on carbohydrate metabolism and immune system regulation. We show that the broad spectrum of functions regulated by DPP4 is performed both as a protease enzyme, as well as an interacting partner of other molecules on the cell surface. In addition, we provide an update of the DPP4 inhibitors approved by the EMA and/or the FDA, together with the newfangled approval of generic drugs (in 2021 and 2022). This review will also cover the effects of DPP4 inhibitors (i.e., gliptins) on the progression of SARS-CoV-2 infection, showing the role of DPP4 in this disturbing disease.
Collapse
|
6
|
Guo Y, Esfahani F, Shao X, Srinivasan V, Thomo A, Xing L, Zhang X. Integrative COVID-19 biological network inference with probabilistic core decomposition. Brief Bioinform 2022; 23:6425808. [PMID: 34791019 PMCID: PMC8689992 DOI: 10.1093/bib/bbab455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for millions of deaths around the world. To help contribute to the understanding of crucial knowledge and to further generate new hypotheses relevant to SARS-CoV-2 and human protein interactions, we make use of the information abundant Biomine probabilistic database and extend the experimentally identified SARS-CoV-2-human protein-protein interaction (PPI) network in silico. We generate an extended network by integrating information from the Biomine database, the PPI network and other experimentally validated results. To generate novel hypotheses, we focus on the high-connectivity sub-communities that overlap most with the integrated experimentally validated results in the extended network. Therefore, we propose a new data analysis pipeline that can efficiently compute core decomposition on the extended network and identify dense subgraphs. We then evaluate the identified dense subgraph and the generated hypotheses in three contexts: literature validation for uncovered virus targeting genes and proteins, gene function enrichment analysis on subgraphs and literature support on drug repurposing for identified tissues and diseases related to COVID-19. The major types of the generated hypotheses are proteins with their encoding genes and we rank them by sorting their connections to the integrated experimentally validated nodes. In addition, we compile a comprehensive list of novel genes, and proteins potentially related to COVID-19, as well as novel diseases which might be comorbidities. Together with the generated hypotheses, our results provide novel knowledge relevant to COVID-19 for further validation.
Collapse
Affiliation(s)
- Yang Guo
- Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Fatemeh Esfahani
- Department of Computer Science, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, 1200 Montreal Road, K1A 0R6, Ottawa, ON, Canada
| | - Venkatesh Srinivasan
- Department of Computer Science, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Alex Thomo
- Department of Computer Science, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Li Xing
- Department of Mathematics and Statistics, University of Saskatchewan, 110 Science Place, S7N 5A2, Saskatoon, SK, Canada
| | - Xuekui Zhang
- Corresponding author: Xuekui Zhang, Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada.
| |
Collapse
|
7
|
Ojha R, Gurjar K, Ratnakar TS, Mishra A, Prajapati VK. Designing of a bispecific antibody against SARS-CoV-2 spike glycoprotein targeting human entry receptors DPP4 and ACE2. Hum Immunol 2022; 83:346-355. [PMID: 35042653 PMCID: PMC8744466 DOI: 10.1016/j.humimm.2022.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
COVID-19 originated in Wuhan city, China, in 2019 erupted a global pandemic that had put down nearly 3 million lives and hampered the socio-economic conditions of all nations. Despite the available treatments, this disease is not being controlled totally and spreading swiftly. The deadly virus commences infection by hACE2 receptor and its co-receptors (DPP4) engagement with the viral spike protein in the lung alveolar epithelial cells, indicating a primary therapeutic target. The current research attempts to design an in-silico Bispecific antibody (BsAb) against viral spike glycoprotein and DPP4 receptors. Regdanvimab and Begelomab were identified to block the D614G mutated spike glycoprotein of SARS-CoV-2 and host DPP4 receptor, respectively. The designed BsAb was modified by using KIH (Knobs into Holes) and CrossMAb techniques to prevent heavy chain and light chain mispairings. Following the modifications, the site-specific molecular docking studies were performed, revealing a relatively higher binding affinity of BsAb with spike glycoprotein and DPP4 co-receptor than control BsAb. Also, for blocking the primary entry receptor, hACE2, an anti-viral peptide was linked to the Fc region of BsAb that blocks the hACE2 receptor by linker cleavage inside the infected host. Thus, the designed BsAb and anti-viral peptide therapy could be a promising triumvirate way to obstruct the viral entry by blocking the receptor engagement.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Kiran Gurjar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Tadi Sai Ratnakar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342011, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India.
| |
Collapse
|
8
|
Identifying potential novel insights for COVID-19 pathogenesis and therapeutics using an integrated bioinformatics analysis of host transcriptome. Int J Biol Macromol 2022; 194:770-780. [PMID: 34826456 PMCID: PMC8610562 DOI: 10.1016/j.ijbiomac.2021.11.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms underlying the pathogenesis of COVID-19 have not been fully discovered. This study aims to decipher potentially hidden parts of the pathogenesis of COVID-19, potential novel drug targets, and identify potential drug candidates. Two gene expression profiles were analyzed, and overlapping differentially expressed genes (DEGs) were selected for which top enriched transcription factors and kinases were identified, and pathway analysis was performed. Protein-protein interaction (PPI) of DEGs was constructed, hub genes were identified, and module analysis was also performed. DGIdb database was used to identify drugs for the potential targets (hub genes and the most enriched transcription factors and kinases for DEGs). A drug-potential target network was constructed, and drugs were ranked according to the degree. L1000FDW was used to identify drugs that can reverse transcriptional profiles of COVID-19. We identified drugs currently in clinical trials, others predicted by different methods, and novel potential drug candidates Entrectinib, Omeprazole, and Exemestane for combating COVID-19. Besides the well-known pathogenic pathways, it was found that axon guidance is a potential pathogenic pathway. Sema7A, which may exacerbate hypercytokinemia, is considered a potential novel drug target. Another potential novel pathway is related to TINF2 overexpression, which may induce potential telomere dysfunction and damage DNA that may exacerbate lung fibrosis. This study identified new potential insights regarding COVID-19 pathogenesis and treatment, which might help us improve our understanding of the mechanisms of COVID-19.
Collapse
|
9
|
Ali N, Prasad K, AlAsmari AF, Alharbi M, Rashid S, Kumar V. Genomics-guided targeting of stress granule proteins G3BP1/2 to inhibit SARS-CoV-2 propagation. Int J Biol Macromol 2021; 190:636-648. [PMID: 34517025 PMCID: PMC8431879 DOI: 10.1016/j.ijbiomac.2021.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 nucleocapsid (N) protein undergoes RNA-induced phase separation (LLPS) and sequesters the host key stress granule (SG) proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and 2 (G3BP1 and G3BP2) to inhibit SG formation. This will allow viral packaging and propagation in host cells. Based on a genomic-guided meta-analysis, here we identify upstream regulatory elements modulating the expression of G3BP1 and G3BP2 (collectively called G3BP1/2). Using this strategy, we have identified FOXA1, YY1, SYK, E2F-1, and TGFBR2 as activators and SIN3A, SRF, and AKT-1 as repressors of G3BP1/2 genes. Panels of the activators and repressors were then used to identify drugs that change their gene expression signatures. Two drugs, imatinib, and decitabine have been identified as putative modulators of G3BP1/2 genes and their regulators, suggesting their role as COVID-19 mitigation agents. Molecular docking analysis suggests that both drugs bind to G3BP1/2 with a much higher affinity than the SARS-CoV-2 N protein. This study reports imatinib and decitabine as candidate drugs against N protein and G3BP1/2 protein.
Collapse
Affiliation(s)
- Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin AbdulAziz University, Al kharj 11942, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India.
| |
Collapse
|
10
|
Ozawa N, Yamazaki K, Kushima R. Graft-versus-host disease-like reactions in the gastrointestinal tract in a patient with SARS-CoV-2 infection. Dig Endosc 2021; 33:876-877. [PMID: 33876462 PMCID: PMC8251169 DOI: 10.1111/den.13994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Noritaka Ozawa
- Department of GastroenterologyGifu Prefectural General Medical CenterGifuJapan
| | - Kenji Yamazaki
- Department of GastroenterologyGifu Prefectural General Medical CenterGifuJapan
| | - Ryoji Kushima
- Department of Clinical Laboratory Medicine and Diagnostic PathologyShiga University of Medical ScienceShigaJapan
| |
Collapse
|
11
|
Sarmiento M, Rojas P, Jerez J, Bertín P, Campbell J, García MJ, Pereira J, Triantafilo N, Ocqueteau M. Ruxolitinib for Severe COVID-19-Related Hyperinflammation in Nonresponders to Steroids. Acta Haematol 2021; 144:620-626. [PMID: 34111867 PMCID: PMC8339052 DOI: 10.1159/000516464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/10/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Currently, severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection is a major public health problem worldwide. Although most patients present a mild infection, effective strategies are required for patients who develop the severe disease. Anti-inflammatory treatment with JAK inhibitors has been considered in SARS-CoV-2. METHODS In this study, we presented our experience in a group of severe SARS-CoV-2 Chilean patients. This prospective study was performed on consecutive patients presenting severe respiratory failure owing to COVID-19 or high-risk clinical condition associated with SARS-CoV-2, and who were treated with ruxolitinib for management of associated inflammation. Overall, 18 patients presenting SARS-CoV-2 viral-induced hyperinflammation were treated with ruxolitinib, with 16 patients previously treated with steroids, 4 with tocilizumab, and 3 with both treatments. RESULTS Ten patients evolved with favorable response, including 7 patients admitted with severe respiratory failure (PaFi less than 200 mm Hg in high-flow nasal cannula), presenting complete regression of hyperinflammation, regression of the lung lesions, and subsequent discharge. In the remaining 8 patients, 25% showed reduced inflammation, but early discharge was not achieved owing to the slow evolution of respiratory failure. Unfortunately, 3 patients demonstrated a severe respiratory failure. The early initiation of ruxolitinib was found to be associated with better clinical evolution (p < 0.005). CONCLUSION In this study, ruxolitinib resolved hyperinflammatory state in 55% of the patients, regardless of the previous steroid or tocilizumab therapy. Unfortunately, few patients demonstrated severe evolution despite ruxolitinib therapy. Notably, the treatment starting time appears to play an important role in achieving good outcomes. Further validation in randomized controlled trials is crucial.
Collapse
Affiliation(s)
- Mauricio Sarmiento
- Hematology and Oncology Department, Clinical Hospital, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Mauricio Sarmiento,
| | - Patricio Rojas
- Hematology and Oncology Department, Clinical Hospital, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquin Jerez
- Internal Medicine Department, Clinical Hospital, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Bertín
- Hematology and Oncology Department, Clinical Hospital, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - James Campbell
- Hematology and Oncology Department, Clinical Hospital, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria J. García
- Hematology and Oncology Department, Clinical Hospital, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Pereira
- Hematology and Oncology Department, Clinical Hospital, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas Triantafilo
- Hematology and Oncology Department, Clinical Hospital, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Ocqueteau
- Hematology and Oncology Department, Clinical Hospital, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Zong Z, Wei Y, Ren J, Zhang L, Zhou F. The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Mol Cancer 2021; 20:76. [PMID: 34001144 PMCID: PMC8126512 DOI: 10.1186/s12943-021-01363-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious public health concern. Patients with cancer have been disproportionately affected by this pandemic. Increasing evidence has documented that patients with malignancies are highly susceptible to severe infections and mortality from COVID-19. Recent studies have also elucidated the molecular relationship between the two diseases, which may not only help optimize cancer care during the pandemic but also expand the treatment for COVID-19. In this review, we highlight the clinical and molecular similarities between cancer and COVID-19 and summarize the four major signaling pathways at the intersection of COVID-19 and cancer, namely, cytokine, type I interferon (IFN-I), androgen receptor (AR), and immune checkpoint signaling. In addition, we discuss the advantages and disadvantages of repurposing anticancer treatment for the treatment of COVID-19.
Collapse
Affiliation(s)
- Zhi Zong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yujun Wei
- Anhui Anlong Gene Technology Co., Ltd, Hefei, 230041, China
| | - Jiang Ren
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Palit P, Chattopadhyay D, Thomas S, Kundu A, Kim HS, Rezaei N. Phytopharmaceuticals mediated Furin and TMPRSS2 receptor blocking: can it be a potential therapeutic option for Covid-19? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153396. [PMID: 33380375 PMCID: PMC7591300 DOI: 10.1016/j.phymed.2020.153396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Currently, novel coronavirus disease (Covid-19) outbreak creates global panic across the continents, as people from almost all countries and territories have been affected by this highly contagious viral disease. The scenario is deteriorating due to lack of proper & specific target-oriented pharmacologically safe prophylactic agents or drugs, and or any effective vaccine. drug development is urgently required to back in the normalcy in the community and to combat this pandemic. PURPOSE Thus, we have proposed two novel drug targets, Furin and TMPRSS2, as Covid-19 treatment strategy. We have highlighted this target-oriented novel drug delivery strategy, based on their pathophysiological implication on SARS-CoV-2 infection, as evident from earlier SARS-CoV-1, MERS, and influenza virus infection via host cell entry, priming, fusion, and endocytosis. STUDY DESIGN & METHODS: An earlier study suggested that Furin and TMPRSS2 knockout mice had reduced level of viral load and a lower degree of organ damage such as the lung. The present study thus highlights the promise of some selected novel and potential anti-viral Phytopharmaceutical that bind to Furin and TMPRSS2 as target. RESULT Few of them had shown promising anti-viral response in both preclinical and clinical study with acceptable therapeutic safety-index. CONCLUSION Hence, this strategy may limit life-threatening Covid-19 infection and its mortality rate through nano-suspension based intra-nasal or oral nebulizer spray, to treat mild to moderate SARS-COV-2 infection when Furin and TMPRSS2 receptor may initiate to express and activate for processing the virus to cause cellular infection by replication within the host cell and blocking of host-viral interaction.
Collapse
Affiliation(s)
- Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, Assam-788011 India.
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, India; ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India.
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kerala 686 560, India.
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14194, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
14
|
Ortega MA, Fraile-Martínez O, García-Montero C, García-Gallego S, Sánchez-Trujillo L, Torres-Carranza D, Álvarez-Mon MÁ, Pekarek L, García-Honduvilla N, Bujan J, Álvarez-Mon M, Asúnsolo Á, De La Torre B. An integrative look at SARS‑CoV‑2 (Review). Int J Mol Med 2021; 47:415-434. [PMID: 33416095 PMCID: PMC7797443 DOI: 10.3892/ijmm.2020.4828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
SARS‑CoV‑2 is a newly discovered member of the betacoronaviruses and the etiological agent of the disease COVID‑19. SARS‑CoV‑2 is responsible for the worldwide pandemic which has been taking place in 2020, and is causing a markedly higher number of infections and deaths compared to previous coronaviruses, such as SARS‑CoV or MERS‑CoV. Based on updated scientific literature, the present review compiles the most relevant knowledge of SARS‑CoV‑2, COVID‑19 and the clinical and typical responses that patients have exhibited against this virus, discussing current and future therapies, and proposing strategies with which to combat the disease and prevent a further global threat. The aggressiveness of SARS‑CoV‑2 arises from its capacity to infect, and spread easily and rapidly through its tight interaction with the human angiotensin‑converting enzyme 2 (ACE‑2) receptor. While not all patients respond in a similar manner and may even be asymptomatic, a wide range of manifestations associated with COVID‑19 have been described, particularly in vulnerable population groups, such as the elderly or individuals with other underlying conditions. The proper function of the immune system plays a key role in an individual's favorable response to SARS‑CoV‑2 infection. A hyperactivated response, on the contrary, could account for the more severe cases of COVID‑19, and this may finally lead to respiratory insufficiency and other complications, such as thrombotic or thromboembolic events. The development of novel therapies and vaccines designed to control and regulate a proper immune system response will be key to clinical management, prevention measures and effective population screening to attenuate the transmission of this novel RNA virus.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Tumor Registry, Pathological Anatomy Service, Prince of Asturias University Hospital, Alcalá de Henares, 28801 Madrid
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
| | - Sandra García-Gallego
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Department of Organic and Inorganic Chemistry, 'Andrés M. del Río' Institute of Chemistry (IQAR), University of Alcalá, CIBER-BBN, 28805 Madrid
| | - Lara Sánchez-Trujillo
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Tumor Registry, Pathological Anatomy Service, Prince of Asturias University Hospital, Alcalá de Henares, 28801 Madrid
| | | | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Department of Psychiatry and Medical Psychology, Infanta Leonor University Hospital, 28031 Madrid
| | - Leonel Pekarek
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Internal Medicine Service, Prince of Asturias University Hospital, CIBEREHD, Alcalá de Henares, 28805 Madrid
| | - Ángel Asúnsolo
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Preventive Medicine and Public Health Area, Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, New York University, New York, NY 10027, USA
| | - Basilio De La Torre
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Preventive Medicine and Public Health Area, Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
- Traumatology Service, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| |
Collapse
|
15
|
Botta C, Indrieri A, Garofalo E, Biamonte F, Bruni A, Pasqua P, Cesario F, Costanzo FS, Longhini F, Mendicino F. COVID-19: High-JAKing of the Inflammatory "Flight" by Ruxolitinib to Avoid the Cytokine Storm. Front Oncol 2021; 10:599502. [PMID: 33489899 PMCID: PMC7819896 DOI: 10.3389/fonc.2020.599502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Since SARS-CoV-2 outbreak in December 2019, world health-system has been severely impacted with increased hospitalization, Intensive-Care-Unit (ICU) access and high mortality rates, mostly due to severe acute respiratory failure and multi-organ failure. Excessive and uncontrolled release of proinflammatory cytokines (cytokine release/storm syndrome, CRS) have been linked to the development of these events. The recent advancements of immunotherapy for the treatment of hematologic and solid tumors shed light on many of the molecular mechanisms underlying this phenomenon, thus rendering desirable a multidisciplinary approach to improve COVID-19 patients' outcome. Indeed, currently available therapeutic-strategies to overcome CRS, should be urgently evaluated for their capability of reducing COVID-19 mortality. Notably, COVID-19 shares different pathogenic aspects with acute graft-versus-host-disease (aGVHD), hemophagocytic-lymphohistiocytosis (HLH), myelofibrosis, and CAR-T-associated CRS. Specifically, similarly to aGVHD, an induced tissue damage (caused by the virus) leads to increased cytokine release (TNFα and IL-6) which in turn leads to exaggerated dendritic cells, macrophages (like in HLH) and lymphocytes (as in CAR-T) activation, immune-cells migration, and tissue-damage (including late-stage fibrosis, similar to myelofibrosis). Janus Kinase (JAK) signaling represents a molecular hub linking all these events, rendering JAK-inhibitors suitable to limit deleterious effects of an overwhelming inflammatory-response. Accordingly, ruxolitinib is the only selective JAK1 and JAK2-inhibitor approved for the treatment of myelofibrosis and aGVHD. Here, we discuss, from a molecular and hematological point of view, the rationale for targeting JAK signaling in the management of COVID-19 patients and report the clinical results of a patient admitted to ICU among the firsts to be treated with ruxolitinib in Italy.
Collapse
Affiliation(s)
- Cirino Botta
- Hematology Unit, Department of Hemato-Oncology, “Annunziata” Hospital of Cosenza, Cosenza, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Clinical and Experimental Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Pino Pasqua
- Anesthesia and Intensive Care Unit, “Annunziata” Hospital of Cosenza, Cosenza, Italy
| | - Francesco Cesario
- Hematology Unit, Department of Hemato-Oncology, “Annunziata” Hospital of Cosenza, Cosenza, Italy
| | | | - Federico Longhini
- Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Francesco Mendicino
- Hematology Unit, Department of Hemato-Oncology, “Annunziata” Hospital of Cosenza, Cosenza, Italy
| |
Collapse
|
16
|
Alsuliman T, Faict S, Malard F, Genthon A, Brissot E, Van de Wyngaert Z, Ikhlef S, Banet A, Lapusan S, Sestili S, Corre E, M'hammedi-Bouzina F, Schaeffer L, Legrand O, Dulery R, Mohty M, Marjanovic Z. Does Ibrutinib impact outcomes of viral infection by SARS-CoV-2 in mantle cell lymphoma patients? Curr Res Transl Med 2020; 69:103273. [PMID: 33460953 PMCID: PMC7687383 DOI: 10.1016/j.retram.2020.103273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/01/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Tamim Alsuliman
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France.
| | - Sylvia Faict
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| | - Florent Malard
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France; INSERM UMRs 938, Paris, France
| | - Alexis Genthon
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France; INSERM UMRs 938, Paris, France
| | - Eolia Brissot
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France; INSERM UMRs 938, Paris, France
| | - Zoé Van de Wyngaert
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France; INSERM UMRs 938, Paris, France
| | - Souhila Ikhlef
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| | - Anne Banet
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France; INSERM UMRs 938, Paris, France
| | - Simona Lapusan
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| | - Simona Sestili
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| | - Elise Corre
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| | - Fella M'hammedi-Bouzina
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| | - Louis Schaeffer
- Service de médecine interne, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| | - Ollivier Legrand
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France; INSERM UMRs 938, Paris, France
| | - Rémy Dulery
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France; INSERM UMRs 938, Paris, France
| | - Mohamad Mohty
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France; INSERM UMRs 938, Paris, France
| | - Zora Marjanovic
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| |
Collapse
|
17
|
Rezaei M, Babamahmoodi A, Marjani M. Bruton's Tyrosine Kinase: A Promising Target for the Treatment of COVID-19. TANAFFOS 2020; 19:85-88. [PMID: 33262793 PMCID: PMC7680521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mitra Rezaei
- Virology Research Center, National Research Institute of Tuberculosis and Lung diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Babamahmoodi
- Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Saidu NEB, Bonini C, Dickinson A, Grce M, Inngjerdingen M, Koehl U, Toubert A, Zeiser R, Galimberti S. New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions. Front Immunol 2020; 11:578314. [PMID: 33162993 PMCID: PMC7583636 DOI: 10.3389/fimmu.2020.578314] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation that affects various organs leading to a reduced quality of life. The condition often requires enduring immunosuppressive therapy, which can also lead to the development of severe side effects. Several approaches including small molecule inhibitors, antibodies, cytokines, and cellular therapies are now being developed for the treatment of cGvHD, and some of these therapies have been or are currently tested in clinical trials. In this review, we discuss these emerging therapies with particular emphasis on tyrosine kinase inhibitors (TKIs). TKIs are a class of compounds that inhibits tyrosine kinases, thereby preventing the dissemination of growth signals and activation of key cellular proteins that are involved in cell growth and division. Because they have been shown to inhibit key kinases in both B cells and T cells that are involved in the pathophysiology of cGvHD, TKIs present new promising therapeutic approaches. Ibrutinib, a Bruton tyrosine kinase (Btk) inhibitor, has recently been approved by the Food and Drug Administration (FDA) in the United States for the treatment of adult patients with cGvHD after failure of first-line of systemic therapy. Also, Janus Associated Kinases (JAK1 and JAK2) inhibitors, such as itacitinib (JAK1) and ruxolitinib (JAK1 and 2), are promising in the treatment of cGvHD. Herein, we present the current status and future directions of the use of these new drugs with particular spotlight on their targeting of specific intracellular signal transduction cascades important for cGvHD, in order to shed some light on their possible mode of actions.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Anne Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ulrike Koehl
- Faculty of Medicine, Institute of Clinical Immunology, University Leipzig and Fraunhofer IZI, Leipzig, Germany
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
- Laboratoire d'Immunologie et d`Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris, France
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
The immuno-oncological challenge of COVID-19. ACTA ACUST UNITED AC 2020; 1:946-964. [DOI: 10.1038/s43018-020-00122-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
|
20
|
Kurniawan A, Halim DA, Sutandyo N. Multiple Myeloma Management in COVID-19 Era. ASIAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.1055/s-0040-1716813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Introduction Coronavirus disease 2019 (COVID-19) has become a world pandemic since early 2020. The complexity of handling multiple myeloma (MM) has increased substantially during this pandemic. The objective of this review is to know the current recommendation to manage MM in the COVID-19 era.
Materials and Methods Electronic databases, including PubMed central and PubMed, were used to conduct a literature search. It was conducted on May 18, 2020, using the keywords “multiple myeloma” AND “COVID-19” AND “Prevalence OR Impact OR treatment OR prophylactic.” The included articles were review articles, recommendations, case reports or series, or population-based studies (cross-sectional, cohort, case-control, or interventional), and full-text if available.
Results A total of 124 articles were identified through the search strategy. The two reviewers screened titles and abstracts of all articles. Most articles were excluded because of ineligible to the criteria. Ultimately, 18 articles were included in the final evaluation. MM patients might have higher risk to become severe COVID-19 if they got infected due to their immunocompromised condition. Due to the pandemic, precise treatment priorities should be made by considering its benefit and the risk of MM progression. For the young, especially healthy patients, the most effective therapy should be offered and tailored to the patient’s goal. Several MM societies have published the recommendation regarding the special stage of MM.
Conclusion Myeloma societies in the world have released recommendations related to the management of myeloma patients. However, there is scarce of evidence to do the recommendation.
Collapse
Affiliation(s)
- Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Banten, Indonesia
| | | | - Noorwati Sutandyo
- Hematology and Medical Oncology Department, Dharmais Cancer Hospital, Jakarta, Indonesia
| |
Collapse
|
21
|
Jothimani D, Kailasam E, Danielraj S, Nallathambi B, Ramachandran H, Sekar P, Manoharan S, Ramani V, Narasimhan G, Kaliamoorthy I, Rela M. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis 2020; 100:343-349. [PMID: 32920234 PMCID: PMC7482607 DOI: 10.1016/j.ijid.2020.09.014] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Zinc is a trace element with potent immunoregulatory and antiviral properties, and is utilized in the treatment of coronavirus disease 2019 (COVID-19). However, we do not know the clinical significance of serum Zinc levels in COVID-19 patients. The aim of this study was to determine the clinical significance of serum zinc in COVID-19 patients and to establish a correlation with disease severity. Methods This was a prospective study of fasting zinc levels in COVID-19 patients at the time of hospitalization. An initial comparative analysis was conducted between COVID-19 patients and healthy controls. COVID-19 patients with zinc deficiency were compared to those with normal zinc levels. Results COVID-19 patients (n = 47) showed significantly lower zinc levels when compared to healthy controls (n = 45): median 74.5 (interquartile range 53.4–94.6) μg/dl vs 105.8 (interquartile range 95.65–120.90) μg/dl (p < 0.001). Amongst the COVID-19 patients, 27 (57.4%) were found to be zinc deficient. These patients were found to have higher rates of complications (p = 0.009), acute respiratory distress syndrome (18.5% vs 0%, p = 0.06), corticosteroid therapy (p = 0.02), prolonged hospital stay (p = 0.05), and increased mortality (18.5% vs 0%, p = 0.06). The odds ratio (OR) of developing complications was 5.54 for zinc deficient COVID-19 patients. Conclusions The study data clearly show that a significant number of COVID-19 patients were zinc deficient. These zinc deficient patients developed more complications, and the deficiency was associated with a prolonged hospital stay and increased mortality.
Collapse
Affiliation(s)
- Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India.
| | - Ezhilarasan Kailasam
- Department of Clinical Chemistry, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Silas Danielraj
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Balaji Nallathambi
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Hemalatha Ramachandran
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Padmini Sekar
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shruthi Manoharan
- Department of Infectious Diseases, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Vidyalakshmi Ramani
- Department of Infectious Diseases, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Gomathy Narasimhan
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Ilankumaran Kaliamoorthy
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
22
|
Galimberti S, Petrini M, Baratè C, Ricci F, Balducci S, Grassi S, Guerrini F, Ciabatti E, Mechelli S, Di Paolo A, Baldini C, Baglietto L, Macera L, Spezia PG, Maggi F. Tyrosine Kinase Inhibitors Play an Antiviral Action in Patients Affected by Chronic Myeloid Leukemia: A Possible Model Supporting Their Use in the Fight Against SARS-CoV-2. Front Oncol 2020; 10:1428. [PMID: 33014780 PMCID: PMC7493657 DOI: 10.3389/fonc.2020.01428] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 is the viral agent responsible for the pandemic that in the first months of 2020 caused about 400,000 deaths. Among compounds proposed to fight the SARS-CoV-2-related disease (COVID-19), tyrosine kinase inhibitors (TKIs), already effective in Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML), have been proposed on the basis of their antiviral action already demonstrated against SARS-CoV-1. Very few cases of COVID-19 have been reported in Ph+ ALL and in CML Italian cohorts; authors suggested that this low rate of infections might depend on the use of TKIs, but the biological causes of this phenomenon remain unknown. In this study, the CML model was used to test if TKIs would sustain or not the viral replication and if they could damage patient immunity. Firstly, the infection and replication rate of torquetenovirus (TTV), whose load is inversely proportional to the host immunological control, have been measured in CML patients receiving nilotinib. A very low percentage of subjects were infected at baseline, and TTV did not replicate or at least showed a low replication rate during the follow-up, with a mean load comparable to the measured one in healthy subjects. Then, after gene expression profiling experiments, we found that several “antiviral” genes, such as CD28 and IFN gamma, were upregulated, while genes with “proviral” action, such as ARG-1, CEACAM1, and FUT4, were less expressed during treatment with imatinib, thus demonstrating that TKIs are not detrimental from the immunological point of view. To sum up, our data could offer some biological explanations to the low COVID-19 occurrence in Ph+ ALL and CML patients and sustain the use of TKIs in COVID-19, as already proposed by several international ongoing studies.
Collapse
Affiliation(s)
- Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Federica Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Serena Balducci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Susanna Grassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Guerrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Ciabatti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lisa Macera
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pietro Giorgio Spezia
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fabrizio Maggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Coricello A, Mesiti F, Lupia A, Maruca A, Alcaro S. Inside Perspective of the Synthetic and Computational Toolbox of JAK Inhibitors: Recent Updates. Molecules 2020; 25:E3321. [PMID: 32707925 PMCID: PMC7435994 DOI: 10.3390/molecules25153321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
Abstract
The mechanisms of inflammation and cancer are intertwined by complex networks of signaling pathways. Dysregulations in the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway underlie several pathogenic conditions related to chronic inflammatory states, autoimmune diseases and cancer. Historically, the potential application of JAK inhibition has been thoroughly explored, thus triggering an escalation of favorable results in this field. So far, five JAK inhibitors have been approved by the Food and Drug Administration (FDA) for the treatment of different diseases. Considering the complexity of JAK-depending processes and their involvement in multiple disorders, JAK inhibitors are the perfect candidates for drug repurposing and for the assessment of multitarget strategies. Herein we reviewed the recent progress concerning JAK inhibition, including the innovations provided by the release of JAKs crystal structures and the improvement of synthetic strategies aimed to simplify of the industrial scale-up.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science srl, Università 'Magna Græcia' di Catanzaro, Campus Universitario 'S. Venuta', Viale Europa, 88100 Catanzaro, Italy
| | - Antonio Lupia
- Net4Science srl, Università 'Magna Græcia' di Catanzaro, Campus Universitario 'S. Venuta', Viale Europa, 88100 Catanzaro, Italy
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science srl, Università 'Magna Græcia' di Catanzaro, Campus Universitario 'S. Venuta', Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science srl, Università 'Magna Græcia' di Catanzaro, Campus Universitario 'S. Venuta', Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
24
|
Impact of SARS CoV-2 in Hemoglobinopathies with Immune Disfunction and Epidemiology. A Protective Mechanism from Beta Chain Hemoglobin Defects? Mediterr J Hematol Infect Dis 2020; 12:e2020052. [PMID: 32670530 PMCID: PMC7340215 DOI: 10.4084/mjhid.2020.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
|
25
|
Słomka A, Kowalewski M, Żekanowska E. Coronavirus Disease 2019 (COVID-19): A Short Review on Hematological Manifestations. Pathogens 2020; 9:E493. [PMID: 32575786 PMCID: PMC7350358 DOI: 10.3390/pathogens9060493] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly spreading and devastating global pandemic. Many researchers are attempting to clarify the mechanisms of infection and to develop a drug or vaccine against the virus, but there are still no proven effective treatments. The present article reviews the common presenting hematological manifestations of coronavirus disease 2019 (COVID-19). Elucidating the changes in hematological parameters in SARS-CoV-2 infected patients could help to understand the pathophysiology of the disease and may provide early clues to diagnosis. Several studies have shown that hematological parameters are markers of disease severity and suggest that they mediate disease progression.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85–094 Bydgoszcz, Poland;
| | - Mariusz Kowalewski
- Clinical Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior and Administration, Centre of Postgraduate Medical Education, 02–607 Warsaw, Poland;
- Department of Cardio–Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, 6229 Maastricht, The Netherlands
- Thoracic Research Centre, Innovative Medical Forum, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85–796 Bydgoszcz, Poland
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85–094 Bydgoszcz, Poland;
| |
Collapse
|
26
|
Giudice V, Pagliano P, Vatrella A, Masullo A, Poto S, Polverino BM, Gammaldi R, Maglio A, Sellitto C, Vitale C, Serio B, Cuffa B, Borrelli A, Vecchione C, Filippelli A, Selleri C. Combination of Ruxolitinib and Eculizumab for Treatment of Severe SARS-CoV-2-Related Acute Respiratory Distress Syndrome: A Controlled Study. Front Pharmacol 2020; 11:857. [PMID: 32581810 PMCID: PMC7291857 DOI: 10.3389/fphar.2020.00857] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022] Open
Abstract
To date, there are no specific therapeutic strategies for treatment of COVID-19. Based on the hypothesis that complement and coagulation cascades are activated by viral infection, and might trigger an acute respiratory distress syndrome (ARDS), we report clinical outcomes of 17 consecutive cases of SARS-CoV-2-related ARDS treated (N = 7) with the novel combination of ruxolitinib, a JAK1/2 inhibitor, 10 mg/twice daily for 14 days and eculizumab, an anti-C5a complement monoclonal antibody, 900 mg IV/weekly for a maximum of three weeks, or with the best available therapy (N = 10). Patients treated with the combination showed significant improvements in respiratory symptoms and radiographic pulmonary lesions and decrease in circulating D-dimer levels compared to the best available therapy group. Our results support the use of combined ruxolitinib and eculizumab for treatment of severe SARS-CoV-2-related ARDS by simultaneously turning off abnormal innate and adaptive immune responses.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Clinical Pharmacology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Infectious Disease Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Intensive Care Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Alfonso Masullo
- Infectious Disease Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Sergio Poto
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Intensive Care Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Benedetto Maria Polverino
- Respiratory Disease Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Renato Gammaldi
- Respiratory Endoscopy Unit, Hospital "Giovanni Da Procida", University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Angelantonio Maglio
- Intensive Care Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Clinical Pharmacology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Carolina Vitale
- Intensive Care Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Bianca Serio
- Hematology and Transplant Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Bianca Cuffa
- Hematology and Transplant Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Anna Borrelli
- Executive Board, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Clinical Pharmacology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy.,Hematology and Transplant Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| |
Collapse
|
27
|
Betts BC, Young JW. Less Can Be More When Targeting Interleukin-6-Mediated Cytokine Release Syndrome in Coronavirus Disease 2019. Crit Care Explor 2020; 2:e0138. [PMID: 32696001 PMCID: PMC7314334 DOI: 10.1097/cce.0000000000000138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome-coronavirus-2 is a worldwide public health emergency that will have a lasting generational impact in terms of mortality and economic devastation. Social distancing to prevent viral transmission and supportive care of infected patients are the main interventions now available. This global health crisis therefore merits innovative therapies. Cytokine release syndrome mediated by interleukin-6 is a critical driver of coronavirus disease 2019 mortality. Herein, we review and discuss key immunologic effects of direct interleukin-6 blockade, downstream nonselective Janus kinase inhibition, and selective Janus kinase 2 suppression to treat coronavirus disease 2019-related cytokine release syndrome. We provide evidence that selective targeting of interleukin-6 or Janus kinase 2 is well informed by existing data. This contrasts with broad, nonselective blockade of Janus kinase-mediated signaling, which would inhibit both deleterious and beneficial cytokines, as well as critical host antiviral immunity.
Collapse
Affiliation(s)
- Brian C Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - James W Young
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- The Rockefeller University, New York, NY
| |
Collapse
|
28
|
Longhitano L, Tibullo D, Giallongo C, Lazzarino G, Tartaglia N, Galimberti S, Li Volti G, Palumbo GA, Liso A. Proteasome Inhibitors as a Possible Therapy for SARS-CoV-2. Int J Mol Sci 2020; 21:3622. [PMID: 32443911 PMCID: PMC7279248 DOI: 10.3390/ijms21103622] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 global pandemic is caused by SARS-CoV-2, and represents an urgent medical and social issue. Unfortunately, there is still not a single proven effective drug available, and therefore, current therapeutic guidelines recommend supportive care including oxygen administration and treatment with antibiotics. Recently, patients have been also treated with off-label therapies which comprise antiretrovirals, anti-inflammatory compounds, antiparasitic agents and plasma from convalescent patients, all with controversial results. The ubiquitin-proteasome system (UPS) is important for the maintenance of cellular homeostasis, and plays a pivotal role in viral replication processes. In this review, we discuss several aspects of the UPS and the effects of its inhibition with particular regard to the life cycle of the coronaviruses (CoVs). In fact, proteasome inhibition by various chemical compounds, such as MG132, epoxomycin and bortezomib, may reduce the virus entry into the eucariotic cell, the synthesis of RNA, and the subsequent protein expression necessary for CoVs. Importantly, since UPS inhibitors reduce the cytokine storm associated with various inflammatory conditions, it is reasonable to assume that they might be repurposed for SARS-CoV-2, thus providing an additional tool to counteract both virus replication as well as its most deleterious consequences triggered by abnormal immunological response.
Collapse
Affiliation(s)
- Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (D.T.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (D.T.)
| | - Cesarina Giallongo
- Section of Haematology, Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Giacomo Lazzarino
- UniCamillus—Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.L.)
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, 56121 Pisa, Italy;
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (D.T.)
| | - Giuseppe Alberto Palumbo
- Section of Haematology, Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.L.)
| |
Collapse
|
29
|
Lagziel T, Quiroga L, Ramos M, Hultman CS, Asif M. Two False Negative Test Results in a Symptomatic Patient with a Confirmed Case of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and Suspected Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN). Cureus 2020; 12:e8198. [PMID: 32455090 PMCID: PMC7243064 DOI: 10.7759/cureus.8198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recent outbreak of COVID-19 has put significant strain on the current health system and has exposed dangers previously overlooked. The pathogen known as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), is notable for attacking the pulmonary system causing acute respiratory distress, but it can also severely affect other systems in at-risk individuals including cardiovascular compromise, gastrointestinal distress, acute kidney injury, coagulopathies, cutaneous manifestations, and ultimately death from multi-organ failure. Unfortunately, the reliability of negative test results is questionable and the high infectious burden of the virus calls for extended safety precautions, especially in symptomatic patients. We present a confirmed COVID-19 case that was transferred to our burn center for concern of Steven Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) overlap syndrome after having two negative confirmatory COVID-19 tests at an outside hospital. A 58-year-old female with a history of morbid obesity, HTN, gout, CML managed with imatinib, and chronic kidney disease presented as a transfer from a community hospital to our burn center. The patient was admitted to her community hospital with febrile, acute respiratory distress. Imaging and clinical presentation was consistent with COVID-19 and lab tests for the pathogen were ordered. During observation, while waiting for results, she was placed under patient under investigation (PUI) protocol. Once negative results were obtained, the PUI protocol was abandoned despite ongoing symptoms. Subsequently, dermatological symptoms developed and transfer to our burn center was initiated. After a second negative test result, the symptomatic patient was transferred to our burn center for expert wound management. Given the lack of resolve of respiratory symptoms and concern for the burn patient population, the patient was placed in PUI protocol and an internal COVID-19 was ordered. The patient's initial exam under standard COVID-19 airborne precautions revealed 5% total body surface area of loss of epidermis affecting bilateral thighs, bilateral arms, and face. A dermatopathological biopsy suggested a bullous drug reaction with an erythema multiform-like reaction pattern versus SJS/TEN. Moreover, the internal COVID-19 test returned positive. The delayed positive test results and complicated hospital course with our patient required us to scale back and notify every patient and staff member whom they came in contact with, across multiple institutions. We suggest that whenever a suspected COVID-19 patient is transferred to a specialized center, they should be isolated and re-checked before joining the new patient population for treatment of the unique condition.
Collapse
Affiliation(s)
- Tomer Lagziel
- Plastic Surgery, Johns Hopkins University School of Medicine, Baltimore, USA.,Medicine, Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, ISR
| | - Luis Quiroga
- Plastic Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Margarita Ramos
- Plastic Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Charles S Hultman
- Plastic Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mohammed Asif
- Plastic Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|