1
|
Shahin R, Jaafreh S, Azzam Y. Tracking protein kinase targeting advances: integrating QSAR into machine learning for kinase-targeted drug discovery. Future Sci OA 2025; 11:2483631. [PMID: 40181786 PMCID: PMC11980485 DOI: 10.1080/20565623.2025.2483631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Protein kinases are vital drug targets, yet designing selective inhibitors is challenging, compounded by resistance and kinome complexity. This review explores Quantitative Structure-Activity Relationship (QSAR) modeling for kinase drug discovery, focusing on integrating traditional QSAR with machine learning (ML)-CNNs, RNNs-and structural data. Methods include structural databases, docking, and deep learning QSAR. Key findings show ML-integrated QSAR significantly improves selective inhibitor design for CDKs, JAKs, PIM kinases. The IDG-DREAM challenge exemplifies ML's potential for accurate kinase-inhibitor interaction prediction, outperforming traditional methods and enabling inhibitors with enhanced selectivity, efficacy, and resistance mitigation. QSAR combined with advanced computation and experimental data accelerates kinase drug discovery, offering transformative precision medicine potential. This review highlights deep learning-enhanced QSAR's novelty in automating feature extraction and capturing complex relationships, surpassing traditional QSAR, while emphasizing interpretability and experimental validation for clinical translation.
Collapse
Affiliation(s)
- Rand Shahin
- Drug Design Unit, Department of Pharmaceutical Chemistry, Hashemite University, Zarqa, Jordan
| | - Sawsan Jaafreh
- Department of Chemistry, The Hashemite University, Zarqa, Jordan
| | - Yusra Azzam
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Li S, Lin J, Huang L, Hu S, Wang M, Sun W, Sun S. STK31 drives tumor immune evasion through STAT3-IL-6 mediated CD8 + T cell exhaustion. Oncogene 2025; 44:1452-1462. [PMID: 40025230 DOI: 10.1038/s41388-024-03271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 03/04/2025]
Abstract
Dysregulations in protein kinases significantly contribute to the initiation, progression, and drug resistance in non-small cell lung cancer (NSCLC). Identification of novel oncogenic drivers within the human kinome is crucial for targeted therapy. In this study, we conducted a comprehensive analysis of the TCGA database and literature, pinpointing 16 candidate genes in lung cancer exhibiting frequent dysregulation and limited research. Our functional analysis revealed Serine/threonine kinase 31 (STK31) as a key player in driving tumor growth, in immune-competent mice, with minimal impact in nude mice. Further investigations unveiled upregulation of STK31 led to CD8+ T cell exhaustion. Mechanistically, STK31 induced CD8+ T cell exhaustion through the signal transducer and activator of transcription 3 (STAT3) - interleukin 6 (IL-6) signaling pathway. Direct interaction between STK31 and STAT3 activated the transcription of downstream oncogenic targets, such as IL-6, facilitating immune escape. Moreover, STK31 exhibited elevated expression levels in lung cancer tissues compared to adjacent tissues and displayed a significant correlation with poor prognosis in lung cancer patients. This study defines a critical role of STK31 in promoting immune escape through STAT3 activation, positioning it as a promising therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Shasha Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojie Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingwei Wang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Zhou D, Tang E, Wang W, Xiao Y, Huang J, Liu J, Zheng C, Zhang K, Hu R, Wang F, Xiong P, Chu X, Li W, Liu D, Zeng X, Zheng D, Wang L, Zheng Y, Zhang S. Combined therapy with DR5-targeting antibody-drug conjugate and CDK inhibitors as a strategy for advanced colorectal cancer. Cell Rep Med 2025:102158. [PMID: 40449480 DOI: 10.1016/j.xcrm.2025.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/21/2025] [Accepted: 05/06/2025] [Indexed: 06/03/2025]
Abstract
Targeted therapies for advanced microsatellite stable (MSS) subtype colorectal cancer (MSS-CRC) remain a clinical challenge. Here, we show that death receptor 5 (DR5) is elevated in both MSS and microsatellite instability-high (MSI-H) colorectal cancer (CRC) cohorts, highlighting its potential as a clinical target. Oba01, a clinical-stage DR5-targeting antibody-drug conjugate (ADC) delivering the microtubule-disrupting agent monomethyl auristatin E (MMAE), shows superior efficacy in CRC cell lines, patient-derived xenografts and their corresponding organoids, irrespective of MSS or MSI-H status. Importantly, our functional multi-omics analysis reveals that the cell cycle pathway and cyclin-dependent kinases (CDKs) are key synergistic targets of Oba01's tumor-killing activity. We further show that Oba01 synergizes with the Food and Drug Administration (FDA)-approved CDK inhibitor abemaciclib in clinically relevant in vivo models. This synergy is also observed with other CDK inhibitors, underscoring the potential of combining Oba01 with CDK inhibition as a therapeutic strategy for advanced CRC, particularly the refractory MSS subtype.
Collapse
Affiliation(s)
- Dongdong Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Er'jiang Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China; Institute of Gastrointestinal Surgery and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Wenjun Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Youban Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jianming Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jie Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chao Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Kai Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Ruxia Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Feiqi Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Peng Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Xin Chu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, China
| | - Weisong Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, China
| | - Dongqin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, China
| | - Xiangfu Zeng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; Department of General Surgery, First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, China
| | - Dexian Zheng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Yantai Obioadc Biomedical Technology Ltd., Yantai 264000, China
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China.
| | - Yong Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China; Yantai Obioadc Biomedical Technology Ltd., Yantai 264000, China.
| |
Collapse
|
4
|
AlKharboush DF, Khayat MT, Jamal A, El-Araby ME, Awaji AA, Khan MI, Omar AM. Exploring a kinase inhibitor targeting PI3KCA mutant cancer cells. J Biomol Struct Dyn 2025:1-18. [PMID: 40390333 DOI: 10.1080/07391102.2025.2502137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/04/2024] [Indexed: 05/21/2025]
Abstract
The PI3K/mTOR signaling pathway is often disrupted in human cancers, with PI3Kα being one of the most mutated kinases. There has been considerable interest in developing small-molecule inhibitors aimed at blocking the mutant PI3Kα-driven phosphatidylinositol 3-kinase (PI3K) signaling pathway as a potential treatment for cancer. In this study, we describe our effort to identify a compound, phenylacetamide-1H-imidazol-5-one (KIM-161), from our in-house oncogenic kinase-targeting inhibitors. KIM-161 showed excellent anti-proliferative activities at sub-nanomolar concentrations, primarily against mutant PI3Kα breast cancer cell lines, when compared with wild-type PI3Kα breast cancer cell lines, producing both dose- and time-dependent effects with an IC50 range of 1.42 - 0.064 µM. Next, we observed that KIM-161 was able to induce ROS production by modulating breast cancer metabolism, suggesting its broad effects on mutant PI3Kα regulated downstream pathways. We also computationally analyzed the binding interactions between KIM-161 and PI3K-alpha (PDB ID: 8EXL). Molecular docking showed that KIM-161 had a docking score of -7.44 Kcal/mol, compared to the reference compound, which had a docking score of -7.67 Kcal/mol. Moreover, molecular dynamics simulation studies demonstrated that the PI3Ka-KIM-161 complex remained stable throughout the 100 ns simulation, when compared to the PI3Ka complex with the co-crystallized inhibitor. These findings present KIM-161 as a promising lead, providing valuable insights into treatment approaches and resistance mechanisms associated with PI3K inhibitors in specific PIK3CA-mutant cancer subtypes.
Collapse
Affiliation(s)
- Dana F AlKharboush
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moustafa E El-Araby
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Imran Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Wang Y, Li D, Zhang T, Xu S, Zhang Y, Zhao K, Li S, Shen K, Li X, Xu P. Evaluation of the pharmacokinetic interactions of montmorillonite powder or loperamide on pyrotinib in healthy volunteers. Front Pharmacol 2025; 16:1563556. [PMID: 40433999 PMCID: PMC12104674 DOI: 10.3389/fphar.2025.1563556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Aims To investigate the potential pharmacokinetic interactions of montmorillonite powder or loperamide on pyrotinib. Methods This study was a single-center, open-label, single-dose, fixed-sequence clinical trial conducted with healthy volunteers. The participants were divided into two groups (A and B), each consisting of 18 subjects. Both groups received a single oral dose of 400 mg of pyrotinib on day 1. On day 9, Group A received a single dose of 400 mg of pyrotinib followed by 3 g of montmorillonite powder 2 h later, while Group B received a single dose of pyrotinib and 4 mg of loperamide after breakfast on day 9, followed by single oral doses of 2 mg of loperamide at 2 and 4 h post-administration. Blood samples were collected to determine pyrotinib blood concentrations. Results In Group A, the combination treatment with montmorillonite powder resulted in a decrease in Cmax, AUC0-t, and AUC0-∞ by 26.7%, 33.1%, and 32.4%, respectively, compared to pyrotinib alone. In Group B, the combination treatment with loperamide had minimal impact on pyrotinib's absorption rate but slightly increased AUC0-t and AUC0-∞ by approximately 18% and 19%, respectively, while decreasing CL/F and prolonging the t1/2. Conclusion Even when montmorillonite powder was administered 2 h after pyrotinib dosing, it still reduced systemic exposure of pyrotinib by 32.4% in AUC0-∞. In contrast, loperamide increased pyrotinib exposure by 19% in AUC0-∞ when used together. Based on these findings, loperamide is recommended for symptom control, while montmorillonite powder should not be co-administered with pyrotinib or any drug requiring optimal absorption. Clinical trial registration [ClinicalTrials.gov], identifier [NCT05252546].
Collapse
Affiliation(s)
- Yike Wang
- Department of Clinical Pharmacology, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Dai Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tong Zhang
- Department of Clinical Pharmacology, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Sumei Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanxin Zhang
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kaijing Zhao
- Department of Clinical Pharmacology, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Shaorong Li
- Department of Clinical Pharmacology, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Kai Shen
- Department of Clinical Pharmacology, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Xiaomin Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Pingsheng Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Bourgeois NM, Wei L, Kaushansky A, Aitchison JD. Exploiting Host Kinases to Combat Dengue Virus Infection and Disease. Antiviral Res 2025:106172. [PMID: 40348023 DOI: 10.1016/j.antiviral.2025.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The burden of dengue on human health has dramatically increased in recent years, underscoring the urgent need for effective therapeutic interventions. Despite decades of research since the discovery of the dengue virus, no specific antiviral treatments are available and strategies to reliably prevent severe disease remain limited. Direct-acting antivirals against dengue are under active investigation but have shown limited efficacy to date. An underappreciated Achille's heal of the virus is its dependence on host factors for infection and pathogenesis, each of which presents a potential avenue for therapeutic intervention. We and others have demonstrated that dengue virus relies on multiple host kinases, some of which are already targeted by clinically approved inhibitors. These offer drug repurposing opportunities for host-directed dengue treatment. Here, we summarize findings on the role of kinases in dengue infection and disease and highlight potential kinase targets for the development of innovative host-directed therapeutics.
Collapse
Affiliation(s)
- Natasha M Bourgeois
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| | - John D Aitchison
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| |
Collapse
|
7
|
Li L, Wang S, Fu S, Chen Z, Wang P, Zhao Y. Human ATP-binding proteins: Structural features, functional diversity, and pharmacotherapeutic potential in disease: A review. Int J Biol Macromol 2025; 308:142303. [PMID: 40118416 DOI: 10.1016/j.ijbiomac.2025.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
ATP-binding proteins (ABPs) form diverse and essential protein families across living organisms. Early life forms likely relied on simple chemical reactions for energy, but with the emergence of ABPs and their evolving functions, organisms became capable of more efficient energy storage and utilization, which drove the complexity of metabolic and life processes. By binding and hydrolyzing ATP through conserved structural motifs such as the Walker motifs, ABPs play critical roles in material transport, signal transduction, cellular structure maintenance, motility, and cell cycle regulation. Dysfunctions arising from mutations, deletions, or misregulation of ABPs are linked to a variety of human diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. The growing recognition of ABPs' significance in disease progression highlights their relevance not only in basic biology but also in clinical applications, particularly as biomarkers and therapeutic targets. This review provides a comprehensive overview of human ABPs, detailing their structural and functional roles, their involvement in disease mechanisms, and the latest advances in understanding their clinical relevance. Additionally, it identifies current research gaps and offers new perspectives for future investigations and therapeutic strategies.
Collapse
Affiliation(s)
- Letong Li
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, PR China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhen Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
8
|
Shi Z, Kuai M, Li B, Akowuah CF, Wang Z, Pan Y, Tang M, Yang X, Lü P. The role of VEGF in Cancer angiogenesis and tumorigenesis: Insights for anti-VEGF therapy. Cytokine 2025; 189:156908. [PMID: 40049050 DOI: 10.1016/j.cyto.2025.156908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis, playing a pivotal role in both physiological and pathological processes. It promotes the formation of new blood vessels and activates downstream signaling pathways that regulate endothelial cell function. This review highlights recent advancements in the understanding of VEGF's molecular structure and its isoforms, as well as their implications in disease progression. It also explores the mechanisms of VEGF inhibitors. While VEGF inhibitors show promise in the treatment of cancer and other diseases, their clinical use faces significant challenges, including drug resistance, side effects, and complex interactions with other signaling pathways. To address these challenges, future research should focus on: (i) enhancing the understanding of VEGF subtypes and their distinct roles in various diseases, supporting the development of personalized treatment strategies; (ii) developing combination therapies that integrate VEGF inhibitors with other targeted treatments to overcome resistance and improve efficacy; (iii) optimizing drug delivery systems to reduce off-target effects and enhance therapeutic outcomes. These approaches aim to improve the effectiveness and safety of VEGF-targeted therapies, offering new possibilities for the treatment of VEGF-related diseases.
Collapse
Affiliation(s)
- Zijun Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Mengmeng Kuai
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Baohua Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | | | - Zhenyu Wang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ye Pan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyue Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2025 update. Pharmacol Res 2025; 216:107723. [PMID: 40252783 DOI: 10.1016/j.phrs.2025.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Because of the deregulation of protein kinase action in many inflammatory diseases and cancer, the protein kinase family has become one of the most significant drug targets in the 21st century. There are 85 FDA-approved protein kinase antagonists that target about two dozen different enzymes and four of these drugs were approved in 2024 and a fifth was approved in 2025. Of these drugs, five target dual specificity protein kinases (MEK1/2), fourteen inhibit protein-serine/threonine protein kinases, twenty-one block nonreceptor protein-tyrosine kinases, and 45 target receptor protein-tyrosine kinases. The data indicate that 75 of these drugs are prescribed for the treatment of neoplasms. Seven drugs (abrocitinib, baricitinib, deucravacitinib, deuruxolitinib, ritlecitinib, tofacitinib, upadacitinib) are prescribed for the management of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 85 FDA-approved agents, about two dozen are used in the treatment of multiple diseases. The following four drugs received FDA approval in 2024 - deuruxolitinib (alopecia areata), ensartinib and lazertinib (non-small cell lung cancer), and tovorafenib (pediatric glioma) while mirdametinib was approved in 2025 for the treatment of type I neurofibromatosis (von Recklinghausen disease). Apart from netarsudil, temsirolimus, and trilaciclib, the approved protein kinase blockers are orally bioavailable. This article summarizes the physicochemical properties of all 85 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, ligand efficiency, lipophilic efficiency, polar surface area, and solubility. A total of 39 of the 85 FDA-approved drugs have a least one Lipinski rule of 5 violation.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
10
|
Zhang N, Tian X, Liu F, Jin X, Zhang J, Hao L, Jiang S, Liu Q. Reversal of sorafenib resistance in hepatocellular carcinoma by curcumol: insights from network pharmacology, molecular docking, and experimental validation. Front Pharmacol 2025; 16:1514997. [PMID: 40242448 PMCID: PMC12000033 DOI: 10.3389/fphar.2025.1514997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Background Curcumol, a bioactive sesquiterpenoid extracted from traditional Chinese medicine (TCM), has demonstrated potential in overcoming tumor drug resistance. However, its mechanisms in reversing drug resistance, particularly in hepatocellular carcinoma (HCC) resistant to sorafenib, are not yet fully elucidated. This study aims to explore the molecular mechanisms by which curcumol reverses sorafenib resistance in HCC using a combination of network pharmacology, molecular docking, and in vivo and in vitro experiments. Methods We identified curcumol targets and genes associated with sorafenib-resistant HCC, resulting in a set of overlapping targets. These intersection targets underwent enrichment analysis using DAVID, and a protein-protein interaction (PPI) network was constructed via the STRING database and Cytoscape. Molecular docking confirmed the binding of curcumol to core targets. In vitro assays, including CCK-8, colony formation assay, apoptosis detection, wound healing, and Transwell assays, evaluated curcumol's effects on sorafenib-resistant HCC cells. Western blotting assessed the impact on PI3K/AKT and JAK/STAT3 signaling pathways. Additionally, a sorafenib-resistant HCC xenograft mouse model was established to observe the in vivo efficacy of curcumol combined with sorafenib. Results We identified 117 potential targets for curcumol in reversing sorafenib resistance in HCC. Among them, five core targets-ALB, STAT3, HSP90AA1, HSP90AB1, and SRC-showed strong binding affinity with curcumol. KEGG pathway analysis of the intersecting genes highlighted significant involvement of the PI3K/AKT, JAK/STAT3, Ras, Rap1, HIF-1, FoxO, and mTOR signaling pathways. In vitro experiments revealed that curcumol significantly enhanced the sensitivity of sorafenib-resistant HCC cells to sorafenib, inhibiting cell proliferation, invasion, and migration while promoting apoptosis. In vivo studies further confirmed that curcumol combined with sorafenib effectively inhibited tumor growth in sorafenib-resistant HCC models. Conclusion This study provides compelling evidence that curcumol can reverse sorafenib resistance in HCC by modulating multiple signaling pathways, including PI3K/AKT and JAK/STAT3 pathways. Our findings suggest that curcumol holds promise as a novel therapeutic agent for overcoming drug resistance in HCC, offering a new avenue for clinical intervention.
Collapse
Affiliation(s)
- Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, Shandong, China
| | - Fen Liu
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaohan Jin
- Jining No. 1 People’s Hospital, Shandong First Medical University, Jining, China
- Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaqi Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, Shandong, China
| | - Lingli Hao
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, Shandong, China
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, Shandong, China
| | - Qingbin Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
11
|
Nahm WJ, Falanga V. The Adverse Impact of Tyrosine Kinase Inhibitors on Wound Healing and Repair. Int Wound J 2025; 22:e70513. [PMID: 40251464 PMCID: PMC12008022 DOI: 10.1111/iwj.70513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) can treat various cancers, primarily through their antiangiogenic effects. However, as angiogenesis is crucial for successful wound healing, TKIs may adversely impact wound repair. This review analysed all 63 FDA-approved TKIs and identified evidence for wound healing and repair implications in 24 agents. The primary mechanism contributing to impaired wound healing appears to be the inhibition of vascular endothelial growth factor receptors, with secondary targets, such as epidermal growth factor receptors and platelet-derived growth factor receptors, potentially playing a role. Information from safety package inserts, preclinical studies, case reports and clinical trials suggests that these TKIs can cause delayed or impaired wound healing. The safety information generally recommends discontinuing treatment for at least one to 2 weeks before elective surgery and resuming treatment only after adequate wound healing has occurred. Neoadjuvant therapy with TKIs may be feasible if sufficient time is allowed between the cessation of the TKI and the onset of surgery. As the use of TKIs continues to increase, healthcare professionals should be aware of their potential impact on wound healing and take appropriate precautions to minimise the risk of wound-related complications.
Collapse
Affiliation(s)
- William J. Nahm
- New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Vincent Falanga
- Department of DermatologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Department of Biochemistry & Cell BiologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
12
|
Hemavathy N, Umashankar V, Jeyakanthan J. Unveiling novel type 1 inhibitors for targeting LIM kinase 2 (LIMK2) for cancer therapeutics: An integrative pharmacoinformatics approach. Comput Biol Chem 2025; 115:108289. [PMID: 39631222 DOI: 10.1016/j.compbiolchem.2024.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
LIMK2 is crucial in regulating actin cytoskeleton dynamics, significantly contributing to cancer cell proliferation, invasion, and metastasis. Inhibitors like LIMKi3 effectively suppress LIMK2 kinase activity by directly affecting actin polymerization and preventing the formation of structures like filopodia and lamellipodia, which are typical of motile cancer cells. By modulating these actin dynamics, LIMKi3 inhibits cancer cell migration and invasion, reducing the potential for metastasis. Thus, this study aims to explore potential anti-cancer therapeutic LIMK2 inhibitors with properties resembling LIMKi3. Henceforth, molecular docking was utilized in this study to comprehend the ATP mimetic binding mode of LIMKi3, followed by Pharmacophore-based virtual screening to identify small molecules resembling LIMKi3. In addition, molecular dynamics simulations were performed to explore the dynamic behavior of LIMK2 and potential inhibitors. Further, network analysis and binding free energy calculations were implemented to comprehensively assess the interactions between the compounds and LIMK2. In molecular docking, LIMKi3 demonstrated an ATP mimetic hinge binding mode with hydrogen bonds at Ile408. Among the screened compounds (NCI300395, ChemDiv-8020-2508, and ChemDiv-7997-0024), three displayed "ADRH" pharmacophoric features like LIMKi3, with favorable ADMET properties, higher binding affinity, and significant hydrogen bond interactions at Ile408. LIMK2-inhibitor complexes showed lower RMSD than LIMK2-LIMKi3, indicating higher equilibrium by identified compounds. Protein-drug Complexes exhibited significant inter-domain correlation in N-lobe residues of LIMK2, including conserved β3, αC, and Hinge residues. Binding free energy analysis ranked LIMK2-NCI300395 highest, followed by LIMK2-ChemDiv-7997-0024 and LIMK2-ChemDiv-8020-2508, highlighting their potential as effective LIMK2-targeting compounds. Hence, this study emphasizes LIMKi3's significance and identifies potential candidates (NCI300395, ChemDiv-7997-0024, and ChemDiv-8020-2508) for developing cancer therapeutics targeting LIMK2. These findings open avenues for further investigations into the complex interplay between cytoskeletal dynamics and cancer progression.
Collapse
Affiliation(s)
- Nagarajan Hemavathy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vetrivel Umashankar
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu 600 031, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu 630 003, India.
| |
Collapse
|
13
|
Banjan B, Vishwakarma R, Ramakrishnan K, Dev RR, Kalath H, Kumar P, Soman S, Raju R, Revikumar A, Rehman N, Abhinand CS. Targeting AFP-RARβ complex formation: a potential strategy for treating AFP-positive hepatocellular carcinoma. Mol Divers 2025; 29:1337-1352. [PMID: 38955977 DOI: 10.1007/s11030-024-10915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein primarily expressed during embryogenesis, with declining levels postnatally. Elevated AFP levels correlate with pathological conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Recent investigations underscore AFP's intracellular role in HCC progression, wherein it forms complexes with proteins like Phosphatase and tensin homolog (PTEN), Caspase 3 (CASP3), and Retinoic acid receptors and Retinoid X receptors (RAR/RXR). RAR and RXR regulate gene expression linked to cell death and tumorigenesis in normal physiology. AFP impedes RAR/RXR dimerization, nuclear translocation, and function, promoting gene expression favoring cancer progression in HCC that provoked us to target AFP as a drug candidate. Despite extensive studies, inhibitors targeting AFP to disrupt complex formation and activities remain scarce. In this study, employing protein-protein docking, amino acid residues involved in AFP-RARβ interaction were identified, guiding the definition of AFP's active site for potential inhibitor screening. Currently, kinase inhibitors play a significant role in cancer treatment and, the present study explores the potential of repurposing FDA-approved protein kinase inhibitors to target AFP. Molecular docking with kinase inhibitors revealed Lapatinib as a candidate drug of the AFP-RARβ complex. Molecular dynamics simulations and binding energy calculations, employing Mechanic/Poisson-Boltzmann Surface Area (MM-PBSA), confirmed Lapatinib's stability with AFP. The study suggests Lapatinib's potential in disrupting the AFP-RARβ complex, providing a promising avenue for treating molecularly stratified AFP-positive HCC or its early stages.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Krishnapriya Ramakrishnan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Radul R Dev
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Haritha Kalath
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Pankaj Kumar
- Nitte (Deemed to Be University), Department of Pharmaceutical Chemistry, NGSMPS, NGSM Institute of Pharmaceutical Sciences, Mangalore, 575018, Karnataka, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
14
|
Wang J, Yang F, Chen Y, Xing Y, Huang J, Cao J, Xiong J, Liu Y, Zhao Q, Luo M, Xiong J, Fan G, Lyu Q, Li F, Zhang W. A positive feedback loop of OTUD1 and c-Jun driven by leptin expedites stemness maintenance in ovarian cancer. Oncogene 2025:10.1038/s41388-025-03342-y. [PMID: 40108305 DOI: 10.1038/s41388-025-03342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Cancer stem cells (CSCs) are closely associated with drug resistance and recurrence in ovarian cancer patients. Although leptin is a high-risk factor for ovarian cancer and promotes stemness maintenance, a therapeutic strategy that counteracts the downstream signaling pathway of leptin remains elusive. Herein, the deubiquitinase OTUD1 was identified as a critical regulator of leptin in maintaining OCSCs properties. Mechanistically, leptin treatment significantly increased the chromatin enrichment of the transcription factor c-Jun, including the OTUD1 gene enhancer, which was sufficient to increase the OTUD1 protein level and subsequently cause OTUD1 aggresome formation, ASK1 recruitment and JNK/c-Jun pathway activation. The resultant positive feedback loop of c-Jun and OTUD1 was required for OCSCs stemness maintenance. Notably, the disruption of the positive feedback loop by targeting c-Jun or ASK1/JNK with T-5224, selonsertib, or ibrutinib markedly inhibited the leptin-induced stemness maintenance of OCSCs and tumorigenicity. Our findings reveal a crucial mechanism for leptin-mediated stemness maintenance and indicate that targeting c-Jun or the identified positive feedback loop has translational potential for ovarian cancer patients.
Collapse
Affiliation(s)
- Jingtao Wang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fan Yang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, China
| | - Yurou Chen
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuzhu Xing
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, China
| | - Juyuan Huang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Cao
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaqiang Xiong
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanyan Liu
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyan Zhao
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Manwen Luo
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, China
| | - Guanlan Fan
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Qiongying Lyu
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Feng Li
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Science), Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China.
| | - Wei Zhang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Zhong S, Börgeling Y, Zardo P, Jonigk D, Borlak J. Comprehensive transcriptome, miRNA and kinome profiling identifies new treatment options for personalized lung cancer therapy. Clin Transl Med 2025; 15:e70177. [PMID: 39995112 PMCID: PMC11850761 DOI: 10.1002/ctm2.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Basic research identified oncogenic driver mutations in lung cancer (LC). However, <10% of patients carry driver mutations. Thus, most patients are not recommended for first-line kinase inhibitor (KI)-based therapies. Through enabling technologies and bioinformatics, we gained deep insight into patient-specific signalling networks which permitted novel KI-based treatment options in LC. METHODS We performed molecular pathology, transcriptomics and miRNA profiling across 95 well-characterized LC patients. We confirmed results based on cross-linked immunoprecipitation-sequencing data, and used N = 524 adeno- and 497 squamous cell carcinomas as validation sets. We employed the PamGene platform to identify aberrant kinases, validated the results by evaluating independent siRNA and CRISPR-mediated mRNA knockdown studies in human LC cell lines. RESULTS Transcriptomics revealed 439, 1240, 383 and 320 significantly upregulated genes, respectively, for adeno-, squamous, neuroendocrine and metastatic cases, and there are 1092, 1477, 609 and 1267 downregulated DEGs. Based on gene enrichment analysis and experimentally validated miRNA-gene interactions, we constructed regulatory networks specific for adeno-, squamous, neuroendocrine and metastatic LC. Molecular profiling discovered 137 significantly upregulated kinases (range 2-26-fold) of which 65 and 72, respectively, are tyrosine and serine-threonine kinases while 6 kinases carry driver mutations. Meanwhile, there are 21 kinases commonly upregulated irrespective of the histological type of LC. Bioinformatics decoded networks in which kinases function as master regulators. Typically, the networks consisted of 14, 9, 16 and 19 highly regulated kinases in adeno-, squamous, neuroendocrine and metastatic LC. Inhibition of kinases which function as master regulators disrupted the signalling networks, and their gene knock-down studies confirmed inhibition of cell proliferation in a panel of human LC cell lines. Additionally, the proposed molecular profiling enables KI-based therapies in patients with acquired drug resistance. CONCLUSIONS Our study broadens the perspective of KI-based therapies in LC, and we propose a framework to overcome acquired drug resistance.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| | | | - Patrick Zardo
- Clinic for Cardiothoracic and Transplantation SurgeryHannover Medical SchoolHannoverGermany
| | - Danny Jonigk
- Institute for PathologyHannover Medical SchoolHannoverGermany
| | - Jürgen Borlak
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
16
|
Imam IA, Al Adawi S, Liu X, Ellingson S, Brainson CF, Moseley HNB, Zinner R, Zhang S, Shao Q. L858R/L718Q and L858R/L792H Mutations of EGFR Inducing Resistance Against Osimertinib by Forming Additional Hydrogen Bonds. Proteins 2025; 93:673-683. [PMID: 39494831 PMCID: PMC12036761 DOI: 10.1002/prot.26761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Acquired resistance to first-line treatments in various cancers both promotes cancer recurrence as well as limits effective treatment. This is true for epidermal growth factor receptor (EGFR) mutations, for which secondary EGFR mutations are one of the principal mechanisms conferring resistance to the covalent inhibitor osimertinib. Thus, it is very important to develop a deeper understanding of the secondary mutational resistance mechanisms associated with EGFR mutations arising in tumors treated with osimertinib to expedite the development of innovative therapeutic drugs to overcome acquired resistance. This work uses all-atom molecular dynamics (MD) simulations to investigate the conformational variation of two reported EGFR mutants (L858R/L718Q and L858R/L792H) that resist osimertinib. The wild-type EGFR kinase domain and the L858R mutant are used as the reference. Our MD simulation results revealed that both the L718Q and L792H secondary mutations induce additional hydrogen bonds between the residues in the active pocket and the residues with the water molecules. These additional hydrogen bonds reduce the exposure area of C797, the covalent binding target of osimertinib. The additional hydrogen bonds also influence the binding affinity of the EGFR kinase domain by altering the secondary structure and flexibility of the amino acid residues in the domain. Our work highlights how the two reported mutations may alter both residue-residue and residue-solvent hydrogen bonds, affecting protein binding properties, which could be helpful for future drug discovery.
Collapse
Affiliation(s)
- Ibrahim A. Imam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Shatha Al Adawi
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Sally Ellingson
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- College of Medicine, Division of Biomedical Informatics University of Kentucky, Lexington, Kentucky, USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Hunter N. B. Moseley
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Ralph Zinner
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Shulin Zhang
- College of Medicine, Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
17
|
Zhao Z, Bourne PE. Advances in reversible covalent kinase inhibitors. Med Res Rev 2025; 45:629-653. [PMID: 39287197 PMCID: PMC11796325 DOI: 10.1002/med.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Reversible covalent kinase inhibitors (RCKIs) are a class of novel kinase inhibitors attracting increasing attention because they simultaneously show the selectivity of covalent kinase inhibitors yet avoid permanent protein-modification-induced adverse effects. Over the last decade, RCKIs have been reported to target different kinases, including Atypical group of kinases. Currently, three RCKIs are undergoing clinical trials. Here, advances in RCKIs are reviewed to systematically summarize the characteristics of electrophilic groups, chemical scaffolds, nucleophilic residues, and binding modes. In so doing, we integrate key insights into privileged electrophiles, the distribution of nucleophiles, and hence effective design strategies for the development of RCKIs. Finally, we provide a further perspective on future design strategies for RCKIs, including those that target proteins other than kinases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data ScienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Philip E. Bourne
- School of Data ScienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
18
|
Wang H, Liang L, Xie Y, Gong H, Fan F, Wen C, Jiang Y, Lei S, Qiu X, Peng H, Ye M, Xiao X, Liu J. Pseudokinase TRIB3 stabilizes SSRP1 via USP10-mediated deubiquitination to promote multiple myeloma progression. Oncogene 2025; 44:694-708. [PMID: 39653795 DOI: 10.1038/s41388-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 03/05/2025]
Abstract
Multiple myeloma (MM), the world's second most common hematologic malignancy, poses considerable clinical challenges due to its aggressive progression and resistance to therapy. Addressing these challenges requires a detailed understanding of the mechanisms driving MM initiation, progression, and therapeutic resistance. This study identifies the pseudokinase tribble homolog 3 (TRIB3) as a high-risk factor that promotes MM malignancy in vitro and in vivo. Mechanistically, TRIB3 directly interacts with structure-specific recognition protein 1 (SSRP1) and ubiquitin-specific peptidase 10 (USP10), facilitating the formation of a TRIB3/USP10/SSRP1 ternary complex. This complex stabilizes SSRP1 via USP10-mediated deubiquitination, thereby driving MM cell proliferation. Furthermore, a stapled peptide, SP-A, was developed, which effectively disrupts the TRIB3/USP10/SSRP1 complex, leading to a decrease in SSRP1 levels by inhibiting its stabilization through USP10. Notably, SP-A exhibits strong synergistic effects when combined with the proteasome inhibitor bortezomib. Given the critical role of the TRIB3/USP10/SSRP1 complex in MM pathophysiology, it represents a promising therapeutic target for MM treatment. In MM cells, TRIB3, USP10 and SSRP1 form a ternary complex and TRIB3 enhances the deubiquitinating effect of USP10 on SSRP1, leading to malignant progression of MM. In the case of drug intervention, SP-A attenuates the binding of SSRP1 and USP10 by inhibiting protein interactions between TRIB3 and SSRP1 and promoted SSRP1 protein degradation, leading to significant inhibition of MM development. Visual abstract created with Biorender.
Collapse
Affiliation(s)
- Haiqin Wang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Yifang Xie
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Han Gong
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Feifan Fan
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Chengcai Wen
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Yu Jiang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Shiying Lei
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Xili Qiu
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiaojuan Xiao
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
19
|
Karunakaran K, Muniyan R. Integrating machine learning and high throughput screening for the discovery of allosteric AKT1 inhibitors. J Biomol Struct Dyn 2025; 43:1893-1914. [PMID: 38095558 DOI: 10.1080/07391102.2023.2293265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2025]
Abstract
Evidence from clinical and experimental investigations reveals the role of AKT in oral cancer, which has led to the development of therapeutic and pharmacological medications for inhibiting AKT protein. Despite prodigious effort, researchers are searching for new allosteric inhibitors as orthosteric inhibitors are non-selective and exert off-target effects. In the current study, we proposed an integrated computational workflow for identifying allosteric AKT1 inhibitors as this isoform is highly correlated with poor prognosis and survival. To achieve this objective, 84 classification QSAR models with six different machine learning algorithms were developed. The models created with RDKit_RF and RDKit_kstar outperformed internal and test set validation with an ROC of 0.98. The outperformed models were then used to screen Chembl, which contains over a million compounds, for AKT1 inhibitors. The Tanimoto similarity search approach identified the compounds structurally resembling AKT allosteric inhibitors. The filtered compounds were further subjected to docking phases, molecular dynamic simulation and mmpbsa to verify the binding mode of selected ones. All these analyses suggested hit 5 (CHEMBL3948083) as the potential allosteric inhibitor of AKT1 as the stability parameters, favourable binding affinity (-107.78 ± 11.56 KJ/mol) and ligand interaction were better in comparison to other compounds and reference compound. The residual analysis demonstrated that allosteric and isoform-specific residues such as Trp80 and Val270 contributed the larger energy for ligand binding. The proposed integrated approach in this study might achieve a futuristic outcome when employed in a pharmaceutical scheme different from the conventional method.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Keerthana Karunakaran
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
20
|
Abdo EL, Ajib I, El Mounzer J, Husseini M, Kalaoun G, Matta TM, Mosleh R, Nasr F, Richani N, Khalil A, Shayya A, Ghanem H, Faour WH. Molecular biology of the novel anticancer medications: a focus on kinases inhibitors, biologics and CAR T-cell therapy. Inflamm Res 2025; 74:41. [PMID: 39960501 DOI: 10.1007/s00011-025-02008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 05/09/2025] Open
Abstract
INTRODUCTION Cancer treatment underwent significant changes in the last few years with the introduction of novel treatments targeting the immune system. OBJECTIVES The objective of this review is to discuss novel anticancer drugs including kinase inhibitors, biologics and cellular therapy with CAR-T cells. METHODS Most recent research articles were extracted from PubMed using keywords such as "kinases inhibitors", "CAR-T cell therapy". RESULTS AND DISCUSSION The number of kinase inhibitors is significantly increasing due to their demonstrated effectiveness in combination with biologics. CAR-T represented a major breakthrough in the field. Also, it focused on their mechanisms of action and the rational of their use either alone or in combination in relation to their modes of action.
Collapse
Affiliation(s)
- Elia-Luna Abdo
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Imad Ajib
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Jason El Mounzer
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Mohammad Husseini
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Gharam Kalaoun
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Tatiana-Maria Matta
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Reine Mosleh
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Fidel Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Nour Richani
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Anwar Shayya
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
- Department of Hematology-Oncology, Lebanese American University Medical Center- Rizk Hospital, Beirut, Lebanon
| | - Hady Ghanem
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
- Department of Hematology-Oncology, Lebanese American University Medical Center- Rizk Hospital, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
21
|
Chowdhury A, Shrestha P, Jois SD. Molecular Chimera in Cancer Drug Discovery: Beyond Antibody Therapy, Designing Grafted Stable Peptides Targeting Cancer. Int J Pept Res Ther 2025; 31:38. [PMID: 39974747 PMCID: PMC11832722 DOI: 10.1007/s10989-025-10690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 02/21/2025]
Abstract
Background Several cancer therapies are being developed, and given the variability of different cancer types, the goal of these therapies is to remove the invasive tumor from the body, kill the cancer cells, or else retard the growth. These include chemotherapeutic agents and targeted therapy using small molecules and antibodies. However, antibodies can generate an immune response upon repeated administration, and producing antibodies could be expensive. Purpose The purpose of this review is to describe different therapeutic approaches utilized for cancer therapy, the current therapeutic approaches, and their limitations. As a novel strategy to combat cancer, designing new stable peptide scaffolds such as cyclotides and sunflower trypsin inhibitors (SFTI) is described. Results Stable peptides that can target proteins can be used as therapeutic agents. Here, we review the utilization and amalgamation of plant-based peptides with biological epitopes in designing molecules called "Molecular Chimeras" using a grafted peptide strategy. These cyclic peptides can bind to target receptors or modulate protein-protein interactions as they bind with high affinity and selectivity. Grafted peptides also possess better serum stability owing to the head-to-tail cyclization and other structural modifications. Conclusion Stable cyclic peptides outweigh the other biologicals in terms of stability and manufacturing process. Peptides and peptidomimetics can be used as therapeutic agents, and these molecules provide alternatives for biologicals and small molecule inhibitors as drugs.
Collapse
Affiliation(s)
- Arpan Chowdhury
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| | - Prajesh Shrestha
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| |
Collapse
|
22
|
Hu X, Liu M, Wu Y, Zhou W, Wang H. Cost-effectiveness analysis of trilaciclib for preventing myelosuppression in small cell lung cancer patients treated with etoposide, carboplatin, and atezolizumab. Am J Cancer Res 2025; 15:559-572. [PMID: 40084365 PMCID: PMC11897622 DOI: 10.62347/snxd3155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/07/2024] [Indexed: 03/16/2025] Open
Abstract
This study evaluated the economic value of administering trilaciclib to prevent myelosuppression in extensive-stage small cell lung cancer (ES-SCLC) patients receiving etoposide, carboplatin, and atezolizumab (E/P/A) from both the Chinese and the United States (US) perspectives. A decision tree model was constructed to estimate and compare costs, quality-adjusted life years (QALYs), incremental cost-effectiveness ratios (ICERs), incremental net health benefits (INHBs), and incremental net monetary benefits (INMBs). One-way and probabilistic sensitivity analyses were conducted to assess the robustness and uncertainty of the economic analysis. The base case analysis indicated that from the perspective of US payers, trilaciclib was cost-saving at the WTP threshold of $241,230.00, with an incremental cost of $-12,626.08, an INMB of $16,788.02, and an INHB of 0.07 QALYs. Conversely, from the perspective of Chinese payers, the use of trilaciclib was not economical at the WTP threshold of $35,817.44, with an ICER of $691,541.63/QALY, an INMB of -$8,765.52, and an INHB of -0.24 QALYs. Sensitivity analysis confirmed the stability of these results. Probabilistic sensitivity analysis indicated that, from the Chinese payers' perspective, trilaciclib treatment was not economical, with a probability of 100%. In contrast, from the US payers' perspective, it was economical, with a probability of 90.05%. Given the limited clinical data available for trilaciclib in the Chinese population, the cost-effectiveness of trilaciclib may improve with the inclusion of new data or changes in health insurance policies.
Collapse
Affiliation(s)
- Xiaoya Hu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| | - Hongmei Wang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
- Department of Pharmacology, College of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
23
|
Xu Y, Peng XL, East MP, McCabe IC, Stroman GC, Jenner MR, Morrison AB, Herrera G, Chan PS, Shen EC, Joisa CU, Rashid NU, Iuga AC, Gomez SM, Miller-Phillips L, Boeck S, Heinemann V, Haas M, Ormanns S, Johnson GL, Yeh JJ. Tumor-Intrinsic Kinome Landscape of Pancreatic Cancer Reveals New Therapeutic Approaches. Cancer Discov 2025; 15:346-362. [PMID: 39632628 PMCID: PMC11805639 DOI: 10.1158/2159-8290.cd-23-1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
SIGNIFICANCE We provide a comprehensive tumor-intrinsic kinome landscape that provides a roadmap for the use of kinase inhibitors in PDAC treatment approaches.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Xianlu L. Peng
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Michael P. East
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Ian C. McCabe
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Grace C. Stroman
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Madison R. Jenner
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Ashley B. Morrison
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Gabriela Herrera
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Priscilla S. Chan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Emily C. Shen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Chinmaya U. Joisa
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University
| | - Naim U. Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Alina C. Iuga
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Shawn M. Gomez
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University
| | - Lisa Miller-Phillips
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, D-81377, Munich, Germany
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Stefan Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, D-81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Volker Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, D-81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Michael Haas
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, D-81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Steffen Ormanns
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
- Department of Surgery, University of North Carolina at Chapel Hill
| |
Collapse
|
24
|
Rangaswamy R, Hemavathy N, Subramaniyan S, Vetrivel U, Jeyakanthan J. Harnessing allosteric inhibition: prioritizing LIMK2 inhibitors for targeted cancer therapy through pharmacophore-based virtual screening and essential molecular dynamics. J Biomol Struct Dyn 2025; 43:1129-1146. [PMID: 38063080 DOI: 10.1080/07391102.2023.2291171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2025]
Abstract
The therapeutic potential of small molecule kinase inhibitors in cancer treatment is well recognized. However, achieving selectivity remains a formidable challenge, primarily due to the structural similarity of ATP binding pockets among kinases. Allosteric inhibition, which involves targeting binding pockets beyond the ATP-binding site, provides a promising alternative to overcome this challenge. In this study, a meticulous approach was implemented to prioritize type 3 inhibitors for LIMK2, employing a range of techniques including Molecular Dynamics (MD) simulations, e-pharmacophore-guided High Throughput Virtual Screening (HTVS), MM/GBSA and ADMETox analyses, Density Functional Theory (DFT) calculations, and MM/PBSA investigations. The e-pharmacophore model identifies a hypothesis featuring five essential pharmacophoric elements (RRRAH). Through virtual screening of the ZINC compound database, we identified only five compounds that align with all four pharmacophoric features: ZINC1044382792, ZINC1433610865, ZINC1044109145, ZINC952869440, and ZINC490621334. These compounds not only exhibit higher binding affinity but also demonstrate favorable ADME/Tox profiles. Molecular dynamics simulations underscore the stability of hydrogen bond interactions with critical cryptic LIMK2 pocket residues, Asp469 and Arg474, only for two compounds: ZINC143361086 and ZINC1044382792. These compounds also exhibit superior occupancy interactions, as indicated by HOMO-LUMO analysis. Additionally, binding free energy calculations highlight the significant affinities of these two compounds when complexed with LIMK2: -83.491 ± 1.230 kJ/mol and -90.122 ± 1.248 kJ/mol for ZINC1044382792 and ZINC1433610862, respectively. Hence, this comprehensive investigation identifies ZINC1433610862 and ZINC1044382792 as prospective hits, representing promising leads for targeting LIMK2 in cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raghu Rangaswamy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Nagarajan Hemavathy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sneha Subramaniyan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Umashankar Vetrivel
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
25
|
Long D, Ding Y, Wang P, Wei L, Ma K. Multi-Omics Analysis Reveals Immune Infiltration and Clinical Significance of Phosphorylation Modification Enzymes in Lung Adenocarcinoma. Int J Mol Sci 2025; 26:1066. [PMID: 39940833 PMCID: PMC11817228 DOI: 10.3390/ijms26031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Protein phosphorylation is a dynamic and reversible modification involved in almost all cellular processes. Numerous investigations have shown that protein phosphorylation modification enzymes (PPMEs) that regulate protein phosphorylation play an important role in the occurrence and treatment of tumors. However, there is still a lack of effective insights into the value of PPMEs in the classification and treatment of patients with lung adenocarcinoma (LUAD). Here, four topological algorithms identified 15 hub PPMEs from a protein-protein interaction (PPI) network. This PPI network was constructed using 124 PPMEs significantly correlated with 35 cancer hallmark-related pathways. Our study illustrates that these hub PPMEs can affect the survival of patients with LUAD in the form of somatic mutation or expression perturbation. Consistency clustering based on hub PPMEs recognized two phosphorylation modification subtypes (namely cluster1 and cluster2) from LUAD. Compared with patients in cluster1, the survival prognosis of patients in cluster2 is worse. This disparity is probably attributed to the higher tumor mutation burden, the higher male proportion, and the more significant expression disturbance in patients in cluster2. Moreover, phosphorylation modification subtypes also have different characteristics in terms of immune activity, immune infiltration level, immunotherapy response, and drug sensitivity. We constructed a PSig scoring system by using a principal component analysis algorithm to estimate the level of phosphorylation modification in individual LUAD patients. Patients in the high and low PSig score groups demonstrated different characteristics in terms of survival rate, tumor mutation burden, somatic gene mutation rate, immune cell abundance, and sensitivity to immunotherapy and drug treatment. This work reveals that phosphorylation plays a non-negligible role in the tumor microenvironment and immunotherapy of LUAD. Evaluating the phosphorylation status of individual LUAD patients by the PSig score can contribute to enhancing our cognition of the tumor microenvironment and guiding the formulation of more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Deyu Long
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yanheng Ding
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lili Wei
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| | - Ketao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| |
Collapse
|
26
|
Kong D, Zhang A, Li L, Yuan ZF, Fu Y, Wu L, Mishra A, High AA, Peng J, Wang X. A computational tool to infer enzyme activity using post-translational modification profiling data. Commun Biol 2025; 8:103. [PMID: 39838083 PMCID: PMC11751189 DOI: 10.1038/s42003-025-07548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Enzymes play a pivotal role in orchestrating complex cellular responses to external stimuli and environmental changes through signal transduction pathways. Despite their crucial roles, measuring enzyme activities is typically indirect and performed on a smaller scale, unlike protein abundance measured by high-throughput proteomics. Moreover, it is challenging to derive the activity of enzymes from proteome-wide post-translational modification (PTM) profiling data. To address this challenge, we introduce enzyme activity inference with structural equation modeling under the JUMP umbrella (JUMPsem), a novel computational tool designed to infer enzyme activity using PTM profiling data. We demonstrate that the JUMPsem program enables estimating kinase activities using phosphoproteome data, ubiquitin E3 ligase activities from the ubiquitinome, and histone acetyltransferase (HAT) activities based on the acetylome. In addition, JUMPsem is capable of establishing novel enzyme-substrate relationships through searching motif sequences. JUMPsem outperforms widely used kinase activity tools, such as IKAP and KSEA, in terms of the number of kinases and the computational speed. The JUMPsem program is scalable and publicly available as an open-source R package and user-friendly web-based R/Shiny app. Collectively, JUMPsem provides an improved tool for inferring protein enzyme activities, potentially facilitating targeted drug development.
Collapse
Affiliation(s)
- Dehui Kong
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aijun Zhang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ling Li
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Long Wu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
27
|
Zhao F, Jiang X, Li Y, Huang T, Xiahou Z, Nie W, Li Q. Characterizing tumor biology and immune microenvironment in high-grade serous ovarian cancer via single-cell RNA sequencing: insights for targeted and personalized immunotherapy strategies. Front Immunol 2025; 15:1500153. [PMID: 39896800 PMCID: PMC11782144 DOI: 10.3389/fimmu.2024.1500153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Background High-grade serous ovarian cancer (HGSOC), the predominant subtype of epithelial ovarian cancer, is frequently diagnosed at an advanced stage due to its nonspecific early symptoms. Despite standard treatments, including cytoreductive surgery and platinum-based chemotherapy, significant improvements in survival have been limited. Understanding the molecular mechanisms, immune landscape, and drug sensitivity of HGSOC is crucial for developing more effective and personalized therapies. This study integrates insights from cancer immunology, molecular profiling, and drug sensitivity analysis to identify novel therapeutic targets and improve treatment outcomes. Utilizing single-cell RNA sequencing (scRNA-seq), the study systematically examines tumor heterogeneity and immune microenvironment, focusing on biomarkers influencing drug response and immune activity, aiming to enhance patient outcomes and quality of life. Methods scRNA-seq data was obtained from the GEO database in this study. Differential gene expression was analyzed using gene ontology and gene set enrichment methods. InferCNV identified malignant epithelial cells, while Monocle, Cytotrace, and Slingshot software inferred subtype differentiation trajectories. The CellChat software package predicted cellular communication between malignant cell subtypes and other cells, while pySCENIC analysis was utilized to identify transcription factor regulatory networks within malignant cell subtypes. Finally, the analysis results were validated through functional experiments, and a prognostic model was developed to assess prognosis, immune infiltration, and drug sensitivity across various risk groups. Results This study investigated the cellular heterogeneity of HGSOC using scRNA-seq, focusing on tumor cell subtypes and their interactions within the tumor microenvironment. We confirmed the key role of the C2 IGF2+ tumor cell subtype in HGSOC, which was significantly associated with poor prognosis and high levels of chromosomal copy number variations. This subtype was located at the terminal differentiation of the tumor, displaying a higher degree of malignancy and close association with stage IIIC tissue types. The C2 subtype was also associated with various metabolic pathways, such as glycolysis and riboflavin metabolism, as well as programmed cell death processes. The study highlighted the complex interactions between the C2 subtype and fibroblasts through the MK signaling pathway, which may be closely related to tumor-associated fibroblasts and tumor progression. Elevated expression of PRRX1 was significantly connected to the C2 subtype and may impact disease progression by modulating gene transcription. A prognostic model based on the C2 subtype demonstrated its association with adverse prognosis outcomes, emphasizing the importance of immune infiltration and drug sensitivity analysis in clinical intervention strategies. Conclusion This study integrates molecular oncology, immunotherapy, and drug sensitivity analysis to reveal the mechanisms driving HGSOC progression and treatment resistance. The C2 IGF2+ tumor subtype, linked to poor prognosis, offers a promising target for future therapies. Emphasizing immune infiltration and drug sensitivity, the research highlights personalized strategies to improve survival and quality of life for HGSOC patients.
Collapse
Affiliation(s)
- Fu Zhao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojing Jiang
- Affiliated Hospital of Shandong Academy of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianjiao Huang
- The First School of Clinical Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Wenyang Nie
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Muneer G, Chen C, Chen Y. Advancements in Global Phosphoproteomics Profiling: Overcoming Challenges in Sensitivity and Quantification. Proteomics 2025; 25:e202400087. [PMID: 39696887 PMCID: PMC11735659 DOI: 10.1002/pmic.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Protein phosphorylation introduces post-genomic diversity to proteins, which plays a crucial role in various cellular activities. Elucidation of system-wide signaling cascades requires high-performance tools for precise identification and quantification of dynamics of site-specific phosphorylation events. Recent advances in phosphoproteomic technologies have enabled the comprehensive mapping of the dynamic phosphoproteomic landscape, which has opened new avenues for exploring cell type-specific functional networks underlying cellular functions and clinical phenotypes. Here, we provide an overview of the basics and challenges of phosphoproteomics, as well as the technological evolution and current state-of-the-art global and quantitative phosphoproteomics methodologies. With a specific focus on highly sensitive platforms, we summarize recent trends and innovations in miniaturized sample preparation strategies for micro-to-nanoscale and single-cell profiling, data-independent acquisition mass spectrometry (DIA-MS) for enhanced coverage, and quantitative phosphoproteomic pipelines for deep mapping of cell and disease biology. Each aspect of phosphoproteomic analysis presents unique challenges and opportunities for improvement and innovation. We specifically highlight evolving phosphoproteomic technologies that enable deep profiling from low-input samples. Finally, we discuss the persistent challenges in phosphoproteomic technologies, including the feasibility of nanoscale and single-cell phosphoproteomics, as well as future outlooks for biomedical applications.
Collapse
Affiliation(s)
- Gul Muneer
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | | | - Yu‐Ju Chen
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
29
|
Bernasconi R, Kuster GM. Non-coding RNAs and their potential exploitation in cancer therapy-related cardiotoxicity. Br J Pharmacol 2025; 182:296-315. [PMID: 38802331 DOI: 10.1111/bph.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Life expectancy in cancer patients has been extended in recent years, thanks to major breakthroughs in therapeutic developments. However, this also unmasked an increased incidence of cardiovascular diseases in cancer survivors, which is in part attributable to cancer therapy-related cardiovascular toxicity. Non-coding RNAs (ncRNAs) have received much appreciation due to their impact on gene expression. NcRNAs, which include microRNAs, long ncRNAs and circular RNAs, are non-protein-coding transcripts that are involved in the regulation of various biological processes, hence shaping cell identity and behaviour. They have also been implicated in disease development, including cardiovascular diseases, cancer and, more recently, cancer therapy-associated cardiotoxicity. This review outlines key features of cancer therapy-associated cardiotoxicity, what is known about the roles of ncRNAs in these processes and how ncRNAs could be exploited as therapeutic targets for cardioprotection. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
30
|
Chen X, Pan Y, Jin X, Qiao J. Effective Response of Pemphigus Erythematosus to Treatment With Baricitinib. Am J Ther 2024:00045391-990000000-00256. [PMID: 39787374 DOI: 10.1097/mjt.0000000000001768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Xinyi Chen
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | |
Collapse
|
31
|
Lu Z, Liao H, Zhang M, Huang M, Du M, Wang Y, Zhao Z, Shi S, Zhu Z. Tanshinone I inhibits the functions of T lymphocytes and exerts therapeutic effects on delayed-type hypersensitivity reaction via blocking STATs signaling pathways. Eur J Pharmacol 2024; 985:177128. [PMID: 39536856 DOI: 10.1016/j.ejphar.2024.177128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Delayed-type hypersensitivity (DTH) reactions are a kind of chronic inflammatory diseases initiated by antigens and antigen-specific T cells. Currently, the therapy of DTH reactions is limited by the poor curative effects and serious adverse reactions of existing agents. In this study, we investigated the regulatory effects of tanshinone Ⅰ, a natural compound isolated from Salvia miltiorrhiza, on the functions of multiple immune cells and its therapeutic effects on DNFB-induced DTH reaction, and then explored its immunosuppressive mechanisms. The results showed that tanshinone Ⅰ at 5-20 μM moderately inhibited the activation of macrophages and dendritic cells, but did not weaken the activation of neutrophils. Tanshinone Ⅰ at 1-4 μM intensively suppressed the activation, proliferation, and differentiation of CD4+ and CD8+ T cells, and slightly affected the functions of B cells. Tanshinone Ⅰ administration markedly alleviated the edema, inflammatory response, and the infiltrations of CD4+ T cells, CD8+ T cells, and CD11b+ cells in ear tissues of mice which were induced DTH reactions by DNFB. Transcriptome analysis revealed that tanshinone Ⅰ strongly inhibited CD4+ T cells to express genes involving in cell proliferation, metabolism, activation, and differentiation. Furthermore, immunoblotting analysis showed that tanshinone Ⅰ selectively inhibited the phosphorylation of STAT3 and STAT5 in CD4+ T cells stimulated by anti-CD3e and anti-CD28 antibodies or IL-2. Collectively, tanshinone Ⅰ can strongly inhibit the functions of T lymphocytes, exert therapeutic effects on DTH reaction by blocking STATs signaling pathways, and has potential to be developed into therapeutic drug for DTH reactions.
Collapse
Affiliation(s)
- Zihan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hanjing Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingliang Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Manjing Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yaqin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zongjie Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shepo Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhixiang Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
32
|
Mehta K, Hegde M, Girisa S, Vishwa R, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Kunnumakkara AB. Targeting RTKs/nRTKs as promising therapeutic strategies for the treatment of triple-negative breast cancer: evidence from clinical trials. Mil Med Res 2024; 11:76. [PMID: 39668367 PMCID: PMC11636053 DOI: 10.1186/s40779-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
The extensive heterogeneity and the limited availability of effective targeted therapies contribute to the challenging prognosis and restricted survival observed in triple-negative breast cancer (TNBC). Recent research indicates the aberrant expression of diverse tyrosine kinases (TKs) within this cancer, contributing significantly to tumor cell proliferation, survival, invasion, and migration. The contemporary paradigm shift towards precision medicine has highlighted TKs and their receptors as promising targets for pharmacotherapy against a range of malignancies, given their pivotal roles in tumor initiation, progression, and advancement. Intensive investigations have focused on various monoclonal antibodies (mAbs) and small molecule inhibitors that specifically target proteins such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), cellular mesenchymal-epithelial transition factor (c-MET), human epidermal growth factor receptor 2 (HER2), among others, for combating TNBC. These agents have been studied both in monotherapy and in combination with other chemotherapeutic agents. Despite these advances, a substantial terrain of unexplored potential lies within the realm of TK targeted therapeutics, which hold promise in reshaping the therapeutic landscape. This review summarizes the various TK targeted therapeutics that have undergone scrutiny as potential therapeutic interventions for TNBC, dissecting the outcomes and revelations stemming from diverse clinical investigations. A key conclusion from the umbrella clinical trials evidences the necessity for in-depth molecular characterization of TNBCs for the maximum efficiency of TK targeted therapeutics, either as standalone treatments or a combination. Moreover, our observation highlights that the outcomes of TK targeted therapeutics in TNBC are substantially influenced by the diversity of the patient cohort, emphasizing the prioritization of individual patient genetic/molecular profiles for precise TNBC patient stratification for clinical studies.
Collapse
Affiliation(s)
- Kasshish Mehta
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Department of Human-Anatomy, Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
33
|
Waitman KB, Martin HJ, Carlos JAEG, Braga RC, Souza VAM, Melo-Filho CC, Hilscher S, Toledo MFZJ, Tavares MT, Costa-Lotufo LV, Machado-Neto JA, Schutkowski M, Sippl W, Kronenberger T, Alves VM, Parise-Filho R, Muratov EN. Dona Flor and her two husbands: Discovery of novel HDAC6/AKT2 inhibitors for myeloid cancer treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626092. [PMID: 39677737 PMCID: PMC11642781 DOI: 10.1101/2024.11.30.626092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hematological cancer treatment with hybrid kinase/HDAC inhibitors is a novel strategy to overcome the challenge of acquired resistance to drugs. We collected IC 50 datasets from the ChEMBL database for 13 cancer cell lines (72 h cytotoxicity, measured by MTT), known inhibitors for 38 kinases, and 10 HDACs isoforms, that we identified by target fishing and literature review. The data was subjected to rigorous biological and chemical curation leaving the final datasets ranging from 76 to 8173 compounds depending on the target. We generated Random Forest classification models, whereby 14 showed greater than 80% predictability after 5-fold external cross-validation. We screened 30 hybrid kinase/HDAC inhibitor analogs through each of these models. Fragment-contribution maps were constructed to aid the understanding of SARs and the optimization of these compounds as selective kinase/HDAC inhibitors for cancer treatment. Among the predicted compounds, 9 representative hybrids were synthesized and subjected to biological evaluation to validate the models. We observed high hit rates after biological testing for the following models: K562 (62.5%), MV4-11 (75.0%), MM1S (100%), NB-4 (62.5%), U937 (75.0), and HDAC6 (86.0%). This aided the identification of 6b and 6k as potent anticancer inhibitors with IC 50 of 0.2-0.8 µM in three cancer cell lines, linked to HDAC6 inhibition below 2 nM, and blockade of AKT2 phosphorylation at 2 μM, validating the ability of our models to predict novel drug candidates. Highlights Novel kinase/HDAC inhibitors for cancer treatment were found using machine learning61 QSAR models for hematological cancers and its targets were built and validatedK562, MV4-11, MM1S, NB-4, U937, and HDAC6 models had hit rates above 62.5% in tests 6b and 6k presented potent IC 50 of 0.2-0.8 µM in three cancer cell lines 6b and 6k inhibited HDAC6 below 2 nM, and blockade of AKT2 phosphorylation at 2 μM.
Collapse
|
34
|
Martins DM, Fernandes PO, Vieira LA, Maltarollo VG, Moraes AH. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. Chembiochem 2024; 25:e202400296. [PMID: 39008807 DOI: 10.1002/cbic.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Drug Design
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Structure
Collapse
Affiliation(s)
- Diego M Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| |
Collapse
|
35
|
Rojas-Prats E, Martinez-Gonzalez L, Gil C, Ramírez D, Martinez A. Druggable cavities and allosteric modulators of the cell division cycle 7 (CDC7) kinase. J Enzyme Inhib Med Chem 2024; 39:2301767. [PMID: 38205514 PMCID: PMC10786434 DOI: 10.1080/14756366.2024.2301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cell division cycle 7 kinase (CDC7) has been found overexpressed in many cancer cell lines being also one of the kinases involved in the nuclear protein TDP-43 phosphorylation in vivo. Thus, inhibitors of CDC7 are emerging drug candidates for the treatment of oncological and neurodegenerative unmet diseases. All the known CDC7 inhibitors are ATP-competitives, lacking of selectivity enough for success in clinical trials. As allosteric sites are less conserved among kinase proteins, discovery of allosteric modulators of CDC7 is a great challenge and opportunity in this field.Using different computational approaches, we have here identified new druggable cavities on the human CDC7 structure and subsequently selective CDC7 inhibitors with allosteric modulation mainly targeting the pockets where the interaction between this kinase and its activator DBF4 takes place.
Collapse
Affiliation(s)
- Elisa Rojas-Prats
- Centro de Investigaciones Biológicas -Margarita Salas-CSIC, Madrid, Spain
| | - Loreto Martinez-Gonzalez
- Centro de Investigaciones Biológicas -Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de 13 Salud Carlos III, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas -Margarita Salas-CSIC, Madrid, Spain
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ana Martinez
- Centro de Investigaciones Biológicas -Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de 13 Salud Carlos III, Madrid, Spain
| |
Collapse
|
36
|
Rezaee P, Rezaee S, Maaza M, Arab SS. Screening of BindingDB database ligands against EGFR, HER2, Estrogen, Progesterone and NF-κB receptors based on machine learning and molecular docking. Comput Biol Med 2024; 183:109279. [PMID: 39461104 DOI: 10.1016/j.compbiomed.2024.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Breast cancer, the second most prevalent cancer among women worldwide, necessitates the exploration of novel therapeutic approaches. To target the four subgroups of breast cancer "hormone receptor-positive and HER2-negative, hormone receptor-positive and HER2-positive, hormone receptor-negative and HER2-positive, and hormone receptor-negative and HER2-negative" it is crucial to inhibit specific targets such as EGFR, HER2, ER, NF-κB, and PR. In this study, we evaluated various methods for binary and multiclass classification. Among them, the GA-SVM-SVM:GA-SVM-SVM model was selected with an accuracy of 0.74, an F1-score of 0.73, and an AUC of 0.92 for virtual screening of ligands from the BindingDB database. This model successfully identified 4454, 803, 438, and 378 ligands with over 90% precision in both active/inactive and target prediction for the classes of EGFR+HER2, ER, NF-κB, and PR, respectively, from the BindingDB database. Based on to the selected ligands, we created a dendrogram that categorizes different ligands based on their targets. This dendrogram aims to facilitate the exploration of chemical space for various therapeutic targets. Ligands that surpassed a 90% threshold in the product of activity probability and correct target selection probability were chosen for further investigation using molecular docking. The binding energy range for these ligands against their respective targets was calculated to be between -15 and -5 kcal/mol. Finally, based on general and common rules in medicinal chemistry, we selected 2, 3, 3, and 8 new ligands with high priority for further studies in the EGFR+HER2, ER, NF-κB, and PR classes, respectively.
Collapse
Affiliation(s)
- Parham Rezaee
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran; UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - Shahab Rezaee
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Malik Maaza
- UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - Seyed Shahriar Arab
- Department of Pediatrics, University of California, La Jolla, San Diego, 92093, CA, USA.
| |
Collapse
|
37
|
Pavić M, Tokalić R, Marušić A. Poor registration and publication practices in clinical trials of targeted therapeutics for endocrine and metabolic diseases: an observational study. J Clin Epidemiol 2024; 176:111570. [PMID: 39419357 DOI: 10.1016/j.jclinepi.2024.111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES To assess the completeness and concordance of reporting in registries and corresponding publications of interventional trials on targeted therapeutics for endocrine and metabolic disorders. STUDY DESIGN AND SETTING We searched clinical trial registries in September 2022 for completed interventional trials of target therapeutics for endocrine and metabolic disorders registered from 2005 onwards. We used ClinicalTrials.gov and the World Health Organization International Clinical Trial Registration Platform registration requirements to extract data and assess the completeness of initial entry and final updates to trial registration and concordance with their published journal articles. RESULTS Among 149 clinical trials included, 121 (81%) had corresponding publications. Missing mandatory registration data items were identified in 89 (67%) trials at the initial registration entry, 17 (13%) at the final registration update, and in 85 (77%) corresponding publications. All trials showed changes between initial registration entry and final registration update, and 98% showed changes from the initial registration entry to publication. Changes between initial registration entry and final registration update were most common in the categories 'Completion date' (92%), 'Key secondary outcomes' (82%), and 'Date of first enrolment' (70%). Changes between initial registration entry and publication were most common in categories 'Sample size' (91%), 'Key inclusion and exclusion criteria' (81%), 'Key secondary outcomes' (84%), and 'Completion date' (83%). CONCLUSION Despite the legal and journal registration requirements, the completeness and consistency of reporting mandatory data items in registries and corresponding publications regarding targeted therapeutics for endocrine and metabolic disorders are inadequate. Our findings raise questions about the integrity and reliability of clinical trials focusing on targeted therapeutics. PLAIN LANGUAGE SUMMARY This study evaluated the completeness of reporting of mandatory information about clinical trials of targeted therapies for endocrine and metabolic diseases in trial registries and published articles. Furthermore, we examined whether the information in trial registries aligns with what is reported in scientific journals. Our analysis focused on completed interventional trials registered from 2005 onwards using trial registries. We found that 67% of the included trials were missing mandatory information at the time of initial entry into registry, while 77% of the matching publications also lacked mandatory information. The most common discrepancies between the entry into registry and published data occurred in the mandatory categories of sample sizes and key inclusion and exclusion criteria for participants. Our findings highlight major gaps in how clinical trials for targeted therapies in endocrine and metabolic diseases are conducted. Despite established requirements for accurate registration and publication of mandatory trial information, substantial discrepancies persist between the data in registries and published results. These inconsistencies raise concerns about the reliability of reported findings and underscore the urgent need for improved practices in trial registration and reporting.
Collapse
Affiliation(s)
- Maja Pavić
- Department of Dermatovenerology, University Hospital of Split, Šoltanska 1, Split 21 000, Croatia.
| | - Ružica Tokalić
- Department of Hematology, Holy Spirit Clinical Hospital, Sveti Duh Street 64, Zagreb 10 000, Croatia
| | - Ana Marušić
- Center for Evidence-based Medicine, Department of Research in Biomedicine and Health, University of Split School of Medicine, Šoltanska 2A, Split, 21 000, Croatia; Department of Science, University Hospital of Split, Šoltanska 1, Split 21 000, Croatia
| |
Collapse
|
38
|
Hagino T, Yoshida M, Hamada R, Saeki H, Fujimoto E, Kanda N. Early itch relief with upadacitinib predicts later skin clearance in Atopic dermatitis. J DERMATOL TREAT 2024; 35:2291317. [PMID: 38073560 DOI: 10.1080/09546634.2023.2291317] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Though Janus kinase inhibitors such as upadacitinib rapidly relieve itch in atopic dermatitis (AD) patients, how early itch relief impacts later skin clearance is not examined. OBJECTIVES This study aims to determine if early itch relief by upadacitinib could predict complete skin clearance in later phases. METHODS This retrospective study involved 105 patients with moderate-to-severe AD treated with upadacitinib 15 mg/day. Eczema area and severity index (EASI), atopic dermatitis control tool, and achievement rate of EASI 100 were evaluated at weeks 4, 12, and 24. The threshold of early peak pruritus-numerical rating scale (PP-NRS) predicting later skin clearance was assessed by area under the receiver-operating characteristic curve, and predictors for EASI 100 achievement were determined by logistic regression analysis. RESULTS The rate of achieving EASI 100 at week 24 was extremely higher in patients who achieved week 2 PP-NRS ≤ 1 (42.9%) than in non-achievers (1.4%). The logistic regression analysis showed that the achievement of week 2 PP-NRS ≤ 1 and low body mass index were associated with achievement of EASI 100 at weeks 12 and 24. CONCLUSIONS The achievement of week 2 PP-NRS ≤ 1 may predict later skin clearance in upadacitinib treatment.
Collapse
Affiliation(s)
- Teppei Hagino
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Mai Yoshida
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Risa Hamada
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Eita Fujimoto
- Department of Dermatology, Fujimoto Dermatology Clinic, Funabashi, Japan
| | - Naoko Kanda
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| |
Collapse
|
39
|
Jasińska-Stroschein M, Glajzner P. Searching for Old and New Small-Molecule Protein Kinase Inhibitors as Effective Treatments in Pulmonary Hypertension-A Systematic Review. Int J Mol Sci 2024; 25:12858. [PMID: 39684570 DOI: 10.3390/ijms252312858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Treatment options for pulmonary arterial hypertension (PAH) have improved substantially in the last 30 years, but there is still a need for novel molecules that can regulate the excessive accumulation of pulmonary artery smooth muscle cells (PASMCs) and consequent vascular remodeling. One set of possible candidates are protein kinases. The study provides an overview of existing preclinical and clinical data regarding small-molecule protein kinase inhibitors in PAH. Online databases were searched from 2001 to 2023 according to PRISMA. The corpus included preclinical studies demonstrating alterations in at least one PH-related parameter following chronic exposure to an individual protein kinase inhibitor, as well as prospective clinical reports including healthy adults or those with PAH, with primary outcomes defined as safety or efficacy of an individual small-molecule protein kinase inhibitor. Several models in preclinical protocols (93 papers) have been proposed for studying small-molecule protein kinase inhibitors in PAH. In total, 51 kinase inhibitors were tested. Meta-analysis of preclinical results demonstrated seralutinib, sorafenib, fasudil hydrochloride, and imatinib had the most comprehensive effects on PH with anti-inflammatory, anti-oxidant, and anti-proliferative potential. Fasudil demonstrated more than 70% animal survival with the longest experimental period, while dasatinib, nintedanib, and (R)-crizotinib could deteriorate PAH. The substances targeting the same kinases often varied considerably in their activity, and such heterogeneity may be due to the variety of causes. Recent studies have addressed the molecules that affect multiple networks such as PDG-FRα/β/CSF1R/c-KIT/BMPR2 or FKBP12/mTOR. They also focus on achieving a satisfactory safety profile using innovative inhalation formulations Many small-molecule protein kinase inhibitors are able to control migration, proliferation and survival in PASMCs in preclinical observations. Standardized animal models can successfully reduce inter-study heterogeneity and thereby facilitate successful identification of candidate drugs for further evaluations.
Collapse
Affiliation(s)
| | - Paulina Glajzner
- Department of Biopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
40
|
Sunoqrot S, Abusulieh S, Sabbah D. Polymeric Nanoparticles Potentiate the Anticancer Activity of Novel PI3Kα Inhibitors Against Triple-Negative Breast Cancer Cells. Biomedicines 2024; 12:2676. [PMID: 39767583 PMCID: PMC11727162 DOI: 10.3390/biomedicines12122676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Dysregulation in phosphoinositide-3-kinase alpha (PI3Kα) signaling is implicated in the development of various cancers, including triple-negative breast cancer (TNBC). We have previously synthesized a series of N-phenyl-6-chloro-4-hydroxy-2-quinolone-3-carboxamides as targeted inhibitors against PI3Kα. Herein, two drug candidates, R7 and R11, were selected to be further investigated as a nanoparticle (NP) formulation against TNBC. Methods: R7 and R11 were entrapped in D-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) polymeric NPs by nanoprecipitation. Following their physicochemical characterization, the anticancer activity of the compounds and their NP formulations was evaluated in the TNBC cell line MDA-MB-231 by conducting viability, uptake, and apoptosis assays, as well as penetration assays in a multicellular tumor spheroid model. Results: The NPs exhibited a particle size of 100-200 nm, excellent drug loading efficiencies, and sustained release under physiologic conditions. Viability assays revealed superior potency for the NP formulations, with IC50 values of 20 µM and 30 µM for R7- and R11-loaded NPs, respectively, compared to the free compounds, which exhibited IC50 values of 280 µM and 290 µM for R7 and R11, respectively. These results were attributed to the inherent antiproliferative activity of TPGS, as evidenced by the cytotoxicity of the drug-free NPs, as well as the enhanced cellular uptake enabled by the NP vehicle, as demonstrated by fluorescence microscopy imaging and flow cytometry measurements. Further investigations showed that the NPs promoted apoptosis via a mitochondrial-dependent pathway that involved the activation of proapoptotic caspases. Moreover, the NP formulations enhanced the penetration ability of the free compounds in multicellular tumor spheroids, causing a time- and concentration-dependent disruption of the spheroids. Conclusions: Our findings highlight the important role nanotechnology can play in improving the biopharmaceutical properties of new drug candidates and facilitating their in vivo translation.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | | | |
Collapse
|
41
|
Rehman R, Froehlich A, olde Heuvel F, Elsayed L, Boeckers T, Huber-Lang M, Morganti-Kossmann C, Roselli F. The FGFR inhibitor Rogaratinib reduces microglia reactivity and synaptic loss in TBI. Front Immunol 2024; 15:1443940. [PMID: 39635532 PMCID: PMC11614719 DOI: 10.3389/fimmu.2024.1443940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background Traumatic brain injury (TBI) induces an acute reactive state of microglia, which contribute to secondary injury processes through phagocytic activity and release of cytokines. Several receptor tyrosine kinases (RTK) are activated in microglia upon TBI, and their blockade may reduce the acute inflammation and decrease the secondary loss of neurons; thus, RTKs are potential therapeutic targets. We have previously demonstrated that several members of the Fibroblast Growth Factor Receptor (FGFR) family are transiently phosporylated upon TBI; the availability for drug repurposing of FGFR inhibitors makes worthwhile the elucidation of the role of FGFR in the acute phases of the response to TBI and the effect of FGFR inhibition. Methods A closed, blunt, weight-drop mild TBI protocol was employed. The pan-FGFR inhibitor Rogaratinib was administered to mice 30min after the TBI and daily up to 7 days post injury. Phosphor-RTK Arrays and proteomic antibody arrays were used to determine target engagement and large-scale impact of the FGFR inhibitor. pFGFR1 and pFGFR3 immunostaining were employed for validation. As outcome parameters of the TBI injury immunostainings for NeuN, VGLUT1, VGAT at 7dpi were considered. Results Inhibition of FGFR during TBI restricted phosphorylation of FGFR1, FGFR3, FGFR4 and ErbB4. Phosphorylation of FGFR1 and FGFR3 during TBI was traced back to Iba1+ microglia. Rogaratinib substantially dowregulated the proteomic signature of the neuroimmunological response to trauma, including the expression of CD40L, CXCR3, CCL4, CCR4, ILR6, MMP3 and OPG. Prolonged Rogaratinib treatment reduced neuronal loss upon TBI and prevented the loss of excitatory (vGLUT+) synapses. Conclusion The FGFR family is involved in the early induction of reactive microglia in TBI. FGFR inhibition selectively prevented FGFR phosphorylation in the microglia, dampened the overall neuroimmunological response and enhanced the preservation of neuronal and synaptic integrity. Thus, FGFR inhibitors may be relevant targets for drug repurposing aimed at modulating microglial reactivity in TBI.
Collapse
Affiliation(s)
- Rida Rehman
- Department of Neurology, Ulm University, Ulm, Germany
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Lobna Elsayed
- Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias Boeckers
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
- Institute of Anatomy and Cell biology, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Translational Trauma Immunology, Ulm University, Ulm, Germany
| | - Cristina Morganti-Kossmann
- Department of Child Health, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| |
Collapse
|
42
|
Fiedorczuk K, Iordanov I, Mihályi C, Szollosi A, Csanády L, Chen J. The structures of protein kinase A in complex with CFTR: Mechanisms of phosphorylation and noncatalytic activation. Proc Natl Acad Sci U S A 2024; 121:e2409049121. [PMID: 39495916 PMCID: PMC11573500 DOI: 10.1073/pnas.2409049121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular functions by selectively phosphorylating numerous substrates, including ion channels, enzymes, and transcription factors. It has long served as a model system for understanding the eukaryotic kinases. Using cryoelectron microscopy, we present complex structures of the PKA catalytic subunit (PKA-C) bound to a full-length protein substrate, the cystic fibrosis transmembrane conductance regulator (CFTR)-an ion channel vital to human health. CFTR gating requires phosphorylation of its regulatory (R) domain. Unphosphorylated CFTR engages PKA-C at two locations, establishing two "catalytic stations" near to, but not directly involving, the R domain. This configuration, coupled with the conformational flexibility of the R domain, permits transient interactions of the eleven spatially separated phosphorylation sites. Furthermore, we determined two structures of the open-pore CFTR stabilized by PKA-C, providing a molecular basis to understand how PKA-C stimulates CFTR currents even in the absence of phosphorylation.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Csaba Mihályi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
43
|
Hamoud AR, Alganem K, Hanna S, Morran M, Henkel N, Imami AS, Ryan W, Sahay S, Pulvender P, Kunch A, Arvay TO, Meller J, Shukla R, O'Donovan SM, McCullumsmith R. Illuminating the dark kinome: utilizing multiplex peptide activity arrays to functionally annotate understudied kinases. Cell Commun Signal 2024; 22:501. [PMID: 39415254 PMCID: PMC11484317 DOI: 10.1186/s12964-024-01868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Protein kinases are critical components of a myriad biological processes and strongly associated with various diseases. While kinase research has been a point of focus in biomedical research for several decades, a large portion of the kinome is still considered understudied or "dark," because prior research is targeted towards a subset of kinases with well-established roles in cellular processes. We present an empirical and in-silico hybrid workflow to extend the functional knowledge of understudied kinases. Utilizing multiplex peptide activity arrays and robust in-silico analyses, we extended the functional knowledge of five dark tyrosine kinases (AATK, EPHA6, INSRR, LTK, TNK1) and explored their roles in schizophrenia, Alzheimer's dementia (AD), and major depressive disorder (MDD). Using this hybrid approach, we identified 195 novel kinase-substrate interactions with variable degrees of affinity and linked extended functional networks for these kinases to biological processes that are impaired in psychiatric and neurological disorders. Biochemical assays and mass spectrometry were used to confirm a putative substrate of EPHA6, an understudied dark tyrosine kinase. We examined the EPHA6 network and knowledgebase in schizophrenia using reporter peptides identified and validated from the multi-plex array with high affinity for phosphorylation by EPHA6. Identification and confirmation of putative substrates for understudied kinases provides a wealth of actionable information for the development of new drug treatments as well as exploration of the pathophysiology of disease states using signaling network approaches.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Sean Hanna
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Michael Morran
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Nicholas Henkel
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Ali S Imami
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - William Ryan
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Smita Sahay
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Priyanka Pulvender
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Austin Kunch
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Taylen O Arvay
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Rammohan Shukla
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Sinead M O'Donovan
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland
| | - Robert McCullumsmith
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA.
- Neurosciences Institute, ProMedica, Toledo, OH, USA.
| |
Collapse
|
44
|
Faouzi A, Arnaud A, Hallé F, Roussel J, Aymard M, Denavit V, Do CV, Mularoni A, Salah M, ElHady A, Pham TN, Bancet A, Le Borgne M, Terreux R, Barret R, Engel M, Lomberget T. Design, synthesis, and structure-activity relationship studies of 6 H-benzo[ b]indeno[1,2- d]thiophen-6-one derivatives as DYRK1A/CLK1/CLK4/haspin inhibitors. RSC Med Chem 2024; 16:d4md00537f. [PMID: 39430953 PMCID: PMC11487425 DOI: 10.1039/d4md00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
A series of sulfur-containing tetracycles was designed and evaluated for their ability to inhibit protein kinase DYRK1A, a target known to have several potential therapeutic applications including cancers, Down syndrome or Alzheimer's disease. Our medicinal chemistry strategy relied on the design of new compounds using ring contraction/isosteric replacement and constrained analogy of known DYRK1A inhibitors, thus resulting in their DYRK1A inhibitory activity enhancement. Whereas a good inhibitory effect of targeted DYRK1A protein was observed for 5-hydroxy compounds 4i-k (IC50 = 35-116 nM) and the 5-methoxy derivative 4e (IC50 = 52 nM), a fairly good selectivity towards its known DYRK1B off-target was observed for 4k. In addition, the most active compound 4k, having an ATP-competitive mechanism of action, proved to be also a potent inhibitor of CLK1/CLK4 (IC50 = 20 and 26 nM) and, to a lesser extent, of haspin (IC50 = 76 nM) kinases. In silico docking studies within the DYRK1A, CLK1/CLK4 and haspin ATP binding sites were carried out to understand the interactions of our tetracyclic derivatives 4 with these targets. Antiproliferative activities on U87/U373 glioblastoma cell lines of the most potent compound 4k showed a moderate effect (IC50 values between 33 and 46 μM). Microsomal stabilities of the designed compounds 4a-m were also investigated, showing great disparities, depending on benzo[b]thiophene ring 5-substitution.
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Alexandre Arnaud
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - François Hallé
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Jean Roussel
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Mandy Aymard
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Vincent Denavit
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
| | - Cong Viet Do
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
- University of Science and Technology of HanoÏ USTH 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| | - Angélique Mularoni
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2.3 D-66123 Saarbrücken Germany
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU) Newgiza, km 22 Cairo-Alexandria Desert Road 12577 Cairo Egypt
| | - Ahmed ElHady
- Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2.3 D-66123 Saarbrücken Germany
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Cairo 11865 Egypt
| | - Thanh-Nhat Pham
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Alexandre Bancet
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Marc Le Borgne
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Raphaël Terreux
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, LBTI, ECMO Team, Institut de Biologie et Chimie des Protéines 7 Passage du Vercors 69367 Lyon Cedex 07 France
| | - Roland Barret
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2.3 D-66123 Saarbrücken Germany
| | - Thierry Lomberget
- Universite Claude Bernard Lyon 1, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB 8, avenue Rockefeller F-69373 Lyon Cedex 08 France
- Universite Claude Bernard Lyon 1, EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, Univ Lyon F-69373 Lyon Cedex 08 France
| |
Collapse
|
45
|
Lebon C, Grossmann S, Mann G, Lindner F, Koide A, Koide S, Diepold A, Hantschel O. Cytosolic delivery of monobodies using the bacterial type III secretion system inhibits oncogenic BCR: ABL1 signaling. Cell Commun Signal 2024; 22:500. [PMID: 39415233 PMCID: PMC11483992 DOI: 10.1186/s12964-024-01874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells. Monobodies are small synthetic binding proteins that can inhibit oncogene signaling in cancer cells with high selectivity upon intracellular expression. Here, we engineered monobodies targeting the BCR::ABL1 tyrosine kinase for efficient delivery by the T3SS, quantified cytosolic delivery and target engagement in cancer cells and monitored inhibition of BCR::ABL1 signaling. METHODS In vitro assays were performed to characterize destabilized monobodies (thermal shift assay and isothermal titration calorimetry) and to assess their secretion by the T3SS. Immunoblot assays were used to study the translocation of monobodies into different cell lines and to determine the intracellular concentration after translocation. Split-Nanoluc assays were performed to understand translocation and degradation kinetics and to evaluate target engagement after translocation. Phospho flow cytometry and apoptosis assays were performed to assess the functional effects of monobody translocation into BCR:ABL1-expressing leukemia cells. RESULTS To enable efficient translocation of the stable monobody proteins by the T3SS, we engineered destabilized mutant monobodies that retained high affinity target binding and were efficiently injected into different cell lines. After injection, the cytosolic monobody concentrations reached mid-micromolar concentrations considerably exceeding their binding affinity. We found that injected monobodies targeting the BCR::ABL1 tyrosine kinase selectively engaged their target in the cytosol. The translocation resulted in inhibition of oncogenic signaling and specifically induced apoptosis in BCR::ABL1-dependent cells, consistent with the phenotype when the same monobody was intracellularly expressed. CONCLUSION Hence, we establish the T3SS of Y. enterocolitica as a highly efficient protein translocation method for monobody delivery, enabling the selective targeting of different oncogenic signaling pathways and providing a foundation for future therapeutic application against intracellular targets.
Collapse
Affiliation(s)
- Chiara Lebon
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University of Marburg, Karl-Von-Frisch-Straße 2, 35043, Marburg, Germany
| | - Sebastian Grossmann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Greg Mann
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Florian Lindner
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Akiko Koide
- Department of Medicine, New York University School of Medicine, 522 1st Avenue, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, NY, 10016, USA
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 1st Avenue, New York, NY, 10016, USA
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Straße 10, 35043, Marburg, Germany.
- Institute of Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Oliver Hantschel
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University of Marburg, Karl-Von-Frisch-Straße 2, 35043, Marburg, Germany.
| |
Collapse
|
46
|
Tirone B, Scarabosio A, Surico PL, Parodi PC, D’Esposito F, Avitabile A, Foti C, Gagliano C, Zeppieri M. Targeted Drug Delivery in Periorbital Non-Melanocytic Skin Malignancies. Bioengineering (Basel) 2024; 11:1029. [PMID: 39451404 PMCID: PMC11504966 DOI: 10.3390/bioengineering11101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Targeted drug delivery has emerged as a transformative approach in the treatment of periorbital skin malignancies, offering the potential for enhanced efficacy and reduced side effects compared to traditional therapies. This review provides a comprehensive overview of targeted therapies in the context of periorbital malignancies, including basal cell carcinoma, squamous cell carcinoma, sebaceous gland carcinoma, and Merkel cell carcinoma. It explores the mechanisms of action for various targeted therapies, such as monoclonal antibodies, small molecule inhibitors, and immunotherapies, and their applications in treating these malignancies. Additionally, this review addresses the management of ocular and periocular side effects associated with these therapies, emphasizing the importance of a multidisciplinary approach to minimize impact and ensure patient adherence. By integrating current findings and discussing emerging trends, this review aims to highlight the advancements in targeted drug delivery and its potential to improve treatment outcomes and quality of life for patients with periorbital skin malignancies.
Collapse
Affiliation(s)
- Benedetta Tirone
- Dermatology and Venerology Section, Department of Precision and Regenerative Medicine and Ionan Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Scarabosio
- Clinic of Plastic and Reconstructive Surgery, Ospedale Santa Maria della Misericordia, 33100 Udine, Italy
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Pier Camillo Parodi
- Clinic of Plastic and Reconstructive Surgery, Ospedale Santa Maria della Misericordia, 33100 Udine, Italy
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd, London NW15QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Alessandro Avitabile
- Eye Clinic Catania San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Caterina Foti
- Dermatology and Venerology Section, Department of Precision and Regenerative Medicine and Ionan Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Caterina Gagliano
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
47
|
Banjan B, Koshy AJ, Kalath H, John L, Soman S, Raju R, Revikumar A. Potential protein kinase inhibitors that target G-quadruplex DNA structures in the human telomeric regions. Mol Divers 2024; 28:3377-3391. [PMID: 38509417 DOI: 10.1007/s11030-023-10768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/10/2023] [Indexed: 03/22/2024]
Abstract
Telomeric regions contain Guanine-rich sequences arranged in a planar manner and connected by Hoogsteen hydrogen bonds that can fold into G-quadruplex (G4) DNA structures, and can be stabilized by monovalent metal cations. The presence of G4 DNA holds significance in cancer-related processes, especially due to their regulatory potential at transcriptional and translational levels of oncogene and tumor suppressor genes. The objective of this current research is to explore the evolving realm of FDA-approved protein kinase inhibitors, with a specific emphasis on their capacity to stabilize the G4 DNA structures formed at the human telomeric regions. This involves investigating the possibility of repurposing FDA-approved protein kinase inhibitors as a novel approach for targeting multiple cancer types. In this context, we have selected 16 telomeric G4 DNA structures as targets and 71 FDA-approved small-molecule protein kinase inhibitors as ligands. To investigate their binding affinities, molecular docking of human telomeric G4 DNA with nuclear protein kinase inhibitors and their corresponding co-crystalized ligands were performed. We found that Ponatinib and Lapatinib interact with all the selected G4 targets, the binding free energy calculations, and molecular dynamic simulations confirm their binding efficacy and stability. Thus, it is hypothesized that Ponatinib and Lapatinib may stabilize human telomeric G4 DNA in addition to their ability to inhibit BCR-ABL and the other members of the EGFR family. As a result, we also hypothesize that the stabilization of G4 DNA might represent an additional underlying mechanism contributing to their efficacy in exerting anti-cancer effects.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Abel John Koshy
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Haritha Kalath
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
48
|
Oncel S, Safratowich BD, Zeng H. The Protective Potential of Butyrate against Colon Cancer Cell Migration and Invasion Is Critically Dependent on Cell Type. Mol Nutr Food Res 2024; 68:e2400421. [PMID: 39328085 DOI: 10.1002/mnfr.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/03/2024] [Indexed: 09/28/2024]
Abstract
SCOPE Short-chain fatty acids such as butyrate are produced through the fermentation of dietary fiber by colonic bacteria. Preclinical studies indicate an anticancer potential of butyrate, but clinical evidence shows greater variability. The study hypothesizes the effectiveness of butyrate on reducing colon cancer cell migration and invasion may vary due to the cell-type. METHODS AND RESULTS The study determines the efficacy of butyrate (0-4 mM) to inhibit cancer cell migration, invasion, and related signaling proteins in three distinct human colorectal cancer (CRC) cell lines: HCT116, HT-29, and Caco-2. Butyrate exhibits a dose-dependent inhibitory effect on cancer cell migration and invasion. This inhibitory potential on oncogenic focal adhesion kinase (FAK) and sarcoma (Src) proteins is greater in HCT116 cells (1.1 and 0.8-fold) and HT-29 cells (0.9 and 0.4-fold) compared to Caco-2 cells, respectively. Conversely, E-cadherin protein, a classical epithelial cell marker and potential tumor suppressor, is 2.3-fold greater in HCT116 cells than in HT-29 cells and Caco-2 cells. Moreover, survival analysis from a public cancer database demonstrates that CRC patients with high E-cadherin expression have a 13% greater 5-year survival rate than those with low expression. CONCLUSION Collectively, butyrate's anti-cancer efficacy on CRC cells varies depending on cell-type and is linked to the FAK/Src/E-cadherin pathway.
Collapse
Affiliation(s)
- Sema Oncel
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, 58203, USA
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, 58203, USA
| | - Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, 58203, USA
| |
Collapse
|
49
|
Chen Z, Jiang P, Su D, Zhao Y, Zhang M. Therapeutic inhibition of the JAK-STAT pathway in the treatment of inflammatory bowel disease. Cytokine Growth Factor Rev 2024; 79:1-15. [PMID: 39179485 DOI: 10.1016/j.cytogfr.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a group of non-specific chronic intestinal inflammatory conditions of unclear etiology. The current treatment and long-term management primarily involve biologics. Nevertheless, some patients experience treatment failure or intolerance to biologics [1], making these patients a primary focus of IBD research. The Janus kinase (JAK)-Signal Transducers and Activator of Transcription (STAT) signal transduction pathway is crucial to the regulation of immune and inflammatory responses [2], and plays an important role in the pathogenesis of IBD. JAK inhibitors alleviate IBD by suppressing the transmission of JAK-STAT signaling pathway. As the first small-molecule oral inhibitor for IBD, JAK inhibitors greatly improved the treatment of IBD and have demonstrated significant efficacy, with tofacitinib and upadacitinib being approved for the treatment of ulcerative colitis (UC) [3]. JAK inhibitors can effectively alleviate intestinal inflammation in IBD patients who have failed to receive biologics, which may bring new treatment opportunities for refractory IBD patients. This review aims to elucidate the crucial roles of JAK-STAT signal transduction pathway in IBD pathogenesis, examine its role in various cell types within IBD, and explore the research progress of JAK inhibitors as therapeutic agents, paving the road for new IBD treatment strategies.
Collapse
Affiliation(s)
- Zihan Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, 02472, MA, United States
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, 60637
| | - Mingming Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| |
Collapse
|
50
|
Ruan C, Zhang Y, Chen D, Zhu M, Yang P, Zhang R, Li Y. Novel Oncogenic Value of C10orf90 in Colon Cancer Identified as a Clinical Diagnostic and Prognostic Marker. Int J Mol Sci 2024; 25:10496. [PMID: 39408824 PMCID: PMC11476934 DOI: 10.3390/ijms251910496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
C10orf90, a tumor suppressor, can inhibit the occurrence and development of tumors. Therefore, we investigated the gene function of C10orf90 in various tumors using multiple pan-cancer datasets. Pan-cancer analysis results reveal that the expression levels of C10orf90 vary across different tumors and hold significant value in the clinical diagnosis and prognosis of patients with various tumors. In some cancers, the expression level of C10orf90 is correlated with CNV, DNA methylation, immune subtypes, immune cell infiltration, and drug sensitivity in the tumors. In particular, in COAD, the C10orf90 gene is implicated in multiple processes associated with COAD. Cell experiments demonstrate that C10orf90 suppresses the proliferation and migration of colon cancer cells while promoting apoptosis. In summary, C10orf90 plays a role in the onset and progression of various cancers and could potentially serve as an effective diagnostic and prognostic marker for cancer patients. Notably, in COAD, C10orf90 inhibits the proliferation and migration of colon cancer cells, induces apoptosis, and is linked to the advancement of colon cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.R.); (Y.Z.); (D.C.); (M.Z.); (P.Y.)
| | - Yan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.R.); (Y.Z.); (D.C.); (M.Z.); (P.Y.)
| |
Collapse
|