1
|
Li S, Liu T, Li C, Zhang Z, Zhang J, Sun D. Overcoming immunotherapy resistance in colorectal cancer through nano-selenium probiotic complexes and IL-32 modulation. Biomaterials 2025; 320:123233. [PMID: 40081224 DOI: 10.1016/j.biomaterials.2025.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND AND OBJECTIVE Colorectal cancer (CRC) is a major global health burden, with immunotherapy often limited by immune tolerance and resistance. This study introduces an innovative approach using Selenium Nanoparticles-Loaded Extracellular Vesicles combined with Interleukin-32 and Engineered Probiotic Escherichia coli Nissle 1917 (SeNVs@NE-IL32-EcN) to enhance CD8+ T cell-mediated immune responses and overcome immunotherapy resistance. METHODS Single-cell RNA sequencing (scRNA-seq) and transcriptomic analyses were performed to identify key immune cells and regulators involved in CRC immunotherapy resistance, focusing on CD8+ T cells and the regulatory factor IL32. A humanized xenograft mouse model was used to evaluate the impact of IL32 and SeNVs@NE-IL32-EcN on tumor growth and immune responses. The SeNVs@NE-IL32-EcN complex was synthesized through a reverse micelle method and functionalized using extracellular vesicles. Its morphology, size, antioxidant activity, and safety were characterized using electron microscopy, dynamic light scattering (DLS), and in vitro co-culture assays. RESULTS Single-cell analyses revealed a significant reduction in CD8+ T cell infiltration in immunotherapy-resistant CRC patients. IL32 was identified as a key regulator enhancing CD8+ T cell cytotoxic activity through granzyme B and IFN-γ secretion. Treatment with SeNVs@NE-IL32-EcN significantly improved the proliferation and activity of CD8+ T cells and reduced tumor progression in humanized mouse models. In vitro and in vivo results demonstrated the complex's biocompatibility, antioxidant properties, and ability to enhance CRC immunotherapy while mitigating immune tolerance. CONCLUSION SeNVs@NE-IL32-EcN offers a novel nano-biomaterial strategy that integrates nanotechnology and probiotic therapy to enhance CD8+ T cell-mediated immunity and overcome CRC immunotherapy resistance. This study lays the foundation for future therapeutic applications in cancer treatment by advancing immune-modulating biomaterials.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Tao Liu
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Chenyao Li
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhiyuan Zhang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Jiantao Zhang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Di Sun
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Işık M, Köse F, Budak Ö, Özbayer C, Kaya RK, Aydın S, Küçük AC, Demirci MA, Doğanay S, Bağcı C. Probiotic Bactolac alleviates depression-like behaviors by modulating BDNF, NLRP3 and MC4R levels, reducing neuroinflammation and promoting neural repair in rat model. Pflugers Arch 2025; 477:797-814. [PMID: 40281288 DOI: 10.1007/s00424-025-03084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/16/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025]
Abstract
Depression, a prevalent psychiatric disorder, exerts severe and debilitating impacts on an individual's mental and physical well-being, and it is considered a chronic mental illness. Chronic stress plays an important role in the pathophysiology of depression. Lactobacillus plantarum and Streptococcus thermophilus are psychobiotic bacteria and synthesize some neurotransmitters that play a role in the pathogenesis of depression. In this study, we aimed to investigate the therapeutic effects of Bactolac (Lactobacillus plantarum NBIMCC 8767 + Streptococcus thermophilus NBIMCC 8258) on chronic stress-induced depression in rats. Behavioral tests, including the sucrose preference test, elevated plus maze test, forced swim test, and three-chamber sociability test, were employed to assess depressive and anxiety-like behaviors. The expression level of the 5-HT1A, DRD1, ADRA-2A, GABA-A α1, CNR1, NR3C2, NOD1, NLRP3 and MC4R; BDNF levels, glial activity and intestinal permeability were determined in chronic stress-induced depression in rats. In conclusions, chronic stress decreased the expression levels of 5-HT1A, DRD1, ADRA-2A, GABA-A α1, CNR1, NR3C2, NOD1 and BDNF level; increased the expression levels of NLRP3 and MC4R, caused neurodegeneration and glial activity, ultimately led to depressive effects. Bactolac was effective in reducing depressive-like behaviors according to the results of behavioral tests. Bactolac treatment provided high neuronal survival rate increasing BDNF level, prevented the excessive release of pro-inflammatory cytokines by reducing the expression levels of NLRP3 and MC4R, therefore, prevented the excessive activation of the hypothalamus-pituitary-adrenal (HPA) axis and accordingly, reduced neurodegeneration and glial cell activation in depressed rats. We can suggest that Bactolac supplementation may be beneficial in coping with stress, alleviate the effects of chronic stress and help to protect mental health.
Collapse
Affiliation(s)
- Musab Işık
- Department of Physiology, İstanbul Aydın University Medical Faculty, Istanbul, Turkey.
| | - Fadime Köse
- Department of Physiology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Özcan Budak
- Department of Hıstology-Embryology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Cansu Özbayer
- Department of Medical Biology, Medical Faculty, Kütahya Health Sciences University, Kutahya, Turkey
| | - Rumeysa Keleş Kaya
- Department of Medical Pharmacology, University of Health Sciences Hamidiye International School of Medicine, Istanbul, Turkey.
| | - Sevda Aydın
- Department of Hıstology-Embryology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Aleyna Ceren Küçük
- Department of Hıstology-Embryology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Mehmet Arif Demirci
- Department of Health Systems Management, Muş Alparslan University, Faculty of Health Sciences, Muş, Turkey
| | - Songül Doğanay
- Department of Physiology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Cahit Bağcı
- Department of Physiology, Sakarya University Medical Faculty, Sakarya, Turkey
| |
Collapse
|
3
|
Zapico D, Espinosa J, Mendívil P, Criado M, Benavides J, Fernández M. A nod to paratuberculosis: NOD1 and NOD2 expression in the pathological spectrum of Mycobacterium avium subsp. paratuberculosis infection in cattle. Front Vet Sci 2025; 12:1549056. [PMID: 40433460 PMCID: PMC12106534 DOI: 10.3389/fvets.2025.1549056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Mycobacterium avium subsp. paratuberculosis causes various types of granulomatous lesions in cattle, ranging from focal lesions associated with latency to diffuse lesions observed in animals with clinical disease. While the exact determining factors are unknown, recent evidence highlights the key role of innate immunity in the outcome of the infection. NOD-like receptors, which are innate immune proteins, play a significant role in recognizing intracellular pathogens, including mycobacteria. This study aimed to evaluate the expression of NOD1 and NOD2 in intestinal samples from cattle with different types of lesions associated with paratuberculosis: focal, diffuse paucibacillary, and multibacillary forms. The expression of NOD1 and NOD2 was assessed according to the number of immunolabeled cells, and only those cells consistent with macrophages were considered. A significant increase in the number of NOD1+ and NOD2+ macrophages was observed in cattle with diffuse multibacillary forms compared to the other groups. No expression of NOD1 or NOD2 was detected in the focal and diffuse paucibacillary lesions, while a strong expression of NOD2 and occasional NOD1 was observed in the multibacillary granulomas. These findings suggest that NOD1 and NOD2 are involved in the pathogenesis of bovine paratuberculosis.
Collapse
Affiliation(s)
- David Zapico
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM), CSIC-ULE, León, Spain
| | - José Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM), CSIC-ULE, León, Spain
| | - Pedro Mendívil
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM), CSIC-ULE, León, Spain
| | - Miguel Criado
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM), CSIC-ULE, León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM), CSIC-ULE, León, Spain
| | - Miguel Fernández
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
4
|
Raghuraman P, Ramireddy S, Raman G, Park S, Sudandiradoss C. Understanding a point mutation signature D54K in the caspase activation recruitment domain of NOD1 capitulating concerted immunity via atomistic simulation. J Biomol Struct Dyn 2025; 43:3766-3782. [PMID: 38415678 DOI: 10.1080/07391102.2024.2322618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 02/29/2024]
Abstract
Point mutation D54K in the human N-terminal caspase recruitment domain (CARD) of nucleotide-binding oligomerization domain -1 (NOD1) abrogates an imperative downstream interaction with receptor-interacting protein kinase (RIPK2) that entails combating bacterial infections and inflammatory dysfunction. Here, we addressed the molecular details concerning conformational changes and interaction patterns (monomeric-dimeric states) of D54K by signature-based molecular dynamics simulation. Initially, the sequence analysis prioritized D54K as a pathogenic mutation, among other variants, based on a sequence signature. Since the mutation is highly conserved, we derived the distant ortholog to predict the sequence and structural similarity between native and mutant. This analysis showed the utility of 33 communal core residues associated with structural-functional preservation and variations, concurrently served to infer the cryptic hotspots Cys39, Glu53, Asp54, Glu56, Ile57, Leu74, and Lys78 determining the inter helical fold forming homodimers for putative receptor interaction. Subsequently, the atomistic simulations with free energy (MM/PB(GB)SA) calculations predicted structural alteration that takes place in the N-terminal mutant CARD where coils changed to helices (45 α3- L4-α4-L6- α683) in contrast to native (45T2-L4-α4-L6-T483). Likewise, the C-terminal helices 93T1-α7105 connected to the loops distorted compared to native 93α6-L7105 may result in conformational misfolding that promotes functional regulation and activation. These structural perturbations of D54K possibly destabilize the flexible adaptation of critical homotypic NOD1CARD-CARDRIPK2 interactions (α4Asp42-Arg488α5 and α6Phe86-Lys471α4) is consistent with earlier experimental reports. Altogether, our findings unveil the conformational plasticity of mutation-dependent immunomodulatory response and may aid in functional validation exploring clinical investigation on CARD-regulated immunotherapies to prevent systemic infection and inflammation.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Sriroopreddy Ramireddy
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- Department of Genetics and Molecular Biology, School of Health Sciences, The Apollo University, Chittoor, India
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - C Sudandiradoss
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
5
|
Randeni N, Xu B. Critical Review of the Cross-Links Between Dietary Components, the Gut Microbiome, and Depression. Int J Mol Sci 2025; 26:614. [PMID: 39859327 PMCID: PMC11765984 DOI: 10.3390/ijms26020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The complex relationship between diet, the gut microbiota, and mental health, particularly depression, has become a focal point of contemporary research. This critical review examines how specific dietary components, such as fiber, proteins, fats, vitamins, minerals, and bioactive compounds, shape the gut microbiome and influence microbial metabolism in order to regulate depressive outcomes. These dietary-induced changes in the gut microbiota can modulate the production of microbial metabolites, which play vital roles in gut-brain communication. The gut-brain axis facilitates this communication through neural, immune, and endocrine pathways. Alterations in microbial metabolites can influence central nervous system (CNS) functions by impacting neuroplasticity, inflammatory responses, and neurotransmitter levels-all of which are linked to the onset and course of depression. This review highlights recent findings linking dietary components with beneficial changes in gut microbiota composition and reduced depressive symptoms. We also explore the challenges of individual variability in responses to dietary interventions and the long-term sustainability of these strategies. The review underscores the necessity for further longitudinal and mechanistic studies to elucidate the precise mechanisms through which diet and gut microbiota interactions can be leveraged to mitigate depression, paving the way for personalized nutritional therapies.
Collapse
Affiliation(s)
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China;
| |
Collapse
|
6
|
Xu Y, Lin F, Liao G, Sun J, Chen W, Zhang L. Ripks and Neuroinflammation. Mol Neurobiol 2024; 61:6771-6787. [PMID: 38349514 DOI: 10.1007/s12035-024-03981-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/20/2024] [Indexed: 08/22/2024]
Abstract
Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Yue Xu
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Lin
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Guolei Liao
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Jiaxing Sun
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Wenli Chen
- Department of Pharmacy, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Lei Zhang
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Wang Y, Li L, Chen S, Yu Z, Gao X, Peng X, Ye Q, Li Z, Tan W, Chen Y. Faecalibacterium prausnitzii-derived extracellular vesicles alleviate chronic colitis-related intestinal fibrosis by macrophage metabolic reprogramming. Pharmacol Res 2024; 206:107277. [PMID: 38945379 DOI: 10.1016/j.phrs.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Faecalibacterium prausnitzii (F. prausnitzii) has been recognized for its various intestinal and extraintestinal benefits to human. And reduction of F. prausnitzii has been linked to an increased risk of intestinal fibrosis in patients of Crohn's disease (CD). In this study, oral administration of either live F. prausnitzii or its extracellular vesicles (FEVs) can markedly mitigate the severity of fibrosis in mice induced by repetitive administration of DSS. In vitro experiment revealed that FEVs were capable of directing the polarization of peripheral blood mononuclear cells (PBMCs) towards an M2b macrophage phenotype, which has been associated with anti-fibrotic activities. This effect of FEV was found to be stable under various conditions that promote the development of pro-fibrotic M1/M2a/M2c macrophages. Proteomics and RNA sequencing were performed to uncover the molecular modulation of macrophages by FEVs. Notably, we found that FEVs reprogramed every metabolism of macrophages by damaging the mitochondria, and inhibited oxidative phosphorylation and glycolysis. Moreover, FEV-treated macrophages showed a decreased expression of PPARγ and an altered lipid processing phenotype characterized by decreased cholesterol efflux, which may promote energy reprogramming. Taken together, these findings identify FEV as a driver of macrophage reprogramming, suggesting that triggering M2b macrophage polarization by oral admiration of FEV may serve as strategy to alleviate hyperfibrotic intestine conditions in CD.
Collapse
Affiliation(s)
- Ying Wang
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Linjie Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zonglin Yu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefeng Gao
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiujuan Ye
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zitong Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weihao Tan
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Vallès Y, Arshad M, Abdalbaqi M, Inman CK, Ahmad A, Drou N, Gunsalus KC, Ali R, Tahlak M, Abdulle A. The infants' gut microbiome: setting the stage for the early onset of obesity. Front Microbiol 2024; 15:1371292. [PMID: 39081889 PMCID: PMC11287775 DOI: 10.3389/fmicb.2024.1371292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024] Open
Abstract
In the past three decades, dietary and lifestyle changes worldwide have resulted in a global increase in the prevalence of obesity in both adults and children. Known to be highly influenced by genetic, environmental and lifestyle factors, obesity is characterized by a low-grade chronic inflammation that contributes to the development of other metabolic diseases such as diabetes and cardiovascular disease. Recently, the gut microbiome has been added as a cause/contributor to the development of obesity. As differences in the microbiome between obese and normoweight individuals have been observed, we set out to determine whether infants harbor an obesogenic microbiome early on and whether the pre-pregnancy status of the mother (obese or normoweight) is correlated to their infant's microbiome composition. Using shotgun sequencing, we analyzed stool samples throughout the first year of life from infants born to obese (n = 23 participants, m = 104 samples) and normoweight (n = 23 participants, m = 99 samples) mothers. We found that the infants' microbiome diversity at taxonomic and functional levels was significantly influenced by time (ANOVA p < 0.001) but not by the mother's pre-pregnancy status. Overall, no deterministic succession of taxa or functions was observed. However, infants born to obese mothers were found to have a significantly higher Bacillota/Bacteroidota ratio (p = 0.02) at six months, were significantly depleted from six months old of the well-established obesity biomarkers Akkermansia municiphila and Faecalibacterium prausnitzii (p < 0.01), and were at one week old, significantly enriched in pathways such as the UDP-N-acetyl-D-glucosamine biosynthesis II (p = 0.02) involved in leptin production, suggesting perhaps that there may exist some underlying mechanisms that dictate the development of an obesogenic microbiota early on.
Collapse
Affiliation(s)
- Yvonne Vallès
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Muhammad Arshad
- Core Bioinformatics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mamoun Abdalbaqi
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Claire K. Inman
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amar Ahmad
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nizar Drou
- Core Bioinformatics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C. Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Raghib Ali
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Muna Tahlak
- Latifa Women and Children Hospital, Dubai, United Arab Emirates
| | - Abdishakur Abdulle
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Wang J, Sun M, Liu X, Yan Q, Gao Q, Ni K, Yang J, Zhang S, Zhang C, Shan C. Transcriptome analysis identifies genetic risk markers and explores the pathogenesis for inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167013. [PMID: 38199515 DOI: 10.1016/j.bbadis.2023.167013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Inflammatory bowel disease (IBD) is an incurable and disabling bowel disease driven by multiple risk factors that severely limit patients' quality of life. We integrated the RNA-sequencing data of 1238 IBD patients, and investigated the pathogenesis of IBD by combining transcriptional element prediction analysis and immune-related analysis. Here, we first determined that KIAA1109 is inhibited in IBD patients. The expression of KIAA1109 and NOD2, the key receptor of NOD-like receptors, showed a negative correlation. The NOD-like receptor signaling pathway is activated and exerts transcriptional regulation on the chemokines CXCL1 and CXCL2 through the activation of the transcription factors NFκB and AP1. Analysis of immune infiltration revealed that the expression of chemokines CXCL1 and CXCL2 may regulate the inflammatory response induced by immune cells. These findings suggest that the KIAA1109-NOD2-NFκB/AP1-CXCL1/CXCL2 regulatory axis is the molecular mechanism of IBD pathogenesis, which will provide a new perspective for the diagnosis, treatment and management of IBD patients.
Collapse
Affiliation(s)
- Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Xu Liu
- Endoscopy Center, Tianjin Union Medical Center, Tianjin 300121, China
| | - Qi Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Qingle Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Kemin Ni
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Juze Yang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China; Tianjin Institute of Coloproctology, Tianjin 300121, China.
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Apaza CJ, Días M, García Tejedor A, Boscá L, Laparra Llopis JM. Contribution of Nucleotide-Binding Oligomerization Domain-like (NOD) Receptors to the Immune and Metabolic Health. Biomedicines 2024; 12:341. [PMID: 38397943 PMCID: PMC10886542 DOI: 10.3390/biomedicines12020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Nucleotide-binding oligomerization domain-like (NOD) receptors rely on the interface between immunity and metabolism. Dietary factors constitute critical players in the activation of innate immunity and modulation of the gut microbiota. The latter have been involved in worsening or improving the control and promotion of diseases such as obesity, type 2 diabetes, metabolic syndrome, diseases known as non-communicable metabolic diseases (NCDs), and the risk of developing cancer. Intracellular NODs play key coordinated actions with innate immune 'Toll-like' receptors leading to a diverse array of gene expressions that initiate inflammatory and immune responses. There has been an improvement in the understanding of the molecular and genetic implications of these receptors in, among others, such aspects as resting energy expenditure, insulin resistance, and cell proliferation. Genetic factors and polymorphisms of the receptors are determinants of the risk and severity of NCDs and cancer, and it is conceivable that dietary factors may have significant differential consequences depending on them. Host factors are difficult to influence, while environmental factors are predominant and approachable with a preventive and/or therapeutic intention in obesity, T2D, and cancer. However, beyond the recognition of the activation of NODs by peptidoglycan as its prototypical agonist, the underlying molecular response(s) and its consequences on these diseases remain ill-defined. Metabolic (re)programming is a hallmark of NCDs and cancer in which nutritional strategies might play a key role in preventing the unprecedented expansion of these diseases. A better understanding of the participation and effects of immunonutritional dietary ingredients can boost integrative knowledge fostering interdisciplinary science between nutritional precision and personalized medicine against cancer. This review summarizes the current evidence concerning the relationship(s) and consequences of NODs on immune and metabolic health.
Collapse
Affiliation(s)
- César Jeri Apaza
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco, 8, 28049 Madrid, Spain;
| | - Marisol Días
- Center of Biological Enginneering (CEB), Iberian Nantotechnology Laboratory (INL), University of Minho, 4715-330 Braga, Portugal;
| | - Aurora García Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia (VIU), Pintor Sorolla 21, 46002 Valencia, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - José Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco, 8, 28049 Madrid, Spain;
| |
Collapse
|
11
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. Red blood cells of Labeo rohita express Toll-like receptors, NOD- like receptors, interleukins, and interferon-I in response to Gram-negative bacterial infections and lipopolysaccharide stimulations. JOURNAL OF FISH BIOLOGY 2023; 103:496-506. [PMID: 37255266 DOI: 10.1111/jfb.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Red blood cells (RBCs) are the most abundant cell types in the circulatory system of vertebrates. In fish, RBCs retain their nuclei throughout their lifetime and remain transcriptionally and translationally active. While their primary function is typically associated with gas exchange, recent reports indicate that nucleated red blood cells can play a significant role in regulating the body's innate immune response. The current article describes the innate immune role of red blood cells in rohu (Labeo rohita), a freshwater fish species that holds significant commercial importance in India and South-East Asian nations. From the whole blood and mucosal surface RBCs have been isolated through density gradient centrifugation with HiSep™LSM 1077 (density 1.007 ± 0.0010) and their purity has been confirmed by the Giemsa staining followed by microscopical observations. Toll-like receptors (TLR2, 3, 4, 5) and nucleotide oligomerization domain (NOD)-like receptors (NOD1 and NOD2) in RBCs of rohu fingerlings were observed to be significantly activated (P < 0.05) on infection with Aeromonas hydrophila and Edwardsiella tarda. This activation resulted in increased expression of interleukins (IL-8, IL-1β) and interferon (IFN)-I genes. The activation of TLR4, NOD1 and NOD2, as well as the expression of interleukins and IFN-I genes have been observed in both in vivo and in vitro stimulation of rohu RBCs with lipopolysaccharides. These findings highlight the importance of fish RBCs in enhancing innate immunity against various pathogenic invasions in rohu.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Ashis Saha
- Reproductive Physiology and Endocrinology Laboratory, Fish Nutrition & Physiology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| |
Collapse
|
12
|
Yu S, Ding Y, Wang X, Kin Ng S, Cao S, Liu W, Guo Z, Xie Y, Hong S, Xu L, Li X, Li J, Lv W, Peng S, Li Y, Sung JJ, Yu J, Xiao H. Intratumoral Bacteria Dysbiosis Is Associated with Human Papillary Thyroid Cancer and Correlated with Oncogenic Signaling Pathways. ENGINEERING 2023; 28:179-192. [DOI: 10.1016/j.eng.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Guerrero-Wyss M, Yans C, Boscán-González A, Duran P, Parra-Soto S, Angarita L. Durvillaea antarctica: A Seaweed for Enhancing Immune and Cardiometabolic Health and Gut Microbiota Composition Modulation. Int J Mol Sci 2023; 24:10779. [PMID: 37445955 DOI: 10.3390/ijms241310779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Durvillaea antarctica is the seaweed that is the most consumed by the Chilean population. It is recognized worldwide for its high nutritional value in protein, vitamins, minerals, and dietary fiber. This is a narrative review in which an extensive search of the literature was performed to establish the immunomodulator, cardiometabolic, and gut microbiota composition modulation effect of Durvillaea antarctica. Several studies have shown the potential of Durvillaea antarctica to function as prebiotics and to positively modulate the gut microbiota, which is related to anti-obesity, anti-inflammatory, anticancer, lipid-lowering, and hypoglycemic effects. The quantity of Bacteroides was negatively correlated with that of inflammatory monocytes and positively correlated with the levels of several gut metabolites. Seaweed-derived polysaccharides modulate the quantity and diversity of beneficial intestinal microbiota, decreasing phenol and p-cresol, which are related to intestinal diseases and the loss of intestinal function. Additionally, a beneficial metabolic effect related to this seaweed was observed, mainly promoting the decrease in the glycemic levels, lower cholesterol levels and cardiovascular risk. Consuming Durvillaea antarctica has a positive impact on the immune system, and its bioactive compounds provide beneficial effects on glycemic control and other metabolic parameters.
Collapse
Affiliation(s)
- Marion Guerrero-Wyss
- Escuela de Nutrición y Dietética, Facultad para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
| | - Caroline Yans
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Puerto Montt 5480000, Chile
| | - Arturo Boscán-González
- Facultad de Medicina, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Pablo Duran
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Solange Parra-Soto
- Departamento de Nutrición y Salud Pública, Facultad Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| |
Collapse
|
14
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Li Y, Dong X, Zhang Y, Xiao T, Zhao Y, Wang H. Astragalus polysaccharide improves the growth, meat quality, antioxidant capacity and bacterial resistance of Furong crucian carp (Furong carp♀ × red crucian carp♂). Int J Biol Macromol 2023:124999. [PMID: 37244344 DOI: 10.1016/j.ijbiomac.2023.124999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
To evaluate the functional effects of APS (Astragalus polysaccharide) on Furong crucian carp, APS-supplemented diets (0.00 %, 0.05 %, 0.10 % and 0.15 %) were prepared and utilized in feeding experiment. The results showed that the 0.05 % APS group has the highest weight gain rate and specific growth rate, and the lowest feed coefficient rate. In addition, 0.05 % APS supplement could improve muscle elasticity, adhesiveness and chewiness. Moreover, the 0.15 % APS group had the highest spleen-somatic index and the 0.05 % group had the maximum intestinal villus length. 0.05 % and 0.10 % APS addition significantly increased T-AOC and CAT activities while MDA contents decreased in all APS groups. The plasma TNF-α levels in all APS groups significantly increased (P<0.05), and the 0.05 % group showed the highest TNF-α level in spleen. In APS addition groups, the tlr8, lgp2 and mda5 gene expressions were significantly elevated, while xbp1, caspase-2 and caspase-9 expressions decreased in uninfected and A. hydrophila-infected fish. Finally, higher survival rate and slower disease outbreak rate were observed in APS-supplemented groups after being infected by A. hydrophila. In conclusion, Furong crucian carp fed by APS-supplemented diets possesses elevated weight gain rate and specific growth rate, and improved meat quality, immunity and disease resistance.
Collapse
Affiliation(s)
- Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Xiaohu Dong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yanling Zhang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yurong Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Hongquan Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
16
|
Wu J, Fang S, Feng P, Cai C, Zhang L, Yang L. Changes in expression levels of Nod-like receptors in the spleen of ewes. Anim Reprod 2023; 20:e20220093. [PMID: 37228386 PMCID: PMC10205055 DOI: 10.1590/1984-3143-ar2022-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/07/2023] [Indexed: 05/27/2023] Open
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) have critical effects on interfaces of the immune and reproductive systems, and the spleen plays a key role in both innate and adaptive immune functions. It is hypothesized that NLR family participates in maternal splenic immune regulation during early pregnancy in sheep. In this study, maternal spleens were collected on day 16 of the estrous cycle, and days 13, 16 and 25 of gestation (n = 6 for each group) in ewes. Expression of NLR family, including NOD1, NOD2, class II transactivator (CIITA), NLR family apoptosis inhibitory protein (NAIP), nucleotide-binding oligomerization domain, Leucine rich repeat and Pyrin domain containing 1 (NLRP1), NLRP3 and NLRP7, was analyzed using quantitative real-time PCR, Western blot and immunohistochemistry analysis. The results revealed that expression levels of NOD1, NOD2, CIITA and NLRP3 were downregulated at days 13 and 16 of pregnancy, but expression of NLRP3 was increased at day 25 of pregnancy. In addition, expression values of NAIP and NLRP7 mRNA and proteins were improved at days 16 and 25 of pregnancy, and NLRP1 was peaked at days 13 and 16 of pregnancy in the maternal spleen. Furthermore, NOD2 and NLRP7 proteins were limited to the capsule, trabeculae and splenic cords. In summary, early pregnancy changes expression of NLR family in the maternal spleen, which may be related with the maternal splenic immunomodulation during early pregnancy in sheep.
Collapse
Affiliation(s)
- Jiaxuan Wu
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Shengya Fang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Pengfei Feng
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Chunjiang Cai
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
17
|
Arangia A, Marino Y, Impellizzeri D, D’Amico R, Cuzzocrea S, Di Paola R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int J Mol Sci 2023; 24:ijms24043111. [PMID: 36834520 PMCID: PMC9964144 DOI: 10.3390/ijms24043111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the phytoconstituents of foods in the Mediterranean diet (MD) have been the subject of several studies for their beneficial effects on human health. The traditional MD is described as a diet heavy in vegetable oils, fruits, nuts, and fish. The most studied element of MD is undoubtedly olive oil due precisely to its beneficial properties that make it an object of interest. Several studies have attributed these protective effects to hydroxytyrosol (HT), the main polyphenol contained in olive oil and leaves. HT has been shown to be able to modulate the oxidative and inflammatory process in numerous chronic disorders, including intestinal and gastrointestinal pathologies. To date, there is no paper that summarizes the role of HT in these disorders. This review provides an overview of the anti-inflammatory and antioxidant proprieties of HT against intestinal and gastrointestinal diseases.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
18
|
Fan Y, Qin M, Zhu J, Chen X, Luo J, Chen T, Sun J, Zhang Y, Xi Q. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Crit Rev Food Sci Nutr 2022; 64:4116-4133. [PMID: 36287029 DOI: 10.1080/10408398.2022.2139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengran Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Wolfe AE, Markey KA. The contribution of the intestinal microbiome to immune recovery after HCT. Front Immunol 2022; 13:988121. [PMID: 36059482 PMCID: PMC9434312 DOI: 10.3389/fimmu.2022.988121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Allogenic hematopoietic stem-cell transplantation (allo-HCT) is a curative-intent immunotherapy for high-risk hematological malignancies and immune deficiencies. Allo-HCT carries a high risk of treatment-related mortality (TRM), largely due to infection or graft-versus-host disease (GVHD). Robust immune recovery is essential for optimal patient outcomes, given the immunologic graft-versus-leukemia effect prevents relapse, and functional innate and adaptive immunity are both needed for the prevention and control of infection. Most simply, we measure immune recovery by enumerating donor lymphocyte subsets in circulation. In functional terms, ideal immune recovery is more difficult to define, and current lab techniques are limited to the measurement of specific vaccine-responses or mitogens ex vivo. Clinically, poor immune function manifests as problematic infection with viral, bacterial and fungal organisms. Furthermore, the ideal recovering immune system is capable of exerting graft-versus-tumor effects to prevent relapse, and does not induce graft-versus-host disease. Large clinical observational studies have linked loss of diversity within the gut microbiome with adverse transplant outcomes including decreased overall survival and increased acute and chronic GVHD. Furthermore, the correlation between intestinal microbial communities and numeric lymphocyte recovery has now been reported using a number of approaches. Large sets of clinically available white blood cell count data, clinical flow cytometry of lymphocyte subsets and bespoke flow cytometry analyses designed to capture microbiota-specific T cells (e.g. Mucosal-associated invariant T cells, subsets of the gd T cells) have all been leveraged in an attempt to understand links between the microbiota and the recovering immune system in HCT patients. Additionally, preclinical studies suggest an immunomodulatory role for bacterial metabolites (including butyrate, secondary bile acids, and indole derivatives from tryptophan metabolism) in transplant outcomes, though further studies are needed to unravel mechanisms relevant to the post-HCT setting. An understanding of mechanistic relationships between the intestinal microbiome and post-transplant outcomes is necessary for reduction of risk associated with transplant, to inform prophylactic procedures, and ensure optimal immune reconstitution without alloreactivity. Here, we summarize the current understanding of the complex relationship between bacterial communities, their individual members, and the metabolites they produce with immune function in both the allo-HCT and steady-state setting.
Collapse
Affiliation(s)
- Alex E. Wolfe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kate A. Markey
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Qing F, Xie T, Xie L, Guo T, Liu Z. How Gut Microbiota Are Shaped by Pattern Recognition Receptors in Colitis and Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14153821. [PMID: 35954484 PMCID: PMC9367250 DOI: 10.3390/cancers14153821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The pathogenesis of intestinal inflammatory disorders such as colitis and colorectal cancer is complicated and dysregulation of gut microbiota is considered an important contributing factor. Inflammation is often initiated by the activation of pattern recognition receptors. However, the relationship between these innate immune receptors and gut microbiota is not fully understood. Here, we show that pattern recognition receptors not only recognize pathogens and initiate inflammatory signal transduction to induce immune responses, but also influence the composition of intestinal microorganisms, thus affecting the development of intestinal inflammation and cancer through various mechanisms. This suggests that the modification of innate immune receptors and relevant molecules could be therapeutic targets for the treatment of colitis and colorectal cancer by regulating gut microbiota. Abstract Disorders of gut microbiota have been closely linked to the occurrence of various intestinal diseases including colitis and colorectal cancer (CRC). Specifically, the production of beneficial bacteria and intestinal metabolites may slow the development of some intestinal diseases. Recently, it has been proposed that pattern recognition receptors (PRRs) not only recognize pathogens and initiate inflammatory signal transduction to induce immune responses but also influence the composition of intestinal microorganisms. However, the mechanisms through which PRRs regulate gut microbiota in the setting of colitis and CRC have rarely been systematically reviewed. Therefore, in this paper, we summarize recent advances in our understanding of how PRRs shape gut microbiota and how this influences the development of colitis and CRC.
Collapse
Affiliation(s)
- Furong Qing
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- School of Graduate, Gannan Medical University, Ganzhou 341000, China
| | - Tao Xie
- Center for Scientific Research, Gannan Medical University, Ganzhou 341000, China
| | - Lu Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Tianfu Guo
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (T.G.); (Z.L.)
| | - Zhiping Liu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Center for Scientific Research, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (T.G.); (Z.L.)
| |
Collapse
|
21
|
Domínguez Rubio AP, D’Antoni CL, Piuri M, Pérez OE. Probiotics, Their Extracellular Vesicles and Infectious Diseases. Front Microbiol 2022; 13:864720. [PMID: 35432276 PMCID: PMC9006447 DOI: 10.3389/fmicb.2022.864720] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been shown to be effective against infectious diseases in clinical trials, with either intestinal or extraintestinal health benefits. Even though probiotic effects are strain-specific, some "widespread effects" include: pathogen inhibition, enhancement of barrier integrity and regulation of immune responses. The mechanisms involved in the health benefits of probiotics are not completely understood, but these effects can be mediated, at least in part, by probiotic-derived extracellular vesicles (EVs). However, to date, there are no clinical trials examining probiotic-derived EVs health benefits against infectious diseases. There is still a long way to go to bridge the gap between basic research and clinical practice. This review attempts to summarize the current knowledge about EVs released by probiotic bacteria to understand their possible role in the prevention and/or treatment of infectious diseases. A better understanding of the mechanisms whereby EVs package their cargo and the process involved in communication with host cells (inter-kingdom communication), would allow further advances in this field. In addition, we comment on the potential use and missing knowledge of EVs as therapeutic agents (postbiotics) against infectious diseases. Future research on probiotic-derived EVs is needed to open new avenues for the encapsulation of bioactives inside EVs from GRAS (Generally Regarded as Safe) bacteria. This could be a scientific novelty with applications in functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- A. Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia L. D’Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
22
|
Nabavi-Rad A, Sadeghi A, Asadzadeh Aghdaei H, Yadegar A, Smith SM, Zali MR. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management. Gut Microbes 2022; 14:2108655. [PMID: 35951774 PMCID: PMC9373750 DOI: 10.1080/19490976.2022.2108655] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
As Helicobacter pylori management has become more challenging and less efficient over the last decade, the interest in innovative interventions is growing by the day. Probiotic co-supplementation to antibiotic therapies is reported in several studies, presenting a moderate reduction in drug-related side effects and a promotion in positive treatment outcomes. However, the significance of gut microbiota involvement in the competence of probiotic co-supplementation is emphasized by a few researchers, indicating the alteration in the host gastrointestinal microbiota following probiotic and drug uptake. Due to the lack of long-term follow-up studies to determine the efficiency of probiotic intervention in H. pylori eradication, and the delicate interaction of the gut microbiota with the host wellness, this review aims to discuss the gut microbiota alteration by probiotic co-supplementation in H. pylori management to predict the comprehensive effectiveness of probiotic oral administration.Abbreviations: acyl-CoA- acyl-coenzyme A; AMP- antimicrobial peptide; AMPK- AMP-activated protein kinase; AP-1- activator protein 1; BA- bile acid; BAR- bile acid receptor; BCAA- branched-chain amino acid; C2- acetate; C3- propionate; C4- butyrate; C5- valeric acid; CagA- Cytotoxin-associated gene A; cAMP- cyclic adenosine monophosphate; CD- Crohn's disease; CDI- C. difficile infection; COX-2- cyclooxygenase-2; DC- dendritic cell; EMT- epithelial-mesenchymal transition; FMO- flavin monooxygenases; FXR- farnesoid X receptor; GPBAR1- G-protein-coupled bile acid receptor 1; GPR4- G protein-coupled receptor 4; H2O2- hydrogen peroxide; HCC- hepatocellular carcinoma; HSC- hepatic stellate cell; IBD- inflammatory bowel disease; IBS- irritable bowel syndrome; IFN-γ- interferon-gamma; IgA immunoglobulin A; IL- interleukin; iNOS- induced nitric oxide synthase; JAK1- janus kinase 1; JAM-A- junctional adhesion molecule A; LAB- lactic acid bacteria; LPS- lipopolysaccharide; MALT- mucosa-associated lymphoid tissue; MAMP- microbe-associated molecular pattern; MCP-1- monocyte chemoattractant protein-1; MDR- multiple drug resistance; mTOR- mammalian target of rapamycin; MUC- mucin; NAFLD- nonalcoholic fatty liver disease; NF-κB- nuclear factor kappa B; NK- natural killer; NLRP3- NLR family pyrin domain containing 3; NOC- N-nitroso compounds; NOD- nucleotide-binding oligomerization domain; PICRUSt- phylogenetic investigation of communities by reconstruction of unobserved states; PRR- pattern recognition receptor; RA- retinoic acid; RNS- reactive nitrogen species; ROS- reactive oxygen species; rRNA- ribosomal RNA; SCFA- short-chain fatty acids; SDR- single drug resistance; SIgA- secretory immunoglobulin A; STAT3- signal transducer and activator of transcription 3; T1D- type 1 diabetes; T2D- type 2 diabetes; Th17- T helper 17; TLR- toll-like receptor; TMAO- trimethylamine N-oxide; TML- trimethyllysine; TNF-α- tumor necrosis factor-alpha; Tr1- type 1 regulatory T cell; Treg- regulatory T cell; UC- ulcerative colitis; VacA- Vacuolating toxin A.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|