1
|
Rahaman MM, Wangchuk P, Sarker S. A systematic review on the role of gut microbiome in inflammatory bowel disease: Spotlight on virome and plant metabolites. Microb Pathog 2025; 205:107608. [PMID: 40250496 DOI: 10.1016/j.micpath.2025.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease, arise from various factors such as dietary, genetic, immunological, and microbiological influences. The gut microbiota plays a crucial role in the development and treatment of IBD, though the exact mechanisms remain uncertain. Current research has yet to definitively establish the beneficial effects of the microbiome on IBD. Bacteria and viruses (both prokaryotic and eukaryotic) are key components of the microbiome uniquely related to IBD. Numerous studies suggest that dysbiosis of the microbiota, including bacteria, viruses, and bacteriophages, contributes to IBD pathogenesis. Conversely, some research indicates that bacteria and bacteriophages may positively impact IBD outcomes. Additionally, plant metabolites play a crucial role in alleviating IBD due to their anti-inflammatory and microbiome-modulating properties. This systematic review discusses the role of the microbiome in IBD pathogenesis and evaluates the potential connection between plant metabolites and the microbiome in the context of IBD pathophysiology.
Collapse
Affiliation(s)
- Md Mizanur Rahaman
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Phurpa Wangchuk
- College of Science and Engineering, James Cook University, Nguma Bada campus, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Nguma Bada campus, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
2
|
Qutub M, Hussain UM, Tatode A, Premchandani T, Khan R, Umekar M, Taksande J, Singanwad P. Nano-Engineered Epigallocatechin Gallate (EGCG) Delivery Systems: Overcoming Bioavailability Barriers to Unlock Clinical Potential in Cancer Therapy. AAPS PharmSciTech 2025; 26:137. [PMID: 40379893 DOI: 10.1208/s12249-025-03145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
Epigallocatechin gallate (EGCG), a bioactive polyphenol derived from Camellia sinensis, exhibits multimodal anticancer activity through mechanisms such as apoptosis induction, metastasis suppression, and chemoresistance reversal. Despite its therapeutic promise, clinical application is constrained by rapid metabolism, poor bioavailability, and inconsistent biodistribution. Recent advances in nanotechnology have enabled the development of innovative delivery systems including pH-responsive nanoparticles, lipid-polymer hybrids, and ligand-functionalized carriers that enhance EGCG stability, tumor targeting, and bioavailability by 3- to fivefold in preclinical models. These platforms also facilitate synergistic co-delivery with chemotherapeutics like doxorubicin, amplifying cytotoxicity and overcoming multidrug resistance. Mechanistically, EGCG modulates oncogenic pathways via NF-κB suppression, caspase activation, and MMP-9 downregulation, demonstrating efficacy across diverse cancer types. However, translational challenges persist, such as nanoparticle toxicity, variable tumor accumulation, and insufficient penetration in hypoxic microenvironments. Regulatory hurdles, including the lack of harmonized global standards for herbal medicinal products, further complicate clinical adoption. To bridge these gaps, future research must prioritize scalable cGMP-compliant manufacturing, rigorous preclinical toxicity profiling, and robust clinical trials to validate safety and efficacy. Addressing these issues could position nanoengineered EGCG as a paradigm-shifting therapy in precision oncology, aligning with ESCOP's mission to integrate evidence-based phytomedicines into conventional cancer care. This review underscores the necessity of interdisciplinary collaboration to standardize phytopreparations, refine regulatory frameworks, and advance biomarker-driven clinical validation, ultimately unlocking the full potential of EGCG in modern therapeutics.
Collapse
Affiliation(s)
- Mohammad Qutub
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Ujban Md Hussain
- Department of Pharmaceutical Sciences, Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Amol Tatode
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India.
| | - Tanvi Premchandani
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Milind Umekar
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Jayshree Taksande
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Priyanka Singanwad
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| |
Collapse
|
3
|
Van Doan H, Wannavijit S, Tayyamath K, Quynh TTD, Ninyamasiri P, Linh NV, Wongmaneeprateep S, Rodkhum C, Seesuriyachan P, Phimolsiripol Y, Hoseinifar SH. Effects of fermented corn cob on growth performance, digestive enzyme, immune response, and gene expression of nile tilapia (Oreochromis niloticus) raised in biofloc system. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110413. [PMID: 40368166 DOI: 10.1016/j.fsi.2025.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/27/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
Utilizing agricultural by-products through fermentation presents a sustainable strategy to enhance the nutritional value of aquaculture feeds. This study aimed to evaluate the effects of different dietary levels of fermented corn cob (FCC) on growth performance, digestive enzyme activities, immune responses, and gene expression in Nile tilapia cultured in a biofloc environment. Three hundred Nile tilapia fingerlings (average of 37.58 ± 0.12 g) were randomly allocated to five dietary treatments (0, 2.5, 5, 10, and 20 g kg-1 FCC) with three replicates per treatment. Fish were reared in 150-L aquaria under biofloc conditions for eight weeks. Growth performance, digestive enzyme activities, innate immune parameters in skin mucus and serum, as well as gene expressions were measured. The results indicated that fish fed diets containing 10-20 g kg-1 FCC exhibited significantly greater final weight, weight gain, and specific growth rate compared to the control group (P < 0.05), along with improved feed conversion ratios. Digestive enzyme activities were significantly enhanced in fish receiving FCC10 and FCC20 diets. Similarly, innate immune responses, including lysozyme, peroxidase, and complement activity, were significantly upregulated in both skin mucus and serum of FCC-fed fish. At the molecular level, the expression of growth-related genes (ghrelin, galanin, EF-α, and NPY-α), immune-related genes (il-1β, MHC II-α, TNF-α, and NFκB), antioxidant-related genes (GPX, hsp70, and nrf2) was significantly upregulated in fish fed FCC10 and FCC20 diets. Overall, dietary supplementation with 10-20 g kg-1 FCC under biofloc conditions significantly enhanced growth performance, digestive function, innate immunity, and gene expression profiles in Nile tilapia, supporting the potential application of FCC as a sustainable functional feed additive to promote health and productivity in aquaculture.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Supriya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Khambou Tayyamath
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tran Thi Diem Quynh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Punika Ninyamasiri
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sutee Wongmaneeprateep
- Aquatic Animal Disease and Molecular Biology Laboratory, Department of Fisheries, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
4
|
Zhang S, Wang H, Sai C, Wang Y, Cheng Z, Zhang Z. The Cytotoxic Activity of Secondary Metabolites from Marine-Derived Penicillium spp.: A Review (2018-2024). Mar Drugs 2025; 23:197. [PMID: 40422787 DOI: 10.3390/md23050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Marine-derived Penicillium spp., including Penicillium citrinum, Penicillium chrysogenum, and Penicillium sclerotiorum, have emerged as prolific producers of structurally diverse secondary metabolites with cytotoxic activity. This review systematically categorizes 177 bioactive compounds isolated from marine Penicillium spp. between 2018 and 2024, derived from diverse marine environments such as sediments, animals, plants, and mangroves. These compounds, classified into polyketides, alkaloids, terpenoids, and steroids, exhibit a wide range of cytotoxic activities. Their potency is categorized as potent (<1 μM or <0.5 μg/mL), notable (1-10 μM or 0.5-5 μg/mL), moderate (10-30 μM or 5-15 μg/mL), mild (30-50 μM or 15-25 μg/mL), and negligible (>50 μM or >25 μg/mL). The current review highlights the promising role of marine Penicillium spp. as a rich repository for the discovery of anticancer agents and the advancement of marine-inspired drug development.
Collapse
Affiliation(s)
- Shuncun Zhang
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| | - Huannan Wang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| | - Chunmei Sai
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| | - Yan Wang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| | - Zhongbin Cheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| |
Collapse
|
5
|
Stoyanova N, Nachev N, Georgieva A, Toshkova R, Spasova M. Electrospun Quercetin-Loaded PLA and PLA/Polyethylene Glycol Fibers: Preparation, Characterization, and In Vitro Evaluation. Pharmaceutics 2025; 17:577. [PMID: 40430869 PMCID: PMC12114654 DOI: 10.3390/pharmaceutics17050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Background: The plant extract of quercetin possesses valuable pharmacological properties. However, its high instability, poor water solubility, and low cell bioavailability has limited its medical applications. An innovative approach used to overcome these limitations is the QUE incorporation in suitable polymer carriers. Methods: In the present study, fibrous materials based on PLA or PLA/PEG loaded with the flavonoid quercetin (QUE) were obtained by the electrospinning technique. Diverse morphological, spectroscopic, physico-mechanical, and spectrophotometric methods were used to characterize the prepared electrospun mats. Results: The addition of hydrophilic PEG to the polymer matrix improved its wettability and assisted the more rapid release of QUE from the PLA/PEG fibrous mat than from the PLA one. The obtained fibrous mats possess good mechanical properties. Moreover, QUE-loaded electrospun mats exhibited high anticancer activity against HeLa cervical cancer cells, but lower toxicity to normal cells. Conclusions: The obtained perspective results revealed the potential of the obtained QUE-loaded materials to find applications for wound healing and cancer treatment.
Collapse
Affiliation(s)
- Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, 1113 Sofia, Bulgaria; (N.S.); (N.N.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BIORESOURCES BG), 1000 Sofia, Bulgaria
| | - Nasko Nachev
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, 1113 Sofia, Bulgaria; (N.S.); (N.N.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BIORESOURCES BG), 1000 Sofia, Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 25, 1113 Sofia, Bulgaria; (A.G.); (R.T.)
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 25, 1113 Sofia, Bulgaria; (A.G.); (R.T.)
| | - Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, 1113 Sofia, Bulgaria; (N.S.); (N.N.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BIORESOURCES BG), 1000 Sofia, Bulgaria
| |
Collapse
|
6
|
Çelik İ, Alagöz E, Şen Arslan H, Sarıçoban C. Quality Changes in Chicken Meat Marinated With Antioxidant-Rich Fruit and Vegetable Juices. Food Sci Nutr 2025; 13:e70135. [PMID: 40182065 PMCID: PMC11964948 DOI: 10.1002/fsn3.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
This study investigated the effects of marination with antioxidant-rich fruit juices-pomegranate, black carrot, and red beet-on the textural, physicochemical, technological, and sensory properties of chicken breast meat. Key parameters, including color, pH, water-holding capacity (WHC), marinade absorption, cooking loss (CL), textural properties, TBARS (thiobarbituric acid reactive substances), and sensory attributes, were evaluated. Among the tested juices, pomegranate had the highest acidity. Black carrot contained the highest total phenolic content (TPC) but showed the lowest ABTS and DPPH radical scavenging activity (p < 0.05). Marination resulted in a reduction in pH, with the lowest values observed in pomegranate-marinated samples. Although marination influenced WHC, the changes were not statistically significant (p > 0.05). CL values were significantly reduced in marinated samples (p < 0.05). Marination also affected color, with red beet increasing the b* value and black carrot decreasing it (p < 0.05). Textural properties, such as hardness, significantly increased with pomegranate and red beet juices (p < 0.05), while other textural attributes remained unaffected (p > 0.05). Sensory evaluation revealed no significant differences in flavor and texture, although color was notably influenced by the marination process (p < 0.05). Control and RB gave the highest values in terms of general acceptability. These findings suggest that marination with pomegranate, black carrot, and red beet juices may contribute to improving antioxidative properties and improve the textural quality of chicken breast meat.
Collapse
Affiliation(s)
- İlkay Çelik
- Ege University, Departman of Food EngineeringİzmirTurkey
| | - Eda Alagöz
- Selçuk University, Departman of Food EngineeringKonyaTurkey
| | - Hülya Şen Arslan
- Karamanoğlu Mehmetbey University, Departman of Food EngineeringKaramanTurkey
| | | |
Collapse
|
7
|
Wang X, Chao H, Ma W, Li Y, Yang H, Chen W, Li L. Preservation mechanism of cold plasma pretreatment on the antioxidant activity and quality of prune during storage. Food Res Int 2025; 206:116081. [PMID: 40058926 DOI: 10.1016/j.foodres.2025.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Prunes are highly regarded as a functional fruit owing to their abundance of vitamin and dietary fiber. Cold plasma (CP) treatment has been demonstrated to enhance the activity of both enzymatic and non-enzymatic antioxidant substances. We explored the effects of CP treatment (0, 6, 9, 12 min) on the preservation of Prunes and analyzed the preservation mechanism from the perspective of antioxidant metabolism. Prune colonies gradually decreased with the prolongation of cold plasma treatment time. Comparatively, 9 min CP pretreatment is the best option for prune quality. Prune fruits were treated with CP for nine minutes (CP-9) on day 8 had a glutathione (GSH) content 66.2 % higher than the control. Additionally, the CP-9 treatment demonstrated a 65.7 % DPPH radical scavenging rate, surpassing the control group by 14.4 %. CP treatment is a promising application technique that can improve the standards and durability of fruits during the storage, transport, and processing phases, as indicated by the results of these findings.
Collapse
Affiliation(s)
- Xuliang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Chao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenya Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yanzhen Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Yang
- Xin Yang Vocational and Technical College, Xin Yang, 464000, China
| | - Wei Chen
- Nantong Sanxin Plastics Equipment Technology Co., Ltd, Nantong 226299, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Mat Alewi NA, Rahman RA, Md Illias R, Jaafar NR, Abd Rahman NH, Chia BJ, Soo HL, Juwono AL, Khalil M, Nizardo NM. Refinement of Synthetization Parameters for High Laccase-Like Activity of Imidazole-Copper (II) Nitrate Trihydrate Nanozyme Towards an Efficient Biomimetic Nanozyme. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05229-w. [PMID: 40138139 DOI: 10.1007/s12010-025-05229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Laccase's industrial application is hindered by its sensitivity and low stability to extreme conditions. To overcome these limitations, the development of biomimetic nanozymes is gaining momentum. Nevertheless, developing multifunctional nanozymes with high laccase-like activity poses several challenges. This study focused on optimizing the synthesis of imidazole-copper (II) nitrate trihydrate (I-Cu) nanozymes and characterizing its physicochemical properties. Key synthesis parameters (precursor amount, incubation time, and oven temperature) were optimized. I-Cu nanozymes were synthesized in a Teflon-lined autoclave via water-induced precipitation of Cu2+ and imidazole, mimicking the N-Cu coordination found in laccase's active sites. Initial screenings revealed the superior catalytic activity of I-Cu nanozymes synthesized using methanol compared to ethanol, and a smaller nano-scale size than laccase. FTIR analysis confirmed the presence of similar chemical components as laccase (C44H69N11O20), verifying I-Cu nanozyme's capability to degrade phenolic compounds, and imidazole did not decompose throughout the synthesis process. The optimized I-Cu nanozyme demonstrated higher catalytic activity (6.569 UA), oxidation efficiency (Vmax of 0.00893 mM/min and Km of 2.4020 mM), and greater stability under varying pH, temperature, and storage conditions, compared to laccase. Conclusively, the optimized I-Cu nanozyme, with a 6.00-fold increase in catalytic activity compared to previous studies, as well as 1.69-fold higher Km, and 2.08-fold higher Vmax compared to laccase, shows promise as a wastewater treatment alternative. Its enhanced performance, achieved with fewer precursors through synthesis optimization, highlights the potential of lesser-known biomimetic nanozymes and underscores the importance of refining the synthesis parameters.
Collapse
Affiliation(s)
- Nur Aizura Mat Alewi
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Rosli Md Illias
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Noor Hidayah Abd Rahman
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Bee Jie Chia
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Hui Lun Soo
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ariadne L Juwono
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Noverra M Nizardo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| |
Collapse
|
9
|
Qi B, Cai X, Wang W, Ma P, Yuan X, Tan X. Impact of Potentially Antioxidant Probiotic Strains on Fermentation Quality and Antioxidant Status in Alfalfa Silage. Antioxidants (Basel) 2025; 14:380. [PMID: 40298636 PMCID: PMC12024432 DOI: 10.3390/antiox14040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
The study aimed to characterize the antioxidant properties of isolated lactic acid bacteria (LAB) and assess their impacts on fermentation quality and antioxidant status in alfalfa silage. Two LAB strains of Lactiplantibacillus plantarum XY15 and Lactiplantibacillus plantarum XY20 and a reference strain of Pediococcus acidilactici J17 were subjected to antioxidant property evaluation. This was followed by inoculation into alfalfa silage. The DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl (OH) radical scavenging activities and the glutathione peroxidase (GSH-Px) activity of the cell-free supernatants of L. plantarum YX15 and L. plantarum YX20 were significantly (p < 0.05) higher than those of P. acidilactici J17. In all three strains, the superoxide dismutase (SOD) activity was higher in the cell-free supernatants than in the intracellular lysates. Among all three strains, P. acidilactici J17 showed the highest total antioxidant capacity (T-AOC) in the cell-free supernatant. Inoculating L. plantarum YX20 and P. acidilactici J17 increased lactic acid (LA) concentration and LAB counts, decreased dry matter (DM) loss, ammonia-N concentration, and pH, compared with control (CON) and L. plantarum XY15 inoculated alfalfa silages. After 1 d of ensiling, alfalfa silage inoculated with L. plantarum XY20 exhibited higher SOD activity than other silages. Inoculating L. plantarum XY20 and P. acidilactici J17 increased the DPPH free radical scavenging rates in alfalfa silage, compared with CON and L. plantarum XY15 inoculated 90 d-silages. Both L. plantarum YX15 and L. plantarum YX20 demonstrated a dual function of enhancing the lactic fermentation and improving the antioxidant status in alfalfa silage.
Collapse
Affiliation(s)
- Bokang Qi
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (B.Q.); (X.C.); (W.W.); (P.M.)
| | - Xinyu Cai
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (B.Q.); (X.C.); (W.W.); (P.M.)
| | - Wenkang Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (B.Q.); (X.C.); (W.W.); (P.M.)
| | - Pengfei Ma
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (B.Q.); (X.C.); (W.W.); (P.M.)
| | - Xianjun Yuan
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (B.Q.); (X.C.); (W.W.); (P.M.)
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China
| |
Collapse
|
10
|
Silva V, Oliveira I, Pereira JA, Gonçalves B. Almond By-Products: A Comprehensive Review of Composition, Bioactivities, and Influencing Factors. Foods 2025; 14:1042. [PMID: 40232093 PMCID: PMC11941897 DOI: 10.3390/foods14061042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
One of today's major environmental and economic challenges is the fight against both agro- and industrial-waste. Almond production and industrial processing exemplifies this issue, as it generates tons of waste and by-products, with hulls and shells accounting for about 70% of the total fruit's weight while skins represent about 6% of the shelled kernel. Since the edible kernel, about 23% of the total fruit weight, holds the highest commercial value, there has been growing interest within the scientific community in exploring the potential of these by-products. However, almond by-products contain a wide range of phytochemicals, mainly phenolic compounds (flavonoids and non-flavonoids), and triterpenoids, with great potential as antioxidant, antimicrobial, anti-inflammatory, and prebiotic properties. Although these by-products are being explored as alternative sources in the textile, pharmaceutical/cosmetic, and food industries, their primary use remains in livestock feed or bedding, or as biofuel. This review compiles recent scientific data on almond by-products' phytochemical composition and bioactivities aiming to support sustainable and holistic agricultural practices.
Collapse
Affiliation(s)
- Vânia Silva
- Center for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (V.S.); (B.G.)
| | - Ivo Oliveira
- Center for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (V.S.); (B.G.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha, CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Berta Gonçalves
- Center for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (V.S.); (B.G.)
| |
Collapse
|
11
|
Calvello R, Caponio GR, Cianciulli A, Porro C, Ruggiero M, Celano G, De Angelis M, Panaro MA. Antioxidant Activity and Anti-Inflammatory Effect of Blood Orange By-Products in Treated HT-29 and Caco-2 Colorectal Cancer Cell Lines. Antioxidants (Basel) 2025; 14:356. [PMID: 40227443 PMCID: PMC11939351 DOI: 10.3390/antiox14030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/15/2025] Open
Abstract
Blood orange peel flour (BO-pf)-a by-product of the citrus supply chain-still contains bioactive molecules with known health benefits, such as antiradical scavenging activity or an antiproliferative activity regarding tumors. In vitro studies have demonstrated that orange polyphenols showed potential involvement in necroptosis. In addition to previous research, we tested BO-pf on two colorectal cancer cell lines. Using HT29 and Caco2 cells, our experiments confirmed the regulation of inflammasome expression. They provided valuable insights into how BO-pf influences the cancer cell features (i.e., viability, proliferation, and pro- and anti-inflammatory activity). Notably, BO-pf extract is a rich source of polyphenolic compounds with antioxidant properties. Western blot and real-time PCR analyses showed that treatment with BO-pf extract demonstrated beneficial effects by influencing the expression of both pro-inflammatory cytokines (IL-1β, IL-6) through the modulation of the TLR4/NF-kB/NLRP3 inflammasome signaling. Moreover, the results of this study demonstrate that BO-pf extracts can enhance the expression of anti-inflammatory cytokines, such as IL-10 and TGFβ, suggesting that BO-pf extracts may represent a promising functional ingredient to counteract the intestinal inflammatory responses involved in IBD.
Collapse
Affiliation(s)
- Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Giusy Rita Caponio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Via A. Gramsci 89/91, 71121 Foggia, Italy;
| | - Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Giuseppe Celano
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria De Angelis
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| |
Collapse
|
12
|
Seeni A, Baig AA, Murtey MD. Chemopreventive Potential of Paddy Waste: A Promising Approach Against Benign Prostate Hyperplasia in Spontaneously Hypertensive Rats. Anal Cell Pathol (Amst) 2025; 2025:4029625. [PMID: 40115867 PMCID: PMC11925631 DOI: 10.1155/ancp/4029625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/03/2025] [Indexed: 03/23/2025] Open
Abstract
Background: Benign prostate hyperplasia (BPH) is common in elderly men. Previously, paddy waste (both husk and straw) reportedly had chemopreventive potential. The main aim of this study was to explore the chemopreventive properties of paddy waste against prostate disease. This study determines the antiproliferative activity of the paddy waste product in spontaneously hypertensive rats (SHRs). Methods: Aqueous methanol extracts of paddy husk and straw were administered to SHRs for 17 weeks via drinking water, with no observed toxicity on dietary intake, body weight, liver, or kidney. The study used 18 male SHRs to model primary hypertension and 6 male Wistar Kyoto (WKY) rats as normotensive controls. The SHRs were divided into three groups: control (n = 6), paddy husk treated (n = 6, 15 mg/kg), and paddy straw treated (n = 6, 15 mg/kg), with treatment delivered in drinking water. Results: It managed to reduce blood pressure (72.0 mmHg; p < 0.01) and the size of the ventral prostate to around 0.05% (p < 0.01). Histological analysis revealed antiproliferative signs such as a reduction in the number of acini (7.50; p < 0.01), epithelial height (10.55 µm; p < 0.01), and epithelial acinar area (18.17%; p < 0.01). Aqueous methanol extracts have arrested the cell cycle by downregulating (p < 0.01) proliferative marker, Ki-67, and proliferating cell nuclear antigen (PCNA). Prostate cell growth is arrested by downregulation of androgen receptor (AR) which inhibited AR mRNA transcription (RTPCR analysis) and induced cell cycle arrest at the S phase through p27 and cyclin E2 (western blot analysis). Conclusion: In conclusion, paddy waste product especially husk is a better chemopreventive agent against prostate disease.
Collapse
Affiliation(s)
- Azman Seeni
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
- Advanced Material Research Center, SIRIM Industrial Research, SIRIM Berhad, Kulim Hi-Tech Park, Kulim 09000, Kedah, Malaysia
| | - Atif Amin Baig
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Selangor Darul Ehsan, Malaysia
| | - Mogana Das Murtey
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
13
|
Li Y, Shahkoomahally S, Yang T, Chen P, Zhang M, Sun J. Metabolomics and Molecular Networking Approach for Exploring the Effect of Light Intensity and Quality on the Chemical Profile and Accumulation of Glucosinolates in Broccoli Microgreen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6281-6291. [PMID: 39998436 DOI: 10.1021/acs.jafc.4c12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Light intensity is a crucial factor impacting the cost-efficiency of controlled environment agriculture (CEA). Broccoli microgreens were cultivated under different photosynthetic photon flux densities: 50, 100, and 150 μmol•m-2•s-1 with white light-emitting diodes (LEDs), and an additional far-red (FR) light supplement (20% of total photon flux density) at the 50 μmol•m-2•s-1 intensity. This study examines how low light intensity influences the chemical profile and glucosinolate accumulation in broccoli microgreens through both nontargeted and targeted metabolomics with molecular networking analysis. The analysis identified 28 glucosinolates and 23 phenolic compounds with targeted quantification of 12 glucosinolates. The results showed that FR light supplementation significantly increased the total glucosinolate content compared to white light-only treatments, while similar glucosinolate levels were found across the different white light intensities. These findings provide valuable insights for optimizing LED light intensity to enhance glucosinolate accumulation in broccoli microgreens, thus promoting more efficient energy use in CEA.
Collapse
Affiliation(s)
- Yanfang Li
- U.S. Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Shirin Shahkoomahally
- Department of Agriculture, Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| | - Tianbao Yang
- Department of Agriculture, Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| | - Pei Chen
- U.S. Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| | - Mengliang Zhang
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Jianghao Sun
- U.S. Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| |
Collapse
|
14
|
Ribeiro J, Silva V, Igrejas G, Barros L, Heleno SA, Reis FS, Poeta P. Phenolic Compounds from Pyrus communis Residues: Mechanisms of Antibacterial Action and Therapeutic Applications. Antibiotics (Basel) 2025; 14:280. [PMID: 40149091 PMCID: PMC11939275 DOI: 10.3390/antibiotics14030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The food industry produces substantial amounts of fruit byproducts, which are often discarded despite their high content of bioactive compounds with potential therapeutic applications. Pyrus communis (pear) residues, which are particularly rich in phenolic compounds, represent a valuable yet underutilized resource. These byproducts have demonstrated significant antioxidant and antibacterial properties, suggesting their potential for medical and pharmaceutical applications. This review aims to provide a comprehensive analysis of the phenolic profile of P. communis byproducts, emphasizing their antioxidant and antibacterial mechanisms and their prospective use in combating oxidative stress and antibacterial resistance. METHODS A comprehensive review of the key phenolic compounds from P. communis residues was conducted using ScienceDirect and Google Scholar databases (from 2014 to 2024). Studies assessing antioxidant and antibacterial activities were reviewed, with a focus on their mechanisms of action against Gram-positive and Gram-negative bacterial pathogens. RESULTS A minimum of 14 distinct phenolic compounds were identified among P. communis residues. However, chlorogenic acid and catechin were identified as the primary contributors to the antioxidant activity of P. communis residues. Hydroquinone and chlorogenic acid exhibited strong antibacterial effects through membrane disruption, enzyme inhibition, and metabolic interference. Despite this potential, hydroquinone's cytotoxicity and regulatory concerns limit its direct pharmaceutical application. CONCLUSIONS While P. communis phenolics show promise as natural antibacterial agents, future research should address bioavailability, extraction standardization, and safe formulation strategies. Investigating their synergy with conventional antibiotics and improving stability for cosmetic applications are key steps toward their practical use. In vivo and clinical studies are crucial to validating their therapeutic potential and ensuring regulatory approval.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
15
|
Xiong S, Chen M, Pei X, Yin J, Oliveira H, Mateus N, Ye S, Wu M, Zhang R, He J. Antiproliferative and antioxidant properties of protein-free and protein-bound phenolics isolated from purple rice (Oryza sativa L.). Int J Biol Macromol 2025; 293:139340. [PMID: 39743086 DOI: 10.1016/j.ijbiomac.2024.139340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/07/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Purple rice (Oryza sativa L.) is a rich in endogenous phenolics and proteins. The naturally occurring interactions between phenolic compounds and proteins have been shown to have beneficial effects on human health. In this study, four protein fractions of purple rice (albumin, prolamin, globulin, and glutelin) were extracted, and both protein-free and protein-bound phenolics (PFP and PBP) were isolated from each protein fraction. The major phenolics compounds identified in different protein fraction included protocatechuic acid, vanillic acid, and ferulic acid. Additionally, the PFP in the albumin fraction exhibited the highest number of anthocyanin glycosides (7 types) among all phenolic compounds, while the remaining compounds were identified only as cornflower-3-glucoside and paeoniflorin-3-glucoside. Moreover, the in vitro antioxidant activity and cancer cell inhibitory effects of PFP and PBP in various protein fraction were investigated using chemiluminescence and cellular assays. The results demonstrated that the inhibitory effect of H₂O₂ was more pronounced than that of other free radicals (O₂- and OH-), with albumin and prolamin exhibiting heightened antioxidant activities. Notably, the PBP in various protein fractions showed a higher antiproliferative capacity than their corresponding PFP, indicating a potential synergistic effect of protein-phenolic interactions that differed between the two cell lines, MKN-28 and HT-29.
Collapse
Affiliation(s)
- Sihui Xiong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ming Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xun Pei
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinjing Yin
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hélder Oliveira
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Hubei Province 430206, PR China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
16
|
He X, Zheng Y, Yang S, Wang Y, Lin Y, Jiang B, Xie D, Liu W, Peng Q, Zuo J, Wang M. Combined genomic, transcriptomic, and metabolomic analyses provide insights into the fruit development of bottle gourd ( Lagenaria siceraria). HORTICULTURE RESEARCH 2025; 12:uhae335. [PMID: 40051576 PMCID: PMC11883228 DOI: 10.1093/hr/uhae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/20/2024] [Indexed: 03/09/2025]
Abstract
Bottle gourd (Lagenaria siceraria (Molina) Standl) is a widely distributed Cucurbitaceae species, but gaps and low-quality assemblies have limited its genomic study. To address this, we assembled a nearly complete, high-quality genome of the bottle gourd (Pugua) using PacBio HiFi sequencing and Hi-C correction. The genome, being 298.67 Mb long with a ContigN50 of 28.55 Mb, was identified to possess 11 chromosomes, 11 centromeres, 18 telomeres, and 24 439 predicted protein-coding genes; notably, gap-free telomere-to-telomere assembly was accomplished for seven chromosomes. Based on the Pugua genome, the transcriptomic and metabolomic combined analyses revealed that amino acids and lipids accumulate during the expansion stage, while sugars and terpenoids increase during ripening. GA4 and genes of the Aux/IAA family mediate fruit expansion and maturation, while cell wall remodeling is regulated by factors such as XTHs, EXPs, polyphenols, and alkaloids, contributing to environmental adaptation. GGAT2 was positively correlated with glutamate, a source of umami, and SUS5 and SPS4 expression aligned with sucrose accumulation. This study provides a valuable genetic resource for bottle gourd research, enhancing the understanding of Cucurbitaceae evolution and supporting further studies on bottle gourd development, quality, and genetic improvement.
Collapse
Affiliation(s)
- Xuelian He
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Yu'e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| |
Collapse
|
17
|
Wang H, Yuan T, Yu X, Wang Y, Liu C, Li Z, Sun S. Norwogonin Attenuates Inflammatory Osteolysis and Collagen-Induced Arthritis via Modulating Redox Signalling and Calcium Oscillations. J Cell Mol Med 2025; 29:e70492. [PMID: 40099974 PMCID: PMC11915625 DOI: 10.1111/jcmm.70492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/06/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Norwogonin is a flavonoid extraction derived from Scutellaria baicalensis. However, its potential mechanisms in the context of rheumatoid arthritis (RA) are unclear. This study investigates the specific effects and associated targets of Norwogonin in RA-related inflammatory osteolysis. Network pharmacology was conducted to analyse the core targets and signalling pathways of Norwogonin in RA. In vitro experiments were carried out to explore the actual effects of Norwogonin on osteoclast behaviours and related signalling mechanisms. In vivo studies further validated the therapeutic effect of Norwogonin in collagen-induced arthritis (CIA) mice. The network pharmacological analysis identified 18 shared targets between Norwogonin and RA, indicating a connection with inflammatory response and oxidoreductase activity. For biological validations, the results of in vitro experiments revealed 160 μM of Norwogonin inhibited LPS-driven osteoclast differentiation and function. The qPCR assay and Western blot analysis also disclosed consistently diminished changes to osteoclastic marker genes and proteins due to Norwogonin treatment, including those for osteoclast differentiation (Traf6, Tnfrsf11a and Nfatc1), fusion (Atp6v0d2, Dcstamp and Ocstamp) and function (Mmp9, Ctsk and Acp5). Further mechanism study revealed Norwogonin suppressed LPS-driven ROS production and calcium (Ca2+) oscillations. Also, intraperitoneal injection of 30 mg/kg Norwogonin every other day successfully mitigated clinical arthritis progression and attenuated bone destruction in the CIA model. Our study scrutinises Norwogonin's therapeutic prospects in treating RA and illustrates its inhibitory effects and potential mechanism within LPS-induced osteoclastogenesis and CIA mice, providing a basis for further translational research on Norwogonin in the treatment of RA-related inflammatory osteolysis.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xiao Yu
- Department of Obstetrics and GynecologyJian Gong HospitalBeijingChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research LaboratoryMedical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research LaboratoryMedical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research LaboratoryMedical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
18
|
Le D, Truong V, Dang T, Yu S, Dinh T, Lee M. Phenolics from Ilex rotunda Possess Antioxidative Effects and Block Activation of MAPK and NF-κB Signaling by Inhibiting IL-2 Production in CD3/CD28 Activated Jurkat T Cells. Antioxidants (Basel) 2025; 14:281. [PMID: 40227240 PMCID: PMC11939502 DOI: 10.3390/antiox14030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Ilex rotunda, an evergreen tree in the holly family, is a traditional medicine with a high phenolic content and various pharmacological effects. This study aimed to investigate phenolic constituents from enriched fractions guided by a total phenolic assay along with a feature-based molecular network. Nine compounds were isolated and identified using multiple chromatography and spectroscopic techniques. These isolates exhibited significantly high antioxidative effects in both free radical scavenging and ROS assays. They also remarkedly alternated interleukin (IL)-2 production in CD3/CD28-stimulated Jurkat T cells. The Western blotting assay suggested that these active compounds might decrease IL-2 production by blocking the activation of NF-κB and MAPK signaling pathways by downregulating the phosphorylation of p38 and p65 proteins as well as ERK and JNK kinases. Molecular docking data confirmed the above-mentioned biological properties of those active compounds by evaluating their binding affinities for target proteins. Our findings offer guidance for assessing the potential of phenolic chemicals from I. rotunda as pharmacological products to improve oxidative stress and enhance immune response in more in-depth studies.
Collapse
Affiliation(s)
- Ducdat Le
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.L.); (V.T.); (T.D.); (T.D.)
| | - Vinhquang Truong
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.L.); (V.T.); (T.D.); (T.D.)
| | - Thinhulinh Dang
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.L.); (V.T.); (T.D.); (T.D.)
| | - Soojung Yu
- Department of Natural Cosmetics Science, Natural Cosmetics Research Institute, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea;
| | - Thientam Dinh
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.L.); (V.T.); (T.D.); (T.D.)
| | - Mina Lee
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.L.); (V.T.); (T.D.); (T.D.)
- Department of Natural Cosmetics Science, Natural Cosmetics Research Institute, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea;
| |
Collapse
|
19
|
Othman B, Beigh S, Albanghali MA, Sindi AAA, Shanawaz MA, Ibahim MAEM, Marghani D, Kofiah Y, Iqbal N, Rashid H. Comprehensive pharmacokinetic profiling and molecular docking analysis of natural bioactive compounds targeting oncogenic biomarkers in breast cancer. Sci Rep 2025; 15:5426. [PMID: 39948091 PMCID: PMC11825887 DOI: 10.1038/s41598-024-84401-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 02/16/2025] Open
Abstract
Breast cancer is one of the leading causes of death in women worldwide, highlighting the crucial need for novel and effective treatments. In this study, we look at the ability of four natural compounds i.e. Berberine, Curcumin, Withaferin A, and Ellagic Acid to target important breast cancer biomarkers such as B-cell lymphoma 2 (BCL-2), programmed death-ligand 1 (PDL-1), cyclin-dependent kinase 4/6 (CDK4/6) and fibroblast growth factor receptor (FGFR). These indicators have important roles in tumor development, survival, immune response, and cell cycle control, making them potential targets for future cancer treatments. Our study employs a variety of techniques, including pharmacokinetic profiling (ADME), molecular docking, and molecular dynamics simulations, to determine how successful these drugs could be in therapy. The pharmacokinetic investigation found that Berberine and Ellagic Acid stand out due to their high absorption and solubility, implying that they could be suitable for clinical application. When we ran docking simulations, we discovered substantial connections between these chemicals and the target proteins. Additionally, Berberine has a binding affinity of - 9.3 kcal/mol for BCL-2, indicating that it can impair the protein's cancer cell-protective activities. Ellagic Acid, on the other hand, has an even higher binding affinity for PDL-1 of - 9.8 kcal/mol, showing that it may be able to increase immune responses against tumors. Molecular dynamics simulations over 100 ns demonstrated the stability of these protein-ligand complexes. Interestingly, Ellagic Acid was found to be more structurally stable than Berberine throughout these simulations. We found consistent interactions between the chemicals and key residues in the target proteins. For example, Ellagic Acid (CID: 5281855) established persistent linkages with LYS43, ASP163, and VAL27, whereas Berberine (CID: 2353) interacted with VAL27, ALA41, and LEU152 throughout the simulation. In conclusion, the combination of good pharmacokinetics, robust interactions with cancer biomarkers, and stable complexes makes Berberine and Ellagic Acid interesting candidates for further investigation as natural inhibitors in breast cancer treatment. These findings establish the framework for future research into novel and inventive techniques to effectively combating breast cancer.
Collapse
Affiliation(s)
- Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia.
| | - Mohammad A Albanghali
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammed A Shanawaz
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | | | - Dina Marghani
- Clinical Laboratory Science Department, Faculty of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Yasser Kofiah
- Department of Surgery, College of Medicine, Al-Baha University Al-Baha, Al-Baha, Saudi Arabia
| | - Navid Iqbal
- Department of Bioinformatics, The Islamic University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
20
|
Puspadewi R, Milanda T, Muhaimin M, Chaerunisaa AY. Nanoparticle-Encapsulated Plant Polyphenols and Flavonoids as an Enhanced Delivery System for Anti-Acne Therapy. Pharmaceuticals (Basel) 2025; 18:209. [PMID: 40006023 PMCID: PMC11858878 DOI: 10.3390/ph18020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
This study conducted a literature review by searching for articles related to the treatment of skin infections/wrinkles using nano-delivery systems containing natural compounds. The search was conducted in various databases for articles published in the last 10 years, with strict inclusion and exclusion criteria. Of the 490 articles found, 40 were considered relevant. Acne vulgaris is a common dermatological disorder characterised by inflammation of the sebaceous glands, often resulting in the development of pimples, cysts, and scarring. Conventional treatments, including antibiotics and topical retinoids, frequently demonstrate limitations such as side effects, resistance, and insufficient skin absorption. Recent advancements in nanotechnology have enabled the creation of innovative drug-delivery systems that enhance the effectiveness and reduce the adverse effects of anti-acne medications. Polyphenols and flavonoids, natural bioactive compounds with notable anti-inflammatory, antioxidant, and antibacterial properties, are recognised for their therapeutic effectiveness in acne treatment. However, their practical application is hindered by insufficient solubility, stability, and bioavailability. The incorporation of these compounds into nanoparticle-based delivery systems has shown promise in resolving these challenges. Various nanoparticle platforms, including lipid-based nanoparticles, polymeric nanoparticles, and solid lipid nanoparticles, are evaluated for their ability to improve the stability, controlled release, and targeted delivery of polyphenols and flavonoids to the skin. The advent of polyphenol and flavonoid-loaded nanoparticles marks a new acne therapy era.
Collapse
Affiliation(s)
- Ririn Puspadewi
- Doctoral Program of Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia;
- Faculty of Pharmacy, Jenderal Achmad Yani University, Cimahi 40531, Indonesia
| | - Tiana Milanda
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| | - Muhaimin Muhaimin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
- Center of Herbal Studies, Padjadjaran University, Sumedang 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
21
|
Ismail EN, Zakuan N, Othman Z, Vidyadaran S, Mohammad H, Ishak R. Polyphenols mitigating inflammatory mechanisms in inflammatory bowel disease (IBD): focus on the NF-ƙB and JAK/STAT pathways. Inflammopharmacology 2025; 33:759-765. [PMID: 39636381 PMCID: PMC11842400 DOI: 10.1007/s10787-024-01607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
The term "inflammatory bowel disease" (IBD) refers to a group of chronic inflammatory gastrointestinal disorders, which include ulcerative colitis and Crohn's disease. The necessity for alternative therapeutic approaches is underscored by the fact that although present medicines are successful, they frequently result in considerable adverse effects. Naturally occurring substances included in fruits and vegetables called polyphenols have been shown to have the capacity to control important inflammatory pathways including NF-κB and JAK/STAT, which are essential for the pathophysiology of IBD. The processes by which polyphenols, such as curcumin, EGCG, resveratrol, and quercetin, reduce inflammation are examined in this article. Polyphenols may have therapeutic advantages by blocking the synthesis of cytokines and the activation of immune cells by targeting these pathways. Preclinical study indicates a reduction in intestinal inflammation, which is encouraging. However, more clinical research is needed to determine the clinical relevance of polyphenols in the therapy of IBD, especially with regard to their long-term safety and bioavailability.
Collapse
Affiliation(s)
- Elysha Nur Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Noraina Zakuan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zulkefley Othman
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hussin Mohammad
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Reezal Ishak
- Universiti Kuala Lumpur - Institute of Medical Science Technology (UniKL MESTECH), Kajang, Selangor, Malaysia.
| |
Collapse
|
22
|
Jalouli M, Rahman MA, Biswas P, Rahman H, Harrath AH, Lee IS, Kang S, Choi J, Park MN, Kim B. Targeting natural antioxidant polyphenols to protect neuroinflammation and neurodegenerative diseases: a comprehensive review. Front Pharmacol 2025; 16:1492517. [PMID: 39981183 PMCID: PMC11840759 DOI: 10.3389/fphar.2025.1492517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025] Open
Abstract
Polyphenols, naturally occurring phytonutrients found in plant-based foods, have attracted significant attention for their potential therapeutic effects in neurological diseases and neuroinflammation. These compounds possess diverse neuroprotective capabilities, including antioxidant, anti-inflammatory, and anti-amyloid properties, which contribute to mitigating the progression of neurodegenerative conditions such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Dementia, Multiple Sclerosis (MS), Stroke, and Huntington's Disease (HD). Polyphenols have been extensively studied for their ability to regulate inflammatory responses by modulating the activity of pro-inflammatory genes and influencing signal transduction pathways, thereby reducing neuroinflammation and neuronal death. Additionally, polyphenols have shown promise in modulating various cellular signaling pathways associated with neuronal viability, synaptic plasticity, and cognitive function. Epidemiological and clinical studies highlight the potential of polyphenol-rich diets to decrease the risk and alleviate symptoms of neurodegenerative disorders and neuroinflammation. Furthermore, polyphenols have demonstrated their therapeutic potential through the regulation of key signaling pathways such as Akt, Nrf2, STAT, and MAPK, which play critical roles in neuroprotection and the body's immune response. This review emphasizes the growing body of evidence supporting the therapeutic potential of polyphenols in combating neurodegeneration and neuroinflammation, as well as enhancing brain health. Despite the substantial evidence and promising hypotheses, further research and clinical investigations are necessary to fully understand the role of polyphenols and establish them as advanced therapeutic targets for age-related neurodegenerative diseases and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Cichon N, Grabowska W, Gorniak L, Stela M, Harmata P, Ceremuga M, Bijak M. Mechanistic and Therapeutic Insights into Flavonoid-Based Inhibition of Acetylcholinesterase: Implications for Neurodegenerative Diseases. Nutrients 2024; 17:78. [PMID: 39796512 PMCID: PMC11722824 DOI: 10.3390/nu17010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Flavonoids are naturally occurring polyphenolic compounds known for their extensive range of biological activities. This review focuses on the inhibitory effects of flavonoids on acetylcholinesterase (AChE) and their potential as therapeutic agents for cognitive dysfunction. AChE, a serine hydrolase that plays a crucial role in cholinergic neurotransmission, is a key target in the treatment of cognitive impairments due to its function in acetylcholine hydrolysis. Natural polyphenolic compounds, particularly flavonoids, have demonstrated significant inhibition of AChE, positioning them as promising alternatives or adjuncts in neuropharmacology. This study specifically examines flavonoids such as quercetin, apigenin, kaempferol, and naringenin, investigating their inhibitory efficacy, binding mechanisms, and additional neuroprotective properties, including their antioxidant and anti-inflammatory effects. In vitro, in vivo, and in silico analyses reveal that these flavonoids effectively interact with both the active and peripheral anionic sites of AChE, resulting in increased acetylcholine levels and the stabilization of cholinergic signaling. Their mechanisms of action extend beyond mere enzymatic inhibition, as they also exhibit antioxidant and anti-amyloidogenic properties, thereby offering a multifaceted approach to neuroprotection. Given these findings, flavonoids hold considerable therapeutic potential as modulators of AChE, with implications for enhancing cognitive function and treating neurodegenerative diseases. Future studies should prioritize the enhancement of flavonoid bioavailability, evaluate their efficacy in clinical settings, and explore their potential synergistic effects when combined with established therapies to fully harness their potential as neurotherapeutic agents.
Collapse
Affiliation(s)
- Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Weronika Grabowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Michal Ceremuga
- Military Institute of Armoured and Automotive Technology, Okuniewska 1, 05-070 Sulejówek, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| |
Collapse
|
24
|
Liu J, Tan H, Wang J, Lin C, Xiao H, Liu J, Xu Z, Huang C, Bian Z. Understanding of Polydopamine Formulation for Oral Therapeutic Delivery in Ulcerative Colitis Treatment. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 2024. [DOI: 10.1002/ppsc.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractOral therapeutic delivery remains challenged by gastrointestinal tract (GI) barriers, which hinders the successful transition of therapeutic candidates into clinical treatments. Polydopamine (PDA), with its versatile ability to overcome GI barriers, offers a promising drug formulation technology to address the challenge. Nevertheless, many critical questions remain unanswered regarding the practicality of PDA‐based formulations. Building on the previous research, which tackled multiple physicochemical aspects, the current study aims to address another three outstanding issues, including the quantification of residual dopamine (DA) in PDA‐based formulations, the examination of these formulations stimulatory effects on colon tissue, and the potential anti‐inflammatory properties. To facilitate this investigation, a curcumin‐containing nanomedicine (CP@CCS) is prepared as a representative PDA‐based formulation. The results reveal a marked decrease of residual DA within the formulation. In the treatment of ulcerative colitis (UC), the formulation do not provoke the substantial contractions in colon tissue typically induced by DA. Furthermore, in vivo evaluation verified the supplementary anti‐UC benefits of PDA. These outcomes add evidence for the practicality of PDA‐based formulations in terms of safety and therapeutic efficacy. Finally, a conceptual framework is proposed for understanding the role of PDA in oral therapeutic delivery, thereby providing insightful directions for subsequent research.
Collapse
Affiliation(s)
- Jie Liu
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
- School of Chinese Medicine Hong Kong Baptist University Hong Kong 000000 China
- GoodMedX Tech Limited Hong Kong 000000 China
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen Guangdong 518107 China
| | - Hui‐Shi Tan
- Department of Gastroenterology and Hepatology Guangzhou First People's Hospital School of Medicine South China University of Technology Guangzhou 510180 China
| | - Jun Wang
- Department of Gastroenterology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510330 China
| | - Cheng‐Yuan Lin
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
| | - Hai‐Tao Xiao
- School of Pharmaceutical Sciences Shenzhen University Shenzhen 518060 China
| | - Jun Liu
- Department of General Surgery Jiujiang No.1 People's Hospital Jiujiang Jiangxi 332000 China
| | - Zhi‐Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen Guangdong 518107 China
- Australian Institute for Bioengineering and Nanotechnology the University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Chong‐Yang Huang
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
- Department of Gastroenterology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510330 China
| | - Zhao‐Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
- School of Chinese Medicine Hong Kong Baptist University Hong Kong 000000 China
| |
Collapse
|
25
|
Edo GI, Nwachukwu SC, Ali AB, Yousif E, Jikah AN, Zainulabdeen K, Ekokotu HA, Isoje EF, Igbuku UA, Opiti RA, Akpoghelie PO, Owheruo JO, Essaghah AEA. A review on the composition, extraction and applications of phenolic compounds. ECOLOGICAL FRONTIERS 2024. [DOI: 10.1016/j.ecofro.2024.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Sun Y, Sun H, Zhang Z, Tan F, Qu Y, Lei X, Xu Q, Wang J, Shu L, Xiao H, Yang Z, Liu H. New insight into oxidative stress and inflammatory responses to kidney stones: Potential therapeutic strategies with natural active ingredients. Biomed Pharmacother 2024; 179:117333. [PMID: 39243436 DOI: 10.1016/j.biopha.2024.117333] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Kidney stones, a prevalent urological disorder, are closely associated with oxidative stress (OS) and the inflammatory response. Recent research in the field of kidney stone treatment has indicated the potential of natural active ingredients to modulate OS targets and the inflammatory response in kidney stones. Oxidative stress can occur through various pathways, increasing the risk of stone formation, while the inflammatory response generated during kidney stone formation further exacerbates OS, forming a detrimental cycle. Both antioxidant systems related to OS and inflammatory mediators associated with inflammation play roles in the pathogenesis of kidney stones. Natural active ingredients, abundant in resources and possessing antioxidative and anti-inflammatory properties, have the ability to decrease the risk of stone formation and improve prognosis by reducing OS and suppressing pro-inflammatory cytokine expression or pathways. Currently, numerous developed natural active ingredients have been clinically applied and demonstrated satisfactory therapeutic efficacy. This review aims to provide novel insights into OS and inflammation targets in kidney stones as well as summarize research progress on potential therapeutic strategies involving natural active ingredients. Future studies should delve deeper into exploring efficacy and mechanisms of action of diverse natural active ingredients, proposing innovative treatment strategies for kidney stones, and continuously uncovering their potential applications.
Collapse
Affiliation(s)
- Yue Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Hongmei Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zhengze Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Futing Tan
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Yunxia Qu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Xiaojing Lei
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Qingzhu Xu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Jiangtao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Lindan Shu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| |
Collapse
|
27
|
Ma B, Al-Wraikat M, Shu Q, Yang X, Liu Y. An Overview of Interactions between Goat Milk Casein and Other Food Components: Polysaccharides, Polyphenols, and Metal Ions. Foods 2024; 13:2903. [PMID: 39335832 PMCID: PMC11431459 DOI: 10.3390/foods13182903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Casein is among the most abundant proteins in milk and has high nutritional value. Casein's interactions with polysaccharides, polyphenols, and metal ions are important for regulating the functional properties and textural quality of dairy foods. To improve the functional properties of casein-based foods, a deep understanding of the interaction mechanisms and the influencing factors between casein and other food components is required. This review started by elucidating the interaction mechanism of casein with polysaccharides, polyphenols, and metal ions. Thermodynamic incompatibility and attraction are the fundamental factors in determining the interaction types between casein and polysaccharides, which leads to different phase behaviors and microstructural types in casein-based foods. Additionally, the interaction of casein with polyphenols primarily occurs through non-covalent (hydrogen bonding, hydrophobic interactions, van der Waals forces, and ionic bonding) or covalent interaction (primarily based on the oxidation of proteins or polyphenols by enzymatic or non-enzymatic (alkaline or free radical grafting) approaches). Moreover, the selectivity of casein to specific metal ions is also introduced. Factors affecting the binding of casein to the above three components, such as temperature, pH, the mixing ratio, and the fine structure of these components, are also summarized to provide a good foundation for casein-based food applications.
Collapse
Affiliation(s)
- Bohan Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (B.M.); (M.A.-W.); (Q.S.)
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (B.M.); (M.A.-W.); (Q.S.)
| | - Qin Shu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (B.M.); (M.A.-W.); (Q.S.)
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (B.M.); (M.A.-W.); (Q.S.)
| |
Collapse
|
28
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
29
|
Chen J, Zhao Y, Cheng J, Wang H, Pan S, Liu Y. The Antiviral Potential of Perilla frutescens: Advances and Perspectives. Molecules 2024; 29:3328. [PMID: 39064906 PMCID: PMC11279397 DOI: 10.3390/molecules29143328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses pose a significant threat to human health, causing widespread diseases and impacting the global economy. Perilla frutescens, a traditional medicine and food homologous plant, is well known for its antiviral properties. This systematic review examines the antiviral potential of Perilla frutescens, including its antiviral activity, chemical structure and pharmacological parameters. Utilizing bioinformatics analysis, we revealed the correlation between Perilla frutescens and antiviral activity, identified overlaps between Perilla frutescens target genes and virus-related genes, and explored related signaling pathways. Moreover, a classified summary of the active components of Perilla frutescens, focusing on compounds associated with antiviral activity, provides important clues for optimizing the antiviral drug development of Perilla frutescens. Our findings indicate that Perilla frutescens showed a strong antiviral effect, and its active ingredients can effectively inhibit the replication and spread of a variety of viruses in this review. The antiviral mechanisms of Perilla frutescens may involve several pathways, including enhanced immune function, modulation of inflammatory responses, and inhibition of key enzyme activities such as viral replicase. These results underscore the potential antiviral application of Perilla frutescens as a natural plant and provide important implications for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing Chen
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Yi Zhao
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Jie Cheng
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Haoran Wang
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Shu Pan
- Computer Science School, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
| | - Yuwei Liu
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| |
Collapse
|
30
|
Khaksar G, Myint SLL, Hasriadi, Towiwat P, Sirikantaramas S, Rodsiri R. Durian fruit pulp extract enhances intracellular glutathione levels, mitigating oxidative stress and inflammation for neuroprotection. Sci Rep 2024; 14:15153. [PMID: 38956206 PMCID: PMC11220076 DOI: 10.1038/s41598-024-65219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Durian (Durio zibethinus L.) fruit pulp is a rich source of γ-glutamylcysteine (γ-EC), a direct precursor to the antioxidant glutathione (GSH). This study elucidated the in vitro neuroprotective potential of unripe durian fruit pulp extract (UDE) against H2O2-induced neurotoxicity in SH-SY5Y cells and neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells. Treatments with γ-EC, GSH standards, or UDE exhibited no cytotoxicity in SH-SY5Y and BV-2 cells, except at high concentrations. A 4-h pretreatment with 100 µM γ-EC or UDE containing 100 µM γ-EC significantly increased SH-SY5Y cell viability post H2O2 induction. Moreover, a similar pretreatment reduced LPS-stimulated production of proinflammatory cytokines in BV-2 cells. The neuroprotective effect of UDE is primarily attributed to γ-EC provision and the promotion of GSH synthesis, which in turn elevates intracellular GSH levels and reduces proinflammatory cytokines. This study identifies γ-EC in UDE as a potential neuroprotective biomarker boosting intracellular GSH levels, providing insights into UDE's therapeutic potential.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Su Lwin Lwin Myint
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hasriadi
- Animal Models of Chronic Inflammation-Associated Diseases for Drug Discovery Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasarapa Towiwat
- Animal Models of Chronic Inflammation-Associated Diseases for Drug Discovery Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Ratchanee Rodsiri
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
31
|
Zhang D, Zhou Q, Zhang Z, Yang X, Man J, Wang D, Li X. Based on Network Pharmacology and Molecular Docking, the Active Components, Targets, and Mechanisms of Flemingia philippinensis in Improving Inflammation Were Excavated. Nutrients 2024; 16:1850. [PMID: 38931205 PMCID: PMC11206888 DOI: 10.3390/nu16121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Flemingia philippinensis, a polyphenol-rich plant, holds potential for improving inflammation, but its mechanisms are not well understood. Therefore, this study employed network pharmacology and molecular docking to explore the mechanism by which Flemingia philippinensis ameliorates inflammation. In this study, 29 kinds of active ingredients were obtained via data mining. Five main active components were screened out for improving inflammation, which were flemichin D, naringenin, chrysophanol, genistein and orobol. In total, 52 core targets were identified, including AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor (TNF), B-cell lymphoma-2 (BCL2), serum albumin (ALB), and estrogen receptor 1 (ESR1). Gene ontology (GO) enrichment analysis identified 2331 entries related to biological processes, 98 entries associated with cellular components, and 203 entries linked to molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis yielded 149 pathways, including those involved in EGFR tyrosine kinase inhibitor resistance, endocrine resistance, and the PI3K-Akt signaling pathway. Molecular docking results showed strong binding effects between the main active components and the core targets, with binding energies less than -5 kcal/mol. In summary, this study preliminarily elucidated the underlying mechanisms by which Flemingia philippinensis, through a multi-component, multi-target, and multi-pathway approach, ameliorates inflammation. This provides a theoretical foundation for the subsequent application of Flemingia philippinensis in inflammation amelioration.
Collapse
Affiliation(s)
- Dongying Zhang
- College of Science, Yunnan Agricultural University, Kunming 650201, China;
| | - Qixing Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Zhen Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Xiangxuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Jiaxu Man
- Institute of Agricultural Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650201, China;
| | - Dongxue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Xiaoyong Li
- College of Food and Biological Engineering, Hezhou University, Hezhou 542899, China
| |
Collapse
|
32
|
Baptista F, Paié-Ribeiro J, Almeida M, Barros AN. Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review. Molecules 2024; 29:2576. [PMID: 38893451 PMCID: PMC11173950 DOI: 10.3390/molecules29112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a formidable global health concern, affecting one in six adults over 25. This review explores the potential of phenolic compounds in managing CKD and its complications. By examining the existing research, we highlight their diverse biological activities and potential to combat CKD-related issues. We analyze the nutritional benefits, bioavailability, and safety profile of these compounds. While the clinical evidence is promising, preclinical studies offer valuable insights into underlying mechanisms, optimal dosages, and potential side effects. Further research is crucial to validate the therapeutic efficacy of phenolic compounds for CKD. We advocate for continued exploration of their innovative applications in food, pharmaceuticals, and nutraceuticals. This review aims to catalyze the scientific community's efforts to leverage phenolic compounds against CKD-related challenges.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| | - Jessica Paié-Ribeiro
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Mariana Almeida
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| |
Collapse
|
33
|
Cristani M, Micale N. Bioactive Compounds from Medicinal Plants as Potential Adjuvants in the Treatment of Mild Acne Vulgaris. Molecules 2024; 29:2394. [PMID: 38792254 PMCID: PMC11124055 DOI: 10.3390/molecules29102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the use of medicinal plants and phytochemicals as potential treatments for acne vulgaris. This condition, characterized by chronic inflammation, predominantly affects adolescents and young adults. Conventional treatment typically targets the key factors contributing to its development: the proliferation of Cutibacterium acnes and the associated inflammation. However, these treatments often involve the use of potent drugs. As a result, the exploration of herbal medicine as a complementary approach has emerged as a promising strategy. By harnessing the therapeutic properties of medicinal plants and phytochemicals, it may be possible to address acne vulgaris while minimizing the reliance on strong drugs. This approach not only offers potential benefits for individuals seeking alternative treatments but also underscores the importance of natural remedies of plant origin in dermatological care. The primary aim of this study was to assess the antimicrobial, antioxidant, and anti-inflammatory properties of plants and their phytochemical constituents in the management of mild acne vulgaris. A comprehensive search of scientific databases was conducted from 2018 to September 2023. The findings of this review suggest that medicinal plants and their phytochemical components hold promise as treatments for mild acne vulgaris. However, it is crucial to note that further research employing high-quality evidence and standardized methodologies is essential to substantiate their efficacy and safety profiles.
Collapse
Affiliation(s)
| | - Nicola Micale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
34
|
Serini S, Calviello G. Potential of Natural Phenolic Compounds against Doxorubicin-Induced Chemobrain: Biological and Molecular Mechanisms Involved. Antioxidants (Basel) 2024; 13:486. [PMID: 38671933 PMCID: PMC11047710 DOI: 10.3390/antiox13040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Chemotherapy-induced cognitive impairment or "chemobrain" is a prevalent long-term complication of chemotherapy and one of the more devastating. Most of the studies performed so far to identify the cognitive dysfunctions induced by antineoplastic chemotherapies have been focused on treatment with anthracyclines, frequently administered to breast cancer patients, a population that, after treatment, shows a high possibility of long survival and, consequently, of chemobrain development. In the last few years, different possible strategies have been explored to prevent or reduce chemobrain induced by the anthracycline doxorubicin (DOX), known to promote oxidative stress and inflammation, which have been strongly implicated in the development of this brain dysfunction. Here, we have critically analyzed the results of the preclinical studies from the last few years that have evaluated the potential of phenolic compounds (PheCs), a large class of natural products able to exert powerful antioxidant and anti-inflammatory activities, in inhibiting DOX-induced chemobrain. Several PheCs belonging to different classes have been shown to be able to revert DOX-induced brain morphological damages and deficits associated with learning, memory, and exploratory behavior. We have analyzed the biological and molecular mechanisms implicated and suggested possible future perspectives in this research area.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| |
Collapse
|
35
|
Latronico T, Petraglia T, Sileo C, Bilancia D, Rossano R, Liuzzi GM. Inhibition of MMP-2 and MMP-9 by Dietary Antioxidants in THP-1 Macrophages and Sera from Patients with Breast Cancer. Molecules 2024; 29:1718. [PMID: 38675538 PMCID: PMC11051835 DOI: 10.3390/molecules29081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, the main antioxidants of diet, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of four polyphenolic compounds on ROS production and on the levels of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of breast cancer. THP-1 differentiated macrophages were activated by LPS and simultaneously treated with different doses of a green tea extract (GTE), resveratrol (RSV), curcumin (CRC) and an olive fruit extract (oliplus). By using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, we found that all of the tested compounds showed antioxidant activity in vitro. In addition, GTE, RSV and CRC were able to counteract ROS production induced by H2O2 in THP-1 cells. As assessed by a zymographic analysis of THP-1 supernatants and by an "in-gel zymography" of a pool of sera from patients with breast cancer, the antioxidant compounds used in this study inhibited both the activity and expression of MMP-2 and MMP-9 through different mechanisms related to their structures and to their ability to scavenge ROS. The results of this study suggest that the used antioxidants could be promising agents for the prevention and complementary treatment of breast cancer and other diseases in which MMPs play a pivotal role.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (T.L.); (G.M.L.)
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Carmela Sileo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Domenico Bilancia
- Operating Unit, Medical Oncology, Hospital “Azienda Ospedaliera S. Carlo”, 85100 Potenza, Italy;
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (T.L.); (G.M.L.)
| |
Collapse
|
36
|
Fouda K, Mabrouk AM, Abdelgayed SS, Mohamed RS. Protective effect of tomato pomace extract encapsulated in combination with probiotics against indomethacin induced enterocolitis. Sci Rep 2024; 14:2275. [PMID: 38280919 PMCID: PMC10821949 DOI: 10.1038/s41598-024-52642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tomato pomace (TP), an antioxidant-rich byproduct, may be suitable for noble applications. The regulation of ROS generation and the anti-inflammatory response can help to prevent ulceration. The purpose of this study was to examine TP for antioxidants, in silico anti-inflammatory properties, and its potential to protect against ulceration and erosion triggered by indomethacin. Tomato pomace extract (TPE) was encapsulated either alone or with probiotics to maximize its potential effect. These microcapsules were investigated in indomethacin-treated rats. TPE demonstrated antioxidant activity as well as high levels of carotenoids (15 mg/g extract) and polyphenols. Because of their binding affinity as well as hydrophobic and hydrogen bond interactions with the active sites of TNF-α and IL-1β inflammatory cytokines, ellagic acid and rutin may be implicated in the anti-inflammatory effect of TPE, according to the docking study. TPE microcapsules, either alone or in combination with probiotics, demonstrated a protective effect against enterocolitis by reducing oxidative stress and inflammation, as evidenced by the decrease in stomach and intestinal MDA, NO, IL-1β, IL-6, and TNF-α levels and the increase in CAT, SOD, and GSH activities. The produced microcapsules are suggested to be promising candidates for protection against gastric ulcers and erosion.
Collapse
Affiliation(s)
- Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed M Mabrouk
- Dairy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sherein S Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rasha S Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
37
|
ZHANG LINGLI, LI YAN, MAO JINGXIN. Research progress on natural products against hepatocellular carcinoma. BIOCELL 2024; 48:905-922. [DOI: 10.32604/biocell.2024.050396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/24/2024] [Indexed: 11/26/2024]
|
38
|
Tsai KZ, Huang WC, Sui X, Lavie CJ, Lin GM. Moderate or greater daily coffee consumption is associated with lower incidence of metabolic syndrome in Taiwanese militaries: results from the CHIEF cohort study. Front Nutr 2023; 10:1321916. [PMID: 38156279 PMCID: PMC10752930 DOI: 10.3389/fnut.2023.1321916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Daily moderate coffee intake was found with a lower risk of specific metabolic abnormalities, e.g., hypertension and hyperglycemia, while the association of coffee intake and incident metabolic syndrome (MetS) has not been clarified in prior studies, particularly in young adults. METHODS A total of 2,890 military personnel, aged 18-39 years, free of MetS were followed for incident MetS from baseline (2014) until the end of 2020 in Taiwan. Daily coffee amount consumed was grouped to those ≥3 cups or 600 mL (moderate or more amount) and those without. Incidence of MetS was identified in annual health examinations. MetS was diagnosed on the basis of the guideline of the International Diabetes Federation. Multivariable Cox regression model with adjustments for sex, age, body mass index, physical activity and substance use status at baseline was performed to determine the association. RESULTS At baseline, there were 145 subjects with daily coffee intake ≥3 cups or 600 mL (5.0%) in the overall cohort. During a mean follow-up of 6.0 years, 673 incident MetS (23.3%) were found. As compared to those consuming less coffee or none, those consuming daily coffee ≥3 cups had a lower risk of MetS [hazard ratio (HR): 0.69 (95% confidence interval: 0.48, 0.99)]. CONCLUSION This study suggests that adhering to the guideline recommended moderate or greater daily coffee consumption for promoting health, may confer advantages in preventing the development of MetS among young adults.
Collapse
Affiliation(s)
- Kun-Zhe Tsai
- Department of Stomatology of Periodontology, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Xuemei Sui
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Carl J. Lavie
- Ochsner Clinical School, John Ochsner Heart and Vascular Institute, The University of Queensland School of Medicine, New Orleans, LA, United States
| | - Gen-Min Lin
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
- Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Wang D, Xing J, Zhang Y, Guo Z, Deng S, Guan Z, He B, Ma R, Leng X, Dong K, Dong Y. Metal-Phenolic Networks for Chronic Wounds Therapy. Int J Nanomedicine 2023; 18:6425-6448. [PMID: 38026522 PMCID: PMC10640828 DOI: 10.2147/ijn.s434535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic wounds are recalcitrant complications of a variety of diseases, with pathologic features including bacterial infection, persistent inflammation, and proliferation of reactive oxygen species (ROS) levels in the wound microenvironment. Currently, the use of antimicrobial drugs, debridement, hyperbaric oxygen therapy, and other methods in clinical for chronic wound treatment is prone to problems such as bacterial resistance, wound expansion, and even exacerbation. In recent years, researchers have proposed many novel materials for the treatment of chronic wounds targeting the disease characteristics, among which metal-phenolic networks (MPNs) are supramolecular network structures that utilize multivalent metal ions and natural polyphenols complexed through ligand bonds. They have a flexible and versatile combination of structural forms and a variety of formations (nanoparticles, coatings, hydrogels, etc.) that can be constructed. Functionally, MPNs combine the chemocatalytic and bactericidal properties of metal ions as well as the anti-inflammatory and antioxidant properties of polyphenol compounds. Together with the excellent properties of rapid synthesis and negligible cytotoxicity, MPNs have attracted researchers' great attention in biomedical fields such as anti-tumor, anti-bacterial, and anti-inflammatory. This paper will focus on the composition of MPNs, the mechanisms of MPNs for the treatment of chronic wounds, and the application of MPNs in novel chronic wound therapies.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jianfeng Xing
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ziyang Guo
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shujing Deng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Zelin Guan
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Binyang He
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ruirui Ma
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xue Leng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Kai Dong
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
40
|
Sangnim T, Dheer D, Jangra N, Huanbutta K, Puri V, Sharma A. Chitosan in Oral Drug Delivery Formulations: A Review. Pharmaceutics 2023; 15:2361. [PMID: 37765329 PMCID: PMC10538129 DOI: 10.3390/pharmaceutics15092361] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoformulations have become increasingly useful as drug delivery technologies in recent decades. As therapeutics, oral administration is the most common delivery method, although it is not always the most effective route because of challenges with swallowing, gastrointestinal discomfort, low solubility, and poor absorption. One of the most significant barriers that medications must overcome to exert a therapeutic effect is the impact of the first hepatic transit. Studies have shown that controlled-release systems using nanoparticles composed of biodegradable natural polymers significantly improve oral administration, which is why these materials have attracted significant attention. Chitosan possesses a wide variety of properties and functions in the pharmaceutical as well as healthcare industries. Drug encapsulation and transport within the body are two of its most important features. Moreover, chitosan can enhance drug efficacy by facilitating drug interaction with target cells. Based on its physicochemical properties, chitosan can potentially be synthesized into nanoparticles, and this review summarizes recent advances and applications of orally delivered chitosan nanoparticle interventions.
Collapse
Affiliation(s)
- Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Nitin Jangra
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| |
Collapse
|
41
|
Deng H, Liu J, Xiao Y, Wu JL, Jiao R. Possible Mechanisms of Dark Tea in Cancer Prevention and Management: A Comprehensive Review. Nutrients 2023; 15:3903. [PMID: 37764687 PMCID: PMC10534731 DOI: 10.3390/nu15183903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is one of the most popular drinks in the world. Dark tea is a kind of post-fermented tea with unique sensory characteristics that is produced by the special fermentation of microorganisms. It contains many bioactive substances, such as tea polyphenols, theabrownin, tea polysaccharides, etc., which have been reported to be beneficial to human health. This paper reviewed the latest research on dark tea's potential in preventing and managing cancer, and the mechanisms mainly involved anti-oxidation, anti-inflammation, inhibiting cancer cell proliferation, inducing cancer cell apoptosis, inhibiting tumor metastasis, and regulating intestinal flora. The purpose of this review is to accumulate evidence on the anti-cancer effects of dark tea, the corresponding mechanisms and limitations of dark tea for cancer prevention and management, the future prospects, and demanding questions about dark tea's possible contributions as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Huilin Deng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Jia Liu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, China;
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China;
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| |
Collapse
|