1
|
Li S, Lu Z, Jiang W, Xu Y, Chen R, Wang J, Jiao B, Lu X. Chaetocin, a Natural Inhibitor of Transketolase, Suppresses the Non-Oxidative Pentose Phosphate Pathway and Inhibits the Growth of Drug-Resistant Non-Small Cell Lung Cancer. Antioxidants (Basel) 2025; 14:330. [PMID: 40227333 PMCID: PMC11939327 DOI: 10.3390/antiox14030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 04/15/2025] Open
Abstract
Worldwide, lung cancer is the most common cause of cancer-related death, which is made worse by the development of drug resistance during treatment. It is urgent to develop new therapeutic methods and small molecule drugs for tumor resistance. Chaetocin, extracted from Chaetomium minutum, is a natural compound with good antitumor activity. However, there are few studies on its tumor resistance. In this paper, firstly, chaetotocin significantly inhibited the viability and migration of cisplatin-resistant non-small cell lung cancer (NSCLC) cells and inhibited the xenograft growth of nude mice. Chaetocin at 4 mg/kg significantly inhibited A549/DDP xenograft growth with an inhibition rate of 70.43%. Subsequently, the underlying mechanism behind the actions of chaetocin was explored. It was discovered that chaetocin can inhibit transketolase (TKT), thereby inhibiting the growth of NSCLC cells and inducing cell death. Compared with cisplatin-sensitive cells, a lower concentration of chaetocin can inhibit cisplatin-resistance cell viability and migration. Mechanistically, TKT was identified as a potential target for chaetocin. The KD value of the interaction between chaetocin and TKT was 63.2 μM. An amount of 0.2 μM chaetocin may suppress the enzyme activity and expression level of TKT. We found the TKT expression is higher in cisplatin-resistant cells, which further explains why these cells were more vulnerable to chaetocin in terms of cell phenotype. Additionally, the muti-omics analysis and RNA interference suggested that chaetocin can inhibit the PI3K/Akt signaling pathway through TKT. In conclusion, chaetocin could directly bind to TKT, inhibiting its enzyme activity and expression, which interfered with intracellular metabolism and oxidation-reduction balance, and then regulated the PI3K/Akt signaling pathway to inhibit the growth of NSCLC and induce apoptosis.
Collapse
Affiliation(s)
- Song Li
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Zhanying Lu
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai 200433, China;
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Yao Xu
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Ran Chen
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| |
Collapse
|
2
|
Zhou Y, Wang M, Qian Y, Yu D, Zhang J, Fu M, Zhang X, Qin R, Ji R, Zhang X, Gu J. PRDX2 promotes gastric cancer progression by forming a feedback loop with PKM2/STAT3 axis. Cell Signal 2025; 127:111586. [PMID: 39761843 DOI: 10.1016/j.cellsig.2024.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Peroxiredoxin 2 (PRDX2) is an antioxidant enzyme that has been reported to be overexpressed in various cancers. However, the role of PRDX2 in gastric cancer progression and its underlying mechanism remains unclear. Herein, we revealed the function of PRDX2 in gastric cancer progression and explored its molecule mechanism. We identified that PRDX2 was upregulated and associated with poor prognosis in gastric cancer. The knockdown of PRDX2 inhibited the proliferation, migration and invasion of gastric cancer cells in vitro and suppressed tumor growth in vivo. Mechanistically, PRDX2 interacted with PKM2 (pyruvate kinase isozyme type M2) and protected PKM2 from ubiquitination and degradation, which enhanced glycolysis in gastric cancer cells. The interaction between PRDX2 and PKM2 also enhanced the binding affinity between PKM2 and importin α5, which induced PKM2 nuclear translocation and activated STAT3 signaling pathway. In addition, STAT3 (signal transducer and activator of transcription 3) was identified to bind to PRDX2 gene promoter and upregulate PRDX2 expression, which forms a positive regulatory feedback loop in gastric cancer cells. The present study unravels the biological role of PRDX2 in cancer progression and illustrates the underlying molecular mechanism, which may provide a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Rong Qin
- Department of Oncology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China.
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong 226300, China.
| |
Collapse
|
3
|
Zhao Q, Yu H, Shi M, Wang X, Fan Z, Wang Z. Tumor microenvironment characteristics of lipid metabolism reprogramming related to ferroptosis and EndMT influencing prognosis in gastric cancer. Int Immunopharmacol 2024; 137:112433. [PMID: 38870879 DOI: 10.1016/j.intimp.2024.112433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a refractory malignant tumor with high tumor heterogeneity, a low rate of early diagnosis, and poor patient prognosis. Lipid metabolism reprogramming plays a critical role in tumorigenesis and progression, but its prognostic role and regulatory mechanism in GC are rarely studied. Thus, the identification of signatures related to lipid metabolism is necessary and may present a new avenue for improving the overall prognosis of GC. METHODS Lipid metabolism-associated genes (LMAGs) with differential expression in tumor and tumor-adjacent tissue were acquired to identify lipid metabolism-associated subtypes. The differentially expressed genes (DEGs) between the two clusters were then utilized for prognostic analysis and signature construction. Additionally, pathway enrichment analysis and immune cell infiltration analysis were employed to identify the characteristics of the prognostic model. Further analyses were conducted at the single-cell level to better understand the model's prognostic mechanism. Finally, the prediction of immunotherapy response was used to suggest potential treatments. RESULTS Two lipid metabolism-associated subtypes were identified and 9 prognosis-related genes from the DEGs between the two clusters were collected for the construction of the prognostic model named lipid metabolism-associated signature (LMAS). Then we found the low LMAS patients with favorable prognoses were more sensitive to ferroptosis in the Cancer Genome Atlas of Stomach Adenocarcinoma (TCGA-STAD). Meanwhile, the tumor cells exhibiting high levels of lipid peroxidation and accumulation of reactive oxygen species (ROS) in single-cell levels were primarily enriched in the low LMAS group, which was more likely to induce ferroptosis. In addition, endothelial cells and cancer-associated fibroblasts (CAFs) facilitated tumor angiogenesis, proliferation, invasion, and metastasis through endothelial-mesenchymal transition (EndMT), affecting the prognosis of the patients with high LMAS scores. Moreover, CD1C- CD141- dendritic cells (DCs) also secreted pro-tumorigenic cytokines to regulate the function of endothelial cells and CAFs. Finally, the patients with low LMAS scores might have better efficacy in immunotherapy. CONCLUSIONS A LMAS was constructed to guide GC prognosis and therapy. Meanwhile, a novel anti-tumor effect was found in lipid metabolism reprogramming of GC which improved patients' prognosis by regulating the sensitivity of tumor cells to ferroptosis. Moreover, EndMT may have a negative impact on GC prognosis.
Collapse
Affiliation(s)
- Qian Zhao
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China; School of Basic Medicine, Baotou Medical College, Baotou 014040, China
| | - Hui Yu
- Translational Medicine Center, Baotou Medical College, Baotou 014040, China
| | - Mengqi Shi
- School of Basic Medicine, Baotou Medical College, Baotou 014040, China
| | - Xujie Wang
- School of Basic Medicine, Baotou Medical College, Baotou 014040, China
| | - Zixu Fan
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China.
| |
Collapse
|
4
|
Li Y, Dong Y. TTI-101 targets STAT3/c-Myc signaling pathway to suppress cervical cancer progression: an integrated experimental and computational analysis. Cancer Cell Int 2024; 24:286. [PMID: 39135042 PMCID: PMC11320917 DOI: 10.1186/s12935-024-03463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cervical cancer (CC) is a significant global health concern, demanding the consideration of novel therapeutic strategies. The signal transducer and activator of transcription 3 (STAT3) pathway has been implicated in cancer progression and is a potential target for therapeutic intervention. This study aimed to explore the therapeutic potential of TTI-101, a small molecule STAT3 inhibitor, in CC and investigate its underlying mechanisms. METHODS Molecular docking studies and molecular dynamics simulations were performed to explore the binding interaction between TTI-101 and STAT3 and assess the stability of the STAT3-TTI-101 complex. Cell viability assays, wound healing assays, colony formation assays, flow cytometry analysis, and gene expression analysis were conducted. In vivo xenograft models were used to assess the antitumor efficacy of TTI-101. RESULTS The in silico analysis shows a stable binding interaction between TTI-101 and STAT3. TTI-101 treatment inhibits cell viability, clonogenic ability, and cell migration in CC cells. Furthermore, TTI-101 induces apoptosis and cell cycle arrest. Analysis of apoptosis-related markers demonstrated dysregulation of Bax, Bcl-2, and Caspase-3 upon TTI-101 treatment. Moreover, TTI-101 caused G2/M phase arrest accompanied by a decrease in CDK1 and Cyclin B1 at mRNA levels. In the xenograft model, TTI-101 significantly inhibited tumor growth without adverse effects on body weight. CONCLUSION TTI-101 exhibited anticancer effects by targeting the STAT3/c-Myc signaling pathway, inducing cell cycle arrest, and promoting apoptosis in CC cells. These findings provide valuable insights into the development of novel therapeutic strategies for cervical cancer. Further investigation is warranted to validate the clinical application of TTI-101.
Collapse
Affiliation(s)
- Yi Li
- Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, 250031, Shandong, People's Republic of China
| | - Yuyan Dong
- Department of Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, 238 Jingshi East Road, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
6
|
Wang Y, Zhou Q, Liu C, Zhang R, Xing B, Du J, Dong L, Zheng J, Chen Z, Sun M, Yao X, Ren Y, Zhou X. Targeting IL-6/STAT3 signaling abrogates EGFR-TKI resistance through inhibiting Beclin-1 dependent autophagy in HNSCC. Cancer Lett 2024; 586:216612. [PMID: 38211653 DOI: 10.1016/j.canlet.2024.216612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is featured by notorious EGFR tyrosine kinase inhibitor (TKI) resistance attributable to activation of parallel pathways. The numerous phase I/II trials have rarely shown encouraging clinical outcomes of EGFR-TKIs during treatment in HNSCC patients with advanced tumors. A unique IL-6/STAT3 signaling axis is reported to regulate multiple cancer-related pathways, but whether this signaling is correlated with reduced EGFR-TKI responsiveness is unclear. Here, we found that STAT3 signaling is compensatorily upregulated after EGFR-TKI exposure and confers anti-EGFR therapy resistance during HNSCC therapy. Targeting STAT3 using small molecule inhibitors promotes complete recovery or sustained elimination of HNSCC tumors through combination with EGFR-TKIs both in vitro and in diverse animal models. Mechanistically, phosphorylated STAT3 was proven to enhance oncogenic autophagic flux, protecting cancer cells and preventing EGFR-TKI-induced tumor apoptosis. Thus, blockade of STAT3 signaling simultaneously disrupts several key interactions during tumor progression and remodels the autophagic degradation system, thereby rendering advanced HNSCC eradicable through combination with EGFR-TKI therapy. These findings provide a clinically actionable strategy and suggest STAT3 as a predictive biomarker with therapeutic potential for EGFR-TKI resistant HNSCC patients.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Ruizhe Zhang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
7
|
Liu YY, Cai D, Tang XP, Cheng YX. Ganoderma lucidum-Derived Meroterpenoids Show Anti-Inflammatory Activity In Vitro. Molecules 2024; 29:1149. [PMID: 38474661 PMCID: PMC10935275 DOI: 10.3390/molecules29051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ganoderma lucidum, known as the "herb of spiritual potency", is used for the treatment and prevention of various diseases, but the responsible constituents for its therapeutic effects are largely unknown. For the purpose of obtaining insight into the chemical and biological profiling of meroterpenoids in G. lucidum, various chromatographic approaches were utilized for the title fungus. As a result, six undescribed meroterpenoids, chizhienes A-F (1-6), containing two pairs of enantiomers (4 and 5), were isolated. Their structures were identified using spectroscopic and computational methods. In addition, the anti-inflammatory activities of all the isolates were evaluated by Western blot analysis in LPS-induced macrophage cells (RAW264.7), showing that 1 and 3 could dose dependently inhibit iNOS but not COX-2 expression. Further, 1 and 3 were found to inhibit nitric oxide (NO) production using the Greiss reagent test. The current study will aid in enriching the structural and biological diversity of Ganoderma-derived meroterpenoids.
Collapse
Affiliation(s)
- Yun-Yun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dan Cai
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xin-Ping Tang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yong-Xian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
8
|
Guan X, Li Y, Guan X, Fan L, Ying J. XYA-2: a marine-derived compound targeting apoptosis and multiple signaling pathways in pancreatic cancer. PeerJ 2024; 12:e16805. [PMID: 38250721 PMCID: PMC10798151 DOI: 10.7717/peerj.16805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Background Pancreatic cancer is a highly aggressive and fatal disease with limited treatment options and poor prognosis for patients. This study aimed to investigate the impact of XYA-2 {N-(3,7-dimethyl-2,6-octadienyl)-2-aza-2-deoxychaetoviridin A}, a nitrogenated azaphilon previously reported from a deep-sea-derived fungus on the progression of pancreatic cancer cells. Methods The inhibitory effects of XYA-2 on cell proliferation, clonogenic potential, cell cycle progression, apoptosis, migration, and invasion were assessed using various assays. The CCK-8 assay, clone formation assay, flow cytometry assay, wound healing assay, and transwell assay were employed to evaluate cell proliferation, clonogenic potential, cell cycle progression, apoptosis, migration, and invasion, respectively. Moreover, we employed RNA-seq and bioinformatics analyses to uncover the underlying mechanism by which XYA-2 influences pancreatic cancer cells. The revealed mechanism was subsequently validated through qRT-PCR. Results Our results demonstrated that XYA-2 dose-dependently inhibited the proliferation of pancreatic cancer cells and induced cell cycle arrest and apoptosis. Additionally, XYA-2 exerted a significant inhibitory effect on the invasion and migration of cancer cells. Moreover, XYA-2 was found to regulate the expression of genes involved in multiple cancer-related pathways based on our RNA-seq and bioinformatics analysis. Conclusion These findings highlight the potential of XYA-2 as a promising therapeutic option for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Zhejiang, China
| | - Yun Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
| | - Xiaodan Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
| | - Linfei Fan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
| | - Jieer Ying
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Zhejiang, China
| |
Collapse
|
9
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Le J, Pan G, Zhang C, Chen Y, Tiwari AK, Qin JJ. Targeting ferroptosis in gastric cancer: Strategies and opportunities. Immunol Rev 2024; 321:228-245. [PMID: 37903748 DOI: 10.1111/imr.13280] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023]
Abstract
Ferroptosis is a novel form of programmed cell death morphologically, genetically, and biochemically distinct from other cell death pathways and characterized by the accumulation of iron-dependent lipid peroxides and oxidative damage. It is now understood that ferroptosis plays an essential role in various biological processes, especially in the metabolism of iron, lipids, and amino acids. Gastric cancer (GC) is a prevalent malignant tumor worldwide with low early diagnosis rates and high metastasis rates, accounting for its relatively poor prognosis. Although chemotherapy is commonly used to treat GC, drug resistance often leads to poor therapeutic outcomes. In the last several years, extensive research on ferroptosis has highlighted its significant potential in GC therapy, providing a promising strategy to address drug resistance associated with standard cancer therapies. In this review, we offer an extensive summary of the key regulatory factors related to the mechanisms underlying ferroptosis. Various inducers and inhibitors specifically targeting ferroptosis are uncovered. Additionally, we explore the prospective applications and outcomes of these agents in the field of GC therapy, emphasizing their capacity to improve the outcomes of this patient population.
Collapse
Affiliation(s)
- Jiahan Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Che Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Yitao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
11
|
Guan X, Zhao B, Guan X, Dong J, Ying J. A benzochalcone derivative synchronously induces apoptosis and ferroptosis in pancreatic cancer cells. PeerJ 2023; 11:e16291. [PMID: 37927794 PMCID: PMC10625348 DOI: 10.7717/peerj.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Pancreatic cancer is a highly aggressive and lethal disease with limited treatment options. In this study, we investigated the potential therapeutic effects of compound KL-6 on pancreatic cancer cells. Methods The study involved assessing the inhibitory effects of KL-6 on cell proliferation, clonogenic potential, cell cycle progression, apoptosis, migration, and invasion. Additionally, we examined the action mechanism of KL-6 by RNA-seq and bioinformatic analysis and validated by qRT-PCR and western blot in pancreatic cancer cells. Results Our results demonstrated that KL-6 effectively inhibited the growth of pancreatic cancer cells in a dose-dependent manner. It induced G2/M phase cell cycle arrest and apoptosis, disrupting the cell cycle progression and promoting cell death. KL-6 also exhibited inhibitory effects on cell migration and invasion, suggesting its potential to suppress the metastatic properties of pancreatic cancer cells. Furthermore, KL-6 modulated the expression of genes involved in various cancer-related pathways including apoptosis and ferroptosis. Conclusion These findings collectively support the potential of KL-6 as a promising therapeutic option for pancreatic cancer treatment. Further research is needed to fully understand the underlying mechanisms and evaluate the clinical efficacy of KL-6 in pancreatic cancer patients.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bing Zhao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaodan Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinyun Dong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jieer Ying
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Iazzi M, Sadeghi S, Gupta GD. A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome. Int J Mol Sci 2023; 24:11457. [PMID: 37511222 PMCID: PMC10380767 DOI: 10.3390/ijms241411457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this review article is to collate recent contributions of proteomic studies to cystic fibrosis transmembrane conductance regulator (CFTR) biology. We summarize advances from these studies and create an accessible resource for future CFTR proteomic efforts. We focus our attention on the CFTR interaction network at the cell surface, thus generating a CFTR 'surfaceome'. We review the main findings about CFTR interactions and highlight several functional categories amongst these that could lead to the discovery of potential biomarkers and drug targets for CF.
Collapse
Affiliation(s)
| | | | - Gagan D. Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
13
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|