1
|
Carrillo-Aké AG, Delgado-Domínguez J, Cervantes-Sarabia RB, Ruiz-Remigio A, Zamora-Chimal J, Salaiza-Suazo N, Torres-Tapia LW, Peraza-Sánchez SR, Becker I. Topical Application of Oxylipin (3 S)-16,17-Didehydrofalcarinol in Mice Infected with Leishmania mexicana: A Possible Treatment for Localized Cutaneous Leishmaniasis. JOURNAL OF NATURAL PRODUCTS 2025; 88:959-966. [PMID: 40179055 PMCID: PMC12038837 DOI: 10.1021/acs.jnatprod.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Pentavalent antimonials are the first-line treatment for localized cutaneous leishmaniasis. However, they have disadvantages such as their elevated toxicity, high costs, and parenteral application. Plant-derived compounds may be an alternative treatment against this disease. Previous in vitro studies have shown that (3S)-16,17-didehydrofalcarinol (1), a polyacetylene oxylipin isolated from Tridax procumbens, is active against Leishmania mexicana. We have analyzed the mechanism of action of compound 1, evaluating reactive oxygen species production, apoptosis of L. mexicana, cytotoxicity in murine macrophages, and its efficacy in controlling the disease progression and parasite load when applied topically in C57BL/6 mice infected with L. mexicana. Results show that parasites incubated with 1.6 μM compound 1 significantly increased reactive oxygen species production (p ≤ 0.05). The percentage of apoptosis also increased significantly (p ≤ 0.05) and did not affect the viability of macrophages. The application of the topical formulations with 0.5% and 0.75% compound 1 for 7 weeks reduced disease progression and parasite load. We demonstrate that compound 1 generates the death of L. mexicana by apoptosis through reactive oxygen species production. We conclude that compound 1 can be used a possible alternative treatment for localized cutaneous leishmaniasis, enabling a less painful and more accessible therapy.
Collapse
Affiliation(s)
- Ana G. Carrillo-Aké
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - José Delgado-Domínguez
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Rocely Buenaventura Cervantes-Sarabia
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Adriana Ruiz-Remigio
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Jaime Zamora-Chimal
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Norma Salaiza-Suazo
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Luis W. Torres-Tapia
- Centro
de Investigación Científica de Yucatán (CICY),
Unidad de Biotecnología, Calle 43 #130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico
| | - Sergio R. Peraza-Sánchez
- Centro
de Investigación Científica de Yucatán (CICY),
Unidad de Biotecnología, Calle 43 #130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico
| | - Ingeborg Becker
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| |
Collapse
|
2
|
Yıldırım A, Aksoy T, Kayalar H, Balcıoğlu İC. Semen Cannabis and Oleum Hyperici: Antileishmanial activity against Leishmania tropica promastigotes and intracellular amastigotes. Parasitol Int 2024; 103:102950. [PMID: 39153658 DOI: 10.1016/j.parint.2024.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The exploration of alternative agents and novel drug candidates for the effective treatment of cutaneous leishmaniasis has garnered significant attention, driven by the high cost, toxic effects, and the emergence of drug resistance associated with current therapeutic options. Plant extracts derived from Semen Cannabis, the seeds of the Cannabis sativa L. (hemp) plant, and Oleum Hyperici, the oily macerate of Hypericum perforatum L. (St. John's Wort) plant, were prepared by using solvents of varying polarity (n-hexane, chloroform, ethanol, and 60% aqueous ethanol). The primary objective of this study was to research in vitro and ex vivo antileishmanial efficacy of Semen Cannabis and Oleum Hyperici plant extracts against Leishmania tropica promastigotes and intracellular amastigotes. The efficacy of plant extracts against promastigotes were assessed using the cell counting by hemocytometer and the CellTiter-Glo assay. Additionally, their impact on infected THP-1 macrophages and the quantity of intracelluler amastigotes were investigated. Cytotoxicity was evaluated in THP-1 macrophages. Among the tested plant extracts, chloroform extract of Oleum Hyperici demonstrated significant antileishmanial activity against promastigotes (SI: 12.6) and intracellular amastigotes (SI: 16.8) of L. tropica without inducing cytotoxic effects and hold promise for further investigation as potential antileishmanial agents.
Collapse
Affiliation(s)
- Ahmet Yıldırım
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Manisa, Turkey
| | - Tülay Aksoy
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Manisa, Turkey.
| | - Hüsniye Kayalar
- University of Ege, Faculty of Pharmacy, Department of Pharmacognosy, İzmir, Turkey
| | | |
Collapse
|
3
|
Marques MCS, Yoshida NC, Torres-Santos EC, Garcez FR, Garcez WS. Bioassay-guided isolation of leishmanicidal cucurbitacins from Momordica charantia. Front Pharmacol 2024; 15:1390715. [PMID: 39055497 PMCID: PMC11269121 DOI: 10.3389/fphar.2024.1390715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Leishmaniasis, a neglected tropical parasitic disease, is regarded as a major public health problem worldwide. The first-line drugs for leishmaniasis suffer from limitations related to toxicity and the development of resistance in certain parasitic strains. Therefore, the discovery of alternative treatments for leishmaniasis is imperative, and natural products represent a valuable source of potential therapeutic agents. Methods The present study aimed at finding new potential antileishmanial agents from the aerial parts of the medicinal plant Momordica charantia. This study was based on bioassay-guided fractionation of the M. charantia extract against promastigotes and amastigotes of Leishmania (Leishmania) amazonensis. The cytotoxicity of the extract, fractions, and isolated compounds were evaluated against peritoneal murine macrophages by employing the MTT assay for assessing cell metabolic activity. Results Antileishmanial assay-guided fractionation of the M. charantia extract led to the bioactive cucurbitacin-enriched fraction and the isolation of four bioactive cucurbitacin-type triterpenoids, which exhibited significant antileishmanial activity, with IC50 values between 2.11 and 3.25 μg.mL-1 against promastigote and amastigote forms, low toxicity and selectivity indexes ranging from 8.5 to 17.2. Conclusion Our findings demonstrate that the fractions and cucurbitacin-type triterpenoids obtained from the aerial parts of M. charantia are promising natural leishmanicidal candidates.
Collapse
Affiliation(s)
- Maria Carolina Silva Marques
- Laboratory of Microbiology, Institute of Biosciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Nídia Cristiane Yoshida
- Laboratory of Bioactive Natural Products Research (PRONABio), Institute of Chemistry, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | | | - Fernanda Rodrigues Garcez
- Laboratory of Bioactive Natural Products Research (PRONABio), Institute of Chemistry, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Walmir Silva Garcez
- Laboratory of Bioactive Natural Products Research (PRONABio), Institute of Chemistry, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| |
Collapse
|
4
|
Ghusoon AAAM, Buthaina AHAM. Investigation the effect of the aqueous extract of Chara vulgaris (L.) on visceral leishmaniasis. Trop Parasitol 2024; 14:84-94. [PMID: 39411680 PMCID: PMC11473012 DOI: 10.4103/tp.tp_1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Visceral leishmaniasis (VL) is a parasitic disease that affects public health. It is described by weight reduction, irregular fever bouts, anemia, and amplification of the spleen and liver. Materials and Methods Three concentrations (15.6, 31.2, and 62.5 μg/mL) were used to find the potency of an aqueous extract of Chara vulgaris algae in the treatment of VL. A cytotoxicity assay was performed to show the cytotoxic effect of this extract on human cells. High-performance liquid chromatography (HPLC) test was done to determine the active compounds in the extract. Histopathological sections for infected liver and spleen were performed, as were liver function tests (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), which were assessed after 1 month of treatment. Results As cytotoxicity assay, results showed that there were no significant differences between the cells treated and those not treated with the extract. HPLC test demonstrated that phenolic and terpene compounds are the main active compounds in the extract. P-coumaric acid and ursolic acid present the highest percent among other phenolic and terpene compounds (21.84%, 17.82%), respectively. Histopathological sections showed that this extract had a significant effect in the treatment of infected tissues, and this effect was very clear after the end of the treatment period. As for the liver function tests, a significant increase (P < 0.01) in the studied liver enzymes was found in the infected group of mice compared to the healthy group, whereas in the infected and treated groups, a clear and gradual decrease in the level of enzymes was observed.
Collapse
Affiliation(s)
- A. A Al-Maphregy Ghusoon
- Department of Biology, College of Education for Pure Sciences/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - A. H. Al-Magdamy Buthaina
- Department of Biology, College of Education for Pure Sciences/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
5
|
Lafi O, Essid R, Lachaud L, Jimenez C, Rodríguez J, Ageitos L, Mhamdi R, Abaza L. Synergistic antileishmanial activity of erythrodiol, uvaol, and oleanolic acid isolated from olive leaves of cv. Chemlali. 3 Biotech 2023; 13:395. [PMID: 37970450 PMCID: PMC10643720 DOI: 10.1007/s13205-023-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to assess the antileishmanial activity of biomolecules obtained from Olea europaea L. leaves and twigs recovered from eight Tunisian cultivars. The extraction was first carried out with 80% methanol, and then the obtained extract was fractionated using three solvents of increasing polarity: cyclohexane (CHX), dichloromethane (DCM) and ethyl acetate (EtOAc). The antileishmanial activity was determined against leishmanial strains responsible for cutaneous, visceral, and mucocutaneous leishmaniasis. The cyclohexane fraction of the leaves of cv. Chemlali from the region of Sidi-Bouzid exhibited the strongest leishmanicidal activity against all the tested leishmanial strains. The inhibition concentrations (IC50) were 16.5, 14.5, and 7.4 μg mL-1 for Leishmania mexicana (cutaneous), Leishmania braziliensis (mucocutaneous), and Leishmania donovani (visceral), respectively. Interestingly, low cytotoxicity was observed on THP-1 cells with selective indexes (SI) ranging from 22.8 to 50.5. HPLC-HRMS and full-house NMR analysis allowed the identification of three triterpenic compounds, oleanolic acid (IC50 = 64.1 μg mL-1), erythrodiol (IC50 = 52.0 µg mL-1), and uvaol (IC50 = 53.8 μg mL-1). Antileishmanial activity of uvaol and oleanolic acid has been previously reported. However, this work constitutes the first report of the antileishmanial activity of erythrodiol which showed combinatorial interaction with uvaol (IC50 = 26.1 μg mL-1) against Leishmania tropica. The mixture of the three compounds, as major ones, exhibited an enhanced activity against Leishmania tropica (IC50 = 16.3 µg mL-1) compared to erythrodiol alone or the combination of uvaol and erythrodiol. This finding is of great importance and needs further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03825-3.
Collapse
Affiliation(s)
- Oumayma Lafi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, The University of Tunis El Manar, 20 Street of Tolede, 2092 Tunis, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Laurence Lachaud
- UMR, Univ Montpellier (IRD-CNRS), MIVEGEC, Montpellier, France
- Department of Parasitology-Mycology, CHU Montpellier, 39 Av. Charles Flahault, 34295 Montpellier cedex 5, France
| | - Carlos Jimenez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Lucía Ageitos
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ridha Mhamdi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Leila Abaza
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
6
|
Majumder N, Banerjee A, Saha S. A review on new natural and synthetic anti-leishmanial chemotherapeutic agents and current perspective of treatment approaches. Acta Trop 2023; 240:106846. [PMID: 36720335 DOI: 10.1016/j.actatropica.2023.106846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Leishmaniases are considered among the most neglected yet dangerous parasitic diseases worldwide. According to the recent WHO report (Weekly Epidemiological Record, Sep, 2021), 200 countries and territories reported leishmanises cases in 2020; of which 89 (45%) for CL, and 79 (40%) for VL were endemic. Indian subcontinent (India, Bangladesh and Nepal), one of the three eco-epidemiological hotspots of VL, currently reported 18% of the total cases of VL worldwide. Eastern Mediterranean region and the Region of the Americas together reported >90% of the new CL cases, of which >80% were from Afghanistan, Algeria, Brazil, Colombia, Iraq, Pakistan and the Syrian Arab Republic. While considering the current therapeutic options, conventional anti-leishmanial drugs have long been proved to be toxic and/or expensive and have resulted in extensive drug resistance in India. Recent searches for novel anti-leishmanial drugs have led to find out the prime cellular targets and metabolic pathways to bridge the gap between the known facts and unexplored data. Cutting edge knowledge based drug designing has simplified the search for novel molecules with leishmanicidal efficacy by identifying ligand-receptor interactions and has accelerated the cost effective primary discovery of molecules through computational validation against Leishmaniases. This review focuses on the limitations of conventional drugs, and discusses the chemotherapeutic potential of many novel natural and synthetic anti-leishmanial agents reported since the last decade. It is also interpreted that some of the reported molecules might be tested singly or as a part of combinatorial therapy on pre-clinical and clinical level.
Collapse
Affiliation(s)
- Nilanjana Majumder
- Department of Biotechnology, Visva-Bharati, Santiniketan, 731235 West Bengal, India
| | - Antara Banerjee
- Department of Zoology, Bangabasi College, 19 Rajkumar Chakraborty Sarani, Kolkata, 700009 West Bengal, India
| | - Samiran Saha
- Department of Biotechnology, Visva-Bharati, Santiniketan, 731235 West Bengal, India.
| |
Collapse
|
7
|
Fróes YN, Araújo JGN, Gonçalves JRDS, de Oliveira MDJMG, Everton GO, Filho VEM, Silva MRC, Silva LDM, Silva LA, Neto LGL, de Oliveira RM, Torres MAO, da Silva LCN, Lopes AJO, Aliança ASDS, da Rocha CQ, Sousa JCDS. Chemical Characterization and Leishmanicidal Activity In Vitro and In Silico of Natural Products Obtained from Leaves of Vernonanthura brasiliana (L.) H. Rob (Asteraceae). Metabolites 2023; 13:285. [PMID: 36837904 PMCID: PMC9967733 DOI: 10.3390/metabo13020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Vernonanthura brasiliana (L.) H. Rob is a medicinal plant used for the treatment of several infections. This study aimed to evaluate the antileishmanial activity of V. brasiliana leaves using in vitro and in silico approaches. The chemical composition of V. brasiliana leaf extract was determined through liquid chromatography-mass spectrometry (LC-MS). The inhibitory activity against Leishmania amazonensis promastigote was evaluated by the MTT method. In silico analysis was performed using Lanosterol 14alpha-demethylase (CYP51) as the target. The toxicity analysis was performed in RAW 264.7 cells and Tenebrio molitor larvae. LC-MS revealed the presence of 14 compounds in V. brasiliana crude extract, including flavonoids, flavones, sesquiterpene lactones, and quinic acids. Eriodictol (ΔGbind = -9.0), luteolin (ΔGbind = -8.7), and apigenin (ΔGbind = -8.6) obtained greater strength of molecular interaction with lanosterol demethylase in the molecular docking study. The hexane fraction of V. brasiliana showed the best leishmanicidal activity against L. amazonensis in vitro (IC50 12.44 ± 0.875 µg·mL-1) and low cytotoxicity in RAW 264.7 cells (CC50 314.89 µg·mL-1, SI = 25.30) and T. molitor larvae. However, the hexane fraction and Amphotericin-B had antagonistic interaction (FICI index ≥ 4.0). This study revealed that V. brasiliana and its metabolites are potential sources of lead compounds for drugs for leishmaniasis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Oliveira Everton
- Laboratory of Research and Application of Essential Oils, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Victor Elias Mouchrek Filho
- Laboratory of Research and Application of Essential Oils, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | | | - Lucilene Amorim Silva
- Immunophysiology Laboratory, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | | | | | | | | | | | - Cláudia Quintino da Rocha
- Natural Products Research Laboratory, Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | |
Collapse
|
8
|
Structure-Activity Relationship Studies of 9-Alkylamino-1,2,3,4-tetrahydroacridines against Leishmania ( Leishmania) infantum Promastigotes. Pharmaceutics 2023; 15:pharmaceutics15020669. [PMID: 36839991 PMCID: PMC9965875 DOI: 10.3390/pharmaceutics15020669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Leishmaniasis is one of the most neglected diseases in modern times, mainly affecting people from developing countries of the tropics, subtropics and the Mediterranean basin, with approximately 350 million people considered at risk of developing this disease. The incidence of human leishmaniasis has increased over the past decades due to failing prevention and therapeutic measures-there are no vaccines and chemotherapy, which is problematic. Acridine derivatives constitute an interesting group of nitrogen-containing heterocyclic compounds associated with numerous bioactivities, with emphasis to their antileishmanial potential. The present work builds on computational studies focusing on a specific enzyme of the parasite, S-adenosylmethionine decarboxylase (AdoMet DC), with several 1,2,3,4-tetrahydro-acridines emerging as potential inhibitors, evidencing this scaffold as a promising building block for novel antileishmanial pharmaceuticals. Thus, several 1,2,3,4-tetrahydroacridine derivatives have been synthesized, their activity against Leishmania (Leishmania) infantum promastigotes evaluated and a structure-activity relationship (SAR) study was developed based on the results obtained. Even though the majority of the 1,2,3,4-tetrahydroacridines evaluated presented high levels of toxicity, the structural information gathered in this work allowed its application with another scaffold (quinoline), leading to the obtention of N1,N12-bis(7-chloroquinolin-4-yl)dodecane-1,12-diamine (12) as a promising novel antileishmanial agent (IC50 = 0.60 ± 0.11 μM, EC50 = 11.69 ± 3.96 μM and TI = 19.48).
Collapse
|
9
|
Antileishmanial Activity and In Silico Molecular Docking Studies of Malachra alceifolia Jacq. Fractions against Leishmania mexicana Amastigotes. Trop Med Infect Dis 2023; 8:tropicalmed8020115. [PMID: 36828531 PMCID: PMC9960462 DOI: 10.3390/tropicalmed8020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Malachra alceifolia Jacq. (family Malvaceae), known as "malva," is a medicinal plant used as a traditional therapy in many regions of America, Africa and Asia. Traditionally, this plant is used in the form of extracts, powder and paste by populations for treating fever, stomachache, inflammation, and parasites. However, the ethnopharmacological validation of M. alceifolia has been scarcely researched. This study showed that the chloroform fraction (MA-IC) and subfraction (MA-24F) of the leaves of M. alceifolia exhibited a potential antileishmanial activity against axenic amastigotes of Leishmania mexicana pifanoi (MHOM/VE/60/Ltrod) and had high and moderate cytotoxic effects on the viability and morphology of macrophages RAW 264.7. This study reports, for the first time, possible terpenoid metabolites and derivatives present in M. alceifolia with activity against some biosynthetic pathways in L. mexicana amastigotes. The compounds from the subfractions MA-24F were highly active and were analyzed by gas chromatography-mass spectrometry (GC-MS) and by a molecular docking study in L. mexicana target protein. This study demonstrates the potential modes of interaction and the theoretical affinity energy of the metabolites episwertenol, α-amyrin and methyl commate A, which are present in the active fraction MA-24F, at allosteric sites of the pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase, triose phosphate isomerase, aldolase, phosphoglucose isomerase, transketolase, arginase and cysteine peptidases A, target proteins in some vital biosynthetic pathways were responsible for the survival of L. mexicana. Some phytoconstituents of M. alceifolia can be used for the search for potential new drugs and molecular targets for treating leishmaniases and infectious diseases. Furthermore, contributions to research and the validation and conservation of traditional knowledge of medicinal plants are needed globally.
Collapse
|
10
|
In Vitro Anthelmintic Effect of Ferula assa-foetida Hydroalcoholic Extract Against Flukes of Fasciola hepatica and Dicrocoelium dendriticum. Jundishapur J Nat Pharm Prod 2023. [DOI: 10.5812/jjnpp-133030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Background: Dicrocoeliasis and fascioliasis are foodborne parasitic diseases of the biliary tract, resulting from Dicrocoelium dendriticum and Fasciola hepatica causing extensive financial losses and serious health problems in ruminants. Due to low-performance medications, drug delivery is a tremendous project to improve interventions available for these diseases. Objectives: This study aimed to determine the anthelmintic properties of Ferula assa-foetida extract against F. hepatica and D. dendriticum using in vitro assay. Methods: The effects of diverse concentrations of F. assa-foetida extract (400 - 1000 µg/mL) for 12-24 hours were examined for the treatment of D. dendriticum and F. hepatica. The anthelmintic efficacies were evaluated using scanning electron microscopy (SEM). The MTT assay was carried out to evaluate the cell viability of all cells in culture media. Results: The SEM images of treated worms by F. assa-foetida extract (200 µg/mL) confirmed excessive damage, which included an entire lack of sensory papillae and destruction of distinguished network structures and tegument vesicles. Variables of duration and concentration presented a considerable effect on both the mortality rate and the anthelmintic properties of F. assa-foetida; accordingly, as the time and concentration increased, the mortality rate became higher. Based on the MTT assay, the toxicity of F. assa-foetida at 800 µg/mL concentration was 8.7%. Therefore, it can be argued that F. assa-foetida had anthelmintic properties. Conclusions: This is the first study that evaluated the impact of F. assa-foetida on liver flukes of D. dendriticum and F. hepatica. Therefore, it paved the way for further studies on the control of those trematodes. It is recommended to document and look into the indigenous understanding of viable medicinal plants to provide evidence for their use.
Collapse
|
11
|
Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules 2022; 27:molecules27217579. [PMID: 36364404 PMCID: PMC9656935 DOI: 10.3390/molecules27217579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Leishmaniasis is one of the most neglected tropical diseases that present areal public health problems worldwide. Chemotherapy has several limitations such as toxic side effects, high costs, frequent relapses, the development of resistance, and the requirement for long-term treatment. Effective vaccines or drugs to prevent or cure the disease are not available yet. Therefore, it is important to dissect antileishmanial molecules that present selective efficacy and tolerable safety. Several studies revealed the antileishmanial activity of medicinal plants. Several organic extracts/essential oils and isolated natural compounds have been tested for their antileishmanial activities. Therefore, the aim of this review is to update and summarize the investigations that have been undertaken on the antileishmanial activity of medicinal plants and natural compounds derived, rom plants from January 2015 to December 2021. In this review, 94 plant species distributed in 39 families have been identified with antileishmanial activities. The leaves were the most commonly used plant part (49.5%) followed by stem bark, root, and whole plant (21.9%, 6.6%, and 5.4%, respectively). Other plant parts contributed less (<5%). The activity was reported against amastigotes and/or promastigotes of different species (L. infantum, L. tropica, L. major, L. amazonensis, L. aethiopica, L. donovani, L. braziliensis, L. panamensis, L. guyanensis, and L. mexicana). Most studies (84.2%) were carried out in vitro, and the others (15.8%) were performed in vivo. The IC50 values of 103 plant extracts determined in vitro were in a range of 0.88 µg/mL (polar fraction of dichloromethane extract of Boswellia serrata) to 98 µg/mL (petroleum ether extract of Murraya koenigii). Among the 15 plant extracts studied in vivo, the hydroalcoholic leaf extract of Solanum havanense reduced parasites by 93.6% in cutaneous leishmaniasis. Voacamine extracted from Tabernaemontana divaricata reduced hepatic parasitism by ≈30 times and splenic parasitism by ≈15 times in visceral leishmaniasis. Regarding cytotoxicity, 32.4% of the tested plant extracts against various Leishmania species have a selectivity index higher than 10. For isolated compounds, 49 natural compounds have been reported with anti-Leishmania activities against amastigotes and/or promastigotes of different species (L. infantum, L. major, L. amazonensis, L. donovani and L. braziliensis). The IC50 values were in a range of 0.2 µg/mL (colchicoside against promastigotes of L. major) to 42.4 µg/mL (dehydrodieuginol against promastigotes of L. amazonensis). In conclusion, there are numerous medicinal plants and natural compounds with strong effects (IC50 < 100 µg/mL) against different Leishmania species under in vitro and in vivo conditions with good selectivity indices (SI > 10). These plants and compounds may be promising sources for the development of new drugs against leishmaniasis and should be investigated in randomized clinical trials.
Collapse
|
12
|
dos Santos DB, Lemos JA, Miranda SEM, Di Filippo LD, Duarte JL, Ferreira LAM, Barros ALB, Oliveira AEMFM. Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment. Pharmaceutics 2022; 14:2339. [PMID: 36365157 PMCID: PMC9695113 DOI: 10.3390/pharmaceutics14112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/28/2023] Open
Abstract
Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.
Collapse
Affiliation(s)
- Darline B. dos Santos
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| | - Janaina A. Lemos
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sued E. M. Miranda
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leonardo D. Di Filippo
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Lucas A. M. Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andre L. B. Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anna E. M. F. M. Oliveira
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| |
Collapse
|
13
|
Machin L, Piontek M, Todhe S, Staniek K, Monzote L, Fudickar W, Linker T, Gille L. Antileishmanial Anthracene Endoperoxides: Efficacy In Vitro, Mechanisms and Structure-Activity Relationships. Molecules 2022; 27:6846. [PMID: 36296439 PMCID: PMC9612231 DOI: 10.3390/molecules27206846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by protozoal Leishmania parasites. Previous studies have shown that endoperoxides (EP) can selectively kill Leishmania in host cells. Therefore, we studied in this work a set of new anthracene-derived EP (AcEP) together with their non-endoperoxidic analogs in model systems of Leishmania tarentolae promastigotes (LtP) and J774 macrophages for their antileishmanial activity and selectivity. The mechanism of effective compounds was explored by studying their reaction with iron (II) in chemical systems and in Leishmania. The correlation of structural parameters with activity demonstrated that in this compound set, active compounds had a LogPOW larger than 3.5 and a polar surface area smaller than 100 Å2. The most effective compounds (IC50 in LtP < 2 µM) with the highest selectivity (SI > 30) were pyridyl-/tert-butyl-substituted AcEP. Interestingly, also their analogs demonstrated activity and selectivity. In mechanistic studies, it was shown that EP were activated by iron in chemical systems and in LtP due to their EP group. However, the molecular structure beyond the EP group significantly contributed to their differential mitochondrial inhibition in Leishmania. The identified compound pairs are a good starting point for subsequent experiments in pathogenic Leishmania in vitro and in animal models.
Collapse
Affiliation(s)
- Laura Machin
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
- Pharmacy Department, Institute of Pharmacy and Food Sciences, University of Havana, Havana 13600, Cuba
| | - Martin Piontek
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sara Todhe
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Katrin Staniek
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine “Pedro Kouri”, Havana 11400, Cuba
| | - Werner Fudickar
- Department of Organic Chemistry, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Torsten Linker
- Department of Organic Chemistry, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
14
|
Iwiński H, Łyczko J, Różański H, Szumny A. Novel Formula of Antiprotozoal Mixtures. Antibiotics (Basel) 2022; 11:913. [PMID: 35884167 PMCID: PMC9312222 DOI: 10.3390/antibiotics11070913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR) is becoming more common in both bacteria and pathogenic protozoa. Therefore, new solutions are being sought as alternatives to currently used agents. There are many new ideas and solutions, especially compounds of natural origin, including essential oils. In the present study, the antiprotozoal activity of a mixture of essential oils (eucalyptus, lavender, cedar and tea tree), organic acids (acetic acid, propionic acid and lactic acid) and metal ions (Cu, Zn, Mn) were tested. As a model, protozoans were selected: Euglena gracilis, Gregarina blattarum, Amoeba proteus, Paramecium caudatum, Pentatrichomonas hominis. The tested concentrations of mixtures were in the range of 0.001-1.5%. The analyses show unexpected, very strong protozoicidal activity of combinations, presenting the synergy of compounds via determination of LD50 and LD100 values. Obtained mixtures showed significantly higher activity against protozoans, compared to chloramphenicol and metronidazole. Most of the analyzed samples show high antiprotozoal activity at very low concentration, in the range of 0.001-0.009%. The most effective combinations for all analyzed protozoans were the cedar essential oil and tea tree essential oil with a mixture of acids and manganese or zinc ions. Innovative combinations of essential oils, organic acids and metal ions are characterized by very high antiprotozoal activity at low doses, which, after further investigation, can be applicable for control of protozoan pathogens.
Collapse
Affiliation(s)
- Hubert Iwiński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland; (J.Ł.); (A.S.)
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warsaw, Poland;
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland; (J.Ł.); (A.S.)
| | - Henryk Różański
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warsaw, Poland;
- Laboratory of Industrial and Experimental Biology, Institute for Health and Economics, Carpathian State College in Krosno, Rynek, 38-400 Krosno, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland; (J.Ł.); (A.S.)
| |
Collapse
|
15
|
Gouri V, Upreti S, Samant M. Evaluation of target-specific natural compounds for drug discovery against Leishmaniasis. Parasitol Int 2022; 91:102622. [DOI: 10.1016/j.parint.2022.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
|
16
|
Ferreira TN, Brazil RP, McDowell MA, Cunha-Júnior EF, Costa PRR, Netto CD, Santos ECT, Genta FA. Effects of anti-Leishmania compounds in the behavior of the sand fly vector Lutzomyia longipalpis. PEST MANAGEMENT SCIENCE 2022; 78:2792-2805. [PMID: 35411662 DOI: 10.1002/ps.6900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Leishmaniasis is an infectious parasitic disease caused by pathogens of the genus Leishmania transmitted through the bite of adult female sand flies. To reduce case numbers, it is necessary to combine different control approaches, especially those aimed at the sand fly vectors. Innovative forms of control with the use of attractive sugar baits explored the fact that adult sand flies need to feed on sugars of plant origin. Leishmania parasites develop in the gut of sand flies, interacting with the sugars in the diet of adults. Recent studies have shown that sugar baits containing plant-derived compounds can reduce sand fly survival, the number of parasites per gut, and the percentage of infected sand flies. Several synthetic compounds produced from naphthoquinones and pterocarpans have anti-parasitic activity on Leishmania amazonensis and/or Leishmania infantum in cell culture. This work aimed to assess the inclusion of these compounds in sugar baits for blocking transmission, targeting the development of the Leishmania parasite inside the sand fly vector. RESULTS We evaluated the attractant or repellent properties of these compounds, as well as of the reference compound N,N'-diethyl-m-toluamide (DEET), in sugar baits. We also observed changes in feeding preference caused by these compounds, looking for anti-feeding or stimulation of ingestion. Pterocarpanquinone L4 and pentamidine showed attractant and repellent properties, respectively. CONCLUSION Based on the effects in feeding preference and intake volume, pterocarpanquinone L6, and the pyrazole-derived compound P8 were chosen as the most promising compounds for the future development of anti-Leishmania sugar baits. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tainá Neves Ferreira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Reginaldo Peçanha Brazil
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Edézio Ferreira Cunha-Júnior
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, Brazil
| | - Paulo Roberto Ribeiro Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chaquip Daher Netto
- Laboratório de Química, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Eduardo Caio Torres Santos
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Chakrabarti A, Narayana C, Joshi N, Garg S, Garg LC, Ranganathan A, Sagar R, Pati S, Singh S. Metalloprotease Gp63-Targeting Novel Glycoside Exhibits Potential Antileishmanial Activity. Front Cell Infect Microbiol 2022; 12:803048. [PMID: 35601095 PMCID: PMC9115111 DOI: 10.3389/fcimb.2022.803048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL) affect most of the poor populations worldwide. The current treatment modalities include liposomal formulation or deoxycholate salt of amphotericin B, which has been associated with various complications and severe side effects. Encouraged from the recent marked antimalarial effects from plant-derived glycosides, in this study, we have exploited a green chemistry-based approach to chemically synthesize a library of diverse glycoside derivatives (Gly1–12) and evaluated their inhibitory efficacy against the AG83 strain of Leishmania donovani. Among the synthesized glycosides, the in vitro inhibitory activity of Glycoside-2 (Gly2) (1.13 µM IC50 value) on L. donovani promastigote demonstrated maximum cytotoxicity with ~94% promastigote death as compared to amphotericin B that was taken as a positive control. The antiproliferative effect of Gly2 on promastigote encouraged us to analyze the structure–activity relationship of Gly2 with Gp63, a zinc metalloprotease that majorly localizes at the surface of the promastigote and has a role in its development and multiplication. The result demonstrated the exceptional binding affinity of Gly2 toward the catalytic domain of Gp63. These data were thereafter validated through cellular thermal shift assay in a physiologically relevant cellular environment. Mechanistically, reduced multiplication of promastigotes on treatment with Gly2 induces the destabilization of redox homeostasis in promastigotes by enhancing reactive oxygen species (ROS), coupled with depolarization of the mitochondrial membrane. Additionally, Gly2 displayed strong lethal effects on infectivity and multiplication of amastigote inside the macrophage in the amastigote–macrophage infection model in vitro as compared to amphotericin B treatment. Gp63 is also known to bestow protection against complement-mediated lysis of parasites. Interestingly, Gly2 treatment enhances the complement-mediated lysis of L. donovani promastigotes in serum physiological conditions. In addition, Gly2 was found to be equally effective against the clinical promastigote forms of PKDL strain (IC50 value of 1.97 µM); hence, it could target both VL and PKDL simultaneously. Taken together, this study reports the serendipitous discovery of Gly2 with potent antileishmanial activity and proves to be a novel chemotherapeutic prototype against VL and PKDL.
Collapse
Affiliation(s)
- Amrita Chakrabarti
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Chintam Narayana
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Nishant Joshi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Lalit C. Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Ram Sagar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
- *Correspondence: Shailja Singh, ; Soumya Pati, ; Ram Sagar,
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
- *Correspondence: Shailja Singh, ; Soumya Pati, ; Ram Sagar,
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University (JNU), New Delhi, India
- *Correspondence: Shailja Singh, ; Soumya Pati, ; Ram Sagar,
| |
Collapse
|
18
|
Maciel MSP, Reis ASD, Fidelis QC. Antileishmanial potential of species from the family Lamiaceae: chemical and biological aspects of non-volatile compounds. Acta Trop 2022; 228:106309. [PMID: 35032468 DOI: 10.1016/j.actatropica.2022.106309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Leishmaniasis is a neglected tropical disease present in more than 90 countries and annually affects about 1 million people worldwide. It is caused by the genus Leishmania protozoa that are transmitted to humans by insect bites. This disease is a serious public health problem, which can cause death, disability, and mutilation. The drugs used in treatment have high toxicity, low efficiency, high costs, and possible antiparasitic resistance. Medicinal plant-based treatments have been used for leishmaniasis by population from endemic areas. Among the main botanical families used against leishmaniasis, in different parts of the world, the family Lamiaceae stands out. In this review, the antileishmanial activity of extracts, fractions, and non-volatile compounds of Lamiaceae species are presented. Leishmania species present in the Old and New World were evaluated and discussed. Altogether there are forty-two Lamiaceae species, belonging to twenty-six genera, and ninety-one constituents, isolated from eighteen species of this family, verified in antileishmanial assays. Chemical and biological aspects of extracts, fractions and non-volatile constituents are discussed in order to define a profile of antileishmanial plants of this family, based on the antileishmanial activities results. Notes are presented to guide future investigations to expand chemical and biological knowledge of Lamiaceae species and highlight its most promising antileishmanial agents.
Collapse
Affiliation(s)
- Maria Simone Pereira Maciel
- Program in Health and Technology, Center for Social Science, Health and Technology, Federal University of Maranhão, Av. Da Universidade, S/N, Dom Afonso Felipe Gregory, Imperatriz, Maranhão, Brazil, 65915-240
| | - Aramys Silva Dos Reis
- Department of Medicine, Center for Social Sciences, Health and Technology, Federal University of Maranhão, Av. Da Universidade, S/N, Dom Afonso Felipe Gregory, Imperatriz, Maranhão, Brazil, 65915-240
| | - Queli Cristina Fidelis
- Department of Science and Technology, Balsas Campus, Federal University of Maranhão, Balsas, Maranhão, Brazil, 65800-000.
| |
Collapse
|
19
|
Synthesis of Tellurium Oxide (TeO 2) Nanorods and Nanoflakes and Evaluation of Its Efficacy Against Leishmania major In Vitro and In Vivo. Acta Parasitol 2022; 67:143-152. [PMID: 34173967 DOI: 10.1007/s11686-021-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Today, the use of natural products and nanostructures has increased. Given the reports on beneficial effects of various organotellurane compounds on types of visceral leishmaniasis, we decided to investigate the effect of TeO2 NPs on Leishmania major (L. major). Tellurium can cause cell apoptosis in cancer cells without activating the caspase-pathway. METHODS TeO2 NPs at first synthesized and the structure was checked by XRD, SEM and EDS tests. The cytotoxic effect of TeO2 NPs against L. major promastigotes, amastigotes and macrophages was assessed by MTT test or counting. The possible apoptosis of L. major by TeO2 NPs was evaluated by flow cytometry test. For in vivo assay, the lesions of infected BALB/c mice with L. major promastigotes were treated with TeO2 NPs, then the lesion size and survival rate were evaluated. RESULTS The synthesis of TeO2 with tetragonal structure was confirmed by XRD. The combination of nanorods and nanoflakes and the presence of Te were proven by SEM and EDS, respectively. According the effects of nanoparticle on promastigotes and amastigotes, the IC50 values of TeO2 after 72 h of incubation were 15.13 and 52.22 µg/ml, respectively. TeO2 NPs induced apoptosis in about 41% of promastigotes. The ulcer greatly healed and survival rate was higher in treated mice compared to those in control group. CONCLUSION Based on the data, favorable anti-leishmanial properties were observed by using TeO2 NPs. TeO2 NPs have cytotoxic impacts on L. major promastigotes and amastigotes in vitro and in vivo and may be regarded as a therapy option.
Collapse
|
20
|
Rashno Z, Sharifi I, Oliaee RT, Tajbakhsh S, Sharififar F, Sharifi F, Hatami A, Faridi A, Babaei Z. Anti-leishmanial activity of Avicennia marina (Avicenniaceae family) leaves hydroalcoholic extract and its possible cellular mechanisms. Parasite Epidemiol Control 2022; 17:e00239. [PMID: 35146140 PMCID: PMC8801380 DOI: 10.1016/j.parepi.2022.e00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products are the main source of potent antioxidants and anti-leishmanial agents. This study was aimed to evaluate Avicennia marina (Avicenniaceae family) extract inhibitory effect against Leishmania tropica by accessing apoptotic markers and arginase activity. The A. marina were extracted and phytochemical analysis conducted. The inhibitory effect of A. marina was evaluated on L. tropica promastigote and amastigote forms, compared to meglumine antimoniate (Glucantime, MA) as standard drug. The level of apoptosis, Reactive Oxygen Species (ROS) production and arginase activity was assessed in A. marina-treated cells compared to control group. Phytochemical screening of A. marina extract showed strong presence of tannins and saponins. We demonstrated the inhibitory effect of A. marina on promastigote stages in a dose dependent manner. Also, lower 50% inhibitory concentration (IC50) value of amastigotes was indicated in A. marina group compared with the standard group of Glucantime (60.57 ± 1.46 vs. 73.19 ± 10.12 μg/mL, respectively, P < 0.05). Besides, A. marina represented no cytotoxicity as the selectivity index (SI) was 10.7. Also, it showed the potential to induce early apoptosis of 46.5% in promastigotes at 125 μg/mL concentration. Significant reduction of arginase level was observed in both A. marina-treated cells and promastigotes. The promising results indicated higher effectiveness of A. marina in decreasing parasite growth, inducing apoptosis in promastigotes, increasing ROS production and decreasing arginase level. So, A. marina can be a native plant candidate for anti-leishmanial drug in tropical regions with cutaneous leishmaniasis due to L. tropica.
Collapse
Affiliation(s)
- Zahra Rashno
- Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Tavakoli Oliaee
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Tajbakhsh
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Hatami
- Pathology and Stem Cell Research Center, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ashkan Faridi
- Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Corresponding author at: Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
21
|
Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, Kakar SJ, Uzair B, Mubashir M, Ullah S, Khoo KS, Lim HR, Show PL. Challenges and recent trends with the development of hydrogel fiber for biomedical applications. CHEMOSPHERE 2022; 287:131956. [PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
Collapse
Affiliation(s)
- Reema Ansar
- Department of Chemical Engineering, University of Gujrat, 50700, Pakistan.
| | - Sidra Saqib
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Lahore, Pakistan.
| | - Ahmad Mukhtar
- Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research, Jaranwala Road, 38000, Faisalabad, Pakistan.
| | - Muhammad Bilal Khan Niazi
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan.
| | - Zaib Jahan
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Salik Javed Kakar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan.
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia.
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
22
|
López-Arencibia A, Sifaoui I, Reyes-Batlle M, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Lorenzo-Morales J, Piñero JE. Discovery of New Chemical Tools against Leishmania amazonensis via the MMV Pathogen Box. Pharmaceuticals (Basel) 2021; 14:1219. [PMID: 34959620 PMCID: PMC8708704 DOI: 10.3390/ph14121219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
The protozoan parasite Leishmania causes a spectrum of diseases and there are over 1 million infections each year. Current treatments are toxic, expensive, and difficult to administer, and resistance to them is emerging. In this study, we screened the antileishmanial activity of the Pathogen Box compounds from the Medicine for Malaria Venture against Leishmania amazonensis, and compared their structures and cytotoxicity. The compounds MMV676388 (3), MMV690103 (5), MMV022029 (7), MMV022478 (9) and MMV021013 (10) exerted a significant dose-dependent inhibition effect on the proliferation of L. amazonensis promastigotes and intracellular amastigotes. Moreover, studies on the mechanism of cell death showed that compounds 3 and 5 induced an apoptotic process while the compounds 7, 9 and 10 seem to induce an autophagic mechanism. The present findings underline the potential of these five molecules as novel therapeutic leishmanicidal agents.
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Campus de Anchieta, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (I.S.); (M.R.-B.); (C.J.B.-E.); (D.S.N.-H.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28006 Madrid, Spain
| |
Collapse
|
23
|
Sakyi PO, Amewu RK, Devine RNOA, Ismaila E, Miller WA, Kwofie SK. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:489-544. [PMID: 34260050 PMCID: PMC8279035 DOI: 10.1007/s13659-021-00311-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/07/2021] [Indexed: 05/12/2023]
Abstract
Despite advancements in the areas of omics and chemoinformatics, potent novel biotherapeutic molecules with new modes of actions are needed for leishmaniasis. The socioeconomic burden of leishmaniasis remains alarming in endemic regions. Currently, reports from existing endemic areas such as Nepal, Iran, Brazil, India, Sudan and Afghanistan, as well as newly affected countries such as Peru, Bolivia and Somalia indicate concerns of chemoresistance to the classical antimonial treatment. As a result, effective antileishmanial agents which are safe and affordable are urgently needed. Natural products from both flora and fauna have contributed immensely to chemotherapeutics and serve as vital sources of new chemical agents. This review focuses on a systematic cross-sectional view of all characterized anti-leishmanial compounds from natural sources over the last decade. Furthermore, IC50/EC50, cytotoxicity and suggested mechanisms of action of some of these natural products are provided. The natural product classification includes alkaloids, terpenes, terpenoids, and phenolics. The plethora of reported mechanisms involve calcium channel inhibition, immunomodulation and apoptosis. Making available enriched data pertaining to bioactivity and mechanisms of natural products complement current efforts geared towards unraveling potent leishmanicides of therapeutic relevance.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Emahi Ismaila
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Accra, Ghana
| |
Collapse
|
24
|
Bezerra ÉA, Alves MMDM, Lima SKR, Pinheiro EEA, Amorim LV, Lima Neto JDS, Carvalho FADA, Citó AMDGL, Arcanjo DDR. Biflavones from Platonia insignis Mart. Flowers Promote In Vitro Antileishmanial and Immunomodulatory Effects against Internalized Amastigote Forms of Leishmania amazonensis. Pathogens 2021; 10:1166. [PMID: 34578198 PMCID: PMC8469084 DOI: 10.3390/pathogens10091166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis is an infectious disease that affects millions of people worldwide, making the search essential for more accessible treatments. The species Platonia insignis Mart. (Clusiaceae) has been extensively studied and has gained prominence for its pharmacological potential. The objective of this work was to evaluate the antileishmania activity, cytotoxic effect and activation patterns of macrophages of hydroalcoholic extract (EHPi), ethyl acetate fractions (FAcOEt) and morelloflavone/volkensiflavone mixture (MB) from P. insignis flowers. EHPi, FAcOEt and MB demonstrated concentration-dependent antileishmania activity, with inhibition of parasite growth in all analyzed concentrations. EHPi exhibited maximum effect at 800 μg/mL, while FAcOEt and MB reduced the growth of the parasite by 94.62% at 800 μg/mL. EHPi, FAcOEt and MB showed low cytotoxic effects for macrophages at 81.78, 159.67 and 134.28 μg/mL, respectively. EHPi (11.25 µg/mL), FAcOEt (11.25 and 22.5 µg/mL) and MB (22.5 µg/mL) characterized the increase in lysosomal activity, suggesting a possible modulating effect. These findings open for the application of flowers from a P. insignis flowers and biflavones mixture thereof in the promising treatment of leishmaniasis.
Collapse
Affiliation(s)
- Érika Alves Bezerra
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil; (É.A.B.); (S.K.R.L.)
| | - Michel Mualém de Moraes Alves
- Medicinal Plants Research Center, Federal University of Piauí, Teresina 64049-550, Brazil; (M.M.d.M.A.); (L.V.A.); (F.A.d.A.C.)
| | - Simone Kelly Rodrigues Lima
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil; (É.A.B.); (S.K.R.L.)
- Department of Education, Federal Institute of Maranhão, Bacabal 65080-805, Brazil
| | | | - Layane Valéria Amorim
- Medicinal Plants Research Center, Federal University of Piauí, Teresina 64049-550, Brazil; (M.M.d.M.A.); (L.V.A.); (F.A.d.A.C.)
| | | | | | | | - Daniel Dias Rufino Arcanjo
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil; (É.A.B.); (S.K.R.L.)
| |
Collapse
|
25
|
In Vitro and In Vivo Anti-parasitic Activity of Artemisinin Combined With Glucantime and Shark Cartilage Extract on Iranian Strain of Leishmania major (MRHO/IR/75/ER). Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.113313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: The adverse effects and increased resistance of drugs necessities the discovery of novel combination therapy. Objectives: This study aimed to examine the effects of Artemisinin plus glucantime or shark cartilage extract on the Iranian strain of Leishmania major (MRHO/IR/75/ER) in vitro and in vivo. Methods: In in vitro experiments, the effects of drugs and their combination in different concentrations (3.12 - 400 µg/mL) on the promastigotes, amastigotes, and un-infected macrophage cells were evaluated. In in vivo experiments, infected BALB/c mice were used as a cutaneous leishmaniasis model to evaluate the effects of the drugs and their combinations with different routes of administrations (namely Artemisinin: oral, ointment, and intraperitoneal; glucantime: intraperitoneal, intramuscular, intralesional, and subcutaneous; shark cartilage extract: oral) on parasite burden, lesion size, and immune system modulation. Results: The results revealed that Artemisinin and glucantime in combination with shark cartilage extract had greater effects on promastigotes than either Artemisinin or glucantime (P < 0.05), and that the combinations also had high cytotoxic effects on promastigotes and uninfected macrophages (P = 0.001). These combinations had more inhibitory effects on amastigotes and infected macrophages than promastigotes. The lesion sizes and parasite burden in the spleen decreased against the combinations of the drugs in different administrations. It was also noticed that the best combination administration route of Artemisinin and glucantime, as strong inducers of INF-γ and Th1 immune response, were ointment and intramuscular, respectively (P < 0.05). Conclusions: The findings indicate that Artemisinin- glucantime or Artemisinin- Shark cartilage combinations are effective inhibitors of L. major. However, further clinical trials are recommended to evaluate the effects of these combinations in human subjects.
Collapse
|
26
|
Durofil A, Radice M, Blanco-Salas J, Ruiz-Téllez T. Piper aduncum essential oil: a promising insecticide, acaricide and antiparasitic. A review. Parasite 2021; 28:42. [PMID: 33944775 PMCID: PMC8095093 DOI: 10.1051/parasite/2021040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies have assessed the potential of essential oils as substitutes for synthetic pesticides, in order to counter insect resistance to commercial pesticides. Piper aduncum L. is a very common shrub in the Amazon Rainforest and in other subtropical areas. The objective of this review was to analyse the existing information on P. aduncum essential oil as a raw material for new bioproducts for sustainable pest disease management. With this review, we collected and critically analysed 59 papers, representing all the studies that aimed to evaluate the essential oil properties of this species as an insecticide, acaricide and antiparasitic. The chemical composition differs depending on the origin, although phenylpropanoid dillapiole is the most cited component, followed by myristicin, 1,8-cineole and β-ocimene. Between the acaricidal, antiparasitic and synergistic activities, the insecticidal effects are highly promising, with optimal results against the malaria vector Aedes aegypti, with an LC50 that ranges between 57 and 200μg/mL. Acaricidal activity has mainly been reported against Tetranychus urticae, showing an LC50 that ranges between 5.83 and 7.17μg/mL. Antiparasitic activity has predominately been found on Leishmania amazonensis, and antipromastigote activity has been found to be between 23.8 and 25.9μg/mL. Concerning the synergistic effect between dillapiole and synthetic insecticides, four studies on Spodoptera frugiperda found promising results with cypermethrin. In this review, we highlighted the potential of P. aduncum essential oil as a biopesticide, also focusing on the lack of information about applied research. We also provide suggestions for future investigations.
Collapse
Affiliation(s)
- Andrea Durofil
-
Universidad Estatal Amazónica Km 2½ Vía Puyo-Tena 160150 Puyo Ecuador
-
Department of Vegetal Biology, Ecology and Earth Science, Faculty of Sciences, University of Extremadura 06006 Badajoz Spain
| | - Matteo Radice
-
Universidad Estatal Amazónica Km 2½ Vía Puyo-Tena 160150 Puyo Ecuador
| | - José Blanco-Salas
-
Department of Vegetal Biology, Ecology and Earth Science, Faculty of Sciences, University of Extremadura 06006 Badajoz Spain
| | - Trinidad Ruiz-Téllez
-
Department of Vegetal Biology, Ecology and Earth Science, Faculty of Sciences, University of Extremadura 06006 Badajoz Spain
| |
Collapse
|
27
|
Freitas CS, Lage DP, Oliveira-da-Silva JA, Costa RR, Mendonça DVC, Martins VT, Reis TAR, Antinarelli LMR, Machado AS, Tavares GSV, Ramos FF, Brito RCF, Ludolf F, Chávez-Fumagalli MA, Roatt BM, Ramos GS, Munkert J, Ottoni FM, Campana PRV, Duarte MC, Gonçalves DU, Coimbra ES, Braga FC, Pádua RM, Coelho EAF. In vitro and in vivo antileishmanial activity of β-acetyl-digitoxin, a cardenolide of Digitalis lanata potentially useful to treat visceral leishmaniasis. ACTA ACUST UNITED AC 2021; 28:38. [PMID: 33851916 PMCID: PMC8045677 DOI: 10.1051/parasite/2021036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
Current treatments of visceral leishmaniasis face limitations due to drug side effects and/or high cost, along with the emergence of parasite resistance. Novel and low-cost antileishmanial agents are therefore required. We report herein the antileishmanial activity of β-acetyl-digitoxin (b-AD), a cardenolide isolated from Digitalis lanata leaves, assayed in vitro and in vivo against Leishmania infantum. Results showed direct action of b-AD against parasites, as well as efficacy for the treatment of Leishmania-infected macrophages. In vivo experiments using b-AD-containing Pluronic® F127 polymeric micelles (b-AD/Mic) to treat L. infantum-infected mice showed that this composition reduced the parasite load in distinct organs in more significant levels. It also induced the development of anti-parasite Th1-type immunity, attested by high levels of IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and specific IgG2a antibodies, in addition to low IL-4 and IL-10 contents, along with higher IFN-γ-producing CD4+ and CD8+ T-cell frequency. Furthermore, low toxicity was found in the organs of the treated animals. Comparing the therapeutic effect between the treatments, b-AD/Mic was the most effective in protecting animals against infection, when compared to the other groups including miltefosine used as a drug control. Data found 15 days after treatment were similar to those obtained one day post-therapy. In conclusion, the results obtained suggest that b-AD/Mic is a promising antileishmanial agent and deserves further studies to investigate its potential to treat visceral leishmaniasis.
Collapse
Affiliation(s)
- Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Rafaella R Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Thiago A R Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Luciana M R Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900 Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Rory C F Brito
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000 Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | | | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000 Minas Gerais, Brazil
| | - Gabriela S Ramos
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Jennifer Munkert
- Departament Biologie, LS Pharmazeutische Biologie, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Flaviano M Ottoni
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Priscilla R V Campana
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil - Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Denise U Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900 Minas Gerais, Brazil
| | - Fernão C Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Rodrigo M Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil - Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| |
Collapse
|
28
|
Pramanik PK, Chakraborti S, Bagchi A, Chakraborti T. Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Sci Rep 2020; 10:20440. [PMID: 33235245 PMCID: PMC7686382 DOI: 10.1038/s41598-020-77066-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis, a major neglected tropical disease, affects millions of individuals worldwide. Among the various clinical forms, visceral leishmaniasis (VL) is the deadliest. Current antileishmanial drugs exhibit toxicity- and resistance-related issues. Therefore, advanced chemotherapeutic alternatives are in demand, and currently, plant sources are considered preferable choices. Our previous report has shown that the chloroform extract of Corchorus capsularis L. leaves exhibits a significant effect against Leishmania donovani promastigotes. In the current study, bioassay-guided fractionation results for Corchorus capsularis L. leaf-derived β-sitosterol (β-sitosterolCCL) were observed by spectroscopic analysis (FTIR, 1H NMR, 13C NMR and GC–MS). The inhibitory efficacy of this β-sitosterolCCL against L. donovani promastigotes was measured (IC50 = 17.7 ± 0.43 µg/ml). β-SitosterolCCL significantly disrupts the redox balance via intracellular ROS production, which triggers various apoptotic events, such as structural alteration, increased storage of lipid bodies, mitochondrial membrane depolarization, externalization of phosphatidylserine and non-protein thiol depletion, in promastigotes. Additionally, the antileishmanial activity of β-sitosterolCCL was validated by enzyme inhibition and an in silico study in which β-sitosterolCCL was found to inhibit Leishmania donovani trypanothione reductase (LdTryR). Overall, β-sitosterolCCL appears to be a novel inhibitor of LdTryR and might represent a successful approach for treatment of VL in the future.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
29
|
Pereira KLG, Vasconcelos NBR, Braz JVC, InÁcio JDF, Estevam CS, Correa CB, Fernandes RPM, Almeida-Amaral EE, Scher R. Ethanolic extract of Croton blanchetianus Ball induces mitochondrial defects in Leishmania amazonensis promastigotes. AN ACAD BRAS CIENC 2020; 92:e20180968. [PMID: 33146273 DOI: 10.1590/0001-3765202020180968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/06/2019] [Indexed: 01/18/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by Leishmania. Chemotherapy remains the mainstay for leishmaniasis control; however, available drugs fail to provide a parasitological cure, and are associated with high toxicity. Natural products are promising leads for the development of novel chemotherapeutics against leishmaniasis. This work investigated the leishmanicidal properties of ethanolic extract of Croton blanchetianus (EECb) on Leishmania infantum and Leishmania amazonensis, and found that EECb, rich in terpenic compounds, was active against promastigote and amastigote forms of both Leishmania species. Leishmania infantum promastigotes and amastigotes presented IC50 values of 208.6 and 8.8 μg/mL, respectively, whereas Leishmania amazonensis promastigotes and amastigotes presented IC50 values of 73.6 and 3.1 μg/mL, respectively. Promastigotes exposed to EECb (100 µg/mL) had their body cellular volume reduced and altered to a round shape, and the flagellum was duplicated, suggesting that EECb may interfere with the process of cytokinesis, which could be the cause of the decline in the parasite multiplication rate. Regarding possible EECb targets, a marked depolarization of the mitochondrial membrane potential was observed. No cytotoxic effects of EECb were observed in murine macrophages at concentrations below 60 µg/mL, and the CC50 obtained was 83.8 µg/mL. Thus, the present results indicated that EECb had effective and selective effects against Leishmania infantum and Leishmania amazonensis, and that these effects appeared to be mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Katily L G Pereira
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Nancy B R Vasconcelos
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Juliana V C Braz
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Job D F InÁcio
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Charles S Estevam
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Cristiane B Correa
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Roberta P M Fernandes
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Elmo E Almeida-Amaral
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Ricardo Scher
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| |
Collapse
|
30
|
GHAFARIFAR F, MOLAIE S, ABAZARI R, HASAN ZM, FOROUTAN M. Fe3O4@Bio-MOF Nanoparticles Combined with Artemisinin, Glucantime®, or Shark Cartilage Extract on Iranian Strain of Leishmania major (MRHO/IR/75/ER): An In-Vitro and In-Vivo Study. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:537-548. [PMID: 33884011 PMCID: PMC8039492 DOI: 10.18502/ijpa.v15i4.4859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/11/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND In the present study, we examined the effects of Fe3O4@bio-MOF nanoparticle (Nano-FO) plus artemisinin (Art) and glucantime (Glu) or shark cartilage extract (ShCE) on Leishmania major in vitro and in vivo. METHODS This experimental study was conducted at the laboratory of Department of Parasitology, Tarbiat Modares University, Tehran, Iran during 2016-2017. The promastigote and amastigote assays were performed were conducted at the presence of 3.12-400 μg/mL of the drug combinations. According to in vitro IC50 results, the combinations of 12.5μg/mL Nano-FO with 25 μg/mL Art as well as 200 μg/mL Glu and 0.5 mL of 20 mg/kg of ShCE were used to treat BALB/c mice. During and at the end of the treatment, the lesion sizes were measured. Parasite loads, cytokine levels were evaluated at the end of the treatment. RESULTS The IC50 of Fe3O4@bio-MOF-Artemisinin (Nano-FO/Art), Fe3O4@bio-MOF-Glucantime (Nano-FO/Glu), and Fe3O4@bio-MOF-Shark cartilage extract (Nano-FO/ShCE) on promasitigotes were 12.58±0.12, 235±0.17, and 18.54±0.15, respectively. These results on amastigotes were 10.32±0.01, 187±0.03, and 338±0.07 μg/mL, respectively. The apoptosis percentage of these combinations were 32.54%, 20.59%, and 15.68% in promastigotes and 15.68%, 12.84%, and 3.51% in infected macrophages, respectively with no toxicity on uninfected macrophages. In vivo results showed that the size of lesions significantly decreased against all drugs combinations, but Nano-FO/Art combination with Selectivity Index of 23.62 value was safe, and more effective on healing of lesions than other drugs combinations (P=0.003). CONCLUSION This study suggested that Nano-FO/Art combination can be considered as an anti-leishmania combination therapy in CL induced by L. major.
Collapse
Affiliation(s)
- Fatemeh GHAFARIFAR
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheila MOLAIE
- Arthropod Born Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza ABAZARI
- Department of Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zoheir-Mohammad HASAN
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud FOROUTAN
- Faculty of Medical Sciences, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
31
|
Espíndola C. Some Ways for the Synthesis of Chalcones - New Ways for the Synthesis of Flavon-3-ols. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190919111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The flavonoids by their natural properties and their diverse applications are a group of
compounds whose study of origin, characteristics and applications has been dedicated to extensive
research. For the organic synthesis of chalcones, due to their interest as precursor molecules of different
compounds, several pathways have been developed and reported in numerous works. Analyses
on the effect of some of these catalysts on chalcone yield (%), with respect to time and reaction temperature
are presented here. Given the importance of flavon-3-ols, as compounds of pharmacological
interest mainly, new synthesis routes are proposed, in addition to the existing ones. This paper presents
the main pathways for the synthesis of chalcones and analyzes their production. New routes for
the synthesis of flavon-3-ols that follow the Claisen-Schmidt condensation and the interconversion of
melacacidin are proposed.
Collapse
Affiliation(s)
- Cecilia Espíndola
- Department of Organic and Inorganic Chemistry, Facultad de Ciencias, Universidad de Extremadura, E-06071 Badajoz, Spain
| |
Collapse
|
32
|
Recent researches in effective antileishmanial herbal compounds: narrative review. Parasitol Res 2020; 119:3929-3946. [PMID: 32803335 DOI: 10.1007/s00436-020-06787-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Leishmaniasis are neglected diseases and a public health problem; they are caused by protozoan species belonging to the genus Leishmania and mostly influences the poor populations in many developing countries. The lack of effective medications, and an approved vaccine, high toxicity and life-threatening side effects and many cases of drug resistance reported in different countries have resulted in the necessity to discover new, efficient, inexpensive, and safe antileishmanial compounds with less or no toxicity. This increase in consumer demand of natural herbal-derived plant extracts as alternative medicines continues despite the low scientific information to establish their efficacy and safety profiles. Various studies have been conducted so far concerning the application of herbal medicines for the treatment of leishmaniasis, but research on relatively effective and low toxic substances is still needed. In this review, we have summarized recent developments and reported studies concerning about herbal and naturally derived therapeutics in the treatment of leishmaniasis, conducted by several researchers worldwide. Some of these medical herbs with promising results have undergone prospective clinical researches, but many others have either not yet been explored. Recent articles described these medical herbs and their active and important molecules, including quinones, phenolic derivatives, lignans, tannins, terpenes, and oxylipins. We searched ISI Web of Science, PubMed, SID, Scholar, Scopus, and Science Direct, and articles published up to 2019 were included. The keywords of leishmaniasis and some words associated with herbal medicines and natural products were used in our search. This review can serve as a quick reference database for researchers.
Collapse
|
33
|
Silva CFM, Pinto DCGA, Fernandes PA, Silva AMS. Evolution of chromone-like compounds as potential antileishmanial agents, through the 21 st century. Expert Opin Drug Discov 2020; 15:1425-1439. [PMID: 32783762 DOI: 10.1080/17460441.2020.1801630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Leishmaniasis is one of the most neglected diseases of modern times that mainly affects people from developing countries, with approximately 350 million people considered at risk of developing leishmaniasis. Therefore, the development of novel antileishmanial treatments is becoming the focus of numerous research groups, with the support of the World Health Organization, which hopes to eradicate this disease in the near future. AREAS COVERED This review focuses on the interest of chromones for the development of future treatments against leishmaniasis. In addition to plant-based chromone derivatives, structure-activity relationship studies that aim to identify the optimal structural features of the chromones' antileishmanial activity are also described and discussed. EXPERT OPINION The numerous examples of chromones depicted in this paper, allied with the SAR studies presented herein, suggest that the chromone scaffold is a privileged core for the design and development of novel antileishmanial agents. However, some concerns have been raised concerning the considerable variability observed in the results throughout the scientific bibliography. These inconsistencies may explain the absence of pharmacodynamic and pharmacokinetic studies as well as clinical trials.
Collapse
Affiliation(s)
| | | | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento De Química E Bioquímica, Faculdade De Ciências, Universidade Do Porto , Porto, Portugal
| | | |
Collapse
|
34
|
Abstract
AbstractThis systematic review investigated the evidence for the therapeutic potential of essential oils (EOs) against Leishmania amazonensis. We searched available scientific publications from 2005 to 2019 in the PubMed and Web of Science electronic databases, according to PRISMA statement. The search strategy utilized descriptors and free terms. The EOs effect of 35 species of plants identified in this systematic review study, 45.7% had half of the maximal inhibitory concentration (IC50) 10 < IC50 ⩽ 50 μg mL−1 and 14.3% had a 10 < IC50μg mL−1 for promastigote forms of L. amazonensis. EOs from Cymbopogon citratus species had the lowest IC50 (1.7 μg mL−1). Among the plant species analyzed for activity against intracellular amastigote forms of L. amazonensis, 39.4% had an IC50 10 < IC50 ⩽ 50 μg mL−1, and 33.3% had an IC50 10 < IC50μg mL−1. Aloysia gratissima EO showed the lowest IC50 (0.16 μg mL−1) for intracellular amastigotes. EOs of Chenopodium ambrosioides, Copaifera martii and Carapa guianensis, administered by the oral route, were effective in reducing parasitic load and lesion volume in L. amazonensis-infected BALB/c mice. EOs of Bixa orellana and C. ambrosioides were effective when administered intraperitoneally. Most of the studies analyzed in vitro and in vivo for the risk of bias showed moderate methodological quality. These results indicate a stimulus for the development of new phytotherapy drugs for leishmaniasis treatment.
Collapse
|
35
|
Paik D, Pramanik PK, Chakraborti T. Curative efficacy of purified serine protease inhibitor PTF3 from potato tuber in experimental visceral leishmaniasis. Int Immunopharmacol 2020; 85:106623. [PMID: 32504996 DOI: 10.1016/j.intimp.2020.106623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.
Collapse
Affiliation(s)
- Dibyendu Paik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
36
|
Raj S, Sasidharan S, Balaji SN, Dubey VK, Saudagar P. Review on natural products as an alternative to contemporary anti-leishmanial therapeutics. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42485-020-00035-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Casanova LM, Rodrigues LM, de Aguiar PF, Tinoco LW. An NMR-Based Chemometric Strategy to Identify Leishmania donovani Nucleoside Hydrolase Inhibitors from the Brazilian Tree Ormosia arborea. JOURNAL OF NATURAL PRODUCTS 2020; 83:243-254. [PMID: 31985226 DOI: 10.1021/acs.jnatprod.9b00622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nucleoside hydrolases are a strategic target for the development of drugs to treat leishmaniasis, a neglected disease that affects 700 thousand to one million people annually. The present study aimed to identify Leishmania donovani nucleoside hydrolase (LdNH) inhibitors from the leaves of Ormosia arborea, a tree endemic to Brazilian ecosystems, through a strategy based on 1H NMR analyses and chemometrics. The aqueous EtOH extract of O. arborea leaves inhibited LdNH activity by 95%. The extract was fractionated in triplicate (13 in each step, making a total of 39 fractions). Partial least squares discriminant analysis (PLS-DA) was used to correlate the 1H NMR spectra of the fractions with their LdNH inhibitory activity and thus to identify the spectral regions associated with the bioactivity. The strategy aimed at isolating the probable bioactive substances and led to two new A-type proanthocyanidins, linked to a p-coumaroyl unit (1 and 2), which appeared as noncompetitive inhibitors of LdNH (IC50: 28.2 ± 3.0 μM and 25.6 ± 4.1 μM, respectively). This study confirms the usefulness of the NMR-based chemometric methods to accelerate the discovery of drugs from natural products.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Sau'de, Cidade Universita'ria , Universidade Federal do Rio de Janeiro , 21941-902 Rio de Janeiro , RJ , Brazil
| | - Luanna Monteiro Rodrigues
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Sau'de, Cidade Universita'ria , Universidade Federal do Rio de Janeiro , 21941-902 Rio de Janeiro , RJ , Brazil
| | - Paula Fernandes de Aguiar
- Departamento de Química Analítica, Instituto de Química, Centro de Ciências Matemáticas e da Natureza, Cidade Universitária , Universidade Federal do Rio de Janeiro , 21941-909 Rio de Janeiro , RJ , Brazil
| | - Luzineide Wanderley Tinoco
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Sau'de, Cidade Universita'ria , Universidade Federal do Rio de Janeiro , 21941-902 Rio de Janeiro , RJ , Brazil
| |
Collapse
|
38
|
López-Arencibia A, Reyes-Batlle M, Freijo MB, Sifaoui I, Bethencourt-Estrella CJ, Rizo-Liendo A, Chiboub O, McNaughton-Smith G, Lorenzo-Morales J, Abad-Grillo T, Piñero JE. In vitro activity of 1H-phenalen-1-one derivatives against Leishmania spp. and evidence of programmed cell death. Parasit Vectors 2019; 12:601. [PMID: 31870406 PMCID: PMC6929359 DOI: 10.1186/s13071-019-3854-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 11/12/2022] Open
Abstract
Background The in vitro activity against Leishmania spp. of a novel group of compounds, phenalenone derivatives, is described in this study. Previous studies have shown that some phenalenones present leishmanicidal activity, and induce a decrease in the mitochondrial membrane potential in L. amazonensis parasites, so in order to elucidate the evidence of programmed cell death occurring inside the promastigote stage, different assays were performed in two different species of Leishmania. Methods We focused on the determination of the programmed cell death evidence by detecting the characteristic features of the apoptosis-like process, such as phosphatidylserine exposure, mitochondrial membrane potential, and chromatin condensation among others. Results The results showed that four molecules activated the apoptosis-like process in the parasite. All the signals observed were indicative of the death process that the parasites were undergoing. Conclusions The present results highlight the potential use of phenalenone derivatives against Leishmania species and further studies should be undertaken to establish them as novel leishmanicidal therapeutic agents.![]()
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain. .,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Mónica B Freijo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Olfa Chiboub
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain.,Laboratoire Matériaux-Molécules et Applications, La Marsa, University of Carthage, Carthage, Tunisia
| | - Grant McNaughton-Smith
- Centro Atlántico del Medicamento S.A (CEAMED S.A.), PCTT, La Laguna, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain.,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Teresa Abad-Grillo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain. .,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
39
|
Garcinielliptone FC: Selective anti-amastigote and immunomodulatory effects on macrophages infected by Leishmania amazonensis. Toxicol In Vitro 2019; 63:104750. [PMID: 31862617 DOI: 10.1016/j.tiv.2019.104750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
Abstract
The present study was directed to the in vitro antileishmanial, cytotoxic and immunomodulatory effects of Garcinielliptone FC (GFC) against promastigote and macrophage-internalized amastigote forms of Leishmania amazonensis. GFC showed in vitro cytotoxicity against BALB/c peritoneal macrophages with CC50 of 74.90 μM. The hemolytic activity against sheep erythrocytes only demonstrated a decrease of 20.42% in cell viability at the highest tested concentration tested (1326.0 μM). GFC promoted in vitro growth inhibition of both promastigote and intracellular amastigotes with IC50 values of 14.06 and 1.91 μM, respectively, with 7.3-fold higher Selectivity Index (SI) for intracellular amastigotes (SI = 39.21) than for promastigotes (SI = 5.33). Interestingly, the pre-treatment of macrophages or promastigotes with GFC promoted decrease of infected macrophages and number of recovered amastigotes, respectively. Also, GFC was able to markedly promote macrophages activation by increase of phagocytic capability and nitrite production at concentrations able to solve infection of macrophages by L. amazonensis, suggesting the possible involvement of immunomodulatory modulation of macrophages leading to solve the infection. GFC is an emerging and promising chemical compound for the studies focused on the assessment of its therapeutic potential on in vivo experimental models of leishmaniasis.
Collapse
|
40
|
Molaie S, Ghaffarifar F, Hasan ZM, Dalimi A. Enhancement Effect of Shark Cartilage Extract on Treatment of Leishmania infantum with Artemisinin and Glucantime and Evaluation of killing Factors and Apoptosis in-vitro Condition. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:887-902. [PMID: 31531071 PMCID: PMC6706737 DOI: 10.22037/ijpr.2019.1100656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study we examined enhancement effects of Artemisinin plus Glucantime and shark cartilage extract on promastigotes and amastigotes of L.infantum in in-vitro condition.The toxicity of artemisinin, glucantime, and shark cartilage extract on the L. infantum promastigotes and amastigote-infected macrophages was evaluated using MTT assay. The role of these drugs inducing apoptosis in promastigotes, un- infected, and parasite- infected macrophages was also studied. Using promastigote assay, IC50 values of artemisinin and glucantime as standalone drugs as well as in combination were obtained to be 50, 400, and 100µg/mL respectively. The flow cytometry analysis of apoptotic promastigotes stained with Annexin-V FITC staining showed that artemisinin, glucantime, artemisinin plus glucantime, artemisinin plus shark cartilage extract, and shark cartilage extract alone applied at their IC50 concentrations resulted in 53.5%, 73.92%, 64.46%, 49.9%, and 47.34% apoptosis respectively. The results of MTT assay indicated that cytotoxicity of artemisinin, glucantime, artemisinin plus glucantime, shark cartilage plus artemisinin, and shark cartilage in infected macrophages after 72h was 75%, 84%, 82%, 30%, and 3% respectively. In un- infected macrophages, cytotoxicity of Artemisinin, Glucantime, Artemisinin plus Glucantime and shark cartilage was 15%, 31%, 21%, 2%, and 0% respectively.This study suggests that artemisinin, glucantime, artemisinin plus glucantime, and shark cartilage extract have significant killing effects on promastigotes and amastigotes. Also, it proved that artimisinin alone and in combination with glucantime and shark cartilage extract has little toxic effect on macrophages, but could induce apoptosis in L.infantum promastigotes and amastigote-infected macrophages. Thus, these chemicals can be used as alternative drugs for in-vivo studies.
Collapse
Affiliation(s)
- Soheila Molaie
- Department of Parasitology , Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology , Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| | - Zuheir Mohammad Hasan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| | - Abdolhosein Dalimi
- Department of Parasitology , Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| |
Collapse
|
41
|
Mohammadinejad R, Maleki H, Larrañeta E, Fajardo AR, Nik AB, Shavandi A, Sheikhi A, Ghorbanpour M, Farokhi M, Govindh P, Cabane E, Azizi S, Aref AR, Mozafari M, Mehrali M, Thomas S, Mano JF, Mishra YK, Thakur VK. Status and future scope of plant-based green hydrogels in biomedical engineering. APPLIED MATERIALS TODAY 2019; 16:213-246. [DOI: 10.1016/j.apmt.2019.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
42
|
da Costa-Silva TA, Conserva GAA, Galisteo AJ, Tempone AG, Lago JHG. Antileishmanial activity and immunomodulatory effect of secosubamolide, a butanolide isolated from Nectandra oppositifolia (Lauraceae). J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190008. [PMID: 31467511 PMCID: PMC6707387 DOI: 10.1590/1678-9199-jvatitd-2019-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/27/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Visceral leishmaniasis is a complex neglected tropical disease caused by
Leishmania donovani complex. Its current treatment
reveals strong limitations, especially high toxicity. In this context,
natural products are important sources of new drug alternatives for VL
therapy. Therefore, the antileishmanial and immunomodulatory activity of
compounds isolated from Nectandra oppositifolia (Lauraceae)
was investigated herein. Methods: The n-hexane extract from twigs of N.
oppositifolia were subjected to HPLC/HRESIMS and
bioactivity-guided fractionation to afford compounds 1 and
2 which were evaluated in vitro against
Leishmania (L.) infantum
chagasi and NCTC cells. Results: The n-hexane extract displayed activity against
L. (L.) infantum
chagasi and afforded isolinderanolide E
(1) and secosubamolide A (2),
which were effective against L. (L.)
infantum chagasi promastigotes, with IC50
values of 57.9 and 24.9 µM, respectively. Compound 2 was
effective against amastigotes (IC50 = 10.5 µM) and displayed
moderate mammalian cytotoxicity (CC50 = 42 µM). The
immunomodulatory studies of compound 2 suggested an
anti-inflammatory activity, with suppression of IL-6, IL-10, TNF with lack
of nitric oxide. Conclusion: This study showed the antileishmanial activity of compounds 1
and 2 isolated from N. oppositifolia.
Furthermore, compound 2 demonstrated an antileishmanial
activity towards amastigotes associated to an immunomodulatory effect.
Collapse
Affiliation(s)
- Thais A da Costa-Silva
- Center of Natural Sciences and Humanities, Federal University of ABC (UFBAC), São Paulo, SP, Brazil
| | - Geanne A Alves Conserva
- Center of Natural Sciences and Humanities, Federal University of ABC (UFBAC), São Paulo, SP, Brazil
| | - Andrés J Galisteo
- Institute of Tropical Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Adolfo Lutz Institute (IAL), São Paulo, SP, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC (UFBAC), São Paulo, SP, Brazil
| |
Collapse
|
43
|
Yousaf R, Khan MA, Ullah N, Khan I, Hayat O, Shehzad MA, Khan I, Taj F, Ud Din N, Khan A, Naeem I, Ali H. Biosynthesis of anti-leishmanial natural products in callus cultures of Artemisia scoparia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1122-1131. [PMID: 30942629 DOI: 10.1080/21691401.2019.1593856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinically, available synthetic chemotherapeutics in the treatment for leishmaniasis are associated with serious complications, such as toxicity and emergence of resistance. Natural products from plants can provide better remedies against the Leishmania parasite and can possibly minimize the associated side effects. In this study, various extracts of the callus cultures of Artimisia scoparia established in response to different plant growth regulators (PGRs) were evaluated for their anti-leishmanial effects against Leishmania tropica promastigotes, followed by an investigation of the possible mechanism of action through reactive apoptosis assay using fluorescent microscopy. Amongst the different callus extracts, higher anti-leishmanial activity (IC50:19.13 µg/mL) was observed in the callus raised in-vitro in the presence of 6-Benzylaminopurine (BA) plus 2,4-Dichlorophenoxyacetic Acid (2,4-D) at the concentration of 1.5 mg/L, each. Further, the results of apoptosis assay showed a large number of early-stage apoptotic (EA) and late-stage apoptotic (LA) cells in the Leishmania under the effect of callus extract grown in-vitro at BA plus 2,4-D. For the determination of the potent natural products in the callus extracts responsible for the anti-leishmanial activity, extracts were subjected to Gas chromatography-mass spectrometry (GC-MS) for the metabolite analysis. Nonetheless, higher levels of the metabolites, such as nerolidol (22%), pelletierine (18%), aspidin (15%) and ascaridole (11%) were detected in the callus grown in vitro at BA plus 2,4-D (1.5 mg/L, each). This protocol determines a novel method of production of anti-leishmanial natural products through callus cultures of A. scoparia, a medicinal plant.
Collapse
Affiliation(s)
- Reema Yousaf
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Mubarak Ali Khan
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Nazif Ullah
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Imdad Khan
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Obaid Hayat
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Muhammad Aamir Shehzad
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Irfan Khan
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Faqeer Taj
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Nizam Ud Din
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Asghar Khan
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Ijaz Naeem
- b Department of Biotechnology , University of Swabi , Swabi , Pakistan
| | - Huma Ali
- c Department of Biotechnology , Bacha Khan University , Charsadda , Pakistan
| |
Collapse
|
44
|
Dofuor AK, Djameh GI, Ayertey F, Bolah P, Amoa-Bosompem M, Kyeremeh K, Okine LK, Gwira TM, Ohashi M. Antitrypanosomal Effects of Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler Extracts on African Trypanosomes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1730452. [PMID: 31354849 PMCID: PMC6637693 DOI: 10.1155/2019/1730452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/15/2019] [Indexed: 12/19/2022]
Abstract
African trypanosomiasis is a disease caused by the parasitic protozoa of the Trypanosoma genus. Despite several efforts at chemotherapeutic interventions, the disease poses serious health and economic concerns to humans and livestock of many sub-Saharan African countries. Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler (Z. zanthoxyloides LZT) is a plant species of important phytochemical and pharmacological relevance in the subtropical zones of the African continent. However, the mechanisms of its antitrypanosomal effects in African trypanosomes remain to be elucidated. The aim of the study was to determine the in vitro effects and mechanisms of action of Z. zanthoxyloides LZT (root) fractions against Trypanosoma brucei. T. brucei (GUTat 3.1 strain), L. donovani (D10 strain), P. falciparum (3D 7 strain), Jurkat cells, and Chang liver cells were cultivated in vitro to the log phase in their respective media at 37°C. Crude extracts and fractions were prepared from air-dried pulverized plant material of Z. zanthoxyloides LZT (root) using the modified Kupchan method of solvent partitioning. Half-maximal inhibitory concentrations (IC50) were determined through the alamar blue cell viability assay. Effects of fractions on cell death and cell cycle of T. brucei were determined using flow cytometry. Fluorescence microscopy was used to investigate the effects of fractions on the morphology and distribution of T. brucei. Antitrypanosomal compounds of fractions were characterized using high-performance liquid chromatography (HPLC) and attenuated total reflectance infrared (ATR-IR) spectroscopy. Methanol, butanol, and dichloromethane fractions were selectively active against T. brucei with respective IC50 values of 3.89, 4.02, and 5.70 μg/ml. Moreover, methanol, butanol, and dichloromethane fractions significantly induced apoptosis-like cell death with remarkable alteration in the cell cycle of T. brucei. Furthermore, dichloromethane and methanol fractions altered the morphology, induced aggregation, and altered the ratio of nuclei to kinetoplasts in the parasite. The HPLC chromatograms and ATR-IR spectra of the active fractions suggested the presence of aromatic hydrocarbons with hydroxyl, carbonyl, amine, or amide functional groups. The results suggest that Z. zanthoxyloides LZT have potential chemotherapeutic effects on African trypanosomes with implications for novel therapeutic interventions in African trypanosomiasis.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Georgina Isabella Djameh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Peter Bolah
- Center for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Michael Amoa-Bosompem
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, Legon, Ghana
| | - Laud Kenneth Okine
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Theresa Manful Gwira
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Mitsuko Ohashi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
45
|
Amini SM. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109809. [PMID: 31349497 DOI: 10.1016/j.msec.2019.109809] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/25/2023]
Abstract
Despite the all recent advancements in medicine, infectious diseases continue to be major causes of death worldwide. Developing nanomaterials as preventive and therapeutic agents against infectious diseases has been one of the research priorities in medicine. However, the application of metal nanoparticles as antimicrobial agents is hampered due to environmental and safety concerns. Using green chemistry, researchers can produce biocompatible nanoparticles that have fewer detrimental effects on human health and the environment. Although chemical compounds have been considered as traditional sources for producing nanomaterials, a wide variety of biocompatible plant-derived secondary metabolites have recently been introduced that can be used to synthesize and stabilize metal nanoparticles. These metabolites have shown potent antibacterial effects making them suitable substitutes for the chemical agents in nanoparticle synthesis. This review has focused on the antimicrobial properties of metal nanoparticles synthesized using plant-derived secondary metabolites instead of crude extract. The mechanisms of metal nanoparticles synthesis and antimicrobial activity are also discussed for different phytochemicals and metal nanoparticles. Finally, the evaluation of the toxicity and safety of phytochemicals coated metal nanoparticles has been conducted. I believe that this is the first review on the antimicrobial and other biological properties of metal nanoparticles synthesized or coated utilizing specific plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Afrin F, Chouhan G, Islamuddin M, Want MY, Ozbak HA, Hemeg HA. Cinnamomum cassia exhibits antileishmanial activity against Leishmania donovani infection in vitro and in vivo. PLoS Negl Trop Dis 2019; 13:e0007227. [PMID: 31071090 PMCID: PMC6529017 DOI: 10.1371/journal.pntd.0007227] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/21/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND There is a pressing need for drug discovery against visceral leishmaniasis, a life-threatening protozoal infection, as the available chemotherapy is antiquated and not bereft of side effects. Plants as alternate drug resources has rewarded mankind in the past and aimed in this direction, we investigated the antileishmanial potential of Cinnamomum cassia. METHODOLOGY Dichloromethane, ethanolic and aqueous fractions of C. cassia bark, prepared by sequential extraction, were appraised for their anti-promastigote activity along with apoptosis-inducing potential. The most potent, C. cassia dichloromethane fraction (CBD) was evaluated for anti-amastigote efficacy in infected macrophages and nitric oxide (NO) production studied. The in vivo antileishmanial efficacy was assessed in L. donovani infected BALB/c mice and hamsters and various correlates of host protective immunity ascertained. Toxicity profile of CBD was investigated in vitro against peritoneal macrophages and in vivo via alterations in liver and kidney functions. The plant secondary metabolites present in CBD were identified by gas chromatography-mass spectroscopy (GC-MS). PRINCIPAL FINDINGS CBD displayed significant anti-promastigote activity with 50% inhibitory concentration (IC50) of 33.6 μg ml-1 that was mediated via apoptosis. This was evidenced by mitochondrial membrane depolarization, increased proportion of cells in sub-G0-G1 phase, ROS production, PS externalization and DNA fragmentation (TUNEL assay). CBD also inhibited intracellular amastigote proliferation (IC50 14.06 μg ml-1) independent of NO production. The in vivo protection achieved was 80.91% (liver) and 82.92% (spleen) in mice and 75.61% (liver) and 78.93% (spleen) in hamsters indicating its profound therapeutic efficacy. CBD exhibited direct antileishmanial activity, as it did not specifically induce a T helper type (Th)-1-polarized mileu in cured hosts. This was evidenced by insignificant modulation of NO production, lymphoproliferation, DTH (delayed type hypersensitivity), serum IgG2a and IgG1 levels and production of Th2 cytokines (IL-4 and IL-10) along with restoration of pro-inflammatory Th1 cytokines (INF-γ, IL-12p70) to the normal range. CBD was devoid of any toxicity in vitro as well as in vivo. The chemical constituents, cinnamaldehyde and its derivatives present in CBD may have imparted the observed antileishmanial effect. CONCLUSIONS Our study highlights the profound antileishmanial efficacy of C. cassia bark DCM fraction and merits its further exploration as a source of safe and effective antieishmanial compounds.
Collapse
Affiliation(s)
- Farhat Afrin
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madinah, Kingdom of Saudi Arabia, Saudi Arabia
| | - Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Muzamil Y. Want
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Hani A. Ozbak
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madinah, Kingdom of Saudi Arabia, Saudi Arabia
| | - Hassan A. Hemeg
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madinah, Kingdom of Saudi Arabia, Saudi Arabia
| |
Collapse
|
47
|
Semicarbazone derivatives as promising therapeutic alternatives in leishmaniasis. Exp Parasitol 2019; 201:57-66. [PMID: 31004571 DOI: 10.1016/j.exppara.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/09/2019] [Accepted: 04/12/2019] [Indexed: 01/28/2023]
Abstract
In the present study, we investigated the in vitro and in vivo leishmanicidal activity of synthetic compounds, containing a semicarbazone scaffold as a peptide mimetic framework. The leishmanicidal effect against amastigotes of Leishmania amazonensis was also evaluated at concentration of 100 μM-0.01 nM. The derivatives 2e, 2f, 2g and 1g, beyond the standards miltefosine and pentamidine, significantly diminished the number of L. amazonensis amastigotes in macrophages. These derivatives were also active against amastigotes of L. braziliensis. As 2g presented potent leishmanicidal activity against the amastigotes of L. amazonensis in macrophages, we also investigated the in vivo leishmanicidal activity of this compound against L. amazonensis. Approximately 105L. amazonensis promastigotes were subcutaneously inoculated into the dermis of the right ear of BALB/c mice, which were subsequently treated with 2g (p.o. or i.p.), miltefosine (p.o.) or glucantime (i.p.) at 30 μmol/kg/day x 28 days. Thus, a similar reduction in the lesion size was observed after the administration of 2g through oral (63.7 ± 10.1%) and intraperitoneal (61.8 ± 3.7%) routes. A larger effect was observed after treatment with miltefosine (97.7 ± 0.4%), and glucantime did not exhibit activity at the dose administered. With respect to the ear parasite load, 2g diminished the number of parasites by p.o. (30.5 ± 5.1%) and i.p. (33.3 ± 4.3%) administration. In addition, 2g induced in vitro apoptosis, autophagy and cell cycle alterations on L. amazonensis promastigotes. In summary, the derivative 2g might represent a lead candidate for antileishmanial drugs, as this compound displayed pronounced leishmanicidal activity.
Collapse
|
48
|
Serine protease inhibitors rich Coccinia grandis (L.) Voigt leaf extract induces protective immune responses in murine visceral leishmaniasis. Biomed Pharmacother 2019; 111:224-235. [DOI: 10.1016/j.biopha.2018.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
|
49
|
Molaie S, Ghaffarifar F, Dalimi A, Zuhair MH, Sharifi Z. Evaluation of synergistic therapeutic effect of shark cartilage extract with artemisinin and glucantime on visceral leishmaniasis in BALB/c mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:146-153. [PMID: 30834079 PMCID: PMC6396994 DOI: 10.22038/ijbms.2018.31124.7504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Because leishmaniasis is related to the impaired functioning of T-cells, the use of an immunomodulator can increase the efficacy of antileishmanial therapy in visceral leishmaniasis. In this study, we used shark cartilage extract with artemisinin and glucantime against visceral leishmaniasis in BALB/c mice, and evaluated the synergistic therapeutic effect. MATERIALS AND METHODS The culturing method and quantitative real-time PCR by using the kDNA gene was used to detect parasite loads in the spleen and liver. INF-γ and IL-4 cytokine levels and survival rates were assayed. RESULTS The drug therapy with target drugs reduced parasite burden in the spleen and liver significantly. Although parasite burden was lower in the artemisinin treated group than in the glucantime treated group (P<0.05). The mice survival rate records, throughout the experimental period, showed highly significant survival rates in the test groups compared to the control group (P<0.001). The results of cytokine assay in mice treated with glucantime-shark cartilage extract combination indicated significant increases of IFNγ and IL-4 (P<0.05). Although the increase of IFNγ was more notable than IL-4. The synergistic therapeutic effect is shown in all groups except in the group treated with shark cartilage extract-artemisinin combination. The IFN-γ in glucantime-shark cartilage extract combination treated group was higher than in other groups (P<0.05). The survival rate in this group was more than in other groups too (P<0.05). CONCLUSION Combination therapy with shark cartilage extract as an immunomodulator can increase antileishmanial effects of antimony drugs in VL treatment.
Collapse
Affiliation(s)
- Soheila Molaie
- Department of Parasitology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Deputy of Research, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdohosein Dalimi
- Department of Parasitology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hassan Zuhair
- Department of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Department of Virology, Iranian Blood Transfusion, Tehran, Iran
| |
Collapse
|
50
|
De Sarkar S, Sarkar D, Sarkar A, Dighal A, Staniek K, Gille L, Chatterjee M. Berberine chloride mediates its antileishmanial activity by inhibiting Leishmania mitochondria. Parasitol Res 2019; 118:335-345. [PMID: 30470927 DOI: 10.1007/s00436-018-6157-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
Abstract
Berberine chloride, a plant-derived isoquinoline alkaloid, has been demonstrated to have leishmanicidal activity, which is mediated by generation of a redox imbalance and depolarization of the mitochondrial membrane, resulting in a caspase-independent apoptotic-like cell death. However, its impact on mitochondrial function remains to be delineated and is the focus of this study. In UR6 promastigotes, berberine chloride demonstrated a dose-dependent increase in generation of reactive oxygen species and mitochondrial superoxide, depolarization of the mitochondrial membrane potential, a dose-dependent inhibition of mitochondrial complexes I-III and II-III, along with a substantial depletion of ATP, collectively suggesting inhibition of parasite mitochondria. Accordingly, the oxidative stress induced by berberine chloride resulting in an apoptotic-like cell death in Leishmania can be exploited as a potent chemotherapeutic strategy, mitochondria being a prime contributor.
Collapse
Affiliation(s)
- Sritama De Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Avijit Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Aishwarya Dighal
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India.
| |
Collapse
|