1
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
3
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2025; 67:2161-2184. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Saeed AF. Tumor-Associated Macrophages: Polarization, Immunoregulation, and Immunotherapy. Cells 2025; 14:741. [PMID: 40422244 DOI: 10.3390/cells14100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Tumor-associated macrophages' (TAMs) origin, polarization, and dynamic interaction in the tumor microenvironment (TME) influence cancer development. They are essential for homeostasis, monitoring, and immune protection. Cells from bone marrow or embryonic progenitors dynamically polarize into pro- or anti-tumor M2 or M1 phenotypes based on cytokines and metabolic signals. Recent advances in TAM heterogeneity, polarization, characterization, immunological responses, and therapy are described here. The manuscript details TAM functions and their role in resistance to PD-1/PD-L1 blockade. Similarly, TAM-targeted approaches, such as CSF-1R inhibition or PI3Kγ-driven reprogramming, are discussed to address anti-tumor immunity suppression. Furthermore, innovative biomarkers and combination therapy may enhance TAM-centric cancer therapies. It also stresses the relevance of this distinct immune cell in human health and disease, which could impact future research and therapies.
Collapse
|
5
|
Fang L, Wang X, Zhang Y, Zhang C, Liu X, Li W, Zhang Y, Sun N, Zheng J, Wang G. Oncolytic Adenovirus Armoring with CXCL9 and IL15 Shows Potent Antitumor Activity and Boosts CAR-T Therapy for Prostate Cancer. Hum Gene Ther 2025. [PMID: 40346805 DOI: 10.1089/hum.2024.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has achieved great success and progress for treatment of hematological malignancy, but it still cannot overcome the obstacles in solid tumors. The hostile tumor microenvironment (TME), such as dense extracellular matrix, hypoxia, low pH, and tumor-derived metabolites, largely impedes CAR-T function. Oncolytic virus, as a form of immunotherapy, provides a way to antagonize the TME and improve the efficacy of CAR-T cells in solid tumors. In this study, the chemokine CXCL9 and interleukin 15 (IL15) genes were genetically integrated into adenoviral vector to construct oncolytic adenovirus (OAV) Ad-CXCL9-IL15, which could infect tumor cells to express and secrete CXCL9 and IL15. Ad-CXCL9-IL15 showed potent antitumor activity in xenografted prostate cancer model and augmented the tumor infiltration of CD45+CD3+ T and CD8+ T cells in immunocompetent mice. Moreover, Ad-CXCL9-IL15 treatment decreased Treg cells in tumor mass and increased CD44+CD62L+ T cells in spleen. Indicating that Ad-CXCL9-IL15 modified the TME and augmented antitumor immune responses in vivo. Furthermore, administration of Ad-CXCL9-IL15 dramatically promoted infiltration and survival of B7H3-targeting CAR-T cells, improved the therapeutic efficacy, and prolonged the survival time of prostate cancer-bearing mice. Therefore, cytokine-armored OAV Ad-CXCL9-IL15 could be used as a bioenhancer to modify TME and boost immunotherapy for solid tumors.
Collapse
Affiliation(s)
- Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Xueyan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Department of Oncology, Xuzhou City Hospital of TCM, Xuzhou, Jiangsu, China
| | - Yi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Chen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Department of Oncology, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Xiaoxiao Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Wanjing Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yuxin Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Nan Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Ma N, Gao J, Pang X, Wu K, Yang S, Wei H, Hao Y. Formulation-optimized oncolytic viruses: Advancing systemic delivery and immune amplification. J Control Release 2025; 383:113822. [PMID: 40348130 DOI: 10.1016/j.jconrel.2025.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Cancer is a major global public health challenge. Traditional treatments such as surgery, radiotherapy, and chemotherapy often show limited efficacy, minimal improvements in survival rates, and high recurrence risks. With limited therapeutic options for solid tumors, tumor immunotherapy, which harness the body's immune system, has gained significant attention. Oncolytic viruses (OVs) selectively infect and destroy tumor cells, induce immunogenic cell death (ICD) and stimulate antitumor immune responses. However, current OVs therapies, which are predominantly administered via intratumoral injection, have numerous limitations, including the need for guidance, suboptimal viral spread, extracellular matrix barriers, and immune clearance. These challenges hinder repeated dosing effectiveness and restrict its clinical applicability. Although genetic engineering has improved the tumor selectivity and immune activation of OVs, significant delivery challenges remain. Recently, optimizing pharmaceutical formulations to enhance tumor targeting and viral accumulation has emerged as a key approach to improving OV therapy and expanding clinical applicability. This review highlights the critical role of pharmaceutical formulations in biologics and outlines recent advances in OVs formulations. Specifically, we discuss strategies aimed at enhancing tumor targeting, reducing adverse effects, and promoting antitumor immunity. These strategies significantly enhance OV therapeutic potential and inform novel delivery systems for clinical translation.
Collapse
Affiliation(s)
- Ningye Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoao Pang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kexin Wu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shihua Yang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, China; Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
7
|
Alenezi SK. CAR T cells in lung cancer: Targeting tumor-associated antigens to revolutionize immunotherapy. Pathol Res Pract 2025; 269:155947. [PMID: 40168775 DOI: 10.1016/j.prp.2025.155947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Tumor-targeted T cells engineered for targeting and killing tumor cells have revolutionized cancer treatment, specifically in hematologic malignancies, through chimeric antigen receptor (CAR) T cell therapy. However, the migration of this success to lung cancer is challenging due to the tumor microenvironment (TME), antigen heterogeneity, and limitations of T cell infiltration. This review aims to evaluate current strategies addressing these barriers, focusing on the optimization of tumor-associated antigen (TAA) targeting, such as epidermal growth factor receptor (EGFR), mucin-1 (MUC1), and mesothelin (MSLN), which are frequently overexpressed in lung cancer and offer promising targets for CAR T-cell therapy. In this review, we discuss recent progress in CAR T cell engineering, applying enhanced costimulatory molecules, cytokine-secreting CAR T cells, and engineered modifications to improve T cell resilience in immunosuppressive environments. Additionally, this review also evaluates combination therapies of immune checkpoint inhibitors and recently published clinical trials on lung cancer with CAR T cells. We offer insights into the way to optimize CAR T cell therapy for lung cancer by analyzing antigen selection, immune evasion, and the strategies to enhance T cell persistence and tumor infiltration.
Collapse
Affiliation(s)
- Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia.
| |
Collapse
|
8
|
Parveen S, Konde DV, Paikray SK, Tripathy NS, Sahoo L, Samal HB, Dilnawaz F. Nanoimmunotherapy: the smart trooper for cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002308. [PMID: 40230883 PMCID: PMC11996242 DOI: 10.37349/etat.2025.1002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Immunotherapy has gathered significant attention and is now a widely used cancer treatment that uses the body's immune system to fight cancer. Despite initial successes, its broader clinical application is hindered by limitations such as heterogeneity in patient response and challenges associated with the tumor immune microenvironment. Recent advancements in nanotechnology have offered innovative solutions to these barriers, providing significant enhancements to cancer immunotherapy. Nanotechnology-based approaches exhibit multifaceted mechanisms, including effective anti-tumor immune responses during tumorigenesis and overcoming immune suppression mechanisms to improve immune defense capacity. Nanomedicines, including nanoparticle-based vaccines, liposomes, immune modulators, and gene delivery systems, have demonstrated the ability to activate immune responses, modulate tumor microenvironments, and target specific immune cells. Success metrics in preclinical and early clinical studies, such as improved survival rates, enhanced tumor regression, and elevated immune activation indices, highlight the promise of these technologies. Despite these achievements, several challenges remain, including scaling up manufacturing, addressing off-target effects, and navigating regulatory complexities. The review emphasizes the need for interdisciplinary approaches to address these barriers, ensuring broader clinical adoption. It also provides insights into interdisciplinary approaches, advancements, and the transformative potential of nano-immunotherapy and promising results in checkpoint inhibitor delivery, nanoparticle-mediated photothermal therapy, immunomodulation as well as inhibition by nanoparticles and cancer vaccines.
Collapse
Affiliation(s)
- Suphiya Parveen
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Dhanshree Vikrant Konde
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Himansu Bhusan Samal
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| |
Collapse
|
9
|
Deng H, Wang Q, Tong X, Cui Z, Yang Y, Xiang Y. Recent advances of CAR-T cells in acute myeloid leukemia. Ther Adv Hematol 2025; 16:20406207251326802. [PMID: 40144774 PMCID: PMC11938459 DOI: 10.1177/20406207251326802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 03/28/2025] Open
Abstract
Acute myeloid leukemia (AML), the most common type of leukemia in adults, is a highly heterogeneous and aggressive hematologic malignancy. Since the 20th century, the combination of cytosine arabinoside and anthracyclines has been the most common chemotherapy drug used to treat patients with AML. Although, new targeted medicines have emerged, such as midostaurin and gilteritinib targeting FMS-like tyrosine kinase 3 (FLT3), ivosidenib (isocitrate dehydrogenase 1 (IDH1) inhibitor) and enasidenib (IDH2 inhibitor) targeting IDH, and gemtuzumab ozogamicin targeting CD33, which have changed the treatment strategies of AML. But, until now, hematopoietic stem cell transplantation remains the best treatment option in most cases. However, treatment resistance and relapse are still the major consequences of disease progression in AML, highlighting the urgent need for novel therapeutic approaches. As an alternative, chimeric antigen receptor (CAR)-T cells are engineered T-cells developed as a breakthrough in cancer therapy in recent years, and explored and used in various tumor types. In particular, it has achieved remarkable efficacy in the field of relapsed and refractory B lymphocyte tumors. This review mainly summarizes and discusses the research progress and the clinical application of CAR-T cell immunotherapy in AML in recent years.
Collapse
Affiliation(s)
- Huan Deng
- Department of Medical Laboratory, The People’s Hospital of Leshan, No. 238, Baita Street, Shizhong District, Leshan, Sichuan 614000, China
| | - Qi Wang
- Department of Medical Records and Statistics Room, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Xiaodong Tong
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Zhiwei Cui
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Yang Yang
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Ying Xiang
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| |
Collapse
|
10
|
Wu Z, Wang H, Zheng Z, Lin Y, Bian L, Geng H, Huang X, Zhu J, Jing H, Zhang Y, Ji C, Zhai B. IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment. J Transl Med 2025; 23:275. [PMID: 40045363 PMCID: PMC11884131 DOI: 10.1186/s12967-025-06276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable success in hematologic malignancies but faces significant limitations in gastrointestinal tumors due to the immunosuppressive tumor microenvironment (TME). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme in the TME, suppresses T cell efficacy by catalyzing tryptophan degradation to kynurenine (Kyn), leading to T cell exhaustion and reduced cytotoxicity. This study investigates the role of IDO1 inhibition in overcoming metabolic suppression by kynurenine and enhancing Claudin18.2 (CLDN18.2) CAR-T cell therapy in gastric and pancreatic adenocarcinoma models. METHODS We evaluated the impact of genetic knockdown and pharmacological inhibition of IDO1 (using epacadostat) on CAR-T cell functionality, including cytokine production and exhaustion marker expression. The effects of fludarabine and cyclophosphamide preconditioning on IDO1 expression, CAR-T cell infiltration, and antitumor activity was also examined. In vivo tumor models of gastric and pancreatic adenocarcinomas were used to assess the efficacy of combining IDO1 inhibition with CLDN18.2-CAR-T therapy. RESULTS IDO1 inhibition significantly enhanced CAR-T cell function by increasing cytokine production, reducing exhaustion markers by decreasing TOX expression and improving tumor cell lysis. Preconditioning with fludarabine and cyclophosphamide further suppressed IDO1 expression in the TME, facilitating enhanced CAR-T cell infiltration. In vivo studies demonstrated that combining IDO1 inhibition with CAR-T therapy led to robust tumor growth suppression and prolonged survival in gastric and pancreatic tumor models. CONCLUSIONS Targeting IDO1 represents a promising strategy to overcome immunosuppressive barriers in gastrointestinal cancers, improving the efficacy of CLDN18.2-CAR-T therapy. These findings highlight the potential for integrating IDO1 inhibition into CAR-T treatment regimens to address resistance in treatment-refractory cancers.
Collapse
Affiliation(s)
- Zhaorong Wu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongye Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhigang Zheng
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Lin
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Linke Bian
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | | | - Jiufei Zhu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongshu Jing
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi Zhang
- Department of Urology, Fujian Renmin Hospital, Fuzhou, 350001, Fujian, China
| | - Chen Ji
- Department of Urology, Fujian Renmin Hospital, Fuzhou, 350001, Fujian, China.
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Mini-Invasive Interventional Therapy Center, Shanghai East Hospital, Tongji University, Shanghai, 200025, China.
| |
Collapse
|
11
|
Parra-Nieto J, Hidalgo L, Márquez-Cantudo M, García-Castro J, Megias D, Ramirez M, Baeza A. Liposomal-Based Nanoarchitectonics as Bispecific T Cell Engagers in Neuroblastoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11937-11945. [PMID: 39957209 DOI: 10.1021/acsami.5c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Neuroblastoma (NB) is an aggressive pediatric solid tumor that lacks efficient treatment. In the past few years, the use of engineered lymphocytes endowed with chimeric antigen receptors (CAR T), which improve their natural search and destroy skills against tumoral cells, has provided a highly valuable strategy to eradicate tumors in a specific and safe manner. Unfortunately, despite the excellent results achieved by these cell-based therapies in liquid tumors, their efficacy in the treatment of solid malignancies is usually modest due to the existence of several biological barriers which compromise their efficacy. Herein, a strategy to guide CAR T toward NB cells based on the use of nanometric bispecific T engagers (NBTEs) is presented. These novel bispecific nanoplatforms are based on liposomes and protocells doubly functionalized with synthetic targeting moieties (para-aminobenzylguanidine and fluorescein) able to selectively bind to membrane cell receptors of NB and anti-FITC CAR T, respectively. The binding process of NBTEs to NB cells was monitored by confocal fluorescence microscopy showing the excellent capacity of these nanodevices to place fluorescence labels on the surface of the malignant cells. Then, NB cells previously incubated in the presence of NBTEs were rapidly detected and destroyed by anti-FITC CAR T, which confirmed the excellent capacity of these nanoplatforms to improve the natural capacity of CAR T to eradicate malignant cells. Finally, the high versatility of the NBTE design and its easy-to-tune nature would allow their rapid application to different types of solid tumors.
Collapse
Affiliation(s)
- Jorge Parra-Nieto
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Laura Hidalgo
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Crta, Majadahonda-Pozuelo 2, 28220 Madrid, Spain
| | - Marta Márquez-Cantudo
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Crta, Majadahonda-Pozuelo 2, 28220 Madrid, Spain
| | - Javier García-Castro
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Crta, Majadahonda-Pozuelo 2, 28220 Madrid, Spain
| | - Diego Megias
- Advanced Optical Microscopy Unit, Instituto de salud Carlos III (ISCIII), Crta, Majadahonda-Pozuelo 2, 28220 Madrid, Spain
| | - Manuel Ramirez
- Servicio de Hematología y Oncología Pediátrica, Hospital Infantil Universitario Niño Jesús, Av. de Menéndez Pelayo, 65, Retiro, 28009 Madrid, Spain
| | - Alejandro Baeza
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
12
|
Chen Z, Hu Y, Mei H. Harmonizing the symphony of chimeric antigen receptor T cell immunotherapy with the elegance of biomaterials. Trends Biotechnol 2025; 43:333-347. [PMID: 39181760 DOI: 10.1016/j.tibtech.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) immunotherapy has become a heated field of cancer research, demonstrating revolutionary efficacy in refractory and relapsed hematologic malignancies. However, CAR-T therapy has still encountered tough challenges, including complicated and lengthy manufacturing procedures, mediocre targeted delivery, limited therapeutic effect against solid tumors and difficulties in real-time in vivo monitoring. To overcome these limitations, various versatile biomaterials have been used in the above aspects and have improved CAR-T therapy impressively. This review mainly summarizes the latest research progress of biomaterials promoting CAR-T therapy in manufacturing, enhancing targeted delivery and tumor infiltration, and dramatic in vivo tracking to provide new insights and inspiration for clinical treatment.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
13
|
Jaing TH, Hsiao YW, Wang YL. Chimeric Antigen Receptor Cell Therapy: Empowering Treatment Strategies for Solid Tumors. Curr Issues Mol Biol 2025; 47:90. [PMID: 39996811 PMCID: PMC11854309 DOI: 10.3390/cimb47020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has demonstrated impressive efficacy in the treatment of blood cancers; however, its effectiveness against solid tumors has been significantly limited. The differences arise from a range of difficulties linked to solid tumors, including an unfriendly tumor microenvironment, variability within the tumors, and barriers to CAR-T cell infiltration and longevity at the tumor location. Research shows that the reasons for the decreased effectiveness of CAR-T cells in treating solid tumors are not well understood, highlighting the ongoing need for strategies to address these challenges. Current strategies frequently incorporate combinatorial therapies designed to boost CAR-T cell functionality and enhance their capacity to effectively target solid tumors. However, these strategies remain in the testing phase and necessitate additional validation to assess their potential benefits. CAR-NK (natural killer), CAR-iNKT (invariant natural killer T), and CAR-M (macrophage) cell therapies are emerging as promising strategies for the treatment of solid tumors. Recent studies highlight the construction and optimization of CAR-NK cells, emphasizing their potential to overcome the unique challenges posed by the solid tumor microenvironment, such as hypoxia and metabolic barriers. This review focuses on CAR cell therapy in the treatment of solid tumors.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| | - Yi-Wen Hsiao
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| |
Collapse
|
14
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
Huang Q, Li H, Zhang Y. A bibliometric and knowledge-map study on the treatment of hematological malignancies with CAR-T cells from 2012 to 2023. Hum Vaccin Immunother 2024; 20:2371664. [PMID: 38961667 PMCID: PMC11225924 DOI: 10.1080/21645515.2024.2371664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Recently, CAR-T cell therapy in hematological malignancies has received extensive attention. The objective of this study is to gain a comprehensive understanding of the current research status, development trends, research hotspots, and emerging topics pertaining to CAR-T cells in the treatment of hematological malignancies. Articles pertaining to CAR-T cell therapy for hematological malignancies from the years 2012 to 2023 were obtained and assessed from the Web of Science Core Collection (WoSCC). A bibliometric approach was employed to conduct a scientific, comprehensive, and objective quantitative analysis, as well as a visual analysis, of this particular research domain. A comprehensive analysis was conducted on a corpus of 3643 articles, which were collaboratively authored by 72 countries and various research institutions. CAR-T cell research in treating hematological malignancies shows an increasing trend each year. Notably, the study identified the countries and institutions displaying the highest level of activity, the journals with the most citations and output, as well as the authors who garnered the highest frequency of citations and co-citations. Furthermore, the analysis successfully identified the research hotspots and highlighted six emerging topics within this domain. This study conducted a comprehensive exploration and analysis of the research status, development trends, research hotspots, and emerging topics about CAR-T cells in the treatment of hematological malignancies from 2012 to 2023. The findings of this study will serve as a valuable reference and guide for researchers seeking to delve deeper into this field and determine the future direction of their research.
Collapse
Affiliation(s)
- Qing Huang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huimin Li
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Zhang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Mao Y, Chen Y, Yang X, He Y, Cui D, Huang W, Jiang L, Zhou X, Chang X, Zhu J, Zhu Y, Tang Q, Feng Z, Zhang L, Jiang K, Yuan H. Construction and characterization of a novel secreted MsC-CAR-T cell in solid tumors. Cancer Lett 2024; 611:217382. [PMID: 39642980 DOI: 10.1016/j.canlet.2024.217382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The CD47-SIRPα signaling has been acknowledged as a significant immune checkpoint and CD47 blocking has been proved as a potential therapeutic strategy for the treatment of solid tumor. However, the potential application of CAR-T cells secreted antibody fragment simultaneously in solid tumor is rarely explored. In this study, we searched bioinformatic databases and investigated the characteristics of CD47 in solid tumors. Then we consulted bioinformatic databases to design, optimize and construct a novel MsC-CAR which could target MAGE-A1 and self-secrete CD47-scFv. The engineering T cells containing MsC-CAR were transfected, verified and characterized. The tumor-inhibitory role of MsC-CART cells was further determined in vitro and in vivo. The results showed that MsC-CARs were successfully constructed and MsC1-CARs demonstrated the preferable features of recognizing MAGE-A1 and secreting CD47-scFv. Engineering T cells transfecting with MsC1-CAR (MsC1-CART cells) exerted the prominent tumor-inhibitory effectiveness, both in different cancer cell lines and LUAD xenograft tumors. The present data highlighted that MsC1-CART cells elaborately combined the adoptive cellular immunotherapy and immune checkpoint inhibitor therapy, may represent a new direction for the treatment of MAGE-A1 positive solid tumors.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Geriatric Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China; National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Yufeng Chen
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Department of Pathology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Xiaohui Yang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Yiting He
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Daixun Cui
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Wen Huang
- Department of Geriatric Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lihua Jiang
- Department of Geriatric Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Zhou
- Department of Pathology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Xinxia Chang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Yi Zhu
- Pancreas Center of the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Tang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China; Department of Pathology, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Zhenqing Feng
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China.
| | - Louqian Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center of the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Hao Yuan
- Pancreas Center of the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Liu Z, Li YR, Yang Y, Zhu Y, Yuan W, Hoffman T, Wu Y, Zhu E, Zarubova J, Shen J, Nan H, Yeh KW, Hasani-Sadrabadi MM, Zhu Y, Fang Y, Ge X, Li Z, Soto J, Hsiai T, Yang L, Li S. Viscoelastic synthetic antigen-presenting cells for augmenting the potency of cancer therapies. Nat Biomed Eng 2024; 8:1615-1633. [PMID: 39455719 DOI: 10.1038/s41551-024-01272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
The use of synthetic antigen-presenting cells to activate and expand engineered T cells for the treatment of cancers typically results in therapies that are suboptimal in effectiveness and durability. Here we describe a high-throughput microfluidic system for the fabrication of synthetic cells mimicking the viscoelastic and T-cell-activation properties of antigen-presenting cells. Compared with rigid or elastic microspheres, the synthetic viscoelastic T-cell-activating cells (SynVACs) led to substantial enhancements in the expansion of human CD8+ T cells and to the suppression of the formation of regulatory T cells. Notably, activating and expanding chimaeric antigen receptor (CAR) T cells with SynVACs led to a CAR-transduction efficiency of approximately 90% and to substantial increases in T memory stem cells. The engineered CAR T cells eliminated tumour cells in a mouse model of human lymphoma, suppressed tumour growth in mice with human ovarian cancer xenografts, persisted for longer periods and reduced tumour-recurrence risk. Our findings underscore the crucial roles of viscoelasticity in T-cell engineering and highlight the utility of SynVACs in cancer therapy.
Collapse
Affiliation(s)
- Zeyang Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan-Ruide Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Youcheng Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Weihao Yuan
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yifan Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jun Shen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haochen Nan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kun-Wei Yeh
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yichen Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinyang Ge
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhizhong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Kuźnicki J, Janicka N, Białynicka-Birula B, Kuźnicki W, Chorążyczewska H, Deszcz I, Kulbacka J. How to Use Macrophages Against Cancer. Cells 2024; 13:1948. [PMID: 39682696 PMCID: PMC11639767 DOI: 10.3390/cells13231948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous studies have demonstrated the significant influence of immune cells on cancer development and treatment. This study specifically examines tumor-associated macrophages (TAMs), detailing their characteristics and roles in tumorigenesis and analyzing the impact of the ratio of TAM subtypes on patient survival and prognosis. It is established that TAMs interact with immunotherapy, radiotherapy, and chemotherapy, thereby influencing the efficacy of these treatments. Emerging therapies are explored, such as the use of nanoparticles (NPs) for drug delivery to target TAMs and modify the tumor microenvironment (TME). Additionally, novel anticancer strategies like the use of chimeric antigen receptor macrophages (CAR-Ms) show promising results. Investigations into the training of macrophages using magnetic fields, plasma stimulation, and electroporation are also discussed. Finally, this study presents prospects for the combination of TAM-based therapies for enhanced cancer treatment outcomes.
Collapse
Affiliation(s)
- Jacek Kuźnicki
- Students Scientific Group No.148, Faculty of Medicine, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (B.B.-B.); (H.C.)
| | - Natalia Janicka
- Students Scientific Group No.148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Barbara Białynicka-Birula
- Students Scientific Group No.148, Faculty of Medicine, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (B.B.-B.); (H.C.)
| | - Wojciech Kuźnicki
- Department of External Beam Radiotherapy, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Pabianicka 62, 93-513 Łódź, Poland;
| | - Hanna Chorążyczewska
- Students Scientific Group No.148, Faculty of Medicine, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (B.B.-B.); (H.C.)
| | - Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
19
|
Del Baldo G, Carai A, Mastronuzzi A. Chimeric antigen receptor adoptive immunotherapy in central nervous system tumors: state of the art on clinical trials, challenges, and emerging strategies to addressing them. Curr Opin Oncol 2024; 36:545-553. [PMID: 38989708 PMCID: PMC11460750 DOI: 10.1097/cco.0000000000001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) tumors represent a significant unmet medical need due to their enduring burden of high mortality and morbidity. Chimeric antigen receptor (CAR) T-cell therapy emerges as a groundbreaking approach, offering hope for improved treatment outcomes. However, despite its successes in hematological malignancies, its efficacy in solid tumors, including CNS tumors, remains limited. Challenges such as the intricate tumor microenvironment (TME), antigenic heterogeneity, and CAR T-cell exhaustion hinder its effectiveness. This review aims to explore the current landscape of CAR T-cell therapy for CNS tumors, highlighting recent advancements and addressing challenges in achieving therapeutic efficacy. RECENT FINDINGS Innovative strategies aim to overcome the barriers posed by the TME and antigen diversity, prevent CAR T-cell exhaustion through engineering approaches and combination therapies with immune checkpoint inhibitors to improving treatment outcomes. SUMMARY Researchers have been actively working to address these challenges. Moreover, addressing the unique challenges associated with neurotoxicity in CNS tumors requires specialized management strategies. These may include the development of grading systems, monitoring devices, alternative cell platforms and incorporation of suicide genes. Continued research efforts and clinical advancements are paramount to overcoming the existing challenges and realizing the full potential of CAR T-cell therapy in treating CNS tumors.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
- Department of Experimental Medicine, Sapienza University of Rome
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
| |
Collapse
|
20
|
Porter LH, Harrison SG, Risbridger GP, Lister N, Taylor RA. Left out in the cold: Moving beyond hormonal therapy for the treatment of immunologically cold prostate cancer with CAR T cell immunotherapies. J Steroid Biochem Mol Biol 2024; 243:106571. [PMID: 38909866 DOI: 10.1016/j.jsbmb.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Prostate cancer is primarily hormone-dependent, and medical treatments have focused on inhibiting androgen biosynthesis or signaling through various approaches. Despite significant advances with the introduction of androgen receptor signalling inhibitors (ARSIs), patients continue to progress to castration-resistant prostate cancer (CRPC), highlighting the need for targeted therapies that extend beyond hormonal blockade. Chimeric Antigen Receptor (CAR) T cells and other engineered immune cells represent a new generation of adoptive cellular therapies. While these therapies have significantly enhanced outcomes for patients with hematological malignancies, ongoing research is exploring the broader use of CAR T therapy in solid tumors, including advanced prostate cancer. In general, CAR T cell therapies are less effective against solid cancers with the immunosuppressive tumor microenvironment hindering T cell infiltration, activation and cytotoxicity following antigen recognition. In addition, inherent tumor heterogeneity exists in patients with advanced prostate cancer that may prevent durable therapeutic responses using single-target agents. These barriers must be overcome to inform clinical trial design and improve treatment efficacy. In this review, we discuss the innovative and rationally designed strategies under investigation to improve the clinical translation of cellular immunotherapy in prostate cancer and maximise therapeutic outcomes for these patients.
Collapse
Affiliation(s)
- L H Porter
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - S G Harrison
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - G P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Cancer Immunology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia
| | - Natalie Lister
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - R A Taylor
- Cancer Immunology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia; Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
21
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
22
|
Xia X, Yang Z, Lu Q, Liu Z, Wang L, Du J, Li Y, Yang DH, Wu S. Reshaping the tumor immune microenvironment to improve CAR-T cell-based cancer immunotherapy. Mol Cancer 2024; 23:175. [PMID: 39187850 PMCID: PMC11346058 DOI: 10.1186/s12943-024-02079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
In many hematologic malignancies, the adoptive transfer of chimeric antigen receptor (CAR) T cells has demonstrated notable success; nevertheless, further improvements are necessary to optimize treatment efficacy. Current CAR-T therapies are particularly discouraging for solid tumor treatment. The immunosuppressive microenvironment of tumors affects CAR-T cells, limiting the treatment's effectiveness and safety. Therefore, enhancing CAR-T cell infiltration capacity and resolving the immunosuppressive responses within the tumor microenvironment could boost the anti-tumor effect. Specific strategies include structurally altering CAR-T cells combined with targeted therapy, radiotherapy, or chemotherapy. Overall, monitoring the tumor microenvironment and the status of CAR-T cells is beneficial in further investigating the viability of such strategies and advancing CAR-T cell therapy.
Collapse
Affiliation(s)
- Xueting Xia
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zongxin Yang
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qisi Lu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, China
| | - Zhenyun Liu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lei Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jinwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA.
| | - Shaojie Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
23
|
Yu B, Kang J, Lei H, Li Z, Yang H, Zhang M. Immunotherapy for colorectal cancer. Front Immunol 2024; 15:1433315. [PMID: 39238638 PMCID: PMC11375682 DOI: 10.3389/fimmu.2024.1433315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Collapse
Affiliation(s)
- Bing Yu
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Jian Kang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hong Lei
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhe Li
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hao Yang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Meng Zhang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
24
|
Deng T, Deng Y, Tsao ST, Xiong Q, Yao Y, Liu C, Gu MY, Huang F, Wang H. Rapidly-manufactured CD276 CAR-T cells exhibit enhanced persistence and efficacy in pancreatic cancer. J Transl Med 2024; 22:633. [PMID: 38978106 PMCID: PMC11229349 DOI: 10.1186/s12967-024-05462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies and the lack of treatment options makes it more deadly. Chimeric Antigen Receptor T-cell (CAR-T) immunotherapy has revolutionized cancer treatment and made great breakthroughs in treating hematological malignancies, however its success in treating solid cancers remains limited mainly due to the lack of tumor-specific antigens. On the other hand, the prolonged traditional manufacturing process poses challenges, taking 2 to 6 weeks and impacting patient outcomes. CD276 has recently emerged as a potential therapeutic target for anti-solid cancer therapy. Here, we investigated the efficacy of CD276 CAR-T and rapidly-manufactured CAR-T against pancreatic cancer. METHODS In the present study, CD276 CAR-T was prepared by CAR structure carrying 376.96 scFv sequence, CD8 hinge and transmembrane domain, 4-1BB and CD3ζ intracellular domains. Additionally, CD276 rapidly-manufactured CAR-T (named CD276 Dash CAR-T) was innovatively developed by shortening the duration of ex vitro culture to reduce CAR-T manufacturing time. We evaluated the anti-tumor efficacy of CD276 CAR-T and further compared the functional assessment of Dash CAR-T and conventional CAR-T in vitro and in vivo by detecting the immunophenotypes, killing ability, expansion capacity and tumor-eradicating effect of CAR-T. RESULTS We found that CD276 was strongly expressed in multiple solid cancer cell lines and that CD276 CAR-T could efficiently kill these solid cancer cells. Moreover, Dash CAR-T was successfully manufactured within 48-72 h and the functional validation was carried out subsequently. In vitro, CD276 Dash CAR-T possessed a less-differentiated phenotype and robust proliferative ability compared to conventional CAR-T. In vivo xenograft mouse model, CD276 Dash CAR-T showed enhanced anti-pancreatic cancer efficacy and T cell expansion. Besides, except for the high-dose group, the body weight of mice was maintained stable, and the state of mice was normal. CONCLUSIONS In this study, we proved CD276 CAR-T exhibited powerful activity against pancreatic cancer cells in vitro and in vivo. More importantly, we demonstrated the manufacturing feasibility, acceptable safety and superior anti-tumor efficacy of CD276 Dash CAR-T generated with reduced time. The results of the above studies indicated that CD276 Dash CAR-T immunotherapy might be a novel and promising strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Tian Deng
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Yingzhi Deng
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Shih-Ting Tsao
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Qinghui Xiong
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Yue Yao
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Cuicui Liu
- Regulatory Affairs Department, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Ming Yuan Gu
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Fei Huang
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China.
| | - Haiying Wang
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China.
| |
Collapse
|
25
|
Pandit S, Agarwalla P, Song F, Jansson A, Dotti G, Brudno Y. Implantable CAR T cell factories enhance solid tumor treatment. Biomaterials 2024; 308:122580. [PMID: 38640784 PMCID: PMC11125516 DOI: 10.1016/j.biomaterials.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has produced revolutionary success in hematological cancers such as leukemia and lymphoma. Nonetheless, its translation to solid tumors faces challenges due to manufacturing complexities, short-lived in vivo persistence, and transient therapeutic impact. We introduce 'Drydux' - an innovative macroporous biomaterial scaffold designed for rapid, efficient in-situ generation of tumor-specific CAR T cells. Drydux expedites CAR T cell preparation with a mere three-day turnaround from patient blood collection, presenting a cost-effective, streamlined alternative to conventional methodologies. Notably, Drydux-enabled CAR T cells provide prolonged in vivo release, functionality, and enhanced persistence exceeding 150 days, with cells transitioning to memory phenotypes. Unlike conventional CAR T cell therapy, which offered only temporary tumor control, equivalent Drydux cell doses induced lasting tumor remission in various animal tumor models, including systemic lymphoma, peritoneal ovarian cancer, metastatic lung cancer, and orthotopic pancreatic cancer. Drydux's approach holds promise in revolutionizing solid tumor CAR T cell therapy by delivering durable, rapid, and cost-effective treatments and broadening patient accessibility to this groundbreaking therapy.
Collapse
Affiliation(s)
- Sharda Pandit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Pritha Agarwalla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anton Jansson
- Department of Product Development, Production and Design, School of Engineering, Jönköping University, Sweden
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
27
|
Golo M, Newman PLH, Kempe D, Biro M. Mechanoimmunology in the solid tumor microenvironment. Biochem Soc Trans 2024; 52:1489-1502. [PMID: 38856041 DOI: 10.1042/bst20231427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that adjoins the cancer cells within solid tumors and comprises distinct components such as extracellular matrix, stromal and immune cells, blood vessels, and an abundance of signaling molecules. In recent years, the mechanical properties of the TME have emerged as critical determinants of tumor progression and therapeutic response. Aberrant mechanical cues, including altered tissue architecture and stiffness, contribute to tumor progression, metastasis, and resistance to treatment. Moreover, burgeoning immunotherapies hold great promise for harnessing the immune system to target and eliminate solid malignancies; however, their success is hindered by the hostile mechanical landscape of the TME, which can impede immune cell infiltration, function, and persistence. Consequently, understanding TME mechanoimmunology - the interplay between mechanical forces and immune cell behavior - is essential for developing effective solid cancer therapies. Here, we review the role of TME mechanics in tumor immunology, focusing on recent therapeutic interventions aimed at modulating the mechanical properties of the TME to potentiate T cell immunotherapies, and innovative assays tailored to evaluate their clinical efficacy.
Collapse
Affiliation(s)
- Matteo Golo
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter L H Newman
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Kim S, Li S, Jangid AK, Park HW, Lee DJ, Jung HS, Kim K. Surface Engineering of Natural Killer Cells with CD44-targeting Ligands for Augmented Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306738. [PMID: 38161257 DOI: 10.1002/smll.202306738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Indexed: 01/03/2024]
Abstract
Adoptive immunotherapy utilizing natural killer (NK) cells has demonstrated remarkable efficacy in treating hematologic malignancies. However, its clinical intervention for solid tumors is hindered by the limited expression of tumor-specific antigens. Herein, lipid-PEG conjugated hyaluronic acid (HA) materials (HA-PEG-Lipid) for the simple ex-vivo surface coating of NK cells is developed for 1) lipid-mediated cellular membrane anchoring via hydrophobic interaction and thereby 2) sufficient presentation of the CD44 ligand (i.e., HA) onto NK cells for cancer targeting, without the need for genetic manipulation. Membrane-engineered NK cells can selectively recognize CD44-overexpressing cancer cells through HA-CD44 affinity and subsequently induce in situ activation of NK cells for cancer elimination. Therefore, the surface-engineered NK cells using HA-PEG-Lipid (HANK cells) establish an immune synapse with CD44-overexpressing MIA PaCa-2 pancreatic cancer cells, triggering the "recognition-activation" mechanism, and ultimately eliminating cancer cells. Moreover, in mouse xenograft tumor models, administrated HANK cells demonstrate significant infiltration into solid tumors, resulting in tumor apoptosis/necrosis and effective suppression of tumor progression and metastasis, as compared to NK cells and gemcitabine. Taken together, the HA-PEG-Lipid biomaterials expedite the treatment of solid tumors by facilitating a sequential recognition-activation mechanism of surface-engineered HANK cells, suggesting a promising approach for NK cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Oral Histology, Dankook University College of Dentistry, 119, Dandae-ro, Dongnam-gu, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| |
Collapse
|
29
|
Nie S, Song Y, Hu K, Zu W, Zhang F, Chen L, Ma Q, Zhou Z, Jiao S. CXCL10 and IL15 co-expressing chimeric antigen receptor T cells enhance anti-tumor effects in gastric cancer by increasing cytotoxic effector cell accumulation and survival. Oncoimmunology 2024; 13:2358590. [PMID: 38812569 PMCID: PMC11135867 DOI: 10.1080/2162402x.2024.2358590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells have demonstrated outstanding therapeutic success in hematological malignancies. Yet, their efficacy against solid tumors remains constrained due to inadequate infiltration of cytotoxic T and CAR-T cells in the tumor microenvironment (TME), a factor correlated with poor prognosis in patients with solid tumors. To overcome this limitation, we engineered CAR-T cells to secrete CXCL10 and IL15 (10 × 15 CAR-T), which sustain T cell viability and enhance their recruitment, thereby amplifying the long-term cytotoxic capacity of CAR-T cells in vitro. In a xenograft model employing NUGC4-T21 cells, mice receiving 10 × 15 CAR-T cells showed superior tumor reduction and extended survival rates compared to those treated with second-generation CAR-T cells. Histopathological evaluations indicated a pronounced increase in cytotoxic T cell accumulation in the TME post 10 × 15 CAR-T cell treatment. Therefore, the synergistic secretion of CXCL10 and IL15 in these CAR-T cells enhances T cell recruitment and adaptability within tumor tissues, improving tumor control. This approach may offer a promising strategy for advancing CAR-T therapies in the treatment of solid tumors.
Collapse
Affiliation(s)
- Siyue Nie
- PLA Medical School, Beijing, China
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yujie Song
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Kun Hu
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Wei Zu
- Department of Functional Neurosurgery, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Fengjiao Zhang
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Lixia Chen
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Qiang Ma
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Zishan Zhou
- Research and Development Department, Beijing DCTY Biotech Co. LTD, Beijing, China
| | - Shunchang Jiao
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Ambegoda P, Wei HC, Jang SRJ. The role of immune cells in resistance to oncolytic viral therapy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5900-5946. [PMID: 38872564 DOI: 10.3934/mbe.2024261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Resistance to treatment poses a major challenge for cancer therapy, and oncoviral treatment encounters the issue of viral resistance as well. In this investigation, we introduce deterministic differential equation models to explore the effect of resistance on oncolytic viral therapy. Specifically, we classify tumor cells into resistant, sensitive, or infected with respect to oncolytic viruses for our analysis. Immune cells can eliminate both tumor cells and viruses. Our research shows that the introduction of immune cells into the tumor-virus interaction prevents all tumor cells from becoming resistant in the absence of conversion from resistance to sensitivity, given that the proliferation rate of immune cells exceeds their death rate. The inclusion of immune cells leads to an additional virus-free equilibrium when the immune cell recruitment rate is sufficiently high. The total tumor burden at this virus-free equilibrium is smaller than that at the virus-free and immune-free equilibrium. Therefore, immune cells are capable of reducing the tumor load under the condition of sufficient immune strength. Numerical investigations reveal that the virus transmission rate and parameters related to the immune response significantly impact treatment outcomes. However, monotherapy alone is insufficient for eradicating tumor cells, necessitating the implementation of additional therapies. Further numerical simulation shows that combination therapy with chimeric antigen receptor (CAR T-cell) therapy can enhance the success of treatment.
Collapse
Affiliation(s)
- Prathibha Ambegoda
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX, USA
| | - Hsiu-Chuan Wei
- Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan
| | - Sophia R-J Jang
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
31
|
Ku KS, Tang J, Chen Y, Shi Y. Current Advancements in Anti-Cancer Chimeric Antigen Receptor T Cell Immunotherapy and How Nanotechnology May Change the Game. Int J Mol Sci 2024; 25:5361. [PMID: 38791398 PMCID: PMC11120994 DOI: 10.3390/ijms25105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy represents a cutting-edge advancement in the landscape of cancer treatment. This innovative therapy has shown exceptional promise in targeting and eradicating malignant tumors, specifically leukemias and lymphomas. However, despite its groundbreaking successes, (CAR)-T cell therapy is not without its challenges. These challenges, particularly pronounced in the treatment of solid tumors, include but are not limited to, the selection of appropriate tumor antigens, managing therapy-related toxicity, overcoming T-cell exhaustion, and addressing the substantial financial costs associated with treatment. Nanomedicine, an interdisciplinary field that merges nanotechnology with medical science, offers novel strategies that could potentially address these limitations. Its application in cancer treatment has already led to significant advancements, including improved specificity in drug targeting, advancements in cancer diagnostics, enhanced imaging techniques, and strategies for long-term cancer prevention. The integration of nanomedicine with (CAR)-T cell therapy could revolutionize the treatment landscape by enhancing the delivery of genes in (CAR)-T cell engineering, reducing systemic toxicity, and alleviating the immunosuppressive effects within the tumor microenvironment. This review aims to explore how far (CAR)-T cell immunotherapy has come alone, and how nanomedicine could strengthen it into the future. Additionally, the review will examine strategies to limit the off-target effects and systemic toxicity associated with (CAR)-T cell therapy, potentially enhancing patient tolerance and treatment outcomes.
Collapse
Affiliation(s)
- Kimberly S. Ku
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (K.S.K.); (J.T.)
| | - Jie Tang
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (K.S.K.); (J.T.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (K.S.K.); (J.T.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
32
|
Xiong Q, Wang H, Shen Q, Wang Y, Yuan X, Lin G, Jiang P. The development of chimeric antigen receptor T-cells against CD70 for renal cell carcinoma treatment. J Transl Med 2024; 22:368. [PMID: 38637886 PMCID: PMC11025280 DOI: 10.1186/s12967-024-05101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.
Collapse
Affiliation(s)
- Qinghui Xiong
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Haiying Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Qiushuang Shen
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Yan Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Xiujie Yuan
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Guangyao Lin
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Pengfei Jiang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| |
Collapse
|
33
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 PMCID: PMC10930942 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal;
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
34
|
Cai F, Zhang J, Gao H, Shen H. Tumor microenvironment and CAR-T cell immunotherapy in B-cell lymphoma. Eur J Haematol 2024; 112:223-235. [PMID: 37706523 DOI: 10.1111/ejh.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Chimeric receptor antigen T cell (CAR-T cell) therapy has demonstrated effectiveness and therapeutic potential in the immunotherapy of hematological malignancies, representing a promising breakthrough in cancer treatment. Despite the efficacy of CAR-T cell therapy in B-cell lymphoma, response variability, resistance, and side effects remain persistent challenges. The tumor microenvironment (TME) plays an intricate role in CAR-T cell therapy of B-cell lymphoma. The TME is a complex and dynamic environment that includes various cell types, cytokines, and extracellular matrix components, all of which can influence CAR-T cell function and behavior. This review discusses the design principles of CAR-T cells, TME in B-cell lymphoma, and the mechanisms by which TME influences CAR-T cell function. We discuss emerging strategies aimed at modulating the TME, targeting immunosuppressive cells, overcoming inhibitory signaling, and improving CAR-T cell infiltration and persistence. Therefore, these processes enhance the efficacy of CAR-T cell therapy and improve patient outcomes in B-cell lymphoma. Further research will be needed to investigate the molecular and cellular events that occur post-infusion, including changes in TME composition, immune cell interactions, cytokine signaling, and potential resistance mechanisms. Understanding these processes will contribute to the development of more effective CAR-T cell therapies and strategies to mitigate treatment-related toxicities.
Collapse
Affiliation(s)
- Fengqing Cai
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junfeng Zhang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hui Gao
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Joint Research Center for Immune Landscape and Precision Medicine in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
36
|
Liu X, Cheng Y, Mu Y, Zhang Z, Tian D, Liu Y, Hu X, Wen T. Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview. Front Immunol 2024; 15:1328145. [PMID: 38298192 PMCID: PMC10828056 DOI: 10.3389/fimmu.2024.1328145] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao Mu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ti Wen
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
37
|
Zhang L, Guo S, Chang S, Jiang G. Revolutionizing Cancer Treatment: Unleashing the Power of Combining Oncolytic Viruses with CAR-T Cells. Anticancer Agents Med Chem 2024; 24:1407-1418. [PMID: 39051583 DOI: 10.2174/0118715206308253240723055019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Oncolytic Viruses (OVs) have emerged as a promising treatment option for cancer thanks to their significant research potential and encouraging results. These viruses exert a profound impact on the tumor microenvironment, making them effective against various types of cancer. In contrast, the efficacy of Chimeric antigen receptor (CAR)-T cell therapy in treating solid tumors is relatively low. The combination of OVs and CAR-T cell therapy, however, is a promising area of research. OVs play a crucial role in enhancing the tumor-suppressive microenvironment, which in turn enables CAR-T cells to function efficiently in the context of solid malignancies. This review aims to provide a comprehensive analysis of the benefits and drawbacks of OV therapy and CAR-T cell therapy, with a focus on the potential of combining these two treatment approaches.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - ShuXian Guo
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - ShuYing Chang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
38
|
Pihlajoki M, Eloranta K, Nousiainen R, Väyrynen V, Soini T, Kyrönlahti A, Parkkila S, Kanerva J, Wilson DB, Pakarinen MP, Heikinheimo M. Biology of childhood hepatoblastoma and the search for novel treatments. Adv Biol Regul 2023; 91:100997. [PMID: 39492287 DOI: 10.1016/j.jbior.2023.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Our research laboratory has a longstanding interest in developmental disorders and embryonic tumors, and recent efforts have focused on the pathogenesis of pediatric liver tumors. This review focuses on hepatoblastoma (HB), the most common pediatric liver malignancy. Despite advances in treatment, patients with metastatic HB have a poor prognosis, and survivors often have permanent side effects attributable to chemotherapy. In an effort to improve survival and lessen long-term complications of HB, we have searched for novel molecular vulnerabilities using a combination of patient derived cell lines, metabolomics, and RNA sequencing of human samples at diagnosis and follow-up. These studies have shed light on pathogenesis and identified putative targets for future therapies in children with advanced HB.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Katja Eloranta
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Väyrynen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kyrönlahti
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; FICAN Mid, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Jukka Kanerva
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University in St. Louis, St. Louis, United States
| | - Mikko P Pakarinen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Department of Women's Health, Karolinska Institute, Stockholm, Sweden
| | - Markku Heikinheimo
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Pediatrics, Washington University in St. Louis, St. Louis, United States; Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| |
Collapse
|
39
|
Falcone N, Ermis M, Tamay DG, Mecwan M, Monirizad M, Mathes TG, Jucaud V, Choroomi A, de Barros NR, Zhu Y, Vrana NE, Kraatz HB, Kim HJ, Khademhosseini A. Peptide Hydrogels as Immunomaterials and Their Use in Cancer Immunotherapy Delivery. Adv Healthc Mater 2023; 12:e2301096. [PMID: 37256647 PMCID: PMC10615713 DOI: 10.1002/adhm.202301096] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.
Collapse
Affiliation(s)
- Natashya Falcone
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Tess Grett Mathes
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Nihal Engin Vrana
- SPARTHA Medical, CRBS 1 Rue Eugene Boeckel, Strasbourg, 67000, France
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| |
Collapse
|
40
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH, Khan AA. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Int J Nanomedicine 2023; 18:5531-5559. [PMID: 37795042 PMCID: PMC10547015 DOI: 10.2147/ijn.s424872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023] Open
Abstract
The recent developments in the study of clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system have revolutionized the art of genome-editing and its applications for cellular differentiation and immune response behavior. This technology has further helped in understanding the mysteries of cancer progression and possible designing of novel antitumor immunotherapies. CRISPR/Cas9-based genome-editing is now often used to engineer universal T-cells, equipped with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, this technology is used in cytokine stimulation, antibody designing, natural killer (NK) cell transfer, and to overcome immune checkpoints. The innovative potential of CRISPR/Cas9 in preparing the building blocks of adoptive cell transfer (ACT) immunotherapy has opened a new window of antitumor immunotherapy and some of them have gained FDA approval. The manipulation of immunogenetic regulators has opened a new interface for designing, implementation and interpretation of CRISPR/Cas9-based screening in immuno-oncology. Several cancers like lymphoma, melanoma, lung, and liver malignancies have been treated with this strategy, once thought to be impossible. The safe and efficient delivery of CRISPR/Cas9 system within the immune cells for the genome-editing strategy is a challenging task which needs to be sorted out for efficient immunotherapy. Several targeting approaches like virus-mediated, electroporation, microinjection and nanoformulation-based methods have been used, but each procedure offers some limitations. Here, we elaborate the recent updates of cancer management through immunotherapy in partnership with CRISPR/Cas9 technology. Further, some innovative methods of targeting this genome-editing system within the immune system cells for reprogramming them, as a novel strategy of anticancer immunotherapy is elaborated. In addition, future prospects and clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
41
|
Zhang X, Guo H, Chen J, Xu C, Wang L, Ke Y, Gao Y, Zhang B, Zhu J. Highly proliferative and hypodifferentiated CAR-T cells targeting B7-H3 enhance antitumor activity against ovarian and triple-negative breast cancers. Cancer Lett 2023; 572:216355. [PMID: 37597651 DOI: 10.1016/j.canlet.2023.216355] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy is highly effective against hematological neoplasms. However, owing to tumor variability, low antigen specificity, and impermanent viability of CAR-T cells, their use in the treatment of solid tumors is limited. Here, a novel CAR-T cell targeting B7-H3 and incorporating a 4-1BB costimulatory molecule with STAT3-and STAT5-related activation motifs was constructed using lentivirus transduction. B7-H3, a tumor-associated antigen, and its scFv antibody endowed CAR-T cells with tumor-specific targeting capabilities. Moreover, the integration of the trIL2RB and YRHQ motifs stimulated STAT5 and STAT3 in an antigen-dependent manner, inducing a remarkable increase in the proliferation and survival of CAR-T cells via the activation of the JAK-STAT signaling pathway. Besides, the proportion of less-differentiated T cells increased among BB-trIL2RB-z(YRHQ) CAR-T cells. Moreover, BB-trIL2RB-z(YRHQ) effectively inhibited ovarian cancer (OC) and triple-negative breast cancer (TNBC) in vivo at low doses, without high serum levels of inflammatory cytokines and organ toxicity. Therefore, our study proposes a combination of elements for the construction of superior pluripotent CAR-T cells to provide an effective strategy for the treatment of intractable solid tumors.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyan Guo
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Chen
- Jecho Biopharmaceutical Institute, Shanghai, 200240, China
| | - Chenxiao Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Gao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; Jecho Biopharmaceutical Institute, Shanghai, 200240, China
| |
Collapse
|
42
|
Chen J, Zhu T, Jiang G, Zeng Q, Li Z, Huang X. Target delivery of a PD-1-TREM2 scFv by CAR-T cells enhances anti-tumor efficacy in colorectal cancer. Mol Cancer 2023; 22:131. [PMID: 37563723 PMCID: PMC10413520 DOI: 10.1186/s12943-023-01830-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) -T cell therapy is an efficient therapeutic strategy for specific hematologic malignancies. However, positive outcomes of this novel therapy in treating solid tumors are curtailed by the immunosuppressive tumor microenvironment (TME), wherein signaling of the checkpoint programmed death-1 (PD-1)/PD-L1 directly inhibits T-cell responses. Although checkpoint-targeted immunotherapy succeeds in increasing the number of T cells produced to control tumor growth, the desired effect is mitigated by the action of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in the TME. Previous studies have confirmed that targeting triggering-receptor-expressed on myeloid cells 2 (TREM2) on TAMs and MDSCs enhances the outcomes of anti-PD-1 immunotherapy. METHODS We constructed carcinoembryonic antigen (CEA)-specific CAR-T cells for colorectal cancer (CRC)-specific antigens with an autocrine PD-1-TREM2 single-chain variable fragment (scFv) to target the PD-1/PD-L1 pathway, MDSCs and TAMs. RESULTS We found that the PD-1-TREM2-targeting scFv inhibited the activation of the PD-1/PD-L1 pathway. In addition, these secreted scFvs blocked the binding of ligands to TREM2 receptors present on MDSCs and TAMs, reduced the proportion of MDSCs and TAMs, and enhanced T-cell effector function, thereby mitigating immune resistance in the TME. PD-1-TREM2 scFv-secreting CAR-T cells resulted in highly effective elimination of tumors compared to that achieved with PD-1 scFv-secreting CAR-T therapy in a subcutaneous CRC mouse model. Moreover, the PD-1-TREM2 scFv secreted by CAR-T cells remained localized within tumors and exhibited an extended half-life. CONCLUSIONS Together, these results indicate that PD-1-TREM2 scFv-secreting CAR-T cells have strong potential as an effective therapy for CRC.
Collapse
Affiliation(s)
- Jian Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China
| | - Tianchuan Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China
| | - Qi Zeng
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China
| | - Zhijian Li
- The Fourth People's Hospital of Foshan, 528000, Foshan, Guangdong, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China.
| |
Collapse
|
43
|
Wang L, Wang X, Wu Y, Wang J, Zhou W, Wang J, Guo H, Zhang N, Zhang L, Hu X, Zhao Y, Miao J, Zhang Z, Chard Dunmall LS, Zhang D, Lemoine NR, Cheng Z, Wang Y. A novel microenvironment regulated system CAR-T (MRS.CAR-T) for immunotherapeutic treatment of esophageal squamous carcinoma. Cancer Lett 2023; 568:216303. [PMID: 37422126 DOI: 10.1016/j.canlet.2023.216303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Chimeric antigen receptor T cell immunotherapy has achieved promising therapeutic effects in the treatment of hematological malignancies. However, there are still many obstacles, including on-target off-tumor antigen expression, that prevent successful application to solid tumors. We designed a tumor microenvironment (TME) regulated system chimeric antigen receptor T (MRS.CAR-T) which can only be auto-activated in the solid TME. B7-H3 was selected as the target antigen for esophageal carcinoma. An element comprising a human serum albumin (HSA) binding peptide and a matrix metalloproteases (MMPs) cleavage site was inserted between the 5' terminal signal peptide and single chain fragment variable (scFv) of the CAR skeleton. Upon administration, HSA bound the binding peptide in MRS.B7-H3.CAR-T effectively and promoted proliferation and differentiation into memory cells. MRS.B7-H3.CAR-T was not cytotoxic in normal tissues expressing B7-H3 as the antigen recognition site in the scFv was cloaked by HSA. The anti-tumor function of MRS.B7-H3.CAR-T was recovered once the cleavage site was cleaved by MMPs in the TME. The anti-tumor efficacy associated with MRS.B7-H3.CAR-T cells was improved compared to classic B7-H3.CAR-T cells in vitro and less IFN-γ was released, suggesting a treatment that may induce less extent of cytokine release syndrome-mediated toxicity. In vivo, MRS.B7-H3.CAR-T cells had strong anti-tumor activity and were safe. MRS.CAR-T represents a novel strategy to improve the efficacy and safety of CAR-T therapy in solid tumors.
Collapse
Affiliation(s)
- Lihong Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaosa Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yangyang Wu
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingjing Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenping Zhou
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haoran Guo
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lufang Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanyu Hu
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Zhao
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zifang Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Danhua Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nicholas R Lemoine
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China; Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China; Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
44
|
Khawar MB, Ge F, Afzal A, Sun H. From barriers to novel strategies: smarter CAR T therapy hits hard to tumors. Front Immunol 2023; 14:1203230. [PMID: 37520522 PMCID: PMC10375020 DOI: 10.3389/fimmu.2023.1203230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy for solid tumors shows promise, but several hurdles remain. Strategies to overcome barriers such as CAR T therapy-related toxicities (CTT), immunosuppression, and immune checkpoints through research and technology are needed to put the last nail to the coffin and offer hope for previously incurable malignancies. Herein we review current literature and infer novel strategies for the mitigation of CTT while impeding immune suppression, stromal barriers, tumor heterogeneity, on-target/off-tumor toxicities, and better transfection strategies with an emphasis on clinical research and prospects.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Fei Ge
- Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, China
| | - Ali Afzal
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
45
|
Zhang S, Xu Q, Sun W, Zhou J, Zhou J. Immunomodulatory effects of CDK4/6 inhibitors. Biochim Biophys Acta Rev Cancer 2023; 1878:188912. [PMID: 37182667 DOI: 10.1016/j.bbcan.2023.188912] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
The dysregulation of the cell cycle is one of the hallmarks of cancer. Cyclin-dependent kinase 4 (CDK4) and CDK6 play crucial roles in regulating cell cycle and other cellular functions. CDK4/6 inhibitors have achieved great success in treating breast cancers and are currently being tested extensively in other tumor types as well. Accumulating evidence suggests that CDK4/6 inhibitors exert antitumor effects through immunomodulation aside from cell cycle arrest. Here we outline the immunomodulatory activities of CDK4/6 inhibitors, discuss the immune mechanisms of drug resistance and explore avenues to harness their immunotherapeutic potential when combined with immune checkpoint inhibitors (ICIs) or chimeric antigen receptor (CAR) T-cell therapy to improve the clinical outcomes.
Collapse
Affiliation(s)
- Shumeng Zhang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjia Sun
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 PMCID: PMC10296335 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| |
Collapse
|
47
|
Duan S, Wang S, Qiao L, Yu X, Wang N, Chen L, Zhang X, Zhao X, Liu H, Wang T, Wu Y, Li N, Liu F. Oncolytic Virus-Driven Biotherapies from Bench to Bedside. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206948. [PMID: 36879416 DOI: 10.1002/smll.202206948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Indexed: 06/08/2023]
Abstract
With advances in cancer biology and an ever-deepening understanding of molecular virology, oncolytic virus (OV)-driven therapies have developed rapidly and become a promising alternative to traditional cancer therapies. In recent years, satisfactory results for oncolytic virus therapy (OVT) are achieved at both the cellular and organismal levels, and efforts are being increasingly directed toward clinical trials. Unfortunately, OVT remains ineffective in these trials, especially when performed using only a single OV reagent. In contrast, integrated approaches, such as using immunotherapy, chemotherapy, or radiotherapy, alongside OVT have demonstrated considerable efficacy. The challenges of OVT in clinical efficacy include the restricted scope of intratumoral injections and poor targeting of intravenous administration. Further optimization of OVT delivery is needed before OVs become a viable therapy for tumor treatment. In this review, the development process and antitumor mechanisms of OVs are introduced. The advances in OVT delivery routes to provide perspectives and directions for the improvement of OVT delivery are highlighted. This review also discusses the advantages and limitations of OVT monotherapy and combination therapy through the lens of recent clinical trials and aims to chart a course toward safer and more effective OVT strategies.
Collapse
Affiliation(s)
- Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Qiao
- Colorectal and Henia Minimally Invasive Surgery Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xu Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Wu
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Department of General Practice, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
48
|
Zinzi A, Gaio M, Liguori V, Cagnotta C, Paolino D, Paolisso G, Castaldo G, Nicoletti G, Rossi F, Capuano A, Rafaniello C. Late relapse after CAR-T cell therapy for adult patients with hematologic malignancies: a definite evidence from Systematic Review and Meta-Analysis on individual data. Pharmacol Res 2023; 190:106742. [PMID: 36963592 DOI: 10.1016/j.phrs.2023.106742] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Chimeric Antigen Receptor (CAR)-modified T lymphocytes represent one of the most innovative and promising approaches to treating hematologic malignancies. CAR-T cell therapy is currently being used for the treatment of relapsed/refractory (r/r) B-cell malignancies including Acute Lymphoblastic Leukemia, Large B-Cell Lymphoma, Follicular Lymphoma, Multiple Myeloma and Mantle Cell Lymphoma. Despite the unprecedented clinical success, one of the major issues of the approved CAR-T cell therapy - tisagenlecleucel, axicabtagene, lisocabtagene, idecabtagene, ciltacabtagene and brexucabtagene - is the uncertainty about its persistence which in turn could lead to weak or no response to therapy with malignancy recurrence. Here we show that the prognosis of patients who do not respond to CAR-T cell therapy is still an unmet medical need. We performed a systematic review and meta-analysis collecting individual data on Duration of Response from at least 12-month follow-up studies. We found that the pooled prevalence of relapse within the first 12 months after CAR-T infusion was 61% (95% CI, 43%-78%); moreover, one year after the infusion, the analysis highlighted a pooled prevalence of relapse of 24% (95% CI, 11%-42%). Our results suggest that identifying potential predictive biomarkers of response to CAR-T therapy, especially for patients affected by the advanced stage of blood malignancies, could lead to stratification of the eligible population to that therapy, recognizing which patients will benefit and which will not, helping regulators to make decision in that way.
Collapse
Affiliation(s)
- Alessia Zinzi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mario Gaio
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valerio Liguori
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Cecilia Cagnotta
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa s.n.c., I-88100 Catanzaro, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138 Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Gianfranco Nicoletti
- Department of Imaging, University of Campania "Luigi Vanvitelli", Breast Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, Naples, Italy
| | - Francesco Rossi
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
49
|
Lu J, Liang T, Li P, Yin Q. Regulatory effects of IRF4 on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1086803. [PMID: 36814912 PMCID: PMC9939821 DOI: 10.3389/fimmu.2023.1086803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention.
Collapse
Affiliation(s)
- Jing Lu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Taotao Liang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ping Li
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
50
|
Wang H, Jiang D, Liu L, Zhang Y, Qin M, Qu Y, Wang L, Wu S, Zhou H, Xu T, Xu G. Spermidine Promotes Nb CAR-T Mediated Cytotoxicity to Lymphoma Cells Through Elevating Proliferation and Memory. Onco Targets Ther 2022; 15:1229-1243. [PMID: 36267609 PMCID: PMC9577380 DOI: 10.2147/ott.s382540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose Due to the natural advantages of spermidine in immunity, we investigated the effects of spermidine pretreatment on nanobody-based CAR-T cells (Nb CAR-T) mediated cytotoxicity and potential mechanism. Patients and Methods The optimal concentration of spermidine was determined by detecting its impact on viability and proliferation of T cells. The phenotypic characteristic of CAR-T cells, which were treated with spermidine for 4 days, was examined by flow cytometry. The expansion ability of CAR-T cells was monitored in being cocultured with tumor cells. Additionally, CAR-T cells were stimulated by lymphoma cells to test its cytotoxicity in vitro, and the supernatant in co-culture models were collected to test the cytokine production. Furthermore, xenograft models were constructed to detect the anti-tumor activity of CAR-T cells in vivo. Results The optimal concentration of spermidine acting on T cells was 5μM. The antigen-dependent proliferation of spermidine pretreatment CD19 CAR-T cells or Nb CAR-T cells was increased compared to control. Central memory T cells(TCM) dominated the CAR-T cell population in the presence of spermidine. When spermidine pretreatment CAR-T cells were stimulated with Daudi cells, the secretion of IL-2 and IFN-γ has been significantly enhanced. The ability of CAR-T cells to lysis Daudi cells was enhanced with the help of spermidine, even at higher tumor loads. Pre-treated Nb CAR-T cells with spermidine were able to control tumor cells in vivo, and therefore prolong mice survival. Conclusion Our results revealed that spermidine could promote Nb CAR-T mediated cytotoxicity to lymphomas cells through enhancing memory and proliferation, and provided a meaningful approach to strengthen the anti-tumor effect of CAR-T cells.
Collapse
Affiliation(s)
- Hongxia Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, People’s Republic of China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, People’s Republic of China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Liyuan Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Yanting Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Miao Qin
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Yuliang Qu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Liyan Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Shan Wu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Haijin Zhou
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Tao Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, People’s Republic of China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China,Correspondence: Guangxian Xu, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, People’s Republic of China, Tel +86 13995414482, Email ;
| |
Collapse
|