1
|
Xu L, Dai B, Zhang L, Chen W, Rong S, Chen J, Song M, Lan Z, Liu Y, Wang L, Li J, Chen J, Wu Z. UBE2C mediates follicular thyroid carcinoma invasion and metastasis via K29-Specific vimentin ubiquitination. Cancer Lett 2025; 617:217624. [PMID: 40074069 DOI: 10.1016/j.canlet.2025.217624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Follicular thyroid carcinoma (FTC) poses significant clinical challenges due to its vascular invasion tendency and distant metastasis potential, leading to poorer patient outcomes compared to other thyroid carcinomas. Although ubiquitin-conjugating enzyme E2C (UBE2C) has been widely studied in various cancers, its specific role in FTC progression remains insufficiently explored. This study demonstrates UBE2C's dual functionality in FTC through clinical analysis and experimental validation. Single-cell RNA sequencing of FTC specimens revealed marked UBE2C upregulation associated with aggressive tumor behavior and unfavorable prognosis. Functional studies showed that UBE2C overexpression paradoxically enhanced cellular proliferation while suppressing migration and invasion through EMT modulation. Mechanistic investigations identified vimentin as a key substrate, where UBE2C mediated K29-linked ubiquitination leading to its degradation. Animal models yielded unexpected findings where UBE2C knockdown reduced primary tumor growth but promoted metastasis, validating its context-dependent roles. These results establish UBE2C as a molecular regulator balancing proliferation and invasion in FTC through post-translational modification of cytoskeletal components, suggesting its therapeutic potential for targeted intervention strategies.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Bao Dai
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Lingyun Zhang
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Weijian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Shikuo Rong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| | - Jianghong Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Muye Song
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Ziteng Lan
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Yongchen Liu
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Linhe Wang
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Jinghua Li
- Department of Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| | - Jian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Zeyu Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Liu R, Wu T, Zhou W, Zhu A, Liao W, Ding K. A Novel Polysaccharide from the Flowers of Lilium lancifolium Alleviates Pulmonary Fibrosis In Vivo and In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7774-7787. [PMID: 40114341 DOI: 10.1021/acs.jafc.4c11703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Lily flowers are widely used in China for lung nourishment; however, their active ingredients remain unknown. To address this question, we isolated a novel polysaccharide (L005-B) from the flowers of Lilium lancifolium. Its backbone is comprised of Glcp, Galp, and 1,2-linked α-Rhap. The branch is composed of Xyl and T-α-Glcp residues substituted at the C-4 position of Rhap, along with portions of Glcp, Galp, Araf, and GlcpA residues substituted at the C-4 position of glucose or the C-3 position of galactose. Bioactivity study showed that L005-B alleviated fibrosis-associated protein (fibronectin, collagen, α-SMA) expression in TGF-β1-induced human fibroblast cells (MRC-5). Moreover, L005-B significantly inhibited the epithelial-mesenchymal transition of the human alveolar type II epithelial cell. More importantly, L005-B dramatically improved bleomycin-induced histopathological changes and attenuated the pulmonary index and hydroxyproline contents. Taken together, our findings revealed that L005-B may serve as a promising leading compound for the development of novel antipulmonary fibrosis therapeutics.
Collapse
Affiliation(s)
- Renjie Liu
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19Auquan Road, Beijing 100049, China
| | - Tong Wu
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19Auquan Road, Beijing 100049, China
| | - Wanqi Zhou
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Anming Zhu
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wenfeng Liao
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19Auquan Road, Beijing 100049, China
| | - Kan Ding
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19Auquan Road, Beijing 100049, China
- ZhongShan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, China
| |
Collapse
|
3
|
Wan M, Zhou J, Xue N, Mei J, Zhou J, Zong X, Ding J, Li Q, He Z, Zhu Y. Lovastatin-mediated pharmacological inhibition of Formin protein DIAPH1 suppresses tumor immune escape and boosts immunotherapy response. Int Immunopharmacol 2025; 144:113637. [PMID: 39571269 DOI: 10.1016/j.intimp.2024.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND The immunosuppressive tumor microenvironment (TME) is a key characteristic of human cancer. Immunotherapy has emerged as a promising treatment strategy to overcome immune escape and has gained widespread use in recent years. In particular, the blockade of PD-1/PD-L1 interaction holds significant importance in oncotherapy. Combining anti-PD-1/PD-L1 with small molecule inhibitors targeting key pathways represents an emerging trend in therapeutic development. METHODS To validate our findings biologically, we employed qRT-PCR or Western blotting and immunofluorescence staining techniques to assess the expression levels of DIAPH1 and PD-L1 in cells. Additionally, CCK8 and clone formation assays were utilized to evaluate cell proliferation ability, while flow assays were conducted to detect apoptosis in T cells. RESULTS Knockdown of DIAPH1 restored the tumor-killing capacity of T cells, effectively suppressing tumor immune escape. We observed a highly positive correlation between the expression levels of DIAPH1 and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), which can be competitively inhibited by lovastatin. Through Sybyl analysis followed by confirmation via micro scale thermophoresis, we identified lovastatin as a potential inhibitor targeting DIAPH1. Lovastatin downregulated DIAPH1 expression both in tumor cell lines and xenograft lung cancer tissues within a mouse lung cancer model. Furthermore, we found that lovastatin degraded DIAPH1 through lysosomal degradation pathway. Treatment with lovastatin was strongly associated with improved response rates and prolonged overall survival among patients with lung adenocarcinoma. Finally, overexpression of DIAPH1 reversed the inhibitory effects mediated by lovastatin on tumor development. CONCLUSIONS Lovastatin downregulates PD-L1 expression by targeting DIAPH1 and restores the tumor-killing ability of T cells to block tumor immune escape. Lovastatin may become a potential drug for cancer patients to enhance immunotherapy response in the clinic.
Collapse
Affiliation(s)
- Mengyun Wan
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Ji Zhou
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Ningyi Xue
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China; The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Jiaofeng Zhou
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Xinyu Zong
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China; Taizhou People's Hospital affiliated to Nanjing Medical University, Taizhou 225399, Jiangsu, PR China.
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, PR China.
| | - Qing Li
- Department of Oncology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, PR China.
| | - Zhicheng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Yichao Zhu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
4
|
Qiao L, Pan W, Yang J, Cheng Y, Han Y, Zhu Q, Liu R, Zhang H, Ba Y. Inhibitory effects of circR-127aa on gastric cancer progression and tumor growth. Cell Signal 2025; 125:111520. [PMID: 39581359 DOI: 10.1016/j.cellsig.2024.111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
This study investigates the function of a newly identified 127-amino acid peptide, circR-127aa, encoded by hsa_circ_0075402 (circRACK1), in gastric cancer (GC), a condition with significant prevalence in China. Utilizing a comprehensive analysis of circular RNA (circRNA) ribosome profiling data alongside experimental validations through mass spectrometry, Western blot, and immunofluorescence, we demonstrate that circR-127aa Inhibits Malignant Phenotypes and suppresses tumor growth in nude mice models. Significantly, the interaction of circR-127aa with Vimentin, a crucial element in actin-actin-cytoskeletal remodeling, indicates that circR-127aa functions as a tumor suppressor by facilitating the ubiquitination of Vimentin. These findings advance our comprehension of gastric cancer (GC) progression and propose circR-127aa as a promising therapeutic target and biomarker in the management of GC.
Collapse
Affiliation(s)
- Lei Qiao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, China
| | - Wen Pan
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, China
| | - Jiayu Yang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, China
| | - Yanan Cheng
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, China
| | - Yueting Han
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, China
| | - Qihang Zhu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, China.
| | - Haiyang Zhang
- Tianjin Institute of Coloproctology, The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China.
| | - Yi Ba
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, China.
| |
Collapse
|
5
|
Gao T, Zhou R, Huang D, Wu D, Gao Y, Yuan Y, Li J, Huang S, Xian Y, Tang Y, Lin Z, Zhou D, Wang S. Pharmacological Effects of a Ginseng-Containing Chinese Medicine Formula in Treating Hepatocellular Carcinoma Based on Comprehensive Bioinformatics and Experimental Validation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2511-2529. [PMID: 39721956 DOI: 10.1142/s0192415x24500964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Ginseng-containing Shentao Ruangan granules (STR) have been a well-known Chinese medicine prescription for the treatment of hepatocellular carcinoma (HCC) in China for decades. This study aimed to establish an in silico experimental framework to decipher the underlying mechanism of STR in the treatment of HCC. Microarray analysis, network pharmacology, RNA-sequencing (RNA-seq), bioinformatics analysis, and in vivo and in vitro experiments were used as integrated approaches to uncover the effects and mechanisms of action of STR. The introduction of STR significantly suppresses the proliferation and metastasis of HepG2 and Huh7 cells. STR treatment notably suppressed the growth of transplanted Huh7 tumors. Furthermore, STR administration reduced the expression of various epithelial-to-mesenchymal transition (EMT)-related proteins including N-cadherin, vimentin, and [Formula: see text]-catenin. By employing a systems biology approach, 21 common genes were identified across RNA-seq data, TCGA-HCC dataset, and network pharmacology analysis. Finally, of these genes nine were found to be associated with both OS and PFS in patients with HCC within the TCGA cohort. Validation of candidate genes by qPCR and WB identified a significant downregulation in the expression of pGSK3[Formula: see text] and RELA protein with increasing concentrations of STR. These results elucidated the mechanism by which STR inhibits tumor growth and EMT of HCC may be related to the GSK3[Formula: see text]/RELA pathway.
Collapse
Affiliation(s)
- Tianqi Gao
- Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Ruisheng Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Dan Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Dailin Wu
- Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Yi Yuan
- Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Jing Li
- Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Shangyi Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Yanfang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China
| | - Ying Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Zhixiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China
| | - Daihan Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| | - Shutang Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
| |
Collapse
|
6
|
Li B, Jiang X, Liu C, Ma Y, Zhao R, Zhang H. Exploring the preventive effects of Jie Geng Tang on pulmonary fibrosis induced in vitro and in vivo: a network pharmacology approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10005-10016. [PMID: 38961002 DOI: 10.1007/s00210-024-03262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Pulmonary fibrosis is a debilitating lung disease marked by excessive fibrotic tissue accumulation, which significantly impairs respiratory function. Given the limitations of current therapies, there is an increasing interest in exploring traditional herbal formulations like Jie Geng Tang (JGT) for treatment. This study examines the potential of JGT and its bioactive component, quercetin, in reversing bleomycin (BLM)-induced pulmonary fibrosis in mice. We employed a BLM-induced MLE-12 cell damage model for in vitro studies and a bleomycin-induced fibrosis model in C57BL/6 mice for in vivo experiments. In vitro assessments showed that JGT significantly enhanced cell viability and reduced apoptosis in MLE-12 cells treated with BLM. These findings underscore JGT's potential for cytoprotection against fibrotic agents. In vivo, JGT was effective in modulating the expression of E-cadherin and vimentin, key markers of the epithelial-mesenchymal transition (EMT) pathway, indicating its role in mitigating EMT-associated fibrotic changes in lung tissue. Quercetin, identified through network pharmacology analysis as a potential key bioactive component of JGT, was highlighted for its role in the regulatory mechanisms underlying fibrosis progression, particularly through the modulation of the IL-17 pathway and Il6 expression. By targeting inflammatory pathways and key processes like EMT, JGT and quercetin offer a potent alternative to conventional therapies, meriting further clinical exploration to harness their full therapeutic potential in fibrotic diseases.
Collapse
Affiliation(s)
- Bingxin Li
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Xiaojie Jiang
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Chang Liu
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Yun Ma
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Ruining Zhao
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Haijun Zhang
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China.
| |
Collapse
|
7
|
Chen Y, Shen J, Zhao X, He Q, Zhang J. The up-regulation of PD-L1 during boningmycin-induced senescence in human cancer cells depends on the activation of the JAK/STAT signaling pathway mediated by SASP. Immunol Cell Biol 2024; 102:847-859. [PMID: 39044372 DOI: 10.1111/imcb.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/28/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Therapy-induced senescence can regulate both the innate and adaptive immune systems, thereby affecting therapeutic efficacy. Bleomycin is a major component of combined chemotherapy regimens, utilized for the treatment of multiple tumors, whereas pulmonary toxicity severely restricts its clinical benefits. As a member of the bleomycin family, boningmycin (BON) exhibits potent anticancer activity with minimal pulmonary toxicity, making it a potential alternative to bleomycin. Low concentrations of BON can induce senescence, but the impact of BON-induced senescence on anticancer immunity remains unclear. This study investigates the effects of BON-induced senescence on PD-L1 expression and the underlying mechanisms in human cancer cells. Firstly, the elevation of PD-L1 protein during BON-induced senescence was confirmed by a senescence β-galactosidase staining assay, detection of the senescence-associated secretory phenotype (SASP), western blot and flow cytometry in human lung cancer NCI-H460 cells and breast cancer MDA-MB-231 cells. Subsequently, it was shown that the increase in PD-L1 protein is mediated by SASP, as evidenced by the use of conditional media, knockdown of cyclic GMP-AMP synthase and inhibition of stimulator of interferon genes. Ultimately, it was demonstrated that SASP-mediated PD-L1 up-regulation is dependent on the activation of the JAK/STAT pathway through the use of specific inhibitors and siRNAs. These findings clarify the impact of BON-induced senescence on PD-L1 expression and may contribute to the optimization of the therapeutic efficacy of bleomycin-related compounds and the clinical transformation of BON.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajia Shen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyang He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Lei ZN, Teng QX, Koya J, Liu Y, Chen Z, Zeng L, Chen ZS, Fang S, Wang J, Liu Y, Pan Y. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis. Front Immunol 2024; 15:1417201. [PMID: 39403386 PMCID: PMC11471544 DOI: 10.3389/fimmu.2024.1417201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/06/2024] [Indexed: 01/03/2025] Open
Abstract
The connections between cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) is critical in cancer initiation, progression, metastasis, and therapy resistance, making it a focal point in cancer theragnosis. This review provides a panorama of associations and regulation pathways between CSCs and EMT, highlighting their significance in cancer. The molecular mechanisms underlined EMT are thoroughly explored, including the involvement of key transcription factors and signaling pathways. In addition, the roles of CSCs and EMT in tumor biology and therapy resistance, is further examined in this review. The clinical implications of CSCs-EMT interplay are explored, including identifying mesenchymal-state CSC subpopulations using advanced research methods and developing targeted therapies such as inhibitors and combination treatments. Overall, understanding the reciprocal relationship between EMT and CSCs holds excellent potential for informing the development of personalized therapies and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yangruiyu Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhou Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Shuo Fang
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinxiang Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Libra A, Sciacca E, Muscato G, Sambataro G, Spicuzza L, Vancheri C. Highlights on Future Treatments of IPF: Clues and Pitfalls. Int J Mol Sci 2024; 25:8392. [PMID: 39125962 PMCID: PMC11313529 DOI: 10.3390/ijms25158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring of lung tissue, leading to death. Despite recent advancements in understanding its pathophysiology, IPF remains elusive, and therapeutic options are limited and non-curative. This review aims to synthesize the latest research developments, focusing on the molecular mechanisms driving the disease and on the related emerging treatments. Unfortunately, several phase 2 studies showing promising preliminary results did not meet the primary endpoints in the subsequent phase 3, underlying the complexity of the disease and the need for new integrated endpoints. IPF remains a challenging condition with a complex interplay of genetic, epigenetic, and pathophysiological factors. Ongoing research into the molecular keystones of IPF is critical for the development of targeted therapies that could potentially stop the progression of the disease. Future directions include personalized medicine approaches, artificial intelligence integration, growth in genetic insights, and novel drug targets.
Collapse
Affiliation(s)
- Alessandro Libra
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Enrico Sciacca
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology Outpatient Clinic, 95030 Mascalucia, CT, Italy;
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| |
Collapse
|
10
|
Wei X, Jin C, Li D, Wang Y, Zheng S, Feng Q, Shi N, Kong W, Ma X, Wang J. Single-cell transcriptomics reveals CD8 + T cell structure and developmental trajectories in idiopathic pulmonary fibrosis. Mol Immunol 2024; 172:85-95. [PMID: 38936318 DOI: 10.1016/j.molimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Collapse
Affiliation(s)
- Xuemei Wei
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Chengji Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China
| | - Yujie Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Qiong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Ning Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Weina Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China.
| | - Jing Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
11
|
Qi WH, Hu LF, Gu YJ, Zhang XY, Jiang XM, Li WJ, Qi JS, Xiao GS, Jie H. Integrated mRNA-miRNA transcriptome profiling of blood immune responses potentially related to pulmonary fibrosis in forest musk deer. Front Immunol 2024; 15:1404108. [PMID: 38873601 PMCID: PMC11169664 DOI: 10.3389/fimmu.2024.1404108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Background Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Li-Fan Hu
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu-Jiawei Gu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | | | - Xue-Mei Jiang
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wu-Jiao Li
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jun-Sheng Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guo-Sheng Xiao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Hang Jie
- Jinfo Mountain Forest Ecosystem Field Scientific Observation and Research Station of Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| |
Collapse
|
12
|
Ma X, Jiang M, Ji W, Yu M, Tang C, Tian K, Gao Z, Su L, Tang J, Zhao X. The role and regulation of SIRT1 in pulmonary fibrosis. Mol Biol Rep 2024; 51:338. [PMID: 38393490 DOI: 10.1007/s11033-024-09296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive and fatal lung disease with high incidence and a lack of effective treatment, which is a severe public health problem. PF has caused a huge socio-economic burden, and its pathogenesis has become a research hotspot. SIRT1 is a nicotinamide adenosine dinucleotide (NAD)-dependent sirtuin essential in tumours, Epithelial mesenchymal transition (EMT), and anti-aging. Numerous studies have demonstrated after extensive research that it is crucial in preventing the progression of pulmonary fibrosis. This article reviews the biological roles and mechanisms of SIRT1 in regulating the progression of pulmonary fibrosis in terms of EMT, oxidative stress, inflammation, aging, autophagy, and discusses the potential of SIRT1 as a therapeutic target for pulmonary fibrosis, and provides a new perspective on therapeutic drugs and prognosis prospects.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Mengna Jiang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Wenqian Ji
- College of International Studies, Southwest University, Chongqing, China
| | - Mengjiao Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Can Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Kai Tian
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Zhengnan Gao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, 334000, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
13
|
Zhang Y, Liu Z, Zhong Z, Ji Y, Guo H, Wang W, Chen C. A tumor suppressor protein encoded by circKEAP1 inhibits osteosarcoma cell stemness and metastasis by promoting vimentin proteasome degradation and activating anti-tumor immunity. J Exp Clin Cancer Res 2024; 43:52. [PMID: 38383479 PMCID: PMC10880370 DOI: 10.1186/s13046-024-02971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of most commonly diagnosed bone cancer. Circular RNAs (circRNAs) are a class of highly stable non-coding RNA, the majority of which have not been characterized functionally. The underlying function and molecular mechanisms of circRNAs in OS have not been fully demonstrated. METHOD Microarray analysis was performed to identify circRNAs that are differentially-expressed between OS and corresponding normal tissues. The biological function of circKEAP1 was confirmed in vitro and in vivo. Mass spectrometry and western blot assays were used to identify the circKEAP1-encoded protein KEAP1-259aa. The molecular mechanism of circKEAP1 was investigated by RNA sequencing and RNA immunoprecipitation analyses. RESULTS Here, we identified a tumor suppressor circKEAP1, originating from the back-splicing of exon2 of the KEAP1 gene. Clinically, circKEAP1 is downregulated in OS tumors and associated with better survival in cancer patients. N6-methyladenosine (m6A) at a specific adenosine leads to low expression of circKEAP1. Further analysis revealed that circKEAP1 contained a 777 nt long ORF and encoded a truncated protein KEAP1-259aa that reduces cell proliferation, invasion and tumorsphere formation of OS cells. Mechanistically, KEAP1-259aa bound to vimentin in the cytoplasm to promote vimentin proteasome degradation by interacting with the E3 ligase ARIH1. Moreover, circKEAP1 interacted with RIG-I to activate anti-tumor immunity via the IFN-γ pathway. CONCLUSION Taken together, our findings characterize a tumor suppressor circKEAP1 as a key tumor suppressor regulating of OS cell stemness, proliferation and migration, providing potential therapeutic targets for treatment of OS.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, PR China.
- Sports Medicine Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Zhaoyong Liu
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, China
- Sports Medicine Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhigang Zhong
- Sports Medicine Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Sports Medicine Institute, Shantou University Medical College, Shantou, 515041, China
| | - Yanchen Ji
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, PR China
| | - Huancheng Guo
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, China
| | - Weidong Wang
- Department of Orthopaedics, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Chuangzhen Chen
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, PR China
| |
Collapse
|
14
|
Tan J, Xue Q, Hu X, Yang J. Inhibitor of PD-1/PD-L1: a new approach may be beneficial for the treatment of idiopathic pulmonary fibrosis. J Transl Med 2024; 22:95. [PMID: 38263193 PMCID: PMC10804569 DOI: 10.1186/s12967-024-04884-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a globally prevalent, progressive disease with limited treatment options and poor prognosis. Because of its irreversible disease progression, IPF affects the quality and length of life of patients and imposes a significant burden on their families and social healthcare services. The use of the antifibrotic drugs pirfenidone and nintedanib can slow the progression of the disease to some extent, but it does not have a reverse effect on the prognosis. The option of lung transplantion is also limited owing to contraindications to transplantation, possible complications after transplantation, and the risk of death. Therefore, the discovery of new, effective treatment methods is an urgent need. Over recent years, various studies have been undertaken to investigate the relationship between interstitial pneumonia and lung cancer, suggesting that some immune checkpoints in IPF are similar to those in tumors. Immune checkpoints are a class of immunosuppressive molecules that are essential for maintaining autoimmune tolerance and regulating the duration and magnitude of immune responses in peripheral tissues. They can prevent normal tissues from being damaged and destroyed by the immune response. While current studies have focused on PD-1/PD-L1 and CTLA-4, PD-1/PD-L1 may be the only effective immune checkpoint IPF treatment. This review discusses the application of PD-1/PD-L1 checkpoint in IPF, with the aim of finding a new direction for IPF treatment.
Collapse
Affiliation(s)
- Jie Tan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Xiao Hu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
15
|
Hu WM, Li M, Ning JZ, Tang YQ, Song TB, Li LZ, Zou F, Cheng F, Yu WM. FAM171B stabilizes vimentin and enhances CCL2-mediated TAM infiltration to promote bladder cancer progression. J Exp Clin Cancer Res 2023; 42:290. [PMID: 37915048 PMCID: PMC10621219 DOI: 10.1186/s13046-023-02860-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Invasion and metastasis are the main causes of unfavourable prognosis in patients diagnosed with bladder cancer. The efficacy of immunotherapy in bladder cancer remains suboptimal due to the presence of an immunosuppressive microenvironment. The novel protein family with sequence similarity 171B (FAM171B) has been identified, but its precise role and mechanism in bladder cancer remain unclear. METHODS In this study, we conducted an analysis to investigate the associations between FAM171B expression and the prognosis and clinicopathological stage of bladder cancer. To this end, we utilized RNA sequencing data from the TCGA and GEO databases, as well as tumor tissue specimens obtained from our clinical centre. RNA sequencing analysis allowed us to examine the biological function of FAM171B at the transcriptional level in bladder cancer cells. Additionally, we used immunoprecipitation and mass spectrometry to identify the protein that interacts with FAM171B in bladder cancer cells. The effects of FAM171B on modulating tumor-associated macrophages (TAMs) and vimentin-mediated tumor progression, as well as the underlying mechanisms, were clarified by phalloidin staining, immunofluorescence staining, ELISA, RNA immunoprecipitation, flow cytometry and a bladder cancer graft model. RESULTS FAM171B expression exhibits strong positive correlation with poor survival outcomes and advanced clinicopathological stages in patients with bladder cancer. FAM171B significantly promoted bladder cancer growth and metastasis, accompanied by TAM accumulation in the microenvironment, in vivo and in vitro. Through studies of the molecular mechanism, we found that FAM171B contributes to tumor progression by stabilizing vimentin in the cytoplasm. Additionally, our research revealed that FAM171B enhances the splicing of CCL2 mRNA by interacting with heterogeneous nuclear ribonucleoprotein U (HNRNPU), ultimately leading to increased recruitment and M2 polarization of TAMs. CONCLUSIONS In this study, we identified FAM171B as a potent factor that promotes the progression of bladder cancer. These findings establish a solid theoretical foundation for considering FAM171B as a potential diagnostic and therapeutic biomarker for bladder cancer.
Collapse
Affiliation(s)
- Wei-Min Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Qi Tang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian-Bao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lin-Zhi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fan Zou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wei-Min Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
16
|
Jiang Y, Feng Y, Huang J, Huang Z, Tan R, Li T, Chen Z, Tang X, Qiu J, Li C, Chen H, Yang Z. LAD1 promotes malignant progression by diminishing ubiquitin-dependent degradation of vimentin in gastric cancer. J Transl Med 2023; 21:632. [PMID: 37718450 PMCID: PMC10506284 DOI: 10.1186/s12967-023-04401-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/29/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Ladinin-1 (LAD1), an anchoring filament protein, has been associated with several cancer types, including cancers of the colon, lungs, and breast. However, it is still unclear how and why LAD1 causes gastric cancer (GC). METHODS Multiple in vitro and in vivo, functional gains and loss experiments were carried out in the current study to confirm the function of LAD1. Mass spectrometry was used to find the proteins that interact with LAD1. Immunoprecipitation analyses revealed the mechanism of LAD1 involved in promoting aggressiveness. RESULTS The results revealed that the LAD1 was overexpressed in GC tissues, and participants with increased LAD1 expression exhibited poorer disease-free survival (DFS) and overall survival (OS). Functionally, LAD1 promotes cellular invasion, migration, proliferation, and chemoresistance in vivo and in vitro in the subcutaneous patient-and cell-derived xenograft (PDX and CDX) tumor models. Mechanistically, LAD1 competitively bound to Vimentin, preventing it from interacting with the E3 ubiquitin ligase macrophage erythroblast attacher (MAEA), which led to a reduction in K48-linked ubiquitination of Vimentin and an increase in Vimentin protein levels in GC cells. CONCLUSIONS In conclusion, the current investigation indicated that LAD1 has been predicted as a possible prognostic biomarker and therapeutic target for GC due to its ability to suppress Vimentin-MAEA interaction.
Collapse
Affiliation(s)
- Yingming Jiang
- Department of Gastrointestinal Endoscopy, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Yanchun Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jintuan Huang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zhenze Huang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Rongchang Tan
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Tuoyang Li
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zijian Chen
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Xiaocheng Tang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jun Qiu
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Chujun Li
- Department of Gastrointestinal Endoscopy, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Hao Chen
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Zuli Yang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
17
|
Zhang YC, Zhang YT, Wang Y, Zhao Y, He LJ. What role does PDL1 play in EMT changes in tumors and fibrosis? Front Immunol 2023; 14:1226038. [PMID: 37649487 PMCID: PMC10463740 DOI: 10.3389/fimmu.2023.1226038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Yun-Chao Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Li-Jie He
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|