1
|
Yu W, Hu S, Xu X, Shao J, Yan J, Ding F. Association between O-GlcNAc transferase activity and major adverse cardiovascular events: findings from the China PEACE-MPP cohort. BMC Cardiovasc Disord 2025; 25:281. [PMID: 40221667 PMCID: PMC11992785 DOI: 10.1186/s12872-025-04732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The O-GlcNAc transferase (OGT) levels are closely related to the O-GlcNAcylation of proteins and are also associated with cardiovascular disease. This study explored the association between OGT activity and major adverse cardiovascular events (MACEs) in patients with high cardiovascular disease risk. This post hoc study included patients from the China PEACE-MPP study in Yi Wu, Zhejiang Province, between 2014 and 2015. METHODS The patients were divided into the low and high OGT activity groups according to the median serum OGT value. The outcome was the occurrence of MACEs (cardiovascular death, non-fatal acute myocardial infarction, and non-fatal ischemic stroke). RESULTS Finally, 1947 participants (973 and 974 with low and high OGT activity, respectively) were included. The mean follow-up was 5.56 ± 1.01 years. The participants in the low OGT activity group had a significantly higher occurrence rate of MACEs compared with the high OGT activity group (100 [10.4%] vs. 74 [7.6%], P = 0.032). The Kaplan-Meier analysis showed that the event-free survival rate in the low OGT activity group was significantly lower than in the high OGT activity group (P = 0.036). Multivariable Cox proportional hazards regression analysis showed that after adjustment for age, drinking, hyperglycemia, history of hypertension, and history of cardiovascular and cerebrovascular disease, a high OGT activity was independently associated with a lower risk of MACEs (HR = 0.738, 95%CI: 0.547-0.997, P = 0.048). CONCLUSIONS A low OGT activity was independently associated with an increased risk of MACE among patients with a high risk of cardiovascular disease. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Wei Yu
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Shiyun Hu
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Xiaoling Xu
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Jianlin Shao
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Jing Yan
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China
| | - Fang Ding
- Zhejiang Provincial Center for Cardiovascular Disease Control and Prevention, Zhejiang Hospital, Hangzhou, 310013, China.
| |
Collapse
|
2
|
Bolanle IO, Palmer TM. O-GlcNAcylation and Phosphorylation Crosstalk in Vascular Smooth Muscle Cells: Cellular and Therapeutic Significance in Cardiac and Vascular Pathologies. Int J Mol Sci 2025; 26:3303. [PMID: 40244145 PMCID: PMC11989994 DOI: 10.3390/ijms26073303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
More than 400 different types of post-translational modifications (PTMs), including O-GlcNAcylation and phosphorylation, combine to co-ordinate almost all aspects of protein function. Often, these PTMs overlap and the specific relationship between O-GlcNAcylation and phosphorylation has drawn much attention. In the last decade, the significance of this dynamic crosstalk has been linked to several chronic pathologies of cardiovascular origin. However, very little is known about the pathophysiological significance of this crosstalk for vascular smooth muscle cell dysfunction in cardiovascular disease. O-GlcNAcylation occurs on serine and threonine residues which are also targets for phosphorylation. A growing body of research has now emerged linking altered vascular integrity and homeostasis with highly regulated crosstalk between these PTMs. Additionally, a significant body of evidence indicates that O-GlcNAcylation is an important contributor to the pathogenesis of neointimal hyperplasia and vascular restenosis responsible for long-term vein graft failure. In this review, we evaluate the significance of this dynamic crosstalk and its role in cardiovascular pathologies, and the prospects of identifying possible targets for more effective therapeutic interventions.
Collapse
Affiliation(s)
| | - Timothy M. Palmer
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| |
Collapse
|
3
|
Han NN, Wang XP, Jin JA, Li WH, Yang WY, Fan NS, Jin RC. Underrated risk of antibiotic resistance genes dissemination mediated by bioaerosols released from anaerobic biological wastewater treatment system. WATER RESEARCH 2025; 279:123463. [PMID: 40073489 DOI: 10.1016/j.watres.2025.123463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Antibiotic resistance has been recognized as one of the most prevalent public health problems. The bioaerosol-mediated spread of antibiotic resistance genes (ARGs) is an important but underrated pathway. Therefore, this work investigated the comprehensive resistome and pathogen-induced risk in bioaerosols released from anaerobic ammonium oxidation (anammox) process under antibiotic stress. The results showed that the bioaerosol oxidation potential increased by 2.7 times after the addition of sulfamethoxazole (SMX) into the anammox system. Based on the metagenomic analyses, abundant ARGs were enriched in bioaerosols, especially novA, olec, msbA and patA. There were many antibiotic resistance contigs carrying at least two mobile genetic elements (MGEs) in bioaerosols. Compared to the control, SMX caused the significant increase in ARGs proportion in plasmids from 11.4 % to 19.4 %. Similarly, the abundance of the type IV secretion system protein encoding genes (mtrA and mtrB) increased by 30.2 % and 31.5 %, respectively, which was conducive to gene transfer between bacteria. In addition, SMX stress induced the reactive oxygen species (ROS) production and the upregulation of genes related to membrane protein and DNA replication, further facilitating ARGs transfer. The co-occurrence networks showed that Aquamicrobium and Microbacterium probably were the hosts of most ARGs. Notably, four abundant human pathogens were detected in bioaerosols from the anammox system, which raised concerns on the health risk of resistant bioaerosol diffusion. These findings reveal the potential of horizontal gene transfer through bioaerosols and provide a guidance for systematically assessing the risk of environmental antibiotic resistance and relevant pathogens.
Collapse
Affiliation(s)
- Na-Na Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xue-Ping Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jing-Ao Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Wen-Hui Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Wen-Ya Yang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
4
|
Jiang Y, Cai W, Lei G, Cai G, Wu Q, Lu P. Deubiquitinase USP47 Ameliorates Cardiac Hypertrophy Through Reducing Protein O-GlcNAcylation. J Cardiovasc Pharmacol 2025; 85:54-62. [PMID: 39436323 DOI: 10.1097/fjc.0000000000001640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Cardiac hypertrophy is a crucial risk factor for heart failure when the heart is confronted with physiologic or pathologic stimuli. The ubiquitin-proteasome system plays a critical role in the pathogenesis of cardiac hypertrophy. However, as a key component of the ubiquitin-proteasome system, the role of deubiquitinating enzymes in cardiac hypertrophy is not well understood. In this study, we observed that the expression level of deubiquitinase USP47 was increased in hypertrophic hearts and angiotensin II (Ang II)-stimulated neonatal rat cardiomyocytes. Adenovirus-mediated gain- and loss-of-function approaches indicated that USP47 overexpression significantly attenuated Ang II-induced cardiac hypertrophy in vitro and in vivo, whereas endogenous USP47 deficiency promoted the prohypertrophic effect of Ang II. Further investigation demonstrated that USP47 inhibited O-GlcNAcylation in cardiomyocytes by controlling the expression of O-GlcNAcase. Mechanistically, USP47 bound, deubiquitinated, and stabilized protein arginine methyltransferase 5 (PRMT5), thus upregulating O-GlcNAcase expression. We found that the restoration of PRMT5 abolished the prohypertrophic effects of USP47 silence in vitro. Therefore, our results provide the first evidence of the involvement of USP47 in cardiac hypertrophy and identify USP47 as a potential target for hypertrophic therapy.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China ; and
| | - Wenyao Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China ; and
| | - Guangtao Lei
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guorong Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China ; and
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Lu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Zhang Y, Sun C, Ma L, Xiao G, Gu Y, Yu W. O-GlcNAcylation promotes malignancy and cisplatin resistance of lung cancer by stabilising NRF2. Clin Transl Med 2024; 14:e70037. [PMID: 39358921 PMCID: PMC11447106 DOI: 10.1002/ctm2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The transcription factor NRF2 plays a significant role in regulating genes that protect cells from oxidative damage. O-GlcNAc modification, a type of posttranslational modification, is crucial for cellular response to stress. Although the involvement of both NRF2 and O-GlcNAc in maintaining cellular redox balance and promoting cancer malignancy has been demonstrated, the potential mechanisms remain elusive. METHODS The immunoblotting, luciferase reporter, ROS assay, co-immunoprecipitation, and immunofluorescence was used to detect the effects of global cellular O-GlcNAcylation on NRF2. Mass spectrometry was utilised to map the O-GlcNAcylation sites on NRF2, which was validated by site-specific mutagenesis and O-GlcNAc enzymatic labelling. Human lung cancer samples were employed to verify the association between O-GlcNAc and NRF2. Subsequently, the impact of NRF2 O-GlcNAcylation in lung cancer malignancy and cisplatin resistance were evaluated in vitro and in vivo. RESULTS NRF2 is O-GlcNAcylated at Ser103 residue, which hinders its binding to KEAP1 and thus enhances its stability, nuclear localisation, and transcription activity. Oxidative stress and cisplatin can elevate the phosphorylation of OGT at Thr444 through the activation of AMPK kinase, leading to enhanced binding of OGT to NRF2 and subsequent elevation of NRF2 O-GlcNAcylation. Both in cellular and xenograft mouse models, O-GlcNAcylation of NRF2 at Ser103 promotes the malignancy of lung cancer. In human lung cancer tissue samples, there was a significant increase in global O-GlcNAcylation, and elevated levels of NRF2 and its O-GlcNAcylation compared to paired adjacent normal tissues. Chemotherapy promotes NRF2 O-GlcNAcylation, which in turn decreases cellular ROS levels and drives lung cancer cell survival. CONCLUSION Our findings indicate that OGT O-GlcNAcylates NRF2 at Ser103, and this modification plays a role in cellular antioxidant, lung cancer malignancy, and cisplatin resistance.
Collapse
Affiliation(s)
- Yihan Zhang
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Changning Sun
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Leina Ma
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Guokai Xiao
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Yuchao Gu
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Wengong Yu
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| |
Collapse
|
6
|
Cheng Z, Shang N, Wang X, Kang Y, Zhou J, Lan J, Hu J, Peng Y, Xu B. Discovery of 4-(Arylethynyl)piperidine Derivatives as Potent Nonsaccharide O-GlcNAcase Inhibitors for the Treatment of Alzheimer's Disease. J Med Chem 2024; 67:14292-14312. [PMID: 39109492 DOI: 10.1021/acs.jmedchem.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Inhibiting O-GlcNAcase and thereby up-regulation of the O-GlcNAc levels of tau was a potential approach for discovering AD treatments. Herein, a series of novel highly potent OGA inhibitors embracing a 4-(arylethynyl)piperidine moiety was achieved by capitalizing on the substrate recognition domain. Extensive structure-activity relationships resulted in compound 81 with significant enzymatic inhibition (IC50 = 4.93 ± 2.05 nM) and cellular potency (EC50 = 7.47 ± 3.96 nM in PC12 cells). It markedly increased the protein O-GlcNAcylation levels and reduced the phosphorylation on Ser199, Thr205, and Ser396 of tau in the OA-injured SH-SY5Y cell model, suggesting its potential role for AD treatment. In fact, an in vivo efficacy of ameliorating cognitive impairment was observed following treatment of APP/PS1 mice with compound 81 (100 mg/kg). Additionally, the appropriate plasma PK and beneficial BBB penetration properties were also observed. Compound 81 deserves to be further explored as an anti-AD agent.
Collapse
Affiliation(s)
- Zihan Cheng
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nianying Shang
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiaqi Lan
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Qiu Z, Cui J, Huang Q, Qi B, Xia Z. Roles of O-GlcNAcylation in Mitochondrial Homeostasis and Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:571. [PMID: 38790676 PMCID: PMC11117601 DOI: 10.3390/antiox13050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Protein posttranslational modifications are important factors that mediate the fine regulation of signaling molecules. O-linked β-N-acetylglucosamine-modification (O-GlcNAcylation) is a monosaccharide modification on N-acetylglucosamine linked to the hydroxyl terminus of serine and threonine of proteins. O-GlcNAcylation is responsive to cellular stress as a reversible and posttranslational modification of nuclear, mitochondrial and cytoplasmic proteins. Mitochondrial proteins are the main targets of O-GlcNAcylation and O-GlcNAcylation is a key regulator of mitochondrial homeostasis by directly regulating the mitochondrial proteome or protein activity and function. Disruption of O-GlcNAcylation is closely related to mitochondrial dysfunction. More importantly, the O-GlcNAcylation of cardiac proteins has been proven to be protective or harmful to cardiac function. Mitochondrial homeostasis is crucial for cardiac contractile function and myocardial cell metabolism, and the imbalance of mitochondrial homeostasis plays a crucial role in the pathogenesis of cardiovascular diseases (CVDs). In this review, we will focus on the interactions between protein O-GlcNAcylation and mitochondrial homeostasis and provide insights on the role of mitochondrial protein O-GlcNAcylation in CVDs.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| | - Jiahui Cui
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| | - Qin Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| | - Biao Qi
- Department of Anesthesiology, Hubei 672 Orthopaedics Hospital of Integrated Chinese and Western Medicine, Wuhan Orthopaedics Hospital of Intergrated Traditional Medicine Chinese and Western Medicine, The Affiliated Hospital of Wuhan Sports University, Wuhan 430070, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Q.); (J.C.); (Q.H.)
| |
Collapse
|
8
|
Luanpitpong S, Tangkiettrakul K, Kang X, Srisook P, Poohadsuan J, Samart P, Klaihmon P, Janan M, Lorthongpanich C, Laowtammathron C, Issaragrisil S. OGT and OGA gene-edited human induced pluripotent stem cells for dissecting the functional roles of O-GlcNAcylation in hematopoiesis. Front Cell Dev Biol 2024; 12:1361943. [PMID: 38752196 PMCID: PMC11094211 DOI: 10.3389/fcell.2024.1361943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 05/18/2024] Open
Abstract
Hematopoiesis continues throughout life to produce all types of blood cells from hematopoietic stem cells (HSCs). Metabolic state is a known regulator of HSC self-renewal and differentiation, but whether and how metabolic sensor O-GlcNAcylation, which can be modulated via an inhibition of its cycling enzymes O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT), contributes to hematopoiesis remains largely unknown. Herein, isogenic, single-cell clones of OGA-depleted (OGAi) and OGT-depleted (OGTi) human induced pluripotent stem cells (hiPSCs) were successfully generated from the master hiPSC line MUSIi012-A, which were reprogrammed from CD34+ hematopoietic stem/progenitor cells (HSPCs) containing epigenetic memory. The established OGAi and OGTi hiPSCs exhibiting an increase or decrease in cellular O-GlcNAcylation concomitant with their loss of OGA and OGT, respectively, appeared normal in phenotype and karyotype, and retained pluripotency, although they may favor differentiation toward certain germ lineages. Upon hematopoietic differentiation through mesoderm induction and endothelial-to-hematopoietic transition, we found that OGA inhibition accelerates hiPSC commitment toward HSPCs and that disruption of O-GlcNAc homeostasis affects their commitment toward erythroid lineage. The differentiated HSPCs from all groups were capable of giving rise to all hematopoietic progenitors, thus confirming their functional characteristics. Altogether, the established single-cell clones of OGTi and OGAi hiPSCs represent a valuable platform for further dissecting the roles of O-GlcNAcylation in blood cell development at various stages and lineages of blood cells. The incomplete knockout of OGA and OGT in these hiPSCs makes them susceptible to additional manipulation, i.e., by small molecules, allowing the molecular dynamics studies of O-GlcNAcylation.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kantpitchar Tangkiettrakul
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xing Kang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonwan Srisook
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jirarat Poohadsuan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parinya Samart
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Montira Janan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Ye W, Han K, Xie M, Li S, Chen G, Wang Y, Li T. Mitochondrial energy metabolism in diabetic cardiomyopathy: Physiological adaption, pathogenesis, and therapeutic targets. Chin Med J (Engl) 2024; 137:936-948. [PMID: 38527931 PMCID: PMC11046025 DOI: 10.1097/cm9.0000000000003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Indexed: 03/27/2024] Open
Abstract
ABSTRACT Diabetic cardiomyopathy is defined as abnormal structure and function of the heart in the setting of diabetes, which could eventually develop heart failure and leads to the death of the patients. Although blood glucose control and medications to heart failure show beneficial effects on this disease, there is currently no specific treatment for diabetic cardiomyopathy. Over the past few decades, the pathophysiology of diabetic cardiomyopathy has been extensively studied, and an increasing number of studies pinpoint that impaired mitochondrial energy metabolism is a key mediator as well as a therapeutic target. In this review, we summarize the latest research in the field of diabetic cardiomyopathy, focusing on mitochondrial damage and adaptation, altered energy substrates, and potential therapeutic targets. A better understanding of the mitochondrial energy metabolism in diabetic cardiomyopathy may help to gain more mechanistic insights and generate more precise mitochondria-oriented therapies to treat this disease.
Collapse
Affiliation(s)
- Wanlin Ye
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kun Han
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, Division of Guideline and Rapid Recommendation, Cochrane China Center, MAGIC China Center, Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guo Chen
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyan Wang
- Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Li Z, Chen J, Huang H, Zhan Q, Wang F, Chen Z, Lu X, Sun G. Post-translational modifications in diabetic cardiomyopathy. J Cell Mol Med 2024; 28:e18158. [PMID: 38494853 PMCID: PMC10945092 DOI: 10.1111/jcmm.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zhi Li
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Jie Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hailong Huang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qianru Zhan
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning ProvincePeople's Hospital of China Medical UniversityShenyangChina
| | - Zihan Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xinwei Lu
- Department of CardiologySiping Central People's HospitalSipingChina
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
11
|
Teng D, Wang W, Jia W, Song J, Gong L, Zhong L, Yang J. The effects of glycosylation modifications on monocyte recruitment and foam cell formation in atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167027. [PMID: 38237743 DOI: 10.1016/j.bbadis.2024.167027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The monocyte recruitment and foam cell formation have been intensively investigated in atherosclerosis. Nevertheless, as the study progressed, it was obvious that crucial molecules participated in the monocyte recruitment and the membrane proteins in macrophages exhibited substantial glycosylation modifications. These modifications can exert a significant influence on protein functions and may even impact the overall progression of diseases. This article provides a review of the effects of glycosylation modifications on monocyte recruitment and foam cell formation. By elaborating on these effects, we aim to understand the underlying mechanisms of atherogenesis further and to provide new insights into the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Da Teng
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenlong Wang
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenjuan Jia
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jikai Song
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lei Gong
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
| | - Lin Zhong
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China.
| | - Jun Yang
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Yu F, Zhang Z, Leng Y, Chen AF. O-GlcNAc modification of GSDMD attenuates LPS-induced endothelial cells pyroptosis. Inflamm Res 2024; 73:5-17. [PMID: 37962578 PMCID: PMC10776498 DOI: 10.1007/s00011-023-01812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE Increased O-linked β-N-acetylglucosamine (O-GlcNAc) stimulation has been reported to protect against sepsis associated mortality and cardiovascular derangement. Previous studies, including our own research, have indicated that gasdermin-D(GSDMD)-mediated endothelial cells pyroptosis contributes to sepsis-associated endothelial injury. This study explored the functions and mechanisms of O-GlcNAc modification on lipopolysaccharide (LPS)-induced pyroptosis and its effects on the function of GSDMD. METHODS A LPS-induced septic mouse model administrated with O-GlcNAcase (OGA) inhibitor thiamet-G (TMG) was used to assess the effects of O-GlcNAcylation on sepsis-associated vascular dysfunction and pyroptosis. We conducted experiments on human umbilical vein endothelial cells (HUVECs) by challenging them with LPS and TMG to investigate the impact of O-GlcNAcylation on endothelial cell pyroptosis and implications of GSDMD. Additionally, we identified potential O-GlcNAcylation sites in GSDMD by utilizing four public O-GlcNAcylation site prediction database, and these sites were ultimately established through gene mutation. RESULTS Septic mice with increased O-GlcNAc stimulation exhibited reduced endothelial injury, GSDMD cleavage (a marker of pyroptosis). O-GlcNAc modification of GSDMD mitigates LPS-induced pyroptosis in endothelial cells by preventing its interaction with caspase-11 (a human homologous of caspases-4/5). We also identified GSDMD Serine 338 (S338) as a novel site of O-GlcNAc modification, leading to decreased association with caspases-4 in HEK293T cells. CONCLUSIONS Our findings identified a novel post-translational modification of GSDMD and elucidated the O-GlcNAcylation of GSDMD inhibits LPS-induced endothelial injury, suggesting that O-GlcNAc modification-based treatments could serve as potential interventions for sepsis-associated vascular endothelial injury.
Collapse
Affiliation(s)
- Fan Yu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Zhang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yiping Leng
- The Affiliated Changsha Central Hospital, Research Center for Phase I Clinical Trials, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Alex F Chen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China.
- Department of Cardiology, Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
13
|
Yu F, Yang S, Ni H, Heng D, Wu X, Yang M, Zhang X, Cao Y, Pei Y, An D, Li D, Liu D, Liu L, Pan L, Chen Q, Zhu X, Zhou J. O-GlcNAcylation Regulates Centrosome Behavior and Cell Polarity to Reduce Pulmonary Fibrosis and Maintain the Epithelial Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303545. [PMID: 37963851 PMCID: PMC10754140 DOI: 10.1002/advs.202303545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Indexed: 11/16/2023]
Abstract
O-GlcNAcylation functions as a cellular nutrient and stress sensor and participates in almost all cellular processes. However, it remains unclear whether O-GlcNAcylation plays a role in the establishment and maintenance of cell polarity, because mice lacking O-GlcNAc transferase (OGT) are embryonically lethal. Here, a mild Ogt knockout mouse model is constructed and the important role of O-GlcNAcylation in establishing and maintaining cell polarity is demonstrated. Ogt knockout leads to severe pulmonary fibrosis and dramatically promotes epithelial-to-mesenchymal transition. Mechanistic studies reveal that OGT interacts with pericentriolar material 1 (PCM1) and centrosomal protein 131 (CEP131), components of centriolar satellites required for anchoring microtubules to the centrosome. These data further show that O-GlcNAcylation of PCM1 and CEP131 promotes their centrosomal localization through phase separation. Decrease in O-GlcNAcylation prevents PCM1 and CEP131 from localizing to the centrosome, instead dispersing these proteins throughout the cell and impairing the microtubule-centrosome interaction to disrupt centrosome positioning and cell polarity. These findings identify a previously unrecognized role for protein O-GlcNAcylation in establishing and maintaining cell polarity with important implications for the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Fan Yu
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
- School of Health and Life SciencesUniversity of Health and Rehabilitation SciencesQingdao266071China
| | - Song Yang
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
- School of Health and Life SciencesUniversity of Health and Rehabilitation SciencesQingdao266071China
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Dai Heng
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Xuemei Wu
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Mulin Yang
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Xinming Zhang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjin300070China
| | - Yuxin Cao
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjin300070China
| | - Yandong Pei
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Di An
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Dayong Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjin300070China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Leiting Pan
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyCAS Centre for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemFrontiers Science Center for Cell ResponsesTianjin Key Laboratory of Protein ScienceCollege of Life SciencesNankai UniversityTianjin300071China
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| |
Collapse
|
14
|
Lu P, Liu Y, He M, Cao T, Yang M, Qi S, Yu H, Gao H. Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex. Nat Commun 2023; 14:6952. [PMID: 37907462 PMCID: PMC10618255 DOI: 10.1038/s41467-023-42427-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
O-GlcNAcylation is a conserved post-translational modification that attaches N-acetyl glucosamine (GlcNAc) to myriad cellular proteins. In response to nutritional and hormonal signals, O-GlcNAcylation regulates diverse cellular processes by modulating the stability, structure, and function of target proteins. Dysregulation of O-GlcNAcylation has been implicated in the pathogenesis of cancer, diabetes, and neurodegeneration. A single pair of enzymes, the O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), catalyzes the addition and removal of O-GlcNAc on over 3,000 proteins in the human proteome. However, how OGT selects its native substrates and maintains the homeostatic control of O-GlcNAcylation of so many substrates against OGA is not fully understood. Here, we present the cryo-electron microscopy (cryo-EM) structures of human OGT and the OGT-OGA complex. Our studies reveal that OGT forms a functionally important scissor-shaped dimer. Within the OGT-OGA complex structure, a long flexible OGA segment occupies the extended substrate-binding groove of OGT and positions a serine for O-GlcNAcylation, thus preventing OGT from modifying other substrates. Conversely, OGT disrupts the functional dimerization of OGA and occludes its active site, resulting in the blocking of access by other substrates. This mutual inhibition between OGT and OGA may limit the futile O-GlcNAcylation cycles and help to maintain O-GlcNAc homeostasis.
Collapse
Affiliation(s)
- Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yusong Liu
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Maozhou He
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Ting Cao
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Mengquan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Shutao Qi
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Hongtao Yu
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Haishan Gao
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
He XF, Hu X, Wen GJ, Wang Z, Lin WJ. O-GlcNAcylation in cancer development and immunotherapy. Cancer Lett 2023; 566:216258. [PMID: 37279852 DOI: 10.1016/j.canlet.2023.216258] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc), as a posttranslational modification (PTM), is a reversible reaction that attaches β-N-GlcNAc to Ser/Thr residues on specific proteins by O-GlcNAc transferase (OGT). O-GlcNAcase (OGA) removes the O-GlcNAc from O-GlcNAcylated proteins. O-GlcNAcylation regulates numerous cellular processes, including signal transduction, the cell cycle, metabolism, and energy homeostasis. Dysregulation of O-GlcNAcylation contributes to the development of various diseases, including cancers. Accumulating evidence has revealed that higher expression levels of OGT and hyper-O-GlcNAcylation are detected in many cancer types and governs glucose metabolism, proliferation, metastasis, invasion, angiogenesis, migration and drug resistance. In this review, we describe the biological functions and molecular mechanisms of OGT- or O-GlcNAcylation-mediated tumorigenesis. Moreover, we discuss the potential role of O-GlcNAcylation in tumor immunotherapy. Furthermore, we highlight that compounds can target O-GlcNAcylation by regulating OGT to suppress oncogenesis. Taken together, targeting protein O-GlcNAcylation might be a promising strategy for the treatment of human malignancies.
Collapse
Affiliation(s)
- Xue-Fen He
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Xiaoli Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gao-Jing Wen
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wen-Jing Lin
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
16
|
Zhu J, Ji X, Shi R, He T, Chen SY, Cong R, He B, Liu S, Xu H, Gu JH. Hyperglycemia Aggravates the Cerebral Ischemia Injury via Protein O-GlcNAcylation. J Alzheimers Dis 2023:JAD230264. [PMID: 37334605 DOI: 10.3233/jad-230264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND At least one-third of Alzheimer's disease (AD) patients have cerebrovascular abnormalities, micro- and macro-infarctions, and ischemic white matter alterations. Stroke prognosis impacts AD development due to vascular disease. Hyperglycemia can readily produce vascular lesions and atherosclerosis, increasing the risk of cerebral ischemia. Our previous studies have proved that protein O-GlcNAcylation-a dynamic and reversible post-translational modification, protects against ischemic stroke. However, the role of O-GlcNAcylation in hyperglycemia aggravating cerebral ischemia injury remained unclear. OBJECTIVE In the present study, we investigated the role and mechanism of protein O-GlcNAcylation in hyperglycemia exacerbating cerebral ischemia injury. METHODS High glucose-cultured brain microvascular endothelial (bEnd3) cells were injured by oxygen-glucose deprivation. Cell viability was used as the assay result. Stroke outcomes and hemorrhagic transformation incidence were assessed in mice after middle cerebral artery occlusion under high glucose and streptozotocin-induced hyperglycemic conditions. Western blot estimated that O-GlcNAcylation influenced apoptosis levels in vitro and in vivo. RESULTS In in vitro analyses showed that Thiamet-G induces upregulation of protein O-GlcNAcylation, which attenuates oxygen-glucose deprivation/R-induce injury in bEnd3 cells cultured under normal glucose conditions, while aggravated it under high glucose conditions. In in vivo analyses, Thiamet-G exacerbated cerebral ischemic injury and induced hemorrhagic transformation, accompanied by increased apoptosis. While blocking protein O-GlcNAcylation with 6-diazo-5-oxo-L-norleucine alleviated cerebral injury of ischemic stroke in different hyperglycemic mice. CONCLUSION Overall, our study indicates a critical role for O-GlcNAcylation in that hyperglycemia aggravates cerebral ischemia injury. O-GlcNAcylation may be a potential therapeutic drug for ischemic stroke associated with AD.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, China
| | - Xin Ji
- Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, China
| | - Ruirui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, China
| | - Tianqi He
- Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, China
| | - Su-Ying Chen
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Ruochen Cong
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Bosheng He
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jin-Hua Gu
- Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
Demir R, Deveci R. In silico analysis of the possible crosstalk between O-linked β-GlcNAcylation and phosphorylation sites of Disabled 1 adaptor protein in vertebrates. Amino Acids 2023:10.1007/s00726-023-03266-5. [PMID: 37067567 DOI: 10.1007/s00726-023-03266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Disabled 1 (Dab1) is an adaptor protein with essential functions regulated by reelin signaling and affects many biological processes in the nervous system, including cell motility, adhesion, cortical development, maturation, and synaptic plasticity. Posttranslational modifications directly guide the fates of cytoplasmic proteins to complete their functions correctly. Reciprocal crosstalk between O-GlcNAcylation and phosphorylation is a dynamic modification in cytoplasmic proteins. It modulates the functions of the proteins by regulating their interactions with other molecules in response to the continuously changeable cell microenvironment. Although Dab1 contains conserved recognition sites for phosphorylation in their N-terminal protein interaction domain, the O-β-GlcNAcylation and phosphorylation sites of human Dab1 sequence, their reciprocal crosstalk, and potential kinases catalyzing the phosphorylation remain unknown. In this study, we determined potential thirty-seven O-β-GlcNAcylation and sixty-seven phosphorylation sites. Conserved twenty-one residues of these glycosylated sites were also phosphorylated with various kinases, including ATM, CKI, DNAPK, GSK3, PKC, PKG, RSK, cdc2, cdk5, and p38MAPK. In addition, we analyzed these conserved sites at our constructed two- and three-dimensional structures of human Dab1 protein. Dab1 protein models were frequently composed of coil structures as well as α-helix and β-strands. Many of these conserved crosstalk sites between O-β-GlcNAcylation and phosphorylation were localized at the coil region of the protein model. These findings may guide biochemical, genetic, and glyco-biology based on further experiments about the Dab1 signaling process. Understanding these modifications might change the point of view of the Dab1 signaling process and treatment for pathological conditions in neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ramiz Demir
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, 35040,, Izmir, Turkey
- Graduate School of Health Science, Koç University Research Center for Translational Medicine (KUTTAM), Koç University, 34010, Istanbul, Turkey
| | - Remziye Deveci
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, 35040,, Izmir, Turkey.
| |
Collapse
|
18
|
Moon SP, Pratt MR. Synthesis of O-GlcNAcylated small heat shock proteins. Methods Enzymol 2022; 675:63-82. [PMID: 36220281 PMCID: PMC9968497 DOI: 10.1016/bs.mie.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A protein's structure and function often depend not only on its primary sequence, but also the presence or absence of any number of non-coded posttranslational modifications. Complicating their study is the fact that the physiological consequences of these modifications are context-, protein-, and site-dependent, and there exist no purely biological techniques to unambiguously study their effects. To this end, protein semisynthesis has become an invaluable chemical biology tool to specifically install non-coded or non-native moieties onto proteins in vitro using synthetic and/or recombinant polypeptides. Here, we describe two facets of protein semisynthesis (solid-phase peptide synthesis and expressed protein ligation) and their use in generating site-specifically glycosylated small heat shock proteins for functional studies. The procedures herein require limited specialized equipment, employ mild reaction conditions, and can be extended to myriad other proteins, modifications, and contexts.
Collapse
Affiliation(s)
- Stuart P Moon
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States; Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
19
|
O-GlcNAcylation regulates epidermal growth factor receptor intracellular trafficking and signaling. Proc Natl Acad Sci U S A 2022; 119:e2107453119. [PMID: 35239437 PMCID: PMC8915906 DOI: 10.1073/pnas.2107453119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEpidermal growth factor receptor (EGFR) is one of the most important membrane receptors that transduce growth signals into cells to sustain cell growth, proliferation, and survival. EGFR signal termination is initiated by EGFR internalization, followed by trafficking through endosomes, and degradation in lysosomes. How this process is regulated is still poorly understood. Here, we show that hepatocyte growth factor regulated tyrosine kinase substrate (HGS), a key protein in the EGFR trafficking pathway, is dynamically modified by a single sugar N-acetylglucosamine. This modification inhibits EGFR trafficking from endosomes to lysosomes, leading to the accumulation of EGFR and prolonged signaling. This study provides an important insight into diseases with aberrant growth factor signaling, such as cancer, obesity, and diabetes.
Collapse
|
20
|
Bolanle IO, Palmer TM. Targeting Protein O-GlcNAcylation, a Link between Type 2 Diabetes Mellitus and Inflammatory Disease. Cells 2022; 11:cells11040705. [PMID: 35203353 PMCID: PMC8870601 DOI: 10.3390/cells11040705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Unresolved hyperglycaemia, a hallmark of type 2 diabetes mellitus (T2DM), is a well characterised manifestation of altered fuel homeostasis and our understanding of its role in the pathologic activation of the inflammatory system continues to grow. Metabolic disorders like T2DM trigger changes in the regulation of key cellular processes such as cell trafficking and proliferation, and manifest as chronic inflammatory disorders with severe long-term consequences. Activation of inflammatory pathways has recently emerged as a critical link between T2DM and inflammation. A substantial body of evidence has suggested that this is due in part to increased flux through the hexosamine biosynthetic pathway (HBP). The HBP, a unique nutrient-sensing metabolic pathway, produces the activated amino sugar UDP-GlcNAc which is a critical substrate for protein O-GlcNAcylation, a dynamic, reversible post-translational glycosylation of serine and threonine residues in target proteins. Protein O-GlcNAcylation impacts a range of cellular processes, including inflammation, metabolism, trafficking, and cytoskeletal organisation. As increased HBP flux culminates in increased protein O-GlcNAcylation, we propose that targeting O-GlcNAcylation may be a viable therapeutic strategy for the prevention and management of glucose-dependent pathologies with inflammatory components.
Collapse
|
21
|
He J, Fan Z, Tian Y, Yang W, Zhou Y, Zhu Q, Zhang W, Qin W, Yi W. Spatiotemporal Activation of Protein O-GlcNAcylation in Living Cells. J Am Chem Soc 2022; 144:4289-4293. [PMID: 35138101 DOI: 10.1021/jacs.1c11041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a prevalent protein modification that plays fundamental roles in both cell physiology and pathology. O-GlcNAc is catalyzed solely by O-GlcNAc transferase (OGT). The study of protein O-GlcNAc function is limited by the lack of tools to control OGT activity with spatiotemporal resolution in cells. Here, we report light control of OGT activity in cells by replacing a catalytically essential lysine residue with a genetically encoded photocaged lysine. This enables the expression of a transiently inactivated form of OGT, which can be rapidly reactivated by photo-decaging. We demonstrate the activation of OGT activity by monitoring the time-dependent increase of cellular O-GlcNAc and profile glycoproteins using mass-spectrometry-based quantitative proteomics. We further apply this activation strategy to control the morphological contraction of fibroblasts. Furthermore, we achieved spatial activation of OGT activity predominantly in the cytosol. Thus, our approach provides a valuable chemical tool to control cellular O-GlcNAc with much needed spatiotemporal precision, which aids in a better understanding of O-GlcNAc function.
Collapse
Affiliation(s)
- Jiahui He
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiya Fan
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yinping Tian
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.,Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiwei Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yichao Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Moon S, Javed A, Hard ER, Pratt MR. Methods for Studying Site-Specific O-GlcNAc Modifications: Successes, Limitations, and Important Future Goals. JACS AU 2022; 2:74-83. [PMID: 35098223 PMCID: PMC8791055 DOI: 10.1021/jacsau.1c00455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 06/14/2023]
Abstract
O-GlcNAcylation is a dynamic post-translational modification which affects myriad proteins, cellular functions, and disease states. Its presence or absence modulates protein function via differential protein- and site-specific mechanisms, necessitating innovative techniques to probe the modification in highly selective manners. To this end, a variety of biological and chemical methods have been developed to study specific O-GlcNAc modification events both in vitro and in vivo, each with their own respective strengths and shortcomings. Together, they comprise a potent chemical biology toolbox for the analysis of O-GlcNAcylation (and, in theory, other post-translational modifications) while highlighting the need and space for more facile, generalizable, and biologically authentic techniques.
Collapse
Affiliation(s)
- Stuart
P. Moon
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Eldon R. Hard
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
23
|
Loaeza-Reyes KJ, Zenteno E, Moreno-Rodríguez A, Torres-Rosas R, Argueta-Figueroa L, Salinas-Marín R, Castillo-Real LM, Pina-Canseco S, Cervera YP. An Overview of Glycosylation and its Impact on Cardiovascular Health and Disease. Front Mol Biosci 2021; 8:751637. [PMID: 34869586 PMCID: PMC8635159 DOI: 10.3389/fmolb.2021.751637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiovascular system is a complex and well-organized system in which glycosylation plays a vital role. The heart and vascular wall cells are constituted by an array of specific receptors; most of them are N- glycosylated and mucin-type O-glycosylated. There are also intracellular signaling pathways regulated by different post-translational modifications, including O-GlcNAcylation, which promote adequate responses to extracellular stimuli and signaling transduction. Herein, we provide an overview of N-glycosylation and O-glycosylation, including O-GlcNAcylation, and their role at different levels such as reception of signal, signal transduction, and exogenous molecules or agonists, which stimulate the heart and vascular wall cells with effects in different conditions, like the physiological status, ischemia/reperfusion, exercise, or during low-grade inflammation in diabetes and aging. Furthermore, mutations of glycosyltransferases and receptors are associated with development of cardiovascular diseases. The knowledge on glycosylation and its effects could be considered biochemical markers and might be useful as a therapeutic tool to control cardiovascular diseases.
Collapse
Affiliation(s)
- Karen Julissa Loaeza-Reyes
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rafael Torres-Rosas
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Liliana Argueta-Figueroa
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lizet Monserrat Castillo-Real
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Yobana Pérez Cervera
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
24
|
Massman LJ, Pereckas M, Zwagerman NT, Olivier-Van Stichelen S. O-GlcNAcylation Is Essential for Rapid Pomc Expression and Cell Proliferation in Corticotropic Tumor Cells. Endocrinology 2021; 162:6356179. [PMID: 34418053 PMCID: PMC8482966 DOI: 10.1210/endocr/bqab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Pituitary adenomas have a staggering 16.7% lifetime prevalence and can be devastating in many patients because of profound endocrine and neurologic dysfunction. To date, no clear genomic or epigenomic markers correlate with their onset or severity. Herein, we investigate the impact of the O-GlcNAc posttranslational modification in their etiology. Found in more than 7000 human proteins to date, O-GlcNAcylation dynamically regulates proteins in critical signaling pathways, and its deregulation is involved in cancer progression and endocrine diseases such as diabetes. In this study, we demonstrated that O-GlcNAc enzymes were upregulated, particularly in aggressive adrenocorticotropin (ACTH)-secreting tumors, suggesting a role for O-GlcNAcylation in pituitary adenoma etiology. In addition to the demonstration that O-GlcNAcylation was essential for their proliferation, we showed that the endocrine function of pituitary adenoma is also dependent on O-GlcNAcylation. In corticotropic tumors, hypersecretion of the proopiomelanocortin (POMC)-derived hormone ACTH leads to Cushing disease, materialized by severe endocrine disruption and increased mortality. We demonstrated that Pomc messenger RNA is stabilized in an O-GlcNAc-dependent manner in response to corticotrophin-releasing hormone (CRH). By affecting Pomc mRNA splicing and stability, O-GlcNAcylation contributes to this new mechanism of fast hormonal response in corticotropes. Thus, this study stresses the essential role of O-GlcNAcylation in ACTH-secreting adenomas' pathophysiology, including cellular proliferation and hypersecretion.
Collapse
Affiliation(s)
- Logan J Massman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Michael Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Nathan T Zwagerman
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
- Correspondence: Stephanie Olivier-Van Stichelen, PhD, Department of Biochemistry, Medical College of Wisconsin, BSB355, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|