1
|
Shi YB, Cheng L, Lyu Y, Shi ZJ. The new perspective of gasotransmitters in cancer metastasis. Nitric Oxide 2025; 156:1-8. [PMID: 40010686 DOI: 10.1016/j.niox.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/20/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Cancer metastasis is the leading cause of death in cancer patients, which renders heavy burdens to family and society. Cancer metastasis is a complicated process in which a large variety of biological molecules, cells and signaling pathways are involved. Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are common air pollutants which are harmful to human bodies and environments. However, recent studies show that these gases, which are collectively termed gasotransmitters, play significant roles in physiological homeostasis and pathogenesis including immunological responses, neuronal regulations, respiratory as well as cardiovascular diseases, metabolic disorders and cancers. These gases are abnormally expressed in cancer cells or tissues, along with the gas-producing enzymes. They have been demonstrated to participate in cancer metastasis intensively by modulating diverse signaling axes. This review introduces the nature of gasotransmitters, summaries novel research progression in gasotransmitters-induced cancer metastasis and elucidates multifaceted mechanisms how the process is modulated, with an effort to bring new therapeutic targets for cancer management in the future.
Collapse
Affiliation(s)
- Yu-Bo Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Lin Cheng
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Lyu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of General Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Ze-Jing Shi
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, China
| |
Collapse
|
2
|
Veskemaa L, Taher M, Graw JA, Gonzalez-Lopez A, Francis RCE. Slow releasing sulphide donor GYY4137 protects mice against ventilator-induced lung injury. Intensive Care Med Exp 2025; 13:45. [PMID: 40263160 DOI: 10.1186/s40635-025-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Cyclic stretching of the lung during mechanical ventilation induces inflammation that contributes to the development of ventilator induced lung injury. Hydrogen sulphide (H2S) is an endogenous gasotransmitter known for its anti-inflammatory properties. However, the administration of exogenous H2S is constrained by its narrow therapeutic window, rapidly leading to potentially toxic peak concentrations. Alternatively, slow-release sulphide donors, such as GYY4137, offer a more controlled delivery. The primary aim of this study is to assess the efficacy and safety of GYY4137 in mitigating VILI. METHODS Anaesthetised male C57BL/6 J mice were pretreated with an intraperitoneal injection of GYY4137 (50 mg/kg, n = 14) or an equivalent volume of phosphate-buffered saline (controls, n = 13) and were then subjected to high tidal volume ventilation (VT 40-42.5 ml/kg) for a maximum of 4 h. RESULTS GYY4137 pretreatment led to a notable 50% increase in survival rates compared to controls (p = 0.0025). It also improved arterial oxygenation after high VT ventilation, with arterial partial pressure of oxygen (PaO2) of 64 mmHg (IQR 49-125 mmHg) vs. 44 mmHg (IQR 42-51 mmHg) in controls (p < 0.001). Additionally, GYY4137 reduced total protein concentration in bronchoalveolar lavage fluid by 30% (p = 0.024) and lowered IL-1β levels by 40% (p = 0.006). GYY4137 mitigated the decline in dynamic respiratory system compliance caused by high VT ventilation, showing values of 24 μl/cmH2O (IQR 22-27) compared to 22 μl/cmH2O (IQR 22-24) in controls (p = 0.017). GYY4137 had minimal effects on antioxidant gene expression related to the erythroid nuclear factor 2, and it did not affect glutathione metabolism, the nuclear factor kappa B pathway, or the endoplasmic reticulum stress response. CONCLUSIONS In this mouse model of VILI, pretreatment with GYY4137 showed protective effects. GYY4137 significantly improved survival. It also improved arterial blood oxygenation and dynamic respiratory system compliance, and mitigated the development of lung oedema and inflammation.
Collapse
Affiliation(s)
- Lilly Veskemaa
- Department of Anaesthesiology and Intensive Care Medicine CCM/CVK, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Mahdi Taher
- Department of Anaesthesiology and Intensive Care Medicine CCM/CVK, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jan Adriaan Graw
- Department of Anaesthesiology and Intensive Care Medicine, Universitätsklinikum Ulm, Ulm University, 89081, Ulm, Germany
| | - Adrian Gonzalez-Lopez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.
| | - Roland C E Francis
- Department of Anaesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany.
| |
Collapse
|
3
|
Nedbalová P, Kaislerova N, Chodakova L, Moos M, Doležal T. SAM transmethylation pathway and adenosine recycling to ATP are essential for systemic regulation and immune response. eLife 2025; 13:RP105039. [PMID: 40193491 PMCID: PMC11975374 DOI: 10.7554/elife.105039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.
Collapse
Affiliation(s)
- Pavla Nedbalová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Nikola Kaislerova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Lenka Chodakova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Martin Moos
- Laboratory of Analytical Biochemistry and Metabolomics, Institute of Entomology, Biology Centre, Czech Academy of SciencesČeské BudějoviceCzech Republic
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South BohemiaČeské BudějoviceCzech Republic
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
4
|
Cai W, Wu A, Lin Z, Cao W, Pathak JL, Jaspers RT, Li R, Li X, Zheng K, Lin Y, Zhou N, Zhang X, Zhu Y, Zhang Q. S-propargyl-cysteine attenuates temporomandibular joint osteoarthritis by regulating macrophage polarization via Inhibition of JAK/STAT signaling. Mol Med 2025; 31:128. [PMID: 40197110 PMCID: PMC11974036 DOI: 10.1186/s10020-025-01186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJ-OA) is a disease characterized by cartilage degradation and synovial inflammation, with limited effective treatment currently. Synovial macrophage polarization is pivotal in TMJ-OA progression, making it a promising therapeutic aspect. This study investigated the effects of S-propargyl-cysteine (SPRC), an endogenous H2S donor, on macrophage polarization and its therapeutic potential in alleviating TMJ-OA. METHODS A MIA-induced TMJ-OA rat model and LPS-stimulated RAW264.7 macrophages were employed to evaluate the effects of SPRC in vivo and in vitro. TMJ bone and cartilage were analyzed via micro-CT and histological methods, while macrophage polarization markers expression were assessed via RT-qPCR, western blot, and immunofluorescence. RNA sequencing was performed on macrophages, and the JAK2/STAT3 signaling pathway was validated using the JAK2-specific inhibitor AG490. The direct effects of SPRC on rat primary condylar chondrocytes were examined by evaluating ECM synthesis and degradation. Co-culture experiments further assessed macrophage-chondrocyte interactions. RESULTS SPRC significantly alleviated cartilage and bone damage in the TMJ-OA rat model, as demonstrated by improved bone volume and cartilage structure. SPRC reduced pro-inflammatory M1 macrophage infiltration and enhanced anti-inflammatory M2 macrophage polarization. SPRC effectively inhibited the JAK2/STAT3, leading to reduction of inflammatory markers, including TNF-α, IL-6, and iNOS. Co-culture experiments revealed that SPRC-treated macrophage-conditioned medium improved chondrocyte metabolic activity and restored ECM integrity. CONCLUSIONS SPRC-modulated macrophage polarization alleviates TMJ-OA via JAK/STAT downregulation, thereby reducing synovial inflammation and cartilage degradation. These findings position SPRC as a promising therapeutic candidate for TMJ-OA and provide insights into novel strategies targeting macrophage polarization and synovium-cartilage crosstalk.
Collapse
Affiliation(s)
- Wenyi Cai
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Antong Wu
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Zhongxiao Lin
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines and Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Room 210, Block E, Avenida Wai Long, Taipa, Macau, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Cao
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Janak L Pathak
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Richard T Jaspers
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Rui Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Xin Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Kaihan Zheng
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Yufu Lin
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Na Zhou
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines and Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Room 210, Block E, Avenida Wai Long, Taipa, Macau, China
| | - Xin Zhang
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines and Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Room 210, Block E, Avenida Wai Long, Taipa, Macau, China
| | - Yizhun Zhu
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines and Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Room 210, Block E, Avenida Wai Long, Taipa, Macau, China.
| | - Qingbin Zhang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China.
| |
Collapse
|
5
|
Zhang W, Zhang L, Jiang W, Yang H, Yang T, Zhao Y, Zhang Z, Ma Y. DNA methylation regulates somatic stress memory and mediates plasticity during acclimation to repeated sulfide stress in Urechis unicinctus. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137264. [PMID: 39842111 DOI: 10.1016/j.jhazmat.2025.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Stress memory is an adaptive mechanism that enables organisms to develop resilience in response to environmental changes. Among them, somatic stress memory is an important means for organisms to cope with contemporary repeated stress, and is accompanied by transcription memory. Sulfide is a common environmental pollutant; however, some organisms have adapted to survive in sulfur-rich environments. Urechis unicinctus is a sulfur-tolerant organism that enhances sulfide stress tolerance by establishing a somatic sulfide stress memory mechanism. However, the molecular mechanisms that regulate sulfide stress memory remain unclear. To explore whether epigenetics, which plays a role in the response of organisms to environmental stress, is involved in regulating somatic sulfide stress memory, we performed a combined analysis of DNA methylation and transcriptome data. We found that elevated levels of DNA methylation under repetitive sulfide stress regulated gene expression and resulted in enhanced sulfide stress tolerance in U. unicinctus, a phenomenon verified using DNA methylase inhibitors. Transcriptional memory can be induced in genes related to oxidative stress, regulation of autophagy, and maintenance of protein homeostasis by altering the level of DNA methylation to facilitate sulfide stress acclimation. Our results provide new insights into adaptive mechanisms to cope with environmental fluctuations.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Heran Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Tianya Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongzheng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Huo Y, Tan X, Dong X, Liang X, Liu K, Zhang H, Li Z, Yang J, Pang Z, Yao Y, Yu A, Dai H. Photo-Responsive H 2S Composite System Regulates the Nerve Regeneration Microenvironment Through Multiple Pathways. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413992. [PMID: 40025980 DOI: 10.1002/adma.202413992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/27/2025] [Indexed: 03/04/2025]
Abstract
After injury, the imbalance of the regeneration microenvironment caused by inflammation, oxidative stress, insufficient neurovascularization, and inadequate energy supply affects nerve regeneration. Drug-delivery nerve conduits play a role in repairing the regenerative microenvironment. However, traditional drugs often fail to cross the blood-nerve barrier and lack multifunctionality, limiting the effectiveness of conduit therapy. Therefore, it is necessary to construct a multifunctional conduit that regulate the regeneration microenvironment timely and effectively. Herein, a photo-responsive hydrogen sulfide (H2S) composite nerve conduit, artificially controlled H2S release, is developed. A new structure of zinc-citric acid organic metal framework (Zn-CA MOFs) is utilized to improve its drug loading rate, achieving the joint regulation of the nerve regeneration microenvironment by H2S and Zn2+. In addition, RGD modification of polyester amide (P(CL-MMD-MAC)-RGD)) combined with aligned structure is used to improve the performance of the conduit. Relevant results demonstrate that H2S and Zn2+ can regulate inflammatory response and oxidative stress and promote mitochondrial function recovery and angiogenesis. Furthermore, the aligned structure can promote cell adhesion and guide cell directed migration. Overall, this study provides a method of combining gas neurotransmitters with ions to improve the nerve regeneration microenvironment, accelerate nerve regeneration, and restore motor function.
Collapse
Affiliation(s)
- Yuanfang Huo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan, 528200, China
| | - Xinyi Tan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Xinyue Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhiqiang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Junwei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Zixuan Pang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Yawei Yao
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan, 528200, China
| |
Collapse
|
7
|
Chen Y, Fang JY. The role of colonic microbiota amino acid metabolism in gut health regulation. CELL INSIGHT 2025; 4:100227. [PMID: 39926315 PMCID: PMC11803165 DOI: 10.1016/j.cellin.2025.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 02/11/2025]
Abstract
The human gut microbiota plays a critical role in maintaining host homeostasis through metabolic activities. Among these, amino acid (AA) metabolism by the microbiota in the large intestine is highly heterogeneous and relevant to host health. Despite increasing interest, microbial AA metabolism remains relatively unexplored. This review highlights recent advances in colonic microbial AA metabolism, including auxotrophies, AA synthesis, and dissimilatory AA metabolites, and their implications in gut health, focusing on major gastrointestinal diseases including colorectal cancer, inflammatory bowel disease, and irritable bowel syndrome.
Collapse
Affiliation(s)
- Youli Chen
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
8
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. Hydrogen Sulfide (H 2S- or H 2S n-Polysulfides) in Synaptic Plasticity: Modulation of NMDA Receptors and Neurotransmitter Release in Learning and Memory. Int J Mol Sci 2025; 26:3131. [PMID: 40243915 PMCID: PMC11988931 DOI: 10.3390/ijms26073131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Hydrogen sulfide (H2S) has emerged as a pivotal gaseous transmitter in the central nervous system, influencing synaptic plasticity, learning, and memory by modulating various molecular pathways. This review examines recent evidence regarding how H2S regulates NMDA receptor function and neurotransmitter release in neuronal circuits. By synthesizing findings from animal and cellular models, we investigate the impacts of enzymatic H2S production and exogenous H2S on excitatory synaptic currents, long-term potentiation, and intracellular calcium signaling. Data suggest that H2S interacts directly with NMDA receptor subunits, altering receptor function and modulating neuronal excitability. Simultaneously, H2S promotes the release of neurotransmitters such as glutamate and GABA, shaping synaptic dynamics and plasticity. Furthermore, reports indicate that disruptions in H2S metabolism contribute to cognitive impairments and neurodegenerative disorders, underscoring the potential therapeutic value of targeting H2S-mediated pathways. Although the precise mechanisms of H2S-induced changes in synaptic strength remain elusive, a growing body of evidence positions H2S as a significant regulator of memory formation processes. This review calls for more rigorous exploration into the molecular underpinnings of H2S in synaptic plasticity, paving the way for novel pharmacological interventions in cognitive dysfunction.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
9
|
Ranjan R, Kumari R, Kumar A, Vijayakumar S. Harnessing computational methods for uncovering structural insights into Leishmania donovani 3-MST: implications for drug design and target specificity. In Silico Pharmacol 2025; 13:51. [PMID: 40162131 PMCID: PMC11953493 DOI: 10.1007/s40203-025-00340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
3-Mercaptopyruvate sulfurtransferase (3-MST) is an enzyme that plays integral roles in various biological processes. In the realm of Leishmania, the role of 3-MST is less explored. It is a critical player in maintaining oxidative homeostasis in Leishmania during stress for survival. This highlights the potential of Ld3-MST as an appealing drug target. However, recognising structural disparities becomes essential when a protein is present in the host and parasite. This study delves into the structural distinctions between Ld3-MST and Hs3-MST, providing valuable insights with direct implications for drug design. A standout feature of Ld3-MST is the elongated 70 amino acid C-terminal mainly contributing to a lid-like domain above the active site cavity, setting it apart from Hs3-MST. The RMSD analysis shows fluctuation due to the extended tail, while Rg and SASA confirm the open and solvent-accessible nature of Ld3-MST, especially in its active site, suggesting its ability to accommodate larger molecules. PC and FEL analysis reveals unique internal molecular dynamics of Ld3-MST, particularly in its active site. Docking studies demonstrate that Ld3-MST's active site can effectively accommodate molecules, highlighting its potential as a drug target. This comprehensive investigation lays the foundation for developing precise Ld3-MST inhibitors with promising therapeutic applications. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00340-6.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Bioinformatics, ICMR-RMRIMS, Patna, Bihar India
- Department of Biochemistry, ICMR-RMRIMS, Patna, Bihar India
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal India
| | - Rashmi Kumari
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar India
| | - Ashish Kumar
- Department of Biochemistry, ICMR-RMRIMS, Patna, Bihar India
| | - Saravanan Vijayakumar
- Department of Bioinformatics, ICMR-RMRIMS, Patna, Bihar India
- Biostatistics / Bioinformatics, ICMR-NCDIR, Bengaluru, Karnataka India
| |
Collapse
|
10
|
Papa V, Li Pomi F, Di Gioacchino M, Mangifesta R, Borgia F, Gangemi S. Mast Cells and Microbiome in Health and Disease. FRONT BIOSCI-LANDMRK 2025; 30:26283. [PMID: 40152378 DOI: 10.31083/fbl26283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 03/29/2025]
Abstract
Inter-kingdom communication between human microbiota and mast cells (MCs), as sentinels of innate immunity, is crucial in determining health and disease. This complex signaling hub involves micro-organisms and, more importantly, their metabolic products. Gut microbiota is the host's largest symbiotic ecosystem and, under physiological conditions, it plays a vital role in mediating MCs tolerogenic priming, thus ensuring immune homeostasis across organs. Conversely, intestinal dysbiosis of various etiologies promotes MC-oriented inflammation along major body axes, including gut-skin, gut-lung, gut-liver, and gut-brain. This review of international scientific literature provides a comprehensive overview of the cross-talk under investigation. This process is a key biological event involved in disease development across clinical fields, with significant prognostic and therapeutic implications for future research.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| | - Mario Di Gioacchino
- Center of Advanced Science and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65121 Pescara, Italy
| | - Rocco Mangifesta
- Center of Advanced Science and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
11
|
Aaronson PI. The Role of Hydrogen Sulfide in the Regulation of the Pulmonary Vasculature in Health and Disease. Antioxidants (Basel) 2025; 14:341. [PMID: 40227402 PMCID: PMC11939758 DOI: 10.3390/antiox14030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The gasotransmitter hydrogen sulfide (H2S; also termed sulfide) generally acts as a vasodilator in the systemic vasculature but causes a paradoxical constriction of pulmonary arteries (PAs). In light of evidence that a fall in the partial pressure in oxygen (pO2) increases cellular sulfide levels, it was proposed that a rise in sulfide in pulmonary artery smooth muscle cells (PASMCs) is responsible for hypoxic pulmonary vasoconstriction, the contraction of PAs which develops rapidly in lung regions undergoing alveolar hypoxia. In contrast, pulmonary hypertension (PH), a sustained elevation of pulmonary artery pressure (PAP) which can develop in the presence of a diverse array of pathological stimuli, including chronic hypoxia, is associated with a decrease in the expression of sulfide -producing enzymes in PASMCs and a corresponding fall in sulfide production by the lung. Evidence that PAP in animal models of PH can be lowered by administration of exogenous sulfide has led to an interest in using sulfide-donating agents for treating this condition in humans. Notably, intracellular H2S exists in equilibrium with other sulfur-containing species such as polysulfides and persulfides, and it is these reactive sulfur species which are thought to mediate most of its effects on cells through persulfidation of cysteine thiols on proteins, leading to changes in function in a manner similar to thiol oxidation by reactive oxygen species. This review sets out what is currently known about the mechanisms by which H2S and related sulfur species exert their actions on pulmonary vascular tone, both acutely and chronically, and discusses the potential of sulfide-releasing drugs as treatments for the different types of PH which arise in humans.
Collapse
Affiliation(s)
- Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| |
Collapse
|
12
|
Fässler D, Heinken A, Hertel J. Characterising functional redundancy in microbiome communities via relative entropy. Comput Struct Biotechnol J 2025; 27:1482-1497. [PMID: 40265160 PMCID: PMC12013412 DOI: 10.1016/j.csbj.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/24/2025] Open
Abstract
Functional redundancy has been hypothesised to be at the core of the well-evidenced relation between high ecological microbiome diversity and human health. Here, we conceptualise and operationalise functional redundancy on a single-trait level for functionally annotated microbial communities, utilising an information-theoretic approach based on relative entropy that also allows for the quantification of functional interdependency across species. Via constraint-based microbiome community modelling of a public faecal metagenomic dataset, we demonstrate that the strength of the relation between species diversity and functional redundancy is dependent on specific attributes of the function under consideration such as the rarity and the occurring functional interdependencies. Moreover, by integrating faecal metabolome data, we highlight that measures of functional redundancy have correlates in the host's metabolome. We further demonstrate that microbiomes sampled from colorectal cancer patients display higher levels of species-species functional interdependencies than those of healthy controls. By analysing microbiome community models from an inflammatory bowel disease (IBD) study, we show that although species diversity decreased in IBD subjects, functional redundancy increased for certain metabolites, notably hydrogen sulphide. This finding highlights their potential to provide valuable insights beyond species diversity. Here, we formalise the concept of functional redundancy in microbial communities and demonstrate its usefulness in real microbiome data, providing a foundation for a deeper understanding of how microbiome diversity shapes the functional capacities of a microbiome.
Collapse
Affiliation(s)
- Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Almut Heinken
- UMRS Inserm 1256 nGERE (Nutrition-Genetics-Environmental Risks), Vandœuvre-les-Nancy, France
| | - Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Dvorak T, Hernandez-Sandoval H, Cheku S, Mora Valencia González M, Borer L, Grieser R, Carlson KA, Cao H. Development of a Rapid-Response Fluorescent Probe for H 2S: Mechanism Elucidation and Biological Applications. BIOSENSORS 2025; 15:174. [PMID: 40136971 PMCID: PMC11940642 DOI: 10.3390/bios15030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule involved in various physiological and pathological processes, making its accurate detection in biological systems highly desirable. In this study, two fluorescent probes (M1 and M2) based on 1,8-naphthalimide were developed for H2S detection via a nucleophilic aromatic substitution. M1 demonstrated high sensitivity and selectivity for H2S in aqueous media, with a detection limit of 0.64 µM and a strong linear fluorescence response in the range of 0-22 µM of NaHS. The reaction kinetics revealed a rapid response, with a reaction rate constant of 7.56 × 102 M-1 s-1, and M1 was most effective in the pH range of 6-10. Mechanism studies using 1H NMR titration confirmed the formation of 4-hydroxyphenyl-1,8-naphthalimide as the product of H2S-triggered nucleophilic substitution. M1 was applied in MDA-MB-231 cells for cell imaging, in which M1 provided significant fluorescence enhancement upon NaHS treatment, confirming its applicability for detecting H2S in biological environments. In comparison, M2, designed with extended conjugation for red-shifted emission, exhibited weaker sensitivity due to the reduced stability of its naphtholate product and lower solubility. These results demonstrate that M1 is a highly effective and selective fluorescent probe for detecting H2S, providing a valuable resource for investigating the biological roles of H2S in health and disease.
Collapse
Affiliation(s)
- Trevor Dvorak
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Haley Hernandez-Sandoval
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Sunayn Cheku
- Department of Biology, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA (K.A.C.)
| | - Marijose Mora Valencia González
- Facultad de Medicina Región Veracruz, Universidad Veracruzana, C. Agustín de Iturbide S/N, Zona Centro, Veracruz 91700, Mexico
| | - Linus Borer
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Riley Grieser
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Kimberly A. Carlson
- Department of Biology, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA (K.A.C.)
| | - Haishi Cao
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| |
Collapse
|
14
|
Shi D, Li J, Niu Z, Wang L, Ren S, Gu W, Yang H, Xue H, Wu G. Identification and validation of diagnostic biomarkers for temporal lobe epilepsy related to ferroptosis and potential therapeutic targets. Sci Rep 2025; 15:4908. [PMID: 39930056 PMCID: PMC11811202 DOI: 10.1038/s41598-025-89390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Ferroptosis pathway activation is potentially correlated with temporal lobe epilepsy (TLE). However, the diagnostic significance and mechanism of ferroptosis-related genes (FRGs) in TLE require further investigation. A comprehensive analysis of the GSE134697 dataset from the Gene Expression Omnibus (GEO) database using Weighted gene co-expression network analysis (WGCNA) identified 3,212 differentially expressed genes (DEGs) between temporal lobe epilepsy (TLE) and control groups, with a critical focus on the turquoise module. Through intersection of DEGs and key module genes, correlation analyses with functional-related genes (FRG), protein-protein interactions (PPI), least absolute shrinkage and selection operator (LASSO), and machine learning methods, five potential biomarkers of ferroptosis (CBS, SHMT1, RIN3, QDPR, and PLPP4) were isolated. A nomogram was constructed using these markers, and enrichment analyses revealed their links to T-cell activation, allograft rejection, and glial differentiation. Variations in 13 immune cell types were also noted. Upregulation of CBS, RIN3, QDPR, and PLPP4 in TLE was confirmed through RT-qPCR and Western blot assays. Additionally, five SHMT1-targeting and one CBS-targeting drugs were predicted using the Drug-Gene Interaction Database (DGIdb). These findings provide new insights into the potential pathogenesis of TLE and suggest new targets for future research.
Collapse
Affiliation(s)
- Dai Shi
- School of Basic Medicine, Guizhou Medical University, Guiyang, 561113, China.
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China.
| | - Jingxuan Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Zhenpeng Niu
- School of Basic Medicine, Guizhou Medical University, Guiyang, 561113, China
| | - Likun Wang
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Siying Ren
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wen Gu
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Hui Yang
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Hong Xue
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Guofeng Wu
- School of Basic Medicine, Guizhou Medical University, Guiyang, 561113, China.
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
15
|
Wang C, Li S, Li Q, Xi H, Li J, Zhu Q, Wu P, Zhu Y, Mao Y. H 2S Donor SPRC Ameliorates Ischemic Stroke by Upregulating CD24. CNS Neurosci Ther 2025; 31:e70243. [PMID: 39953809 PMCID: PMC11829115 DOI: 10.1111/cns.70243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Ischemic stroke is well-known for its high mortality and morbidity, but its treatment remains to be explored due to the current limitations. For example, severe neuroinflammation occurs after ischemic stroke; however, effective neuroinflammatory inhibitors are still lacking. Thus, the development of new therapeutic targets of inhibiting neuroinflammation is urgent. CD24 is a small heavy glycosylated protein, which plays a critical role in neural development and acts as an inflammatory suppressor in tumors and autoimmune diseases. But the role of CD24 in ischemic stroke remains unknown. AIMS The role of CD24 in ischemic stroke should be explored. Additionally, the potential relationship between the H2S donor, S-propargyl-cysteine (SPRC) and CD24 in ischemic stroke should be revealed. METHODS Mechanism studies have been performed both in vitro and in vivo to verify the CD24-mediated inflammation and migration. SPRC has been applied to treat ischemic stroke, and its potential association with CD24 has been studied. RESULTS The overexpression of CD24 can inhibit the nuclear factor kappa B (NF-κB) inflammatory signaling pathway and promote the migration ability of M2 microglia cells via Src/Fak/Pyk2 signaling pathway in an inflammatory model of BV2 cells. SPRC can upregulate the level of endogenous H2S via cystathionase-β-synthase (CBS) and it indirectly plays a role in upregulating CD24. CONCLUSIONS CD24 could be a potential target of inhibiting neuroinflammation. SPRC reduces inflammation in ischemic stroke by regulating the CD24/Iκ-Bα/NF-κB inflammatory signaling pathway and improves the migration ability of M2 microglia via CD24/Src/Fak/Pyk2 signaling pathway, which further alleviates the inflammatory response at the lesion.
Collapse
Affiliation(s)
- Chenye Wang
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Sha Li
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Qixiu Li
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Haiyan Xi
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Jiejia Li
- School of Pharmacy and Laboratory of Drug Discovery from Natural Resources and IndustrializtionMacau University of Science and TechnologyMacauChina
- School of PharmacyProvincial Key Laboratory of Inflammation and Molecular Drug TargetInstitute for Translational NeuroscienceAffiliated Hospital 2 of Nantong UniversityCentre for Neural Developmental and Degenerative ResearchNantong UniversityNantongChina
| | - Qing Zhu
- School of PharmacyProvincial Key Laboratory of Inflammation and Molecular Drug TargetInstitute for Translational NeuroscienceAffiliated Hospital 2 of Nantong UniversityCentre for Neural Developmental and Degenerative ResearchNantong UniversityNantongChina
| | - Pinwen Wu
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| | - Yi‐Zhun Zhu
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
- School of Pharmacy and Laboratory of Drug Discovery from Natural Resources and IndustrializtionMacau University of Science and TechnologyMacauChina
| | - Yicheng Mao
- Department of Pharmacology, the Key Laboratory of Smart Drug Delivery (Ministry of Education), School of PharmacyMinhang HospitalFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Ju M, Tong W, Bi J, Zeng X, Qi A, Sun M, Wen J, Zhao L, Wei M. Hydrogen Sulfide Promotes TAM-M1 Polarization through Activating IRE-1α Pathway via GRP78 S-Sulfhydrylation to against Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413607. [PMID: 39755930 PMCID: PMC11848574 DOI: 10.1002/advs.202413607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Hydrogen sulfide (H2S)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC). Therefore, the aim is to investigate whether protein S-sulfhydration can regulate TAM reprogramming and its underlying mechanism in BC. The results showed that in BC, the CTH-H2S axis is positively correlated with the presence of an anti-tumor phenotype in TAMs. NaHS, as an H2S donor, repolarized TAMs into M1 macrophages to block the tumor-promoting activities of TAMs both in vitro and in vivo. Mechanistically, H2S-mediated S-sulfhydration of the protein chaperone glucose-regulated-protein 78 (GRP78) induced endoplasmic reticulum transmembrane protein kinase-1α (IRE-1α) dissociation from GRP78, which enhanced the phosphatase activity of IRE-1α itself in BC-TAMs, while the Cys420 site mutation of GRP78 interfered with these effects. Collectively, GRP78 S-sulfhydrylation mediated by H2S at the Cys420 residue decreased the tumor burden and inhibited lung metastasis of BC through reprograming TAMs via activating the IRE-1α pathway, indicating that targeting GRP78 S-sulfhydration represents a promising intervention for TAM-M1 repolarization in BC.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Weiwei Tong
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- Department of Laboratory MedicineShengjing Hospital of China Medical UniversityShenyang110122China
| | - Jia Bi
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Xianxin Zeng
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Aoshuang Qi
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Mingli Sun
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Jian Wen
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- Department of Breast SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyang110122China
| | - Lin Zhao
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Minjie Wei
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- School of PharmacyQiqihar Medical UniversityQiqihar161006China
| |
Collapse
|
17
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
18
|
Xu C, Yang N, Yu H, Wang X. Design and synthesis of phenylthiophosphoryl dichloride derivatives and evaluation of their antitumour and anti-inflammatory activities. Front Chem 2025; 12:1529211. [PMID: 39906126 PMCID: PMC11790660 DOI: 10.3389/fchem.2024.1529211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/24/2024] [Indexed: 02/06/2025] Open
Abstract
Tumours and inflammation are serious risks to human health and are importantly regulated by the gas signalling molecule hydrogen sulphide. In this work, we report the rational design and synthesis of H2S donor molecules based on phenylthiophosphoryl dichloride nuclei and assess their efficacy against tumours and inflammation. We predicted its potential anticancer targets based on network pharmacology and then verified the inhibitory effect of the active compound S11 on the pathway PI3K/AKT by enzyme inhibition and molecular docking assay. In addition, compound S11 exhibited a potent anti-inflammatory effect on macrophages, effectively reducing the levels of inflammatory mediators TNF-α, IL-10 and HO-1. Compound S11 can be used as a new chemical entity for the discovery of new anti-cancer drugs or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Chunyun Xu
- Department of Dermatology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | | | | | | |
Collapse
|
19
|
Fang F, Guan YN, Zhong MJ, Wen JY, Chen ZW. H 2S protects rat cerebral ischemia-reperfusion injury by inhibiting expression and activation of hippocampal ROCK 2 at the Thr436 and Ser575 sites. Eur J Pharmacol 2024; 985:177079. [PMID: 39486769 DOI: 10.1016/j.ejphar.2024.177079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND H2S is an endogenous gas signal molecule, which protects cerebral ischemia/reperfusion (I/R) injury by phosphorylating rho-associated coiled coil-containing protein kinase 2 (ROCK2) at Tyr722, and inhibiting ROCK2 protein expression and activities. We previously reported that H2S protected rat neurons from hypoxia/reoxygenation injury in vitro through inhibiting phosphorylation of ROCK2 at Thr436 and Ser575, but it is unclear whether these two sites are involved in protection of H2S against cerebral I/R injury. METHOD Rats transfected with wild-type and mutant eukaryotic plasmids of ROCK2 in hippocampus were used to establish I/R model by ligating bilateral common carotid artery. Rat behavioral deficit was detected by water maze assay, and ROCK2, lactate dehydrogenase (LDH), nerve-specific enolase (NSE) and reactive oxygen species (ROS) were determined by ELISA. ROCK2 expressions was examined by western-blot assay, and bcl-2 and Bax mRNAs were examined by RT-qPCR. RESULTS NaHS (4.8 mg/kg) significantly inhibited the I/R-increased serum LDH, NSE and ROS in the ROCK2wild-pEGFP-N1-transfected rats, but had no obvious effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats; inhibitions of NaHS on the I/R-increased escape latency and the I/R-decreased percentage of target quadrant distance to total distance were markedly attenuated or abolished in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats compared with those in the ROCK2wild-pEGFP-N1-transfected rats; NaHS obviously inhibited the I/R-increased hippocampal ROCK2 and GFP-ROCK2 proteins, Bax mRNA, and ROCK2 activity, as well as the I/R-decreased hippocampal bcl-2 mRNA in the hippocampus of the ROCK2wild-pEGFP-N1-transfected rats, but had no significant effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats. CONCLUSION H2S protects cerebral I/R injury in rats by inhibiting expression and activation of hippocampal ROCK2 via the Thr436 and Ser575 sites.
Collapse
Affiliation(s)
- Fang Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China; Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Yi-Ning Guan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Mei-Jing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Ji-Yue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| | - Zhi-Wu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| |
Collapse
|
20
|
Song RX, Ma XY, Zhou TT, Yu ZF, Wang J, Li BD, Jing YM, Wang H, Fu Y, Lv RZ, Jia SY, Li XM, Zhang LM. Excessive hydrogen sulfide-induced activation of NMDA receptors in the colon participates in anxiety- and compulsive-like behaviors in a rodent model of hemorrhagic shock and resuscitation. Int Immunopharmacol 2024; 142:113255. [PMID: 39332088 DOI: 10.1016/j.intimp.2024.113255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE Hemorrhagic shock and resuscitation (HSR) cause inflammatory responses in the gastrointestinal tract and is associated with substantial morbidity and mortality rates. Hydrogen sulfide (H2S), a gasotransmitter with pleiotropic activity, exhibits anti-inflammatory benefits at physiological levels. However, deleterious effects are observed when its concentration increases. In this investigation, we employed a mouse model of HSR to examine the effects of an H2S scavenger on the gastrointestinal tract and brain, with emphasis on N-Methyl-d-Aspartate (NMDA) receptor function. METHODS Mice were immediately administered dl-propargylglycine (PAG) intragastrically as an H2S scavenger after HSR exposure. The O-maze and buried beads tests were used to assess compulsive- and anxiety-like behaviors. Pathological changes in the intestine were evaluated at 24 and 30 days after HSR. Subsequently, at 30 days after HSR, we examined electrophysiological and pathological changes in the amygdala. RESULTS Within 24 h of HSR exposure, animals treated with PAG showed significantly lower colonic injury. Additionally, compared to the HSR-treated mice 30 days after HSR, the PAG-treated mice displayed reduced buried beads, increased open-arm time, lower blood levels of Diamine Oxidase (DAO) and considerably improved ZO-1 intensity, a stronger association between the delta rhythm phase and beta activity amplitude, and lower neuroinflammatory response in the amygdala. MK-801, an NMDA receptor inhibitor, significantly reversed H2S-induced intestinal and cerebral injury. CONCLUSION This experimental data suggests that H2S-induced excessive activation of NMDA receptors contributes to anxiety- and compulsive-like behaviors caused by HSR.
Collapse
Affiliation(s)
- Rong-Xin Song
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Xiao-Yi Ma
- Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Ting-Ting Zhou
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Zhi-Fang Yu
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Jun Wang
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Bao-Dong Li
- Department of Neurology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Yu-Mo Jing
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Han Wang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Yue Fu
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Rui-Zhao Lv
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Shi-Yan Jia
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Xiao-Ming Li
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, China.
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| |
Collapse
|
21
|
Zhu YX, Yang Q, Zhang YP, Liu ZG. FGF2 Functions in H 2S's Attenuating Effect on Brain Injury Induced by Deep Hypothermic Circulatory Arrest in Rats. Mol Biotechnol 2024; 66:3526-3537. [PMID: 37919618 PMCID: PMC11564249 DOI: 10.1007/s12033-023-00952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Deep hypothermic circulatory arrest (DHCA) can protect the brain during cardiac and aortic surgery by cooling the body, but meanwhile, temporary or permanent brain injury may arise. H2S protects neurons and the central nervous system, especially from secondary neuronal injury. We aim to unveil part of the mechanism of H2S's attenuating effect on brain injury induced by DHCA by exploring crucial target genes, and further promote the clinical application of H2S in DHCA. Nine SD rats were utilized to provide histological and microarray samples, and further the differential expression analysis. Then we conducted GO and KEGG pathway enrichment analyses on candidate genes. The protein-protein interaction (PPI) networks were performed by STRING and GeneMANIA. Crucial target genes' expression was validated by qRT-PCR and western blot. Histological study proved DHCA's damaging effect and H2S's repairing effect on brain. Next, we got 477 candidate genes by analyzing differentially expressed genes. The candidate genes were enriched in 303 GO terms and 28 KEGG pathways. Then nine genes were selected as crucial target genes. The function prediction by GeneMANIA suggested their close relation to immunity. FGF2 was identified as the crucial gene. FGF2 plays a vital role in the pathway when H2S attenuates brain injury after DHCA. Our research provides more information for understanding the mechanism of H2S attenuating brain injury after DHCA. We infer the process might probably be closely associated with immunity.
Collapse
Affiliation(s)
- Yu-Xiang Zhu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 61 No. 3 Ave, Binhai District, Tianjin, 300457, People's Republic of China
| | - Qin Yang
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Binhai District, Tianjin, 300457, People's Republic of China
| | - You-Peng Zhang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 61 No. 3 Ave, Binhai District, Tianjin, 300457, People's Republic of China
| | - Zhi-Gang Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 61 No. 3 Ave, Binhai District, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
22
|
Shi L, Chen Z, Ou J, Liang E, Chen Z, Fu Q, Huang L, Cheng K. Pretheranostic agents with extraordinaryNIRF/photoacoustic imaging performanceand photothermal oncotherapy efficacy. Acta Pharm Sin B 2024; 14:5370-5381. [PMID: 39807319 PMCID: PMC11725032 DOI: 10.1016/j.apsb.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 01/16/2025] Open
Abstract
Cervical cancer, the most common gynecological malignancy, significantly and adversely affects women's physical health and well-being. Traditional surgical interventions and chemotherapy, while potentially effective, often entail serious side effects that have led to an urgent need for novel therapeutic methods. Photothermal therapy (PTT) has emerged as a promising approach due to its ability to minimize damage to healthy tissue. Connecting a biothiol detection group to PTT-sensitive molecules can improve tumor targeting and further minimize potential side effects. In this study, we developed a near-infrared fluorescence (NIRF)/photoacoustic (PA) dual-mode probe, S-NBD, which demonstrated robust PTT performance. This innovative probe is capable of activating NIRF/PA signals to enable the detection of biothiols with high emission wavelength (838 nm) and large Stokes shift (178 nm), allowing for in vivo monitoring of cancer cells. Additionally, the probe achieved an outstanding photothermal conversion efficiency of 67.1%. The application of laser irradiation (660 nm, 1.0 W/cm2, 5 min) was able to achieve complete tumor ablation without recurrence. In summary, this seminal study presents a pioneering NIRF/PA dual-mode dicyanoisophorone-based probe for biothiol imaging, incorporating features from PTT for the first time. This pioneering approach achieves the dual objectives of improving tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Liu Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhou Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Jieyang Medical Research Center, Jieyang People’s Hospital, Jieyang 522000, China
| | - Jiaxin Ou
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiuyue Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
23
|
Kieronska-Rudek A, Ascencao K, Chlopicki S, Szabo C. Increased hydrogen sulfide turnover serves a cytoprotective role during the development of replicative senescence. Biochem Pharmacol 2024; 230:116595. [PMID: 39454733 DOI: 10.1016/j.bcp.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The mammalian gasotransmitter hydrogen sulfide (H2S) is produced by enzymes such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST). Prior studies suggest that H2S may have cytoprotective and anti-aging effects. This project explores the regulation and role of endogenous H2S in a murine model of replicative senescence. H2S and polysulfide levels in RAW 264.7 murine macrophages (control cells: passage 5-10; senescent cells: passage 30-40) were measured using fluorescent probes. The expression of H2S-related enzymes and the activity of senescence marker beta-galactosidase (SA-β-Gal) were also analyzed. CBS, CSE, and 3-MST were inhibited using selective pharmacological inhibitors. Senescence led to a moderate upregulation of CBS and in a significant increase in CSE and 3-MST. H2S degradation enzymes were also elevated in senescence. Inhibition of H2S-producing enzymes reduced H2S levels but increased polysulfides. Inhibition of H2S production during senescence suppressed cell proliferation, and elevated SA-β-Gal and p21 levels. Comparing young and old mice spleens revealed downregulation of CBS and ETHE1 and upregulation of rhodanese and SUOX in older mice. The results demonstrate that increased reactive sulfur turnover occurs in senescent macrophages and that reactive sulfur species support cell proliferation and regulate cellular senescence.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Cracow, Poland
| | - Kelly Ascencao
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Cracow, Poland; Jagiellonian University Medical College, Chair of Pharmacology, Faculty of Medicine, Cracow, Poland
| | - Csaba Szabo
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
24
|
Wang YW, Chu T, Wang XL, Fan YQ, Cao L, Chen YH, Zhu YW, Liu HX, Ji XY, Wu DD. The role of cystathionine β-synthase in cancer. Cell Signal 2024; 124:111406. [PMID: 39270916 DOI: 10.1016/j.cellsig.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Cystathionine β-synthase (CBS) occupies a key position as the initiating and rate-limiting enzyme in the sulfur transfer pathway and plays a vital role in health and disease. CBS is responsible for regulating the metabolism of cysteine, the precursor of glutathione (GSH), an important antioxidant in the body. Additionally, CBS is one of the three enzymes that produce hydrogen sulfide (H2S) in mammals through a variety of mechanisms. The dysregulation of CBS expression in cancer cells affects H2S production through direct or indirect pathways, thereby influencing cancer growth and metastasis by inducing angiogenesis, facilitating proliferation, migration, and invasion, modulating cellular energy metabolism, promoting cell cycle progression, and inhibiting apoptosis. It is noteworthy that CBS expression exhibits complex changes in different cancer models. In this paper, we focus on the CBS synthesis and metabolism, tissue distribution, potential mechanisms influencing tumor growth, and relevant signaling pathways. We also discuss the impact of pharmacological CBS inhibitors and silencing CBS in preclinical cancer models, supporting their potential as targeted cancer therapies.
Collapse
Affiliation(s)
- Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Hong-Xia Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
25
|
Yilmaz Y. Postbiotics as Antiinflammatory and Immune-Modulating Bioactive Compounds in Metabolic Dysfunction-Associated Steatotic Liver Disease. Mol Nutr Food Res 2024; 68:e2400754. [PMID: 39499063 DOI: 10.1002/mnfr.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Postbiotics, defined as products or metabolic byproducts secreted by live bacteria or released after bacterial lysis, are emerging as promising therapeutic agents for metabolic dysfunction-associated steatotic liver disease (MASLD). This review explores the antiinflammatory and immunomodulatory properties of various postbiotics, including exopolysaccharides, lipoteichoic acid, short-chain fatty acids, hydrogen sulfide, polyamines, tryptophan derivatives, and polyphenol metabolites. These compounds have demonstrated potential in mitigating steatotic liver infiltration, reducing inflammation, and slowing fibrosis progression in preclinical studies. Notably, postbiotics exert their beneficial effects by modulating gut microbiota composition, enhancing intestinal barrier function, optimizing lipid metabolism, reducing hepatic inflammation and steatosis, and exhibiting hepatoprotective properties. However, translating these findings into clinical practice requires well-designed trials to validate efficacy and safety, standardize production and characterization, and explore personalized approaches and synergistic effects with other therapeutic modalities. Despite challenges, the unique biological properties of postbiotics, such as enhanced safety compared to probiotics, make them attractive candidates for developing novel nutritional interventions targeting the multifactorial pathogenesis of MASLD. Further research is needed to establish their clinical utility and potential to improve liver and systemic outcomes in this increasingly prevalent condition.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, 53020, USA
| |
Collapse
|
26
|
Dawoud A, Youness RA, Elsayed K, Nafae H, Allam H, Saad HA, Bourquin C, Szabo C, Abdel-Kader R, Gad MZ. Emerging roles of hydrogen sulfide-metabolizing enzymes in cancer. Redox Rep 2024; 29:2437338. [PMID: 39643979 PMCID: PMC11626870 DOI: 10.1080/13510002.2024.2437338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024] Open
Abstract
Gasotransmitters play crucial roles in regulating many physiological processes, including cell signaling, cellular proliferation, angiogenesis, mitochondrial function, antioxidant production, nervous system functions and immune responses. Hydrogen sulfide (H2S) is the most recently identified gasotransmitter, which is characterized by its biphasic behavior. At low concentrations, H2S promotes cellular bioenergetics, whereas at high concentrations, it can exert cytotoxic effects. Cystathionine β-synthetase (CBS), cystathionine-γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST), and cysteinyl-tRNA synthetase 2 (CARS2) are pivotal players in H2S biosynthesis in mammalian cells and tissues. The focus of this review is the regulation of the various pathways involved in H2S metabolism in various forms of cancer. Key enzymes in this process include the sulfide oxidation unit (SOU), which includes sulfide:quinone oxidoreductase (SQOR), human ethylmalonic encephalopathy protein 1 (hETHE1), rhodanese, sulfite oxidase (SUOX/SO), and cytochrome c oxidase (CcO) enzymes. Furthermore, the potential role of H2S methylation processes mediated by thiol S-methyltransferase (TMT) and thioether S-methyltransferase (TEMT) is outlined in cancer biology, with potential opportunities for targeting them for clinical translation. In order to understand the role of H2S in oncogenesis and tumor progression, one must appreciate the intricate interplay between H2S-synthesizing and H2S-catabolizing enzymes.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Heba Nafae
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Hoda Allam
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
- Biochemistry Department, Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hager Adel Saad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reham Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| |
Collapse
|
27
|
Yuan Z, Zhang W, Wang C, Zhang C, Hu C, Liu L, Xiang L, Yao S, Shi R, Fan D, Ren B, Luo G, Deng J. A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of H 2S in promoted chronic diabetic wound repair. Regen Biomater 2024; 12:rbae134. [PMID: 39776857 PMCID: PMC11703554 DOI: 10.1093/rb/rbae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (H2S), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional H2S delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy. To address this, we developed an injectable, ROS-responsive H2S donor system integrated within a gelatin methacryloyl (GelMA) hydrogel matrix, forming a double-network hydrogel (GelMA-ODex@RRHD). The injectability of this hydrogel allows for minimally invasive application, conforming closely to wound contours and ensuring uniform distribution. The incorporation of oxidatively modified dextran derivatives (ODex) not only preserves biocompatibility but also enables the chemical attachment of ROS-responsive H2S donors. The GelMA-ODex@RRHD hydrogel releases H2S in response to oxidative stress, optimizing the environment for cell growth, modulating macrophage polarization and supporting vascular regeneration. This innovative material effectively suppresses inflammation during the initial phase, promotes tissue regeneration in the proliferative phase and facilitates controlled matrix remodeling in later stages, ultimately enhancing wound closure and functional recovery. The H2S released by GelMA-ODex@RRHD not only expedited the process of wound healing but also improved the biomechanical characteristics of newborn skin in diabetic mice, particularly in terms of stiffness and elasticity. This enhancement resulted in the skin quality being more similar to normal skin during the wound healing process. By aligning therapeutic delivery with the natural healing process, this approach offers a promising pathway toward more effective and personalized treatments for chronic diabetic wounds.
Collapse
Affiliation(s)
- Zhixian Yuan
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chang Wang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chuwei Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chao Hu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lu Liu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lunli Xiang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shun Yao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Breast Surgery, Gansu Provincial People's Hospital, Lanzhou, Gansu 730030, China
| | - Dejiang Fan
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
28
|
Wang Z, Kaplan RC, Burk RD, Qi Q. The Oral Microbiota, Microbial Metabolites, and Immuno-Inflammatory Mechanisms in Cardiovascular Disease. Int J Mol Sci 2024; 25:12337. [PMID: 39596404 PMCID: PMC11594421 DOI: 10.3390/ijms252212337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality. Recent advancements in high-throughput omics techniques have enhanced our understanding of the human microbiome's role in the development of CVDs. Although the relationship between the gut microbiome and CVDs has attracted considerable research attention and has been rapidly evolving in recent years, the role of the oral microbiome remains less understood, with most prior studies focusing on periodontitis-related pathogens. In this review, we summarized previously reported associations between the oral microbiome and CVD, highlighting known CVD-associated taxa such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We also discussed the interactions between the oral and gut microbes. The potential mechanisms by which the oral microbiota can influence CVD development include oral and systemic inflammation, immune responses, cytokine release, translocation of oral bacteria into the bloodstream, and the impact of microbial-related products such as microbial metabolites (e.g., short-chain fatty acids [SCFAs], trimethylamine oxide [TMAO], hydrogen sulfide [H2S], nitric oxide [NO]) and specific toxins (e.g., lipopolysaccharide [LPS], leukotoxin [LtxA]). The processes driven by these mechanisms may contribute to atherosclerosis, endothelial dysfunction, and other cardiovascular pathologies. Integrated multi-omics methodologies, along with large-scale longitudinal population studies and intervention studies, will facilitate a deeper understanding of the metabolic and functional roles of the oral microbiome in cardiovascular health. This fundamental knowledge will support the development of targeted interventions and effective therapies to prevent or reduce the progression from cardiovascular risk to clinical CVD events.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
29
|
Oberholtzer N, Chakraborty P, Kassir MF, Dressman J, Das S, Mills S, Comte-Walters S, Gooz M, Choi S, Parikh RY, Hedley Z, Vaena S, DeMass R, Scurti G, Romeo M, Gangaraju VK, Berto S, Hill E, Ball LE, Mehta AS, Maldonado EN, Nishimura MI, Ogretmen B, Mehrotra S. H 2S-Prdx4 axis mitigates Golgi stress to bolster tumor-reactive T cell immunotherapeutic response. SCIENCE ADVANCES 2024; 10:eadp1152. [PMID: 39546607 PMCID: PMC11566994 DOI: 10.1126/sciadv.adp1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
The role of tumor microenvironment (TME)-associated inadequate protein modification and trafficking due to insufficiency in Golgi function, leading to Golgi stress, in the regulation of T cell function is largely unknown. Here, we show that disruption of Golgi architecture under TME stress, identified by the decreased expression of GM130, was reverted upon treatment with hydrogen sulfide (H2S) donor GYY4137 or overexpressing cystathionine β-synthase (CBS), an enzyme involved in the biosynthesis of endogenous H2S, which also promoted stemness, antioxidant capacity, and increased protein translation, mediated in part by endoplasmic reticulum-Golgi shuttling of Peroxiredoxin-4. In in vivo models of melanoma and lymphoma, antitumor T cells conditioned ex vivo with exogenous H2S or overexpressing CBS demonstrated superior tumor control upon adoptive transfer. Further, T cells with high Golgi content exhibited unique metabolic and glycation signatures with enhanced antitumor capacity. These data suggest that strategies to mitigate Golgi network stress or using Golgihi tumor-reactive T cells can improve tumor control upon adoptive transfer.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James Dressman
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Satyajit Das
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie Mills
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Susana Comte-Walters
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Seungho Choi
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rasesh Y. Parikh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zacharia Hedley
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Silvia Vaena
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Reid DeMass
- Department of Public Health, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gina Scurti
- Department of Surgery, Loyola University, Chicago, IL 60153, USA
| | - Martin Romeo
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Vamsi K. Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth Hill
- Department of Public Health, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eduardo N. Maldonado
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
30
|
Zhu Z, Ma X, Liu X, Zheng L, Zhang L, Dai X, Li H, Zhang Z, Wang B, Huang X, Ge J, Ren Q. CBS/CSE mediated H 2S production induced AMPs expression through Toll pathway in crabs with black gill syndrome. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109965. [PMID: 39401741 DOI: 10.1016/j.fsi.2024.109965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
The occurrence of black gill syndrome (BGS) is a serious threat to the healthy culture of Eriocheir sinensis. Studying the innate immune ability of E. sinensis with BGS can help develop new strategies for disease prevention and treatment. Antimicrobial peptides (AMPs) have crucial roles in crustacean humoral immunity. In this study, we found that the expression levels of two antilipopolysaccharide factor (EsALF7 and EsALF-L), one Toll receptor 3 (EsToll3), and one Pelle kinase (EsPelle) were upregulated in E. sinensis with BGS. Moreover, ALFs expressions in E. sinensis with BGS were positively regulated by EsToll3 and EsPelle. The content of hydrogen sulfide (H2S) in the gills of E. sinensis with BGS was increased. Further studies showed that the expressions of cystathionine β-synthase (EsCBS) and cystathionine γ-lyase (EsCSE) in the gills of E. sinensis with BGS were upregulated, which positively regulate the production of H2S. Whether there was a correlation between the upregulation of ALFs expression and changes in H2S content? Further studies showed that 1) the expressions of EsToll3, EsPelle, EsALF7, and EsALF-L in the gills of E. sinensis were upregulated under H2S exposure and 2) the knockdown of EsCBS and EsCSE in E. sinensis reduced the transcriptions of EsToll3, EsPelle, EsALF7, and EsALF-L. To sum up, these findings suggest that upregulation of H2S content induced by CBS/CSE promotes the expression of ALFs through the Toll pathway in E. sinensis suffering from BGS.
Collapse
Affiliation(s)
- Ziyue Zhu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Xingkong Ma
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China
| | - Xiaohan Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Liangmin Zheng
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Lihua Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Hao Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Zhaoqian Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Bingyan Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China.
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu Province, China.
| |
Collapse
|
31
|
Yin T, Zhang X, Xiong Y, Li B, Guo D, Sha Z, Lin X, Wu H. Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications. Microbiol Res 2024; 288:127871. [PMID: 39137590 DOI: 10.1016/j.micres.2024.127871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.
Collapse
Affiliation(s)
- Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiang Zhang
- Medical School, Yan'an University, Yan'an 716000, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
32
|
Liu J, Li Y, Wang J, Guan B, Chen Z, Liu Z, Xue Y, Li Y, Guan F, Wang Y. Integrated skin metabolomics and network pharmacology to explore the mechanisms of Goupi Plaster for treating knee osteoarthritis. J Tradit Complement Med 2024; 14:675-686. [PMID: 39850603 PMCID: PMC11752118 DOI: 10.1016/j.jtcme.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 01/25/2025] Open
Abstract
Background and aim Goupi Plaster (GP) is topical traditional Chinese medicine preparation. It has been used to treat Knee Osteoarthritis (KOA) in clinical practice of traditional Chinese medicine (TCM). However, the mechanisms of GP relieve KOA are poorly understood. Experimental procedure Rabbit models of KOA were established and treated with GP. Knee cartilage pathology was analyzed using hematoxylin and eosin staining, while plasma levels of inflammatory factors (interleukin (IL)-4, IL-6, and IL-17) and skin neurotransmitters (calcitonin gene-related peptide (CGRP), substance P (SP), and5-hydroxytryptamine (5-HT)) were measured by enzyme linked immunosorbent assay. Metabolomics based on GC-TOF-MS analysis screened for skin biomarkers as well as relevant pathways. Network pharmacology screened for relevant skin targets as well as relevant pathways, and finally, MetScape software was utilized to integrate the results of metabolomics and network pharmacology to screen for key skin targets, key metabolites, and key pathways for GP treatment of KOA. Results and conclusion GP administration substantially repaired cartilage surface breaks in KOA and led to relatively intact cartilage structure and normal cell morphology. GP decreased plasma levels of IL-6 and IL-17 and skin levels of CGRP, SP and 5-HT while increased plasma IL-4. GP administration normalized the levels of 15 metabolites which were changed in KOA. Network pharmacology analysis identified 181 targets. Finally, 3 key targets, 5 key metabolites and 3 related pathways were identified, which suggested that GP improved skin barrier function and skin permeability by regulating skin lipid metabolism. GP treatment also regulated skin amino acid levels and subsequently affected neurotransmitters and signaling molecules. In addition, the purinergic signaling pathway was also involved in the treatment of GP against KOA.In conclusion, GP treatment is associated with changes in skin lipid metabolism, neurotransmitters, and the purinergic signaling pathway.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Yingpeng Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jiajing Wang
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Harbin, China
| | - Bixi Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Zhaoliang Chen
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Ziheng Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Yunfeng Xue
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Yongji Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Feng Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Yanhong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| |
Collapse
|
33
|
Hu YT, Liu ZW, Zhang TH, Ma YE, He L, Zhang J, Zhou YY, Vidal-Puig A, Pan DJ, Wu F. Cystathionine γ-lyase-derived H 2S negatively regulates thymic egress via allosteric inhibition of sphingosine-1-phosphate lyase. Acta Pharmacol Sin 2024; 45:2366-2379. [PMID: 38914678 PMCID: PMC11489676 DOI: 10.1038/s41401-024-01322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024]
Abstract
Thymic egress is a crucial process for thymocyte maturation, strictly regulated by sphingosine-1-phosphate lyase (S1PL). Recently, cystathionine γ-lyase (CSE), one of the enzymes producing hydrogen sulfide (H2S), has emerged as a vital immune process regulator. However, the molecular connection between CSE, H2S and thymic egress remains largely unexplored. In this study, we investigated the regulatory function of CSE in the thymic egress of immune cells. We showed that genetic knockout of CSE or pharmacological inhibition by CSE enzyme inhibitor NSC4056 or D,L-propargylglycine (PAG) significantly enhanced the migration of mature lymphocytes and monocytes from the thymus to the peripheral blood, and this redistribution effect could be reversed by treatment with NaHS, an exogenous donor of H2S. In addition, the CSE-generated H2S significantly increased the levels of S1P in the peripheral blood, thymus and spleen of mice, suppressed the production of proinflammatory cytokines and rescued pathogen-induced sepsis in cells and in vivo. Notably, H2S or polysulfide inhibited S1PL activity in cells and an in vitro purified enzyme assay. We found that this inhibition relied on a newly identified C203XC205 redox motif adjacent to the enzyme's active site, shedding light on the biochemical mechanism of S1PL regulation. In conclusion, this study uncovers a new function and mechanism for CSE-derived H2S in thymic egress and provides a potential drug target for treating S1P-related immune diseases.
Collapse
Affiliation(s)
- You-Tian Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhi-Wei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Tong-Hui Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-E Ma
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lei He
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Yue-Yang Zhou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Antonio Vidal-Puig
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain
- Metabolic Research Laboratories, MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, 210031, China
| | - De-Jing Pan
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
34
|
Sun J, Wang X, Gao Y, Li S, Hu Z, Huang Y, Fan B, Wang X, Liu M, Qiao C, Zhang W, Wang Y, Ji X. H 2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H 2S for antibacterial sensitization. Nat Commun 2024; 15:9422. [PMID: 39482291 PMCID: PMC11527999 DOI: 10.1038/s41467-024-53764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
Bacteria-derived H2S plays multifunctional protective roles against antibiotics insult, and the H2S biogenesis pathway is emerging as a viable target for the antibacterial adjuvant design. However, the development of a pan-inhibitor against H2S-synthesizing enzymes is challenging and underdeveloped. Herein, we propose an alternative strategy to downregulate the H2S levels in H2S-producing bacteria, which depletes the bacteria-derived H2S chemically by H2S scavengers without acting on the synthesizing enzymes. After the screening of chemically diversified scaffolds and a structural optimization campaign, a potent and specific H2S scavenger is successfully identified, which displays efficient H2S depletion in several H2S-producing bacteria, potentiates both bactericidal agents and photodynamic therapy, enhances the bacterial clearance of macrophages and polymorphonuclear neutrophils, disrupts the formation of bacterial biofilm and increases the sensitivity of bacterial persister cells to antibiotics. Most importantly, such an H2S scavenger exhibits sensitizing effects with gentamicin in Pseudomonas aeruginosa -infected pneumonia and skin wound female mouse models. In aggregate, our results not only provide an effective strategy to deplete bacteria-derived H2S and establish the H2S biogenesis pathway as a viable target for persisters and drug-resistant bacteria, but also deliver a promising antibacterial adjuvant for potential clinical translation.
Collapse
Affiliation(s)
- Jiekai Sun
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xu Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Ye Gao
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Shuangyu Li
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Ziwei Hu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Yan Huang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Baoqiang Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xia Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Miao Liu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Chunhua Qiao
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Yipeng Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Xingyue Ji
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
35
|
Ye Y, Xu J, Shen H, Yu Z, Chen G. Neuroprotective effects of hydrogen sulfide in Parkinson's disease. Med Gas Res 2024; 14:145-148. [PMID: 40232693 PMCID: PMC466979 DOI: 10.4103/2045-9912.385945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/01/2022] [Accepted: 06/14/2023] [Indexed: 04/16/2025] Open
Affiliation(s)
- Yang Ye
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jinhui Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
36
|
Mu YF, Gao ZX, Mao ZH, Pan SK, Liu DW, Liu ZS, Wu P. Perspectives on the involvement of the gut microbiota in salt-sensitive hypertension. Hypertens Res 2024; 47:2351-2362. [PMID: 38877311 DOI: 10.1038/s41440-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Salt-sensitivity hypertension (SSH) is an independent predictor of cardiovascular event-related death. Despite the extensiveness of research on hypertension, which covers areas such as the sympathetic nervous system, the renin-angiotensin system, the vascular system, and the immune system, its pathogenesis remains elusive, with sub-optimal blood pressure control in patients. The gut microbiota is an important component of nutritional support and constitutes a barrier in the host. Long-term high salt intake can lead to gut microbiota dysbiosis and cause significant changes in the expression of gut microbiota-related metabolites. Of these metabolites, short chain fatty acids (SCFAs), trimethylamine oxide, amino acids, bile acids, and lipopolysaccharide are essential mediators of microbe-host crosstalk. These metabolites may contribute to the incidence and development of SSH via inflammatory, immune, vascular, and nervous pathways, among others. In addition, recent studies, including those on the histone deacetylase inhibitory mechanism of SCFAs and the blood pressure-decreasing effects of H2S via vascular activation, suggest that several proteins and factors in the classical pathway elicit their effects through multiple non-classical pathways. This review summarizes changes in the gut microbiota and its related metabolites in high-salt environments, as well as corresponding treatment methods for SSH, such as diet management, probiotic and prebiotic use, antibiotic use, and fecal transplantation, to provide new insights and perspectives for understanding SSH pathogenesis and the development of strategies for its treatment.
Collapse
Affiliation(s)
- Ya-Fan Mu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| |
Collapse
|
37
|
Arroyo Almenas F, Törő G, Szaniszlo P, Maskey M, Thanki KK, Koltun WA, Yochum GS, Pinchuk IV, Chao C, Hellmich MR, Módis K. Cystathionine Gamma-Lyase Regulates TNF-α-Mediated Injury Response in Human Colonic Epithelial Cells and Colonoids. Antioxidants (Basel) 2024; 13:1067. [PMID: 39334726 PMCID: PMC11428476 DOI: 10.3390/antiox13091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Cystathionine gamma-lyase (CSE) and TNF-α are now recognized as key regulators of intestinal homeostasis, inflammation, and wound healing. In colonic epithelial cells, both molecules have been shown to influence a variety of biological processes, but the specific interactions between intracellular signaling pathways regulated by CSE and TNF-α are poorly understood. In the present study, we investigated these interactions in normal colonocytes and an organoid model of the healthy human colon using CSE-specific pharmacological inhibitors and siRNA-mediated transient gene silencing in analytical and functional assays in vitro. We demonstrated that CSE and TNF-α mutually regulated each other's functions in colonic epithelial cells. TNF-α treatment stimulated CSE activity within minutes and upregulated CSE expression after 24 h, increasing endogenous CSE-derived H2S production. In turn, CSE activity promoted TNF-α-induced NF-ĸB and ERK1/2 activation but did not affect the p38 MAPK signaling pathway. Inhibition of CSE activity completely abolished the TNF-α-induced increase in transepithelial permeability and wound healing. Our data suggest that CSE activity may be essential for effective TNF-α-mediated intestinal injury response. Furthermore, CSE regulation of TNF-α-controlled intracellular signaling pathways could provide new therapeutic targets in diseases of the colon associated with impaired epithelial wound healing.
Collapse
Affiliation(s)
- Francisco Arroyo Almenas
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Gábor Törő
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Peter Szaniszlo
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Manjit Maskey
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ketan K Thanki
- Division of Colorectal Surgery, Valley Health System, Las Vegas, NV 89119, USA
| | - Walter A Koltun
- Department of Surgery, Division of Colon & Rectal Surgery, The Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Gregory S Yochum
- Department of Surgery, Division of Colon & Rectal Surgery, The Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Department of Biochemistry & Molecular Biology & Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Irina V Pinchuk
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 16802, USA
| | - Celia Chao
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Mark R Hellmich
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Katalin Módis
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
38
|
Zhang CJ, Wang Y, Jin YQ, Zhu YW, Zhu SG, Wang QM, Jing MR, Zhang YX, Cai CB, Feng ZF, Ji XY, Wu DD. Recent advances in the role of hydrogen sulfide in age-related diseases. Exp Cell Res 2024; 441:114172. [PMID: 39053869 DOI: 10.1016/j.yexcr.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.
Collapse
Affiliation(s)
- Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
39
|
Abstract
Significance: Aging is a complex process associated with an increased risk of many diseases, including thrombosis. This review summarizes age-related prothrombotic mechanisms in clinical settings of thromboembolism, focusing on the role of fibrin structure and function modified by oxidative stress. Recent Advances: Aging affects blood coagulation and fibrinolysis via multiple mechanisms, including enhanced oxidative stress, with an imbalance in the oxidant/antioxidant mechanisms, leading to loss of function and accumulation of oxidized proteins, including fibrinogen. Age-related prothrombotic alterations are multifactorial involving enhanced platelet activation, endothelial dysfunction, and changes in coagulation factors and inhibitors. Formation of more compact fibrin clot networks displaying impaired susceptibility to fibrinolysis represents a novel mechanism, which might contribute to atherothrombosis and venous thrombosis. Alterations to fibrin clot structure/function are at least in part modulated by post-translational modifications of fibrinogen and other proteins involved in thrombus formation, with a major impact of carbonylation. Fibrin clot properties are also involved in the efficacy and safety of therapy with oral anticoagulants, statins, and/or aspirin. Critical Issues: Since a prothrombotic state is observed in very elderly individuals free of diseases associated with thromboembolism, the actual role of activated blood coagulation in health remains elusive. It is unclear to what extent oxidative modifications of coagulation and fibrinolytic proteins, in particular fibrinogen, contribute to a prothrombotic state in healthy aging. Future Directions: Ongoing studies will show whether novel therapies that may alter oxidative stress and fibrin characteristics are beneficial to prevent atherosclerosis and thromboembolic events associated with aging.
Collapse
Affiliation(s)
- Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| |
Collapse
|
40
|
Lin D, Fu Z, Liu J, Perrone-Bizzozero N, Hutchison KE, Bustillo J, Du Y, Pearlson G, Calhoun VD. Association between the oral microbiome and brain resting state connectivity in schizophrenia. Schizophr Res 2024; 270:392-402. [PMID: 38986386 DOI: 10.1016/j.schres.2024.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N = 213 SZ and healthy control subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p = 6 × 10-3; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H2S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8 % of brain functional network connectivity from each component also showed significant differences between SZ and healthy controls with strong performance in classifying SZ from healthy controls, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.
Collapse
Affiliation(s)
- Dongdong Lin
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America.
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Nora Perrone-Bizzozero
- Department of neuroscience, University of New Mexico, Albuquerque, NM, 87109, United States of America
| | - Kent E Hutchison
- Department of psychology and neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Juan Bustillo
- Department of psychiatry, University of New Mexico, Albuquerque, NM 87109, United States of America
| | - Yuhui Du
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Godfrey Pearlson
- Olin Research Center, Institute of Living Hartford, CT 06102, United States of America; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States of America; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, United States of America
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| |
Collapse
|
41
|
Ara-Díaz JB, Bergstedt JH, Albaladejo-Riad N, Malik MS, Andersen Ø, Lazado CC. Mucosal organs exhibit distinct response signatures to hydrogen sulphide in Atlantic salmon (Salmo salar). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116617. [PMID: 38905940 DOI: 10.1016/j.ecoenv.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Hydrogen sulphide (H2S) is considered an immunotoxicant, and its presence in the water can influence the mucosal barrier functions of fish. However, there is a significant knowledge gap on how fish mucosa responds to low environmental H2S levels. The present study investigated the consequences of prolonged exposure to sub-lethal levels of H2S on the mucosal defences of Atlantic salmon (Salmo salar). Fish were continuously exposed to two levels of H2S (low: 0.05 µM; and high: 0.12 µM) for 12 days. Unexposed fish served as control. Molecular and histological profiling focused on the changes in the skin, gills and olfactory rosette. In addition, metabolomics and proteomics were performed on the skin and gill mucus. The gene expression profile indicated that the gills and olfactory rosette were more sensitive to H2S than the skin. The olfactory rosette showed a dose-dependent response, but not the gills. Genes related to stress responses were triggered at mucosal sites by H2S. Moreover, H2S elicited strong inflammatory responses, particularly in the gills. All mucosal organs demonstrated the key molecular repertoire for sulphide detoxification, but their temporal and spatial expression was not substantially affected by sub-lethal H2S levels. Mucosal barrier integrity was not considerably affected by H2S. Mucus metabolomes of the skin and gills were unaffected, but a matrix-dependent response was identified. Comparing the high-concentration group's skin and gills mucus metabolomes identified altered amino acid biosynthesis and metabolism pathways. The skin and gill mucus exhibited distinct proteomic profiles. Enrichment analysis revealed that proteins related to immunity and metabolism were affected in both mucus matrices. The present study expands our knowledge of the defence mechanisms against H2S at mucosal sites in Atlantic salmon. The findings offer insights into the health and welfare consequences of sub-lethal H2S, which can be incorporated into the risk assessment protocols in salmon land-based farms.
Collapse
Affiliation(s)
- Juan Bosco Ara-Díaz
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Julie Hansen Bergstedt
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, PO Box 101, Hirtshals 9850, Denmark
| | - Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Muhammad Salman Malik
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Øivind Andersen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway.
| |
Collapse
|
42
|
González A, Odriozola I, Fullaondo A, Odriozola A. Microbiota and detrimental protein derived metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:255-308. [PMID: 39396838 DOI: 10.1016/bs.adgen.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third leading cancer in incidence and the second leading cancer in mortality worldwide. There is growing scientific evidence to support the crucial role of the gut microbiota in the development of CRC. The gut microbiota is the complex community of microorganisms that inhabit the host gut in a symbiotic relationship. Diet plays a crucial role in modulating the risk of CRC, with a high intake of red and processed meat being a risk factor for the development of CRC. The production of metabolites derived from protein fermentation by the gut microbiota is considered a crucial element in the interaction between red and processed meat consumption and the development of CRC. This paper examines several metabolites derived from the bacterial fermentation of proteins associated with an increased risk of CRC. These metabolites include ammonia, polyamines, trimethylamine N-oxide (TMAO), N-nitroso compounds (NOC), hydrogen sulphide (H2S), phenolic compounds (p-cresol) and indole compounds (indolimines). These compounds are depicted and reviewed for their association with CRC risk, possible mechanisms promoting carcinogenesis and their relationship with the gut microbiota. Additionally, this paper analyses the evidence related to the role of red and processed meat intake and CRC risk and the factors and pathways involved in bacterial proteolytic fermentation in the large intestine.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
43
|
Liu F, Wei L, Zheng B, Su X, Ju J, Liu G, Liu Q. Value of exhaled hydrogen sulfide in early diagnosis of esophagogastric junction adenocarcinoma. Oncol Lett 2024; 28:321. [PMID: 38807679 PMCID: PMC11130606 DOI: 10.3892/ol.2024.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 05/30/2024] Open
Abstract
Esophagogastric junction adenocarcinoma (EJA) has increased in recent years, and it exhibits a poor prognosis and a short survival period for patients. Hydrogen sulfide (H2S) plays an important role in the pathogenesis of cancer and has been studied as a diagnostic factor in some tumor diseases. However, few studies have explored the diagnostic value of H2S for EJA. In the present study, a total of 56 patients with early-stage EJA were enrolled while 57 healthy individuals were selected as the healthy control group. Clinical features were recorded, and exhaled H2S and blood samples were collected from both groups. Exhaled H2S and serum interleukin-8 (IL-8) expression levels were detected in both groups. The correlation between exhaled H2S and serum IL-8 levels was analyzed using Pearson's correlation method. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of exhaled H2S combined with IL-8 detection in EJA. The results showed that patients with EJA exhaled more H2S than healthy individuals. In addition, exhaled H2S was positively correlated with increased IL-8 expression. The ROC curve revealed that the exhaled H2S test had an acceptable diagnostic effect and could be used to diagnose EJA. The increase in H2S exhaled by patients with EJA indicated that H2S may be related to the occurrence and development of EJA; however, the in vivo mechanism needs to be further explored. Collectively, it was determined in the present study that exhaled H2S was significantly higher in patients with early-stage EJA than in healthy controls and combined diagnosis with patient serum IL-8 could improve diagnostic accuracy, which has potential diagnostic value for early diagnosis and screening of EJA.
Collapse
Affiliation(s)
- Fang Liu
- Department of Hospital Quality and Control, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Lai Wei
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Bosheng Zheng
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Xin Su
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Jianmei Ju
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Guangjie Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Qingyi Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| |
Collapse
|
44
|
Zhang X, Zhang X, Yang Y. Update of gut gas metabolism in ulcerative colitis. Expert Rev Gastroenterol Hepatol 2024; 18:339-349. [PMID: 39031456 DOI: 10.1080/17474124.2024.2383635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic, nonspecific inflammatory disease of the intestine. The intestinal microbiota is essential in the occurrence and development of UC. Gut gases are produced via bacterial fermentation or chemical interactions, which can reveal altered intestinal microbiota, abnormal cellular metabolism, and inflammation responses. Recent studies have demonstrated that UC patients have an altered gut gas metabolism. AREAS COVERED In this review, we integrate gut gas metabolism advances in UC and discuss intestinal gases' clinical values as new biomarkers or therapeutic targets for UC, providing the foundation for further research. Literature regarding gut gas metabolism and its significance in UC from inception to October 2023 was searched on the MEDLINE database and references from relevant articles were investigated. EXPERT OPINION Depending on their type, concentration, and volume, gut gases can induce or alleviate clinical symptoms and regulate intestinal motility, inflammatory responses, immune function, and oxidative stress, significantly impacting UC. Gut gases may function as new biomarkers and provide potential diagnostic or therapeutic targets for UC.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Medical School, Nankai University, Tianjin, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiuli Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Kaleta K, Janik K, Rydz L, Wróbel M, Jurkowska H. Bridging the Gap in Cancer Research: Sulfur Metabolism of Leukemic Cells with a Focus on L-Cysteine Metabolism and Hydrogen Sulfide-Producing Enzymes. Biomolecules 2024; 14:746. [PMID: 39062461 PMCID: PMC11274876 DOI: 10.3390/biom14070746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Leukemias are cancers of the blood-forming system, representing a significant challenge in medical science. The development of leukemia cells involves substantial disturbances within the cellular machinery, offering hope in the search for effective selective treatments that could improve the 5-year survival rate. Consequently, the pathophysiological processes within leukemia cells are the focus of critical research. Enzymes such as cystathionine beta-synthase and sulfurtransferases like thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine gamma-lyase play a vital role in cellular sulfur metabolism. These enzymes are essential to maintaining cellular homeostasis, providing robust antioxidant defenses, and supporting cell division. Numerous studies have demonstrated that cancerous processes can alter the expression and activity of these enzymes, uncovering potential vulnerabilities or molecular targets for cancer therapy. Recent laboratory research has indicated that certain leukemia cell lines may exhibit significant changes in the expression patterns of these enzymes. Analysis of the scientific literature and online datasets has confirmed variations in sulfur enzyme function in specific leukemic cell lines compared to normal leukocytes. This comprehensive review collects and analyzes available information on sulfur enzymes in normal and leukemic cell lines, providing valuable insights and identifying new research pathways in this field.
Collapse
Affiliation(s)
- Konrad Kaleta
- Students’ Scientific Group of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
| | - Klaudia Janik
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Leszek Rydz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| |
Collapse
|
46
|
Shang H, Zhang X, Ding M, Zhang A, Du J, Zhang R. Smartphone Imaging Device for Multimodal Detection of Hydrogen Sulfide Using Cu-Doped MOF Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30890-30899. [PMID: 38843539 DOI: 10.1021/acsami.4c05021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Multimodal sensing platforms may offer reliable, fast results, but it is still challenging to incorporate biosensors with high discriminating ability in complex biological samples. Herein, we established a highly sensitive dual colorimetric/electrochemical monitoring approach for the detection of hydrogen sulfide (H2S) utilizing Cu-doped In-based metal-organic frameworks (Cu/In-MOFs) combined with a versatile color selector software-based smartphone imaging device. H2S can result in the enhancement of the electrochemical signal because of the electroactive substance copper sulfide (CuxS), the decrease of the colorimetric signal of the characteristic absorption response caused by the strong coordination effect on Cu/In-MOFs, and the obvious changes of red-green-blue (RGB) values of images acquired via an intelligent smartphone. Attractively, the Cu/In-MOFs-based multimodal detection guarantees precise and sensitive detection of H2S with triple-signal detection limits of 0.096 μM (electrochemical signals), 0.098 μM (colorimetric signals), and 0.099 μM (smartphone signals) and an outstanding linear response. This analytical toolkit provides an idea for fabricating a robust, sensitive, tolerant matrix and reliable sensing platform for rapidly monitoring H2S in clinical disease diagnosis and visual supervision.
Collapse
Affiliation(s)
- Hongyuan Shang
- Department of Radiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan 030032, China
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaofei Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jinwen Du
- Stomatological Department, Taiyuan Municipal No. 2 People's Hospital, Taiyuan 030002, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
47
|
Tahir I, Alsayeqh AF. Phytochemicals: a promising approach to control infectious bursal disease. Front Vet Sci 2024; 11:1421668. [PMID: 38919155 PMCID: PMC11197927 DOI: 10.3389/fvets.2024.1421668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Infectious bursal disease (IBD) is one of the dangerous diseases of poultry that affects the bursa of Fabricius, which is an important organ of the bird's immune system. IBD virus is resistant to many drugs, making its control difficult. Vaccination of IBD is in practice for a long time worldwide to control IBD, but secondary issues like vaccine failure and lower efficacy lead to their reduced use in the field. Multiple medicines are currently used, but the phytochemicals have emerged as promising agents for controlling IBD. The drugs to be developed should possess direct antiviral properties by targeting viral entry mechanisms, enhancing the host immune response, and inhibiting viral protein synthesis. Phytochemicals have potential to contribute to food security by minimizing the possibility of disease outbreaks and ensuring that consumers worldwide obtain healthy poultry products. It has been now claimed that direct and indirect activities of phytochemicals can be effective in the control of IBDV. Although available evidence suggest that the phytochemicals can contribute in controlling occurrence IBDV, there is a definite need of focused studies to gain more insight and develop rational strategies for their practical use. This review highlights the disease caused by IBDV, inhibition of viral replication, boosting the immune system, disruption of viral membrane, and important phytochemicals showing antiviral activities against IBDV.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah F. Alsayeqh
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
48
|
Xu Y, Chen S, Liu J. Hydrogen sulfide derived from apoptotic cells supports immune homeostasis. Metabol Open 2024; 22:100276. [PMID: 39011162 PMCID: PMC11247202 DOI: 10.1016/j.metop.2024.100276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 07/17/2024] Open
Affiliation(s)
- Ying Xu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Amich J. The many roles of sulfur in the fungal-host interaction. Curr Opin Microbiol 2024; 79:102489. [PMID: 38754292 DOI: 10.1016/j.mib.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Sulfur is an essential macronutrient for life, and consequently, all living organisms must acquire it from external sources to thrive and grow. Sulfur is a constituent of a multitude of crucial molecules, such as the S-containing proteinogenic amino acids cysteine and methionine; cofactors and prosthetic groups, such as coenzyme-A and iron-sulfur (Fe-S) clusters; and other essential organic molecules, such as glutathione or S-adenosylmethionine. Additionally, sulfur in cysteine thiols is an active redox group that plays paramount roles in protein stability, enzyme catalysis, and redox homeostasis. Furthermore, H2S is gaining more attention as a crucial signaling molecule that influences metabolism and physiological functions. Given its importance, it is not surprising that sulfur plays key roles in the host-pathogen interaction. However, in contrast to its well-recognized involvement in the plant-pathogen interaction, the specific contributions of sulfur to the human-fungal interaction are much less understood. In this short review, I highlight some of the most important known mechanisms and propose directions for further research.
Collapse
Affiliation(s)
- Jorge Amich
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.
| |
Collapse
|
50
|
Salti T, Braunstein I, Haimovich Y, Ziv T, Benhar M. Widespread S-persulfidation in activated macrophages as a protective mechanism against oxidative-inflammatory stress. Redox Biol 2024; 72:103125. [PMID: 38574432 PMCID: PMC11000178 DOI: 10.1016/j.redox.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Acute inflammatory responses often involve the production of reactive oxygen and nitrogen species by innate immune cells, particularly macrophages. How activated macrophages protect themselves in the face of oxidative-inflammatory stress remains a long-standing question. Recent evidence implicates reactive sulfur species (RSS) in inflammatory responses; however, how endogenous RSS affect macrophage function and response to oxidative and inflammatory insults remains poorly understood. In this study, we investigated the endogenous pathways of RSS biogenesis and clearance in macrophages, with a particular focus on exploring how hydrogen sulfide (H2S)-mediated S-persulfidation influences macrophage responses to oxidative-inflammatory stress. We show that classical activation of mouse or human macrophages using lipopolysaccharide and interferon-γ (LPS/IFN-γ) triggers substantial production of H2S/RSS, leading to widespread protein persulfidation. Biochemical and proteomic analyses revealed that this surge in cellular S-persulfidation engaged ∼2% of total thiols and modified over 800 functionally diverse proteins. S-persulfidation was found to be largely dependent on the cystine importer xCT and the H2S-generating enzyme cystathionine γ-lyase and was independent of changes in the global proteome. We further investigated the role of the sulfide-oxidizing enzyme sulfide quinone oxidoreductase (SQOR), and found that it acts as a negative regulator of S-persulfidation. Elevated S-persulfidation following LPS/IFN-γ stimulation or SQOR inhibition was associated with increased resistance to oxidative stress. Upregulation of persulfides also inhibited the activation of the macrophage NLRP3 inflammasome and provided protection against inflammatory cell death. Collectively, our findings shed light on the metabolism and effects of RSS in macrophages and highlight the crucial role of persulfides in enabling macrophages to withstand and alleviate oxidative-inflammatory stress.
Collapse
Affiliation(s)
- Talal Salti
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilana Braunstein
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Haimovich
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|