1
|
Zhang Y, Yang B, Tan M, Tan J. Hirsutine attenuated oxidative stress and autophagy in diabetic kidney disease through Keap1/Nrf2 pathway. J Pharmacol Sci 2025; 158:143-153. [PMID: 40288825 DOI: 10.1016/j.jphs.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVES To investigate the therapeutic potential and renal protective mechanisms of hirsutine in diabetic kidney disease (DKD). METHODS A DKD model was induced in Sprague-Dawley rats using a high-fat diet (HFD) and streptozotocin (STZ). High glucose (HG)-stimulated HK-2 cells served as an in vitro model. Reactive oxygen species (ROS) levels in kidney tissues were measured using dihydroethidium (DHE) staining. ELISA was performed to measure MDA, SOD, and GSH in both rat tissues and HK-2 cells. Western blot and immunofluorescence analyses evaluated renal fibrosis, the Nrf2 signaling pathway, and autophagy-related proteins (Beclin 1, LC3I/II, P62). RESULTS Hirsutine treatment significantly improved metabolic and renal parameters in rats, enhancing renal function and reducing fibrosis, as shown by lower levels of Vimentin, Collagen-IV, and α-SMA. It alleviated oxidative stress, indicated by reduced ROS and MDA levels and increased SOD and GSH activity. Additionally, hirsutine enhanced autophagy, reflected by higher Beclin 1 and LC3I/II levels and decreased P62 expression. By disrupting the Keap1-Nrf2 interaction, hirsutine increased Nrf2 levels and upregulated antioxidative enzymes like NQO1, SOD-2, and HO-1. CONCLUSION Hirsutine exhibited renoprotective effects in DKD by modulating the Keap1/Nrf2 pathway, mitigating oxidative stress and promoting autophagy, making it a promising candidate for treatment.
Collapse
Affiliation(s)
- Yao Zhang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei, 050200, China
| | - Bing Yang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei, 050200, China
| | - Miao Tan
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei, 050200, China
| | - Jinchuan Tan
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei, 050200, China.
| |
Collapse
|
2
|
Lu G, Tang Y, Chen O, Guo Y, Xiao M, Wang J, Liu Q, Li J, Gao T, Zhang X, Zhang J, Cheng Q, Kuang R, Gu J. Aberrant activation of p53-TRIB3 axis contributes to diabetic myocardial insulin resistance and sulforaphane protection. J Adv Res 2025; 72:467-484. [PMID: 39069209 DOI: 10.1016/j.jare.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Insulin resistance (IR) is associated with multiple pathological features. Although p53- or TRIB3-orchestrated IR is extensively studied in adipose tissue and liver, the role of p53-TRIB3 axis in myocardial IR remains unknown, and more importantly target-directed therapies of myocardial IR are missing. OBJECTIVES Considering the beneficial effects of sulforaphane (SFN) on cardiovascular health, it is of particular interest to explore whether SFN protects against myocardial IR with a focus on the regulatory role of p53-TRIB3 axis. METHODS Mouse models including cardiac specific p53-overexpressing transgenic (p53-cTg) mice and Trib3 knockout (Trib3-KO) mice, combined with primary cardiomyocytes treated with p53 activator (nutlin-3a) and inhibitor (pifithrin-α, PFT-α), or transfected with p53-shRNA and Trib3-shRNA, followed by multiple molecular biological methodologies, were used to investigate the role of p53-TRIB3 axis in SFN actions on myocardial IR. RESULTS Here, we report that knockdown of p53 rescued cardiac insulin-stimulated AKT phosphorylation, while up-regulation of p53 by nutlin-3a or p53-cTg mice blunted insulin sensitivity in cardiomyocytes under diabetic conditions. Diabetic attenuation of AKT-mediated cardiac insulin signaling was markedly reversed by SFN in p53-Tgfl/fl mice, but not in p53-cTg mice. Importantly, we identified TRIB3 was elevated in p53-cTg diabetic mice, and confirmed the physical interaction between p53 and TRIB3. Trib3-KO diabetic mice displayed improved insulin sensitivity in the heart. More specifically, the AMPKα-triggered CHOP phosphorylation and degradation were essential for p53 on the transcriptional regulation of Trib3. CONCLUSION Overall, these results indicate that inhibiting the p53-TRIB3 pathway by SFN plays an unsuspected key role in the improvement of myocardial IR, which may be a promising strategy for attenuating diabetic cardiomyopathy (DCM) in diabetic patients.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Quanli Cheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Rong Kuang
- NMPA Key Laboratory for Animal Alternative Testing Technology of Cosmetics, Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, China.
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Zhang Z, Huo P, Lei X, Xue H, Yang X, Le J, Zhang S. Metformin activates SIRT2 to improve insulin resistance and promote granulosa cell glycolysis in a rat model of polycystic ovary syndrome. Reprod Biomed Online 2025; 50:104750. [PMID: 40199656 DOI: 10.1016/j.rbmo.2024.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 04/10/2025]
Abstract
RESEARCH QUESTION What is the mechanism by which metformin enhances insulin sensitivity, improves granulosa cell glycolysis and induces ovulation in a rat model of polycystic ovary syndrome (PCOS)? DESIGN Analysis of the GSE168404 gene expression profile in the Gene Expression Omnibus database revealed increased levels of IGF1 and decreased levels of glycolytic enzymes (HK2, LDHA, PKM2) in the granulosa cells of PCOS patients. To explore the effects of metformin on the imbalance in glycolysis induced by insulin resistance (IR), experiments were conducted using Sprague-Dawley rats and KGN cells (human ovarian granulosa cells). Oestrous cycles were monitored in control, PCOS model (induced by letrozole and a high-fat diet) and metformin-treated PCOS groups. Analyses of body weight, hormone concentrations and biochemical, histopathological, immunohistochemical and glycolytic pathways were performed. KGN cells were used to model insulin resistance with insulin, and AGK2 was used specifically to inhibit sirtuin 2 (SIRT2), while metformin was applied. RESULTS Metformin significantly improved insulin resistance in PCOS rats, reduced insulin-like growth factor 1 (IGF1) protein and mRNA expression (all P ≤ 0.0348) and increased IGF1 receptor (IGF1R) impression (all P ≤ 0.0361). Insulin inhibited glycolytic activity in KGN cells, but metformin attenuated this effect (all P ≤ 0.0255). Metformin reversed the inhibition of SIRT2 in PCOS rat ovaries (all P ≤ 0.0483) and restored glycolysis in KGN cells treated by AGK2 (all P ≤ 0.0369). CONCLUSION Metformin enhances insulin sensitivity and restores glycolysis by regulating SIRT2, which may improve follicular development and reduce ovarian damage in PCOS rats, offering a potential clinical treatment strategy for PCOS.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Peng Huo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan, China
| | - Haoxuan Xue
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan, China
| | - Xiuli Yang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianghua Le
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China..
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China..
| |
Collapse
|
4
|
Wu Y, Mo J, Wang Q, Li J, Wei J, Zhang N, Dong Y, Zhu X, Lu T, Huang S. Microbiome and metabolome explain the high-fat diet-induced diabetes development and diabetes resistance in Guizhou mini-pigs. Front Microbiol 2025; 16:1555069. [PMID: 40291804 PMCID: PMC12023756 DOI: 10.3389/fmicb.2025.1555069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an obesity-related disease claiming substantial global mortality annually. Current animal models of T2DM remain limited, with low success rates in establishing porcine models of high-fat diet (HFD)-induced T2DM. Our experimental design employed 35 Guizhou mini-pigs to develop a T2DM model via HFD induction, aiming to identify microbial and metabolic signatures associated with disease pathogenesis and resistance. At month 10, five individuals from the control (CTR), T2DM (DM), and T2DM resistant (anti-DM) groups were slaughtered, samples were collected, and relevant indices were measured. Metagenomics, metabolomics, and 16S rRNA sequencing were performed to identify microbes and metabolites linked to T2DM progression and resistance. Key findings demonstrated anti-DM group parameters-including metabolic indices (fasting blood glucose, insulin levels, HbA1c, IVGTT), histopathology (HE-stained pancreatic/hepatic tissues), microbial profiles (structural, compositional, functional), and metabolomic signatures-occupied intermediate positions between CTR and DM groups. Network analyses revealed: (1) Lactobacillus, L. amylovorus, fingolimod, polyoxyethylene sorbitan monooleate, thiamine, and atrazine in HFD-associated networks; (2) Limosilactobacillus reuteri, N-oleoyl-L-serine, tolbutamide, tetradecanoyl carnitine, 3'-sulfogalactosylceramide, and guggulsterone in T2DM resistance networks; (3) Ruminococcaceae NK4A214 group, diethyl phthalate, zingerone, enalapril, 5-hydroxytryptophol, 2'-deoxyinosine, icariin, and emetine in T2DM progression networks. These results further clarify the role of the gut microbiota and serum metabolites in the development of T2DM in the Guizhou mini-pig model.
Collapse
Affiliation(s)
- Yanjun Wu
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiayuan Mo
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Engineering Technology Research Center of Pork Quality Control and Enhance, Anhui Science and Technology University, Chuzhou, China
| | - Qianguang Wang
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jialong Li
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jia Wei
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Nuo Zhang
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanqiu Dong
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiang Zhu
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taofeng Lu
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Sicheng Huang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University/ Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, China
- Department of Abdominal Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Pei Z, Chen Y, Zhang Y, Zhang S, Wen Z, Chang R, Ni B, Ni Q. Hirsutine mitigates ferroptosis in podocytes of diabetic kidney disease by downregulating the p53/GPX4 signaling pathway. Eur J Pharmacol 2025; 991:177289. [PMID: 39864575 DOI: 10.1016/j.ejphar.2025.177289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease worldwide, and podocyte ferroptosis plays a crucial role in its pathogenesis. Hirsutine (HS) reduces blood glucose levels and improve insulin resistance in diabetic mice, suggesting its potential use in diabetes treatment. Here, we established a db/db mouse model of DKD and administered HS for 8 weeks. We found that HS decreased the concentrations of iron, reactive oxygen species (ROS), and malondialdehyde (MDA) in renal tissues. Furthermore, HS treatment restored mitochondrial morphology, increased Glutathione Peroxidase 4(GPX4) levels, and decreased p53 levels, alleviating podocyte loss in the DKD mouse model. However, the effects of HS were reversed by the p53 activator Nutlin-3. Therefore, we propose HS may mitigate podocyte injury in DKD by regulating the p53/GPX4 pathway, providing a novel strategy for targeting podocyte ferroptosis in DKD.
Collapse
Affiliation(s)
- Zhenzhen Pei
- Department of Endocrinology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yupeng Chen
- Department of Endocrinology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yang Zhang
- Department of Endocrinology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shan Zhang
- Department of Endocrinology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhige Wen
- Department of Endocrinology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruiting Chang
- Department of Endocrinology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Boran Ni
- Department of Endocrinology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Qing Ni
- Department of Endocrinology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
6
|
Mou Y, Tang Y, Zheng X, Liu X, Wu X, Wang H, Zeng J, Rao Q, Ben-David Y, Li Y, Huang L. Unraveling the molecular mechanisms of Fufangduzhong formula in alleviating high-fat diet-induced non-alcoholic fatty liver disease in mice. Front Pharmacol 2025; 16:1542143. [PMID: 40144651 PMCID: PMC11936930 DOI: 10.3389/fphar.2025.1542143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease, characterized by hepatic lipid accumulation. The Fufangduzhong formula (FFDZ) is a traditional Chinese medicine (TCM) formulation composed of Eucommia ulmoides Oliv., Leonurus artemisia (Lour.) S. Y. Hu, Prunella vulgaris Linn, Uncariarhynchophylla (Miq.) Miq. ex Havil., and Scutellaria baicalensis Georgi. It has demonstrated hepatoprotective effects and the ability to reduce lipid accumulation. However, its mechanisms against NAFLD remain unclear. Methods UPLC-MS/MS was used to identify FFDZ metabolites. C57BL/6J mice were fed a high-fat diet (HFD) supplemented with or without FFDZ (HFD+L, 0.45 g/kg/d; HFD+H, 0.9 g/kg/d) for 12 weeks. Biochemical indicators and histopathological observations were utilized to assess the extent of metabolic homeostasis disorder and hepatic steatosis. An analysis of differentially expressed genes and regulated signaling pathways was conducted using hepatic transcriptomics. Metabolomics analysis was performed to investigate the significantly changed endogenous metabolites associated with NAFLD in mice serum using UPLC-Q-TOF/MS. Western blot was employed to detect proteins involved in the lipid metabolism-related signaling pathways. Oleic acid-induced hepatic steatosis was used to examine the lipid-lowering effect of FFDZ-containing serum in vitro. Results A total of eight active metabolites were identified from the FFDZ formula and FFDZ-containing serum through UPLC-MS/MS analysis. FFDZ reduced body weight, liver weight, and levels of inflammatory cytokines, and it ameliorated hepatic steatosis, serum lipid profiles, insulin sensitivity, and glucose tolerance in mice with HFD-induced NAFLD. Transcriptomics revealed that FFDZ modulated the lipid metabolism-related pathways, including the PPAR signaling pathway, Fatty acid metabolism, and AMPK signaling pathway. Meanwhile, Western blot analysis indicated that FFDZ downregulated the expression of lipid synthesis-related proteins (Srebp-1c, Acly, Scd-1, Fasn, Acaca, and Cd36) and upregulated the fatty acid oxidation-related proteins (p-Ampk, Ppar-α, and Cpt-1). Furthermore, metabolomics identified FFDZ-mediated reversal of phospholipid dysregulation (PC, PE, LPC, LPE). Additionally, FFDZ-containing serum remarkedly reduced OA-induced lipid accumulation in HepG2 cells. Conclusion The present results demonstrate that FFDZ exerts anti-NAFLD effects by enhancing glucose tolerance and insulin sensitivity, as well as regulating the Ampk signaling pathway to ameliorate lipid metabolism disorder, lipotoxicity, hepatic steatosis, and inflammatory responses.
Collapse
Affiliation(s)
- Yu Mou
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yao Tang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Xiuyan Zheng
- Guizhou Institute of Integrated Agriculture Development, Guiyang, China
| | - Xiang Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Xuemei Wu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Hongji Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jie Zeng
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qing Rao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yaacov Ben-David
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Yanmei Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lei Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Uneda K, Kikuchi T, Mori M, Kaneko A, Tahara E. Remission Induced by Shichimotsukokato in an Older Adult With Nephrotic Syndrome Secondary to Diabetic Kidney Disease: A Case Report. Cureus 2025; 17:e81115. [PMID: 40276452 PMCID: PMC12019891 DOI: 10.7759/cureus.81115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Nephrotic syndrome is a major renal disease characterized by massive proteinuria, hypoalbuminemia, systemic edema, and hyperlipidemia. Diabetic kidney disease (DKD) can induce secondary nephrotic syndrome, which is often challenging to manage with conventional treatments such as renin-angiotensin system inhibitors and diuretics. We present a case of a 90-year-old woman with DKD who developed nephrotic syndrome secondary to DKD that was refractory to standard treatments. Upon administration of shichimotsukokato (SCMKT), a representative Kampo formula created in Japan, there was a marked reduction in the proteinuria and an improvement in the serum albumin concentration, leading to remission of the nephrotic syndrome and enabling tapering of the renin-angiotensin system inhibitor and diuretics. This case suggests that SCMKT may be a candidate therapeutic option for nephrotic syndrome in patients with DKD. Further studies are needed to clarify the clinical benefits and pharmacological mechanisms of SCMKT in DKD.
Collapse
Affiliation(s)
- Kazushi Uneda
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, JPN
| | - Tatsuro Kikuchi
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, JPN
| | - Masayuki Mori
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, JPN
| | - Akira Kaneko
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, JPN
| | - Eiichi Tahara
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, JPN
| |
Collapse
|
8
|
Bai X, Wei H, Liu G, Li L. Astragalus polyphenols attenuates doxorubicin-induced cardiotoxicity by activating the PI3K/AKT/NRF2 pathway. PLoS One 2025; 20:e0319067. [PMID: 39999034 PMCID: PMC11856579 DOI: 10.1371/journal.pone.0319067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Doxorubicin (DOX) is a powerful chemotherapeutic agent commonly employed in cancer treatment. However, its clinical utility is constrained by dose-dependent cardiotoxicity, which can result in heart failure and sudden cardiac death. The molecular mechanisms of DOX-induced cardiotoxicity (DIC) include oxidative stress, mitochondrial dysfunction, and the activation of cell death pathways, including ferroptosis. There is an urgent need for effective therapeutic strategies to mitigate DIC. METHODS This study investigates the cardioprotective effects of Astragalus Polyphenols (ASP), a bioactive compound extracted from Astragalus membranaceus. In the context of DIC, we utilized AC16 and H9C2 cardiomyocytes to establish a DIC model and assessed the effects of ASP on cell viability, oxidative stress, mitochondrial function, and the PI3K/AKT/NRF2 signaling pathway. The expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), markers of cardiac injury, was also evaluated. RESULTS ASP treatment significantly reversed DOX-induced reductions in cell viability and mitochondrial membrane potential (MMP) while also decreasing the levels of reactive oxygen species (ROS). Additionally, ASP also downregulated the expression of ANP and BNP, indicating a protective effect on cardiomyocytes. Furthermore, ASP activated the PI3K/AKT/NRF2 pathway, which was suppressed by DOX. Inhibition of this pathway using LY294002 and ML385 abolishes the protective effects of ASP, suggesting that ASP mediates its effects through the PI3K/AKT/NRF2 signaling axis. CONCLUSION ASP exhibits a protective effect against DOX-induced cardiotoxicity by regulating the PI3K/AKT/NRF2 pathway to reduce oxidative stress and preserve mitochondrial function. These findings suggest that ASP may serve as a potential therapeutic agent to alleviate DIC. Our results provide a novel strategy to protect the heart in patients undergoing DOX chemotherapy.
Collapse
Affiliation(s)
- Xueyang Bai
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Cardiology, Hami Central Hospital, Hami, Xinjiang, China
| | - Hua Wei
- Department of Cardiology, Hami Central Hospital, Hami, Xinjiang, China
| | - Gangqiong Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Wei Y, Wang M, Jiang Z, Jia Y, Si Y, Peng Z, Yang J, Shi Y, Wu Y, Ding X, Pan D, Zhao D, Leng X, Li X, Dong H. Investigating the molecular mechanisms of Jiangu Decoction in treating type 2 diabetic osteoporosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119346. [PMID: 39800245 DOI: 10.1016/j.jep.2025.119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetic osteoporosis (T2DOP) is a metabolic bone disease characterized by impaired bone structure and decreased bone strength in diabetic patients. Jiangu Decoction (JGD), a traditional Chinese poly-herbal formulation, has shown efficacy in mitigating osteoporosis (OP) and fractures caused by osteoporosis in diabetic patients in clinical trials. In addition, JGD has been proven to promote the proliferation of osteoblasts. However, the specific mechanisms underlying these effects remain unclear. AIM OF THE STUDY This study aimed to elucidate the molecular mechanisms underlying the therapeutic effects of JGD in treating T2DOP. MATERIALS AND METHODS Liquid chromatography-mass spectrometry (LC-MS) was utilized to elucidate the chemical profile of JGD. A T2DOP mouse model (C57BL/6) was established by combining a high-fat diet with streptozotocin (STZ). Micro-computed tomography (micro-CT) imaging, three-point bending tests, and histological staining were utilized to assess alterations in bone mass, bone quality, and bone strength in mice. Mouse Calvaria 3T3-E1 (MC3T3-E1) cells were treated with 33 mmol/L D-glucose (HG), and the protective effect of JGD on the high glucose injury model was observed. Western blotting and qRT-PCR were employed to analyze alterations in biomarkers associated with the Keap1/Nrf2/HO-1 signaling pathway, both in vivo and in vitro. RESULTS A total of 909 compounds were identified in JGD using LC-MS. Subsequently, the function of JGD was evaluated both in vitro and in vivo. The findings indicated that JGD promoted bone formation, enhanced bone microstructure, and ameliorated diabetic symptoms in T2DOP mice. Additionally, JGD increased alkaline phosphatase (ALP) activity, facilitated bone mineralization, and upregulated the expression levels of osteogenic marker genes such as runt-related transcription factor 2 (Runx2), osteocalcin (Ocn), and collagen type 1 alpha (Col1a1). Importantly, JGD reduced oxidative stress levels and decreased the accumulation of reactive oxygen species by modulating the Keap1/Nrf2/HO-1 axis both in vivo and in vitro. CONCLUSION Our study suggests that JGD could alleviate T2DOP impairment, closely linked to the Keap1/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Mingyue Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Zhanliang Jiang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Yuyan Jia
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Yongmei Si
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Zeyu Peng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Ye Shi
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Yongji Wu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Xiaolei Ding
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Daian Pan
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Daqing Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China; College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China; Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China.
| |
Collapse
|
10
|
Li M, Ding L, Cao L, Zhang Z, Li X, Li Z, Xia Q, Yin K, Song S, Wang Z, Du H, Zhao D, Li X, Wang Z. Natural products targeting AMPK signaling pathway therapy, diabetes mellitus and its complications. Front Pharmacol 2025; 16:1534634. [PMID: 39963239 PMCID: PMC11830733 DOI: 10.3389/fphar.2025.1534634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetes mellitus (DM) ranks among the most prevalent chronic metabolic diseases, characterized primarily by a persistent elevation in blood glucose levels. This condition typically stems from either insufficient insulin secretion or a functional defect in the insulin itself. Clinically, diabetes is primarily classified into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), with T2DM comprising nearly 90% of all diagnosed cases. Notably, the global incidence of T2DM has surged dramatically over recent decades. The adenylate-activated protein kinase (AMPK) signaling pathway is crucial in regulating cellular energy metabolism, marking it as a significant therapeutic target for diabetes and related complications. Natural products, characterized by their diverse origins, multifaceted bioactivities, and relative safety, hold considerable promise in modulating the AMPK pathway. This review article explores the advances in research on natural products that target the AMPK signaling pathway, aiming to inform the development of innovative antidiabetic therapies.
Collapse
Affiliation(s)
- Min Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Liyuan Cao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Xueyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zirui Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Qinjing Xia
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Kai Yin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zihan Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Haijian Du
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
11
|
Bajaj G, Choudhary D, Singh V, Priyadarshi N, Garg P, Mantri SS, Rishi V, Singhal NK. MicroRNAs Dependent G-ELNs Based Intervention Improves Glucose and Fatty Acid Metabolism While Protecting Pancreatic β-Cells in Type 2 Diabetic Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409501. [PMID: 39648555 DOI: 10.1002/smll.202409501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Indexed: 12/10/2024]
Abstract
Metabolic disorders such as Type 2 diabetes mellitus (T2DM) imposes a significant global health burden. Plant-derived exosome like nanoparticles (P-ELNs) have emerged as a promising therapeutic alternate for various diseases. Present data demonstrates that treatment with Ginger-derived exosome like nanoparticles (G-ELNs) enhance insulin dependent glucose uptake, downregulate gluconeogenesis and oxidative stress in insulin resistant HepG2 cells. Furthermore, oral administration of G-ELNs in T2DM mice decreases fasting blood glucose levels and improves glucose tolerance as effectively as metformin. These improvements are attributed to the enhanced phosphorylation of Protein kinase B (Akt-2), the phosphatidylinositol 3-kinase at serine 474 which consequently leads to increase in hepatic insulin sensitivity, improvement in glucose homeostasis and decrease in ectopic fat deposition. Oral administration of G-ELNs also exerts protective effect on Streptozotocin (STZ)-induced pancreatic β-cells damage, contributing to systemic amelioration of T2DM. Further, as per computational tools, miRNAs present in G-ELNs modulate the phosphatidylinositol 3-kinase (PI3K)/Akt-2 pathway and exhibit strong interactions with various target mRNAs responsible for hepatic gluconeogenesis, ectopic fat deposition and oxidative stress. Furthermore, synthetic mimic of G-ELNs miRNA effectively downregulates its target mRNA in insulin resistant HepG2 cells. Overall, the results indicate that the miRNAs present in G-ELNs target hepatic metabolism thus, exerting therapeutic effects in T2DM.
Collapse
Affiliation(s)
- Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Diksha Choudhary
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Vishal Singh
- National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur, 342005, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Shrikant Subhash Mantri
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
12
|
Aydin S, Tekinalp SG, Tuzcu B, Cam F, Sevik MO, Tatar E, Kalaskar D, Cam ME. The role of AMP-activated protein kinase activators on energy balance and cellular metabolism in type 2 diabetes mellitus. OBESITY MEDICINE 2025; 53:100577. [DOI: 10.1016/j.obmed.2024.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Zou P, Li X, Wang L, She Y, Xiao C, Peng Y, Qian X, Luo P, Wei S. Grifola frondosa Polysaccharide Ameliorates Inflammation by Regulating Macrophage Polarization of Liver in Type 2 Diabetes Mellitus Rats. Mol Nutr Food Res 2024; 68:e2400392. [PMID: 39587947 DOI: 10.1002/mnfr.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Indexed: 11/27/2024]
Abstract
SCOPE Grifola frondosa polysaccharide (GFP) has a positive effect in regulating type 2 diabetes mellitus (T2DM), but the understanding of its regulatory mechanism is still limited. Accumulating evidence suggests that hepatic inflammation is crucial in the onset and progression of insulin resistance (IR) and T2DM. However, the question of whether GFP can modulate T2DM via regulating hepatic inflammation and the underlying mechanism has not yet been reported. METHODS AND RESULTS High-fat diet (HFD) fed combined with streptozocin (STZ) injections rat model and Lipopolysaccharides (LPS)-treated bone marrow-derived macrophages (BMDM) model are used. The results showed that GFP intervention reduces weight loss and hyperglycemia symptoms, besides lowers FINS, HOMA-IR, IPGTT-AUC, and IPITT-AUC in T2DM rats. Meanwhile, GFP intervention reduces the secretion level of inflammatory factors and increases the secretion level of anti-inflammatory factors in the liver tissue of T2DM rats. Furthermore, GFP reduces macrophage infiltration in liver tissue, inhibits macrophage M1-type polarization, and promotes M2-type polarization. CONCLUSIONS These results suggest that GFP intervention could attenuate the hepatic inflammatory and insulin resistance in T2DM rats by inhibiting hepatic macrophage infiltration and modulating M1/M2 polarization. The findings provide new evidence for GFP in the early prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Pei Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Xueyan Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Liping Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Ying She
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Chenyang Xiao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Yang Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical, University, Guiyang, 561113, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| |
Collapse
|
14
|
Alqudah A, Qnais E, Alqudah M, Gammoh O, Wedyan M, Abdalla SS. Isorhamnetin as a potential therapeutic agent for diabetes mellitus through PGK1/AKT activation. Arch Physiol Biochem 2024; 130:866-876. [PMID: 38445617 DOI: 10.1080/13813455.2024.2323947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
CONTEXT Type 2 Diabetes Mellitus (T2D) is a significant health concern worldwide, necessitating novel therapeutic approaches beyond conventional treatments. OBJECTIVE To assess isorhamnetin's potential in improving insulin sensitivity and mitigating T2D characteristics through oxidative and glycative stress modulation. MATERIALS AND METHODS T2D was induced in mice with a high-fat diet and streptozotocin injections. Isorhamnetin was administered at 10 mg/kg for 12 weeks. HepG2 cells were used to examine in vitro effects on stress markers and insulin sensitivity. Molecular effects on the PGK1 and AKT signalling pathway were also analyzed. RESULTS The administration of isorhamnetin significantly impacted both in vivo and in vitro models. In HepG2 cells, oxidative and glycative stresses were markedly reduced, indicating a direct effect of isorhamnetin on cellular stress pathways, which are implicated in the deterioration of insulin sensitivity. Specifically, treated cells showed a notable decrease in markers of oxidative stress, such as malondialdehyde, and advanced glycation end products, highlighting isorhamnetin's antioxidant and antiglycative properties. In vivo, isorhamnetin-treated mice exhibited substantially lower fasting glucose levels compared to untreated T2D mice, suggesting a strong hypoglycemic effect. Moreover, these mice showed improved insulin responsiveness, evidenced by enhanced glucose tolerance and insulin tolerance tests. The molecular investigation revealed that isorhamnetin activated PGK1, leading to the activation of the AKT signalling pathway, crucial for promoting glucose uptake and reducing insulin resistance. This molecular action underscores the potential mechanism through which isorhamnetin exerts its beneficial effects in T2D management. DISCUSSION The study underscores isorhamnetin's multifaceted role in T2D management, emphasizing its impact on oxidative and glycative stress reduction and molecular pathways critical for insulin sensitivity. CONCLUSION Isorhamnetin presents a promising avenue for T2D treatment, offering a novel approach to enhancing insulin sensitivity and managing glucose levels through the modulation of key molecular pathways. Further research is needed to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Shtaywy S Abdalla
- Department of Biological Sciences, Faculty of Science, University of Jordan, Amman, Jordan
| |
Collapse
|
15
|
Lin Y, Wang Y, Zhang Q, Gao R, Chang F, Li B, Huang K, Cheng N, He X. Single-Atom Ce-N-C Nanozyme Ameliorates Type 2 Diabetes Mellitus by Improving Glucose Metabolism Disorders and Reducing Oxidative Stress. Biomolecules 2024; 14:1193. [PMID: 39334959 PMCID: PMC11430424 DOI: 10.3390/biom14091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) as a chronic metabolic disease has become a global public health problem. Insulin resistance (IR) is the main pathogenesis of T2DM. Oxidative stress refers to an imbalance between free radical production and the antioxidant system, causing insulin resistance and contributing to the development of T2DM via several molecular mechanisms. Besides, the reduction in hepatic glycogen synthesis also leads to a decrease in peripheral insulin sensitivity. Thus, reducing oxidative stress and promoting glycogen synthesis are both targets for improving insulin resistance and treating T2DM. The current study aims to investigate the pharmacological effects of single-atom Ce-N-C nanozyme (SACe-N-C) on the improvement of insulin resistance and to elucidate its underlying mechanisms using HFD/STZ-induced C57BL/6J mice and insulin-resistant HepG2 cells. The results indicate that SACe-N-C significantly improves hepatic glycogen synthesis and reduces oxidative stress, as well as pancreatic and liver injury. Specifically, compared to the T2DM model group, fasting blood glucose decreased by 29%, hepatic glycogen synthesis increased by 17.13%, and insulin secretion increased by 18.87%. The sod and GPx in the liver increased by 17.80% and 25.28%, respectively. In terms of mechanism, SACe-N-C modulated glycogen synthesis through the PI3K/AKT/GSK3β signaling pathway and activated the Keap1/Nrf2 pathway to alleviate oxidative stress. Collectively, this study suggests that SACe-N-C has the potential to treat T2DM.
Collapse
Affiliation(s)
- Yitong Lin
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Chang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boran Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of China, Beijing 100083, China
| | - Nan Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of China, Beijing 100083, China
| |
Collapse
|
16
|
Liu Z, Shang Q, Zuo H, Li H, Fang D, Zhang J, Huang HD, Granato D, Chen J, Chen J. Cynomorium songaricum: UHPLC/ESI-LTQ-Orbitrap-MS analysis and mechanistic study on insulin sensitivity of a flavonoid-enriched fraction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155862. [PMID: 39032280 DOI: 10.1016/j.phymed.2024.155862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/09/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, posing a significant global health concern due to its increasing prevalence. Insulin resistance (IR) plays a major role in the development of T2DM and is often linked to factors such as obesity, physical inactivity, and a sedentary lifestyle. Recently, there has been growing interest in exploring the potential of natural products for improving insulin sensitivity and glucose metabolism. Among these, Cynomorium songaricum Rupr., an edible parasitic plant, has shown promising antidiabetic effects. However, research on its beneficial effects on IR is still nascent. Therefore, this study aims to investigate the application of a Cynomorium songaricum flavonoid-enriched fraction (CSF) in the treatment of IR in T2DM, along with elucidating the chemical and biochemical mechanisms involved. METHOD First, UHPLC/ESI-LTQ-Orbitrap-MS was utilized to perform a chemical profiling of CSF. Subsequently, glycogen synthesis, gluconeogenesis and glucose consumption assays were conducted on HepG2 cells with a high glucose high insulin-induced IR model to illustrate the favorable impacts of CSF on IR. Then, an innovative network pharmacology analysis was executed to predict the potential chemical components and hub genes contributing to CSF's protective effect against IR. To further elucidate molecular interactions, molecular docking studies were performed, focusing on the binding interactions between active constituents of CSF and crucial targets. Additionally, an RNA-sequencing assay was employed to uncover the underlying biochemical signaling pathway responsible for CSF's beneficial effects. To validate these findings, western blot and qPCR assays were employed to verify the pathways related to IR and the potential signaling cascades leading to the amelioration of IR. RESULTS The UHPLC/ESI-LTQ-Orbitrap-MS analysis successfully identified a total of thirty-six flavonoids derived from CSF. Moreover, CSF was shown to significantly improve glycogen synthesis and glucose consumption as well as inhibit gluconeogenesis in HepG2 cells of IR. An innovative network pharmacology analysis unveiled key hub genes-AKT1 and PI3K-integral to metabolic syndrome-related signaling pathways, which contributed to the favorable impact of CSF against IR. Noteworthy active ingredients including quercetin, ellagic acid and naringenin were identified as potential contributors to these effects. The results of western blot and qPCR assays provided compelling evidence that CSF improved insulin sensitivity by modulating the PI3K-Akt signaling pathway. Subsequent RNA-sequencing analysis, in tandem with western blot assays, delved deeper into the potential mechanisms underlying CSF's advantageous effects against IR, potentially associated with the enhancement of endoplasmic reticulum (ER) proteostasis. CONCLUSION CSF exhibited a remarkable ability to enhance insulin sensitivity in the IR model of HepG2 cells. This was evident through enhancements in glycogen synthesis and glucose consumption, along with its inhibitory impact on gluconeogenesis. Furthermore, CSF demonstrated an improvement in the insulin-mediated PI3K-Akt signaling pathway. The potential active constituents were identified as quercetin, ellagic acid and naringenin. The underlying biochemical mechanisms responsible for CSF's beneficial effects against IR were closely linked to its capacity to mitigate ER stress, thereby offering a comprehensive understanding of its protective action.
Collapse
Affiliation(s)
- Zhihao Liu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| | - Qixiang Shang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Huali Zuo
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Haimeng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Daozheng Fang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jihang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China.
| |
Collapse
|
17
|
Lu C, Liu D, Li M, Shi X, Guan J, Song G, Yin Y, Zheng M, Ma F, Liu G. GPR30 selective agonist G-1 induced insulin resistance in ovariectomized mice on high fat diet and its mechanism. Biochem Biophys Res Commun 2024; 716:150026. [PMID: 38701557 DOI: 10.1016/j.bbrc.2024.150026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Previous in vivo and in vitro studies have demonstrated that estrogen receptor agonist G-1 regulates glucose and lipid metabolism. This study focused on the effects of G-1 on cardiometabolic syndrome and anti-obesity under a high fat diet (HFD). METHODS Bilateral ovariectomized female mice were fed an HFD for 6 weeks, and treated them with G-1. A cardiomyocyte insulin resistance model was used to simulate the in vivo environment. The main outcome measures were blood glucose, body weight, and serum insulin levels to assess insulin resistance, while cardiac function and degree of fibrosis were assessed by cardiac ultrasound and pathological observations. We also examined the expression of p-AMPK, p-AKT, and GLUT4 in mice hearts and in vitro models to explore the mechanism by which G-1 regulates insulin signaling. RESULTS G-1 reduced body weight in mice on an HFD, but simultaneously increased blood glucose and promoted insulin resistance, resulting in myocardial damage. This damage included disordered cardiomyocytes, massive accumulation of glycogen, extensive fibrosis of the heart, and thickening of the front and rear walls of the left ventricle. At the molecular level, G-1 enhances gluconeogenesis and promotes glucose production by increasing the activity of pyruvate carboxylase (PC) while inhibiting GLUT4 translocation via the AMPK/TBC1D1 pathway, thereby limiting glucose uptake. CONCLUSION Despite G-1's the potential efficacy in weight reduction, the concomitant induction of insulin resistance and cardiac impairment in conjunction with an HFD raises significant concerns. Therefore, comprehensive studies of its safety profile and effects under specific conditions are essential prior to clinical use.
Collapse
Affiliation(s)
- Congcong Lu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Da Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Min Li
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaocui Shi
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Jingyue Guan
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Guoyuan Song
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Fangfang Ma
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, China; Hebei Engineering Research Center of Intelligent Medical Clinical Application, Shijiazhuang, Hebei, China; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei, China.
| |
Collapse
|
18
|
Meng Y, Lv Y, Shen M, Yu W, Liu Y, Liu T, Liu G, Ma S, Hui Z, Ren X, Liu L. Establishment of an animal model of immune-related adverse events induced by immune checkpoint inhibitors. Cancer Med 2024; 13:e70011. [PMID: 39001676 PMCID: PMC11245635 DOI: 10.1002/cam4.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVE Immunotherapy, specifically immune checkpoint inhibitors (ICIs), has revolutionized cancer treatment. However, it can also cause immune-related adverse events (irAEs). This study aimed to develop a clinically practical animal model of irAEs using BALB/c mice. METHODS Subcutaneous tumors of mouse breast cancer 4T1 cells were generated in inbred BALB/c mice. The mice were treated with programmed death-1 (PD-1) and cytotoxic t-lymphocyte antigen 4 (CTLA-4) inhibitors once every 3 days for five consecutive administration cycles. Changes in tumor volume and body weight were recorded. Lung computed tomography (CT) scans were conducted. The liver, lungs, heart, and colon tissues of the mice were stained with hematoxylin-eosin (H&E) staining to observe inflammatory infiltration and were scored. Serum samples were collected, and enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of ferritin, glutamic-pyruvic transaminase (ALT), tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and interleukin-6 (IL-6). Mouse liver and lung cell suspensions were prepared, and changes in macrophages, T cells, myeloid-derived suppressor cells (MDSCs), and regulatory (Treg) cells were detected by flow cytometry. RESULTS Mice treated with PD-1 and CTLA-4 inhibitors showed significant reductions in tumor volume and body weight. The tissue inflammatory scores in the experimental group were significantly higher than those in the control group. Lung CT scans of mice in the experimental group showed obvious inflammatory spots. Serum levels of ferritin, IL-6, TNF-α, IFN-γ, and ALT were significantly elevated in the experimental group. Flow cytometry analysis revealed a substantial increase in CD3+T cells, Treg cells, and macrophages in the liver and lung tissues of mice in the experimental group compared with the control group, and the change trend of MDSCs was opposite. CONCLUSIONS The irAE-related animal model was successfully established in BALB/c mice using a combination of PD-1 and CTLA-4 inhibitors through multiple administrations with clinical translational value and practical. This model offers valuable insights into irAE mechanisms for further investigation.
Collapse
Affiliation(s)
- Yuan Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yingge Lv
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Meng Shen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of BiotherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yumeng Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Ting Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Gen Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Shiya Ma
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Zhenzhen Hui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of BiotherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
- Department of BiotherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
- Haihe Laboratory of Cell Ecosystem Innobation FundTianjinChina
| | - Liang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of BiotherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| |
Collapse
|
19
|
Wang Y, He X, Cheng N, Huang K. Unveiling the Nutritional Veil of Sulforaphane: With a Major Focus on Glucose Homeostasis Modulation. Nutrients 2024; 16:1877. [PMID: 38931232 PMCID: PMC11206418 DOI: 10.3390/nu16121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Abnormal glucose homeostasis is associated with metabolic syndromes including cardiovascular diseases, hypertension, type 2 diabetes mellitus, and obesity, highlighting the significance of maintaining a balanced glucose level for optimal biological function. This highlights the importance of maintaining normal glucose levels for proper biological functioning. Sulforaphane (SFN), the primary bioactive compound in broccoli from the Cruciferae or Brassicaceae family, has been shown to enhance glucose homeostasis effectively while exhibiting low cytotoxicity. This paper assesses the impact of SFN on glucose homeostasis in vitro, in vivo, and human trials, as well as the molecular mechanisms that drive its regulatory effects. New strategies have been proposed to enhance the bioavailability and targeted delivery of SFN in order to overcome inherent instability. The manuscript also covers the safety evaluations of SFN that have been documented for its production and utilization. Hence, a deeper understanding of the favorable influence and mechanism of SFN on glucose homeostasis, coupled with the fact that SFN is abundant in the human daily diet, may ultimately offer theoretical evidence to support its potential use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Nan Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
20
|
Zhang S, Zhang S, Zhang Y, Wang H, Chen Y, Lu H. Activation of NRF2 by epiberberine improves oxidative stress and insulin resistance in T2DM mice and IR-HepG2 cells in an AMPK dependent manner. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117931. [PMID: 38382657 DOI: 10.1016/j.jep.2024.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phytochemical compounds offer a distinctive edge in diabetes management, attributed to their multifaceted target mechanisms and minimal toxicological profiles. Epiberberine (EPI), an alkaloid derived from plants of the Rhizoma Coptidis, has been reported to have antidiabetic effects. However, the underlying molecular mechanism of EPI are not fully elucidated. AIM OF THE STUDY This study explored the anti-diabetic effects of EPI and the role of the NRF2/AMPK signaling pathway in improving insulin resistance. MATERIALS AND METHODS We utilized two distinct models: in vivo, we employed mice with type 2 diabetes mellitus (T2DM) induced by high-fat diet (HFD) and streptozotocin (STZ) to conduct a range of assessments including measuring physical parameters, conducting biochemical analyses, examining histopathology, and performing Western blot tests. In parallel, in vitro experiments were carried out using insulin resistance (IR)-HepG2 cells, through which we conducted a CCK8 assay, glucose uptake tests, Western blot analyses, and flow cytometry studies. RESULTS In the EPI-treated group of T2DM mice, there was a significant reduction in hyperglycemia, IR, and hyperlipidemia, accompanied by beneficial changes in the liver and pancreas, as well as enhanced glucose uptake in IR-HepG2 cells. Herein, our finding also provided evidence that EPI could increase the expression of GLUT4 and activated the IRS-1/PI3K/AKT insulin signaling pathway to improve IR in vitro and in vivo. Moreover, EPI alleviated oxidative stress by enhancing SOD and GPX-px activity, decreasing reactive oxygen species (ROS) and malondialdehyde (MDA) content, and promoting nuclear factor (erythroid-derived 2)-like 2 (NRF2), total NRF2, NAD(P)H-quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) expression in the liver tissue of T2DM mice and IR-HepG2 cells. Furthermore, EPI decreased oxidative stress and improved IR, but these benefits were nullified by siNRF2 transfection. In particular, AMP-activated protein kinase (AMPK) deficiency by short-hairpin RNA (shRNA) partially reversed the effects of EPI on nuclear transcription, oxidative stress, and IR of NRF2 in IR-HepG2 cells. CONCLUSIONS Taken together, EPI activated NRF2-dependent AMPK cascade to protect T2DM from oxidative stress, thereby alleviating IR.
Collapse
Affiliation(s)
- Shunxiao Zhang
- Department of Endocrinology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China; Department of Endocrinology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China.
| | - Sheng Zhang
- Department of Endocrinology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China; Department of Endocrinology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Endocrinology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China; Department of Endocrinology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China
| | - Hua Wang
- Department of Endocrinology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China; Department of Endocrinology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China
| | - Yue Chen
- Department of Endocrinology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China; Department of Endocrinology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China.
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Chen MJ, Xu YT, Sun L, Wang ZH, Little PJ, Wang L, Xian XD, Weng JP, Xu SW. A novel mouse model of familial combined hyperlipidemia and atherosclerosis. Acta Pharmacol Sin 2024; 45:1316-1320. [PMID: 38459255 PMCID: PMC11130143 DOI: 10.1038/s41401-024-01241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Within the context of residual cardiovascular risk in post-statin era, emerging evidence from epidemiologic and human genetic studies have demonstrated that triglyceride (TG)-rich lipoproteins and their remnants are causally related to cardiovascular risk. While, carriers of loss-of-function mutations of ApoC3 have low TG levels and are protected from cardiovascular disease (CVD). Of translational significance, siRNAs/antisense oligonucleotide (ASO) targeting ApoC3 is beneficial for patients with atherosclerotic CVD. Therefore, animal models of atherosclerosis with both hypercholesterolemia and hypertriglyceridemia are important for the discovery of novel therapeutic strategies targeting TG-lowering on top of traditional cholesterol-lowering. In this study, we constructed a novel mouse model of familial combined hyperlipidemia through inserting a human ApoC3 transgene (hApoC3-Tg) into C57BL/6 J mice and injecting a gain-of-function variant of adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-D377Y concurrently with high cholesterol diet (HCD) feeding for 16 weeks. In the last 10 weeks, hApoC3-Tg mice were orally treated with a combination of atorvastatin (10 mg·kg-1·d-1) and fenofibrate (100 mg·kg-1·d-1). HCD-treated hApoC3-Tg mice demonstrated elevated levels of serum TG, total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Oral administration of atorvastatin and fenofibrate significantly decreased the plaque sizes of en face aorta, aortic sinus and innominate artery accompanied by improved lipid profile and distribution. In summary, this novel mouse model is of considerable clinical relevance for evaluation of anti-atherosclerotic drugs by targeting both hypercholesterolemia and hypertriglyceridemia.
Collapse
Affiliation(s)
- Mei-Jie Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230022, China
| | - Yi-Tong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, 100091, China
| | - Lu Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230022, China
| | - Zhi-Hua Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230022, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xun-de Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, 100091, China.
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230022, China.
| | - Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230022, China.
| |
Collapse
|
22
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
23
|
Zhang F, Ju J, Diao H, Song J, Bian Y, Yang B. Innovative pharmacotherapy for hepatic metabolic and chronic inflammatory diseases in China. Br J Pharmacol 2024. [PMID: 38514420 DOI: 10.1111/bph.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 03/23/2024] Open
Abstract
Liver disease constitutes a significant global health concern, particularly in China where it has distinctive characteristics. China grapples with a staggering 300 million cases, predominantly due to hepatitis B and metabolic non-alcoholic fatty liver disease. Additionally, hepatocellular carcinoma has become a prevalent which is a lethal type of cancer. Despite the scarcity of innovative treatment options, Chinese hepatologists and researchers have achieved notable breakthroughs in the prevention, diagnosis, management and treatment of liver diseases. Traditional Chinese medicines have found widespread application in the treatment of various liver ailments owing to their commendable pharmacological efficacy and minimal side effects. Furthermore, there is a growing body of research in extracellular vesicles, cell therapy and gene therapy, offering new hope in the fight against liver diseases. This paper provides a comprehensive overview of the epidemiological characteristics of liver diseases and the diverse array of treatments that Chinese scholars and scientists have pursued in critical field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinglun Song
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Liu J, Zhang Y, Shi D, He C, Xia G. Vitamin D Alleviates Type 2 Diabetes Mellitus by Mitigating Oxidative Stress-Induced Pancreatic β-Cell Impairment. Exp Clin Endocrinol Diabetes 2023; 131:656-666. [PMID: 37935388 DOI: 10.1055/a-2191-9969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a common metabolic disorder with rising incidence worldwide. This study explored the anti-T2DM role of vitamin D, thereby providing novel therapeutic strategies. METHODS C57BL/6 J mice and MIN6 cells were used to induce in vivo T2DM and damaged β-cell models, respectively. Body weights, fasting blood glucose, and fasting insulin were measured in mice. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted on mice. Lipid indices (TG, TC, LDL-C, and HDL-C) were detected in mouse serum. Hematoxylin-eosin staining was used to evaluate pancreatic tissue injury. ELISA was used to assess insulin and oxidative stress (OS) markers (MDA, GSH, and SOD) in mice and MIN6 cells. Production of ROS was detected in islet β-cells and MIN6 cells. Cell viability and apoptosis were evaluated using CCK-8 and flow cytometry, respectively. QRT-PCR and western blotting were used to detect pro-inflammatory factors (TNF-α and IL-6) and endoplasmic reticulum stress (ERS) markers (CHOP and GRP78), respectively. RESULTS Vitamin D reduced body weights, fasting blood glucose, and insulin and ameliorated glucose tolerance and insulin sensitivity in T2DM mice. Besides, vitamin D decreased serum TG, TC, LDL-C, and increased HDL-C in T2DM mice. Vitamin D inhibited pancreatic histopathological injury, cell apoptosis, OS, and β-cell decline in T2DM mice. Moreover, vitamin D alleviated cell death, insufficient insulin secretion, inflammation, OS, and ERS in damaged MIN6 cells. Notably, N-acetyl-L-cysteine (an OS inhibitor) enhanced these effects of vitamin D. CONCLUSIONS Vitamin D relieved T2DM symptoms by alleviating OS-induced β-cell impairment.
Collapse
Affiliation(s)
- Jia Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yuanjun Zhang
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Derong Shi
- Gansu University of Chinese Medicine, Gansu, China
| | - Cuihuan He
- Gansu University of Chinese Medicine, Gansu, China
| | - Guanghao Xia
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
25
|
Huang Q, Tian H, Tian L, Zhao X, Li L, Zhang Y, Qiu Z, Lei S, Xia Z. Inhibiting Rev-erbα-mediated ferroptosis alleviates susceptibility to myocardial ischemia-reperfusion injury in type 2 diabetes. Free Radic Biol Med 2023; 209:135-150. [PMID: 37805047 DOI: 10.1016/j.freeradbiomed.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The complex progression of type-2 diabetes (T2DM) may result in increased susceptibility to myocardial ischemia-reperfusion (IR) injury. IR injuries in multiple organs involves ferroptosis. Recently, the clock gene Rev-erbα has aroused considerable interest as a novel therapeutic target for metabolic and ischemic heart diseases. Herein, we investigated the roles of Rev-erbα and ferroptosis in myocardial IR injury during T2DM and its potential mechanisms. A T2DM model, myocardial IR and a tissue-specific Rev-erbα-/- mouse in vivo were established, and a high-fat high glucose environment with hypoxia-reoxygenation (HFHG/HR) in H9c2 were also performed. After myocardial IR, glycolipid profiles, creatine kinase-MB, AI, and the expression of Rev-erbα and ferroptosis-related proteins were increased in diabetic rats with impaired cardiac function compared to non-diabetic rats, regardless of the time at which IR was induced. The ferroptosis inhibitor ferrostatin-1 decreased AI in diabetic rats given IR and LPO levels in cells treated with HFHG/HR, as well as the expression of Rev-erbα and ACSL4. The ferroptosis inducer erastin increased AI and LPO levels and ACSL4 expression. Treatment with the circadian regulator nobiletin and genetically targeting Rev-erbα via siRNA or CRISPR/Cas9 technology both protected against severe myocardial injury and decreased Rev-erbα and ACSL4 expression, compared to the respective controls. Taken together, these data suggest that ferroptosis is involved in the susceptibility to myocardial IR injury during T2DM, and that targeting Rev-erbα could alleviate myocardial IR injury by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Hao Tian
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Liqun Tian
- Department of Anaesthesiology, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Xiaoshuai Zhao
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Lu Li
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Yuxi Zhang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhen Qiu
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Shaoqing Lei
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
26
|
Wang L, Yan Y, Wu L, Peng J. Natural products in non-alcoholic fatty liver disease (NAFLD): Novel lead discovery for drug development. Pharmacol Res 2023; 196:106925. [PMID: 37714392 DOI: 10.1016/j.phrs.2023.106925] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
With changing lifestyles, non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. A substantial increase in the incidence, mortality, and associated burden of NAFLD-related advanced liver disease is expected. Currently, the initial diagnosis of NAFLD is still based on ultrasound and there is no approved treatment method. Lipid-lowering drugs, vitamin supplementation, and lifestyle improvement treatments are commonly used in clinical practice. However, most lipid-lowering drugs can produce poor patient compliance and specific adverse effects. Therefore, the exploration of bio-diagnostic markers and active lead compounds for the development of innovative drugs is urgently needed. More and more studies have reported the anti-NAFLD effects and mechanisms of natural products (NPs), which have become an important source for new drug development to treat NAFLD due to their high activity and low side effects. At present, berberine and silymarin have been approved by the US FDA to enter clinical phase IV studies, demonstrating the potential of NPs against NAFLD. Studies have found that the regulation of lipid metabolism, insulin resistance, oxidative stress, and inflammation-related pathways may play important roles in the process. With the continuous updating of technical means and scientific theories, in-depth research on the targets and mechanisms of NPs against NAFLD can provide new possibilities to find bio-diagnostic markers and innovative drugs. As we know, FXR agonists, PPARα agonists, and dual CCR2/5 inhibitors are gradually coming on stage for the treatment of NAFLD. Whether NPs can exert anti-NAFLD effects by regulating these targets or some unknown targets remains to be further studied. Therefore, the study reviewed the potential anti-NAFLD NPs and their targets. Some works on the discovery of new targets and the docking of active lead compounds were also discussed. It is hoped that this review can provide some reference values for the development of non-invasive diagnostic markers and new drugs against NAFLD in the clinic.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
27
|
Bhuia MS, Wilairatana P, Ferdous J, Chowdhury R, Bappi MH, Rahman MA, Mubarak MS, Islam MT. Hirsutine, an Emerging Natural Product with Promising Therapeutic Benefits: A Systematic Review. Molecules 2023; 28:6141. [PMID: 37630393 PMCID: PMC10458569 DOI: 10.3390/molecules28166141] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Fruits and vegetables are used not only for nutritional purposes but also as therapeutics to treat various diseases and ailments. These food items are prominent sources of phytochemicals that exhibit chemopreventive and therapeutic effects against several diseases. Hirsutine (HSN) is a naturally occurring indole alkaloid found in various Uncaria species and has a multitude of therapeutic benefits. It is found in foodstuffs such as fish, seafood, meat, poultry, dairy, and some grain products among other things. In addition, it is present in fruits and vegetables including corn, cauliflower, mushrooms, potatoes, bamboo shoots, bananas, cantaloupe, and citrus fruits. The primary emphasis of this study is to summarize the pharmacological activities and the underlying mechanisms of HSN against different diseases, as well as the biopharmaceutical features. For this, data were collected (up to date as of 1 July 2023) from various reliable and authentic literature by searching different academic search engines, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. Findings indicated that HSN exerts several effects in various preclinical and pharmacological experimental systems. It exhibits anti-inflammatory, antiviral, anti-diabetic, and antioxidant activities with beneficial effects in neurological and cardiovascular diseases. Our findings also indicate that HSN exerts promising anticancer potentials via several molecular mechanisms, including apoptotic cell death, induction of oxidative stress, cytotoxic effect, anti-proliferative effect, genotoxic effect, and inhibition of cancer cell migration and invasion against various cancers such as lung, breast, and antitumor effects in human T-cell leukemia. Taken all together, findings from this study show that HSN can be a promising therapeutic agent to treat various diseases including cancer.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (R.C.); (M.H.B.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman, Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (R.C.); (M.H.B.)
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (R.C.); (M.H.B.)
| | - Md Anisur Rahman
- Department of Pharmacy, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (R.C.); (M.H.B.)
| |
Collapse
|
28
|
Lam CS, Xia YX, Chen BS, Du YX, Liu KL, Zhang HJ. Dihydro-Resveratrol Attenuates Oxidative Stress, Adipogenesis and Insulin Resistance in In Vitro Models and High-Fat Diet-Induced Mouse Model via AMPK Activation. Nutrients 2023; 15:3006. [PMID: 37447331 DOI: 10.3390/nu15133006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Management of obesity has become a prevalent strategy for preventing the diseases closely integrated with excess body weight such as diabetes over the last half century. Searching for therapeutic agents acting on oxidative stress, adipogenesis and insulin resistance is considered as an efficient approach to control obesity-related diseases. The present study was designed to examine the in vitro and in vivo effects of dihydro-resveratrol (DR2), a naturally occurring compound from Dendrobium medicinal plants, on oxidative stress aggravation, adipogenesis, lipogenesis and insulin sensitivity. We utilized an in vitro 3T3-L1 adipocyte differentiation model to show that DR2 could reduce pre-adipocyte maturation by activation of AMPK/SIRT1 signaling proteins to inhibit p38MAPK proteins. With the use of in vitro oxidative-stress-induced hepatocytes and myoblasts models, DR2 was also shown to be able to reduce oxidative stress aggravation through mediation of Nrf2-related antioxidative cascade, reduce intracellular lipid accumulation through phosphorylation of ACC protein, reduce lipid peroxidation in hepatocytes and promote insulin sensitivity via activation of AKT protein in the insulin-resistant HepG2 cells and C2C12 cells. The effects of DR2 on adipogenesis, lipid accumulation, insulin resistance and blood glucose clearance were further demonstrated in the high-fat diet-induced obesity mouse model. Our in vitro and in vivo studies determined that DR2 could contain therapeutic potential for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Chu-Shing Lam
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yi-Xuan Xia
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Bai-Sen Chen
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yin-Xiao Du
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Kang-Lun Liu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
29
|
Tian H, Zhao X, Zhang Y, Xia Z. Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2023; 163:114827. [PMID: 37141734 DOI: 10.1016/j.biopha.2023.114827] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
Myocardial ischemia-reperfusion injury is a common condition in cardiovascular diseases, and the mechanism of its occurrence involves multiple complex metabolic pathways and signaling pathways. Among these pathways, glucose metabolism and lipid metabolism play important roles in regulating myocardial energy metabolism. Therefore, this article focuses on the roles of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion injury, including glycolysis, glucose uptake and transport, glycogen metabolism and the pentose phosphate pathway; and triglyceride metabolism, fatty acid uptake and transport, phospholipid metabolism, lipoprotein metabolism, and cholesterol metabolism. Finally, due to the different alterations and development of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion, there are also complex interregulatory relationships between them. In the future, modulating the equilibrium between glucose metabolism and lipid metabolism in cardiomyocytes and ameliorating aberrations in myocardial energy metabolism represent highly promising novel strategies for addressing myocardial ischemia-reperfusion injury. Therefore, a comprehensive exploration of glycolipid metabolism can offer novel theoretical and clinical insights into the prevention and treatment of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
30
|
Alfuzosin ameliorates diabetes by boosting PGK1 activity in diabetic mice. Life Sci 2023; 317:121491. [PMID: 36758669 DOI: 10.1016/j.lfs.2023.121491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
AIMS Diabetes mellitus (DM) has become a global problem, causing a huge economic burden. The purpose of this study is to find a new potential method and mechanism for the treatment of DM. MAIN METHODS The oxidation, glycation and insulin resistance cell models were built to screen the potential anti-diabetic chemicals. Then the DM mice were induced by the combination of high-fat diet (HFD) and intraperitoneal injection of streptozotocin (50 mg/kg) for five days. The alfuzosin (1.2 mg/kg) was administered by intraperitoneal injection once daily for sequential 12 weeks. Fasting blood glucose, blood lipid, oxidative stress and key markers of glucose metabolism were detected. PGK1/AKT/GLUT4 pathway related proteins were analyzed by Western blot. KEY FINDINGS Alfuzosin ameliorated oxidative stress, glycative stress and insulin resistance in HepG2 cells. Further, in a high-fat diet/streptozotocin (HFD/STZ)-induced diabetic mouse model, alfuzosin reduced fasting blood glucose, improved insulin sensitivity. Mechanically, alfuzosin activated PGK1 directly to stimulate the protein kinase B (AKT) signaling pathway, thus facilitating glucose uptake as well as improving insulin resistance. SIGNIFICANCE The present finding has shed a new light on the treatment of DM and provides validation for PGK1 as a therapeutic target for DM.
Collapse
|
31
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Zhang C, Liu S, Yang M. Hepatocellular Carcinoma and Obesity, Type 2 Diabetes Mellitus, Cardiovascular Disease: Causing Factors, Molecular Links, and Treatment Options. Front Endocrinol (Lausanne) 2021; 12:808526. [PMID: 35002979 PMCID: PMC8733382 DOI: 10.3389/fendo.2021.808526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, which will affect more than a million people by the year 2025. However, current treatment options have limited benefits. Nonalcoholic fatty liver disease (NAFLD) is the fastest growing factor that causes HCC in western countries, including the United States. In addition, NAFLD co-morbidities including obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVDs) promote HCC development. Alteration of metabolites and inflammation in the tumor microenvironment plays a pivotal role in HCC progression. However, the underlying molecular mechanisms are still not totally clear. Herein, in this review, we explored the latest molecules that are involved in obesity, T2DM, and CVDs-mediated progression of HCC, as they share some common pathologic features. Meanwhile, several therapeutic options by targeting these key factors and molecules were discussed for HCC treatment. Overall, obesity, T2DM, and CVDs as chronic metabolic disease factors are tightly implicated in the development of HCC and its progression. Molecules and factors involved in these NAFLD comorbidities are potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
| |
Collapse
|