1
|
Wang Y, Li P, Liang Y, Wang D. ANO6 Targets TMEM30A to Regulate Endoplasmic Reticulum Stress-Induced Lipid Peroxidation and Ferroptosis in Alzheimer's Cells. Cell Biochem Biophys 2025:10.1007/s12013-025-01748-9. [PMID: 40221538 DOI: 10.1007/s12013-025-01748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, and the role of ANO6 in its progression remains largely unexplored. GSE118553 database was analyzed for ANO6 expression in AD. A total of 1 μmol/L Aβ1-42 treated SH-SY5Y cells were constructed as a cell model of AD. qRT-PCR and ELISA were used to detect the expression of ANO6, GPX4, ATF6, GRP78, IREIα expression and lipid peroxidation level. Endoplasmic reticulum(ER) stress was induced by using clindamycin and lipid peroxidation indicators were detected. ANO6 was concurrently regulated in ER stress induced by clindamycin treatment. The STRING-DB database was utilized to predict potential target molecules of ANO6, while Western blot analysis was conducted to detect the expression levels of TMEM30A and evaluate the impact of ANO6-targeted TMEM30A on the protein levels within the PERK-eIF2α-ATF4-CHOP pathway. ANO6 was highly expressed in AD model, Aβ1-42 induced ANO6 enrichment in SH-SY5Y cells. ANO6 interference increased the proliferation level of AD model cells, decreased the levels of GPX4, an indicator of ferroptosis, and lipid peroxidation, and down-regulated the expression of the ER stress-related proteins ATF6, GRP78, and IREIα. Clotrimazole-induced ER stress in AD model cells showed elevated expression of ANO6. ANO6 could target and inhibit TMEM30A to affect PERK-eIF2α-ATF4-CHOP pathway activity, regulate ER stress-dependent ferroptosis, and reduce neuronal loss injury. ANO6 can target inhibition of TMEM30A affecting PERK- IF2α- ATF4- CHOP pathway activity, modulate ER stress-dependent ferroptosis-induced AD progression to reduce neuronal loss injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China.
| | - Penghui Li
- College of Basic Medicine, Qiqihar Medical University, Qiqihar, China
| | - Yonghan Liang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Dandan Wang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
2
|
Rana A, Mishra A, Awasthi SK. Recent advancements in the chemistry of Diels-Alder reaction for total synthesis of natural products: a comprehensive review (2020-2023). RSC Adv 2025; 15:4496-4525. [PMID: 39931410 PMCID: PMC11808662 DOI: 10.1039/d4ra07989b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Despite being discovered nearly a century ago, the Diels-Alder (DA) reaction remains a crucial tool in the total synthesis of natural products. It accommodates a broad range of building blocks with varying complexity and levels of derivatization, allowing the formation of six-membered rings with precise stereochemistry. This, in turn, simplifies the synthesis of core structures found in many natural products. In recent years, modifications to the traditional Diels-Alder reaction have expanded its scope. These modifications include the inverse electron demand Diels-Alder reaction, dehydro Diels-Alder reaction, hetero-Diels-Alder reaction, photoenolization Diels-Alder reaction, asymmetric Diels-Alder reaction, and domino Diels-Alder reaction have been employed to extend the scope of this process in the synthesis of natural products. This review discusses the application of the Diels-Alder reaction in the total synthesis of natural products from 2020 to 2023, along with select methodologies that are inspired by or can be used to synthesize natural products.
Collapse
Affiliation(s)
- Anitesh Rana
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Anupam Mishra
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Satish K Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
3
|
Chow TK, Lam RPK, Chan CK, Tse ML, Feng Y, Rainer TH. Acute Sophora alkaloid poisoning in Hong Kong. Toxicon 2025; 255:108251. [PMID: 39824462 DOI: 10.1016/j.toxicon.2025.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Sophora alkaloids, including matrine, oxymatrine, and sophoridine, are quinolizidines found in plants used in traditional Chinese medicine such as Sophora flavescens and Sophora tonkinensis. Reports on acute Sophora alkaloid poisoning in humans outside of mainland China are lacking. This study aimed to characterize the clinical presentations, management, and outcomes of acute poisoning involving Sophora alkaloids in Hong Kong. We conducted a retrospective study of patients who were reported to the Hong Kong Poison Control Centre from all public emergency departments (EDs) in Hong Kong for acute poisoning involving Sophora alkaloids. Exposure was confirmed by laboratories, and data were collected between July 1, 2008 and June 30, 2021. We also analyzed patient demographics, clinical, management, and outcome characteristics. Among the 83 cases analyzed, S. flavescens was the major source (77.1%) of Sophora alkaloids and excessive dose was common (39.0%). Most patients (90.4%) had minor effects. Common clinical presentations were dizziness (83.1%), vomiting (72.3%), and palpitations (32.5%). No acute liver or kidney injuries or adverse skin reactions were observed. Treatment was primarily supportive and no patients underwent gastrointestinal decontamination, organ support treatment, or renal replacement therapy. Most patients (74.7%) were observed in the ED and only one required close monitoring in a cardiac care unit for prolonged QT interval after concurrent ciprofloxacin use. In contrast to the intravenous administration of S. flavescens, no adverse skin reactions were seen after oral consumption. Hepatoxicity, reported in in vitro and animal studies, and isolated human case reports, was not observed. In conclusion, excessive dose of S. flavescens is a common cause of acute Sophora alkaloid poisoning. Although most patients had mild symptoms, discrepancies in clinical presentations resulting from different formulations and varied experimental/clinical conditions call for further studies to evaluate the real-world risks of skin reactions and hepatoxicity of Sophora alkaloids.
Collapse
Affiliation(s)
- Tsz Kit Chow
- Department of Emergency Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Postal address: G/F, Hong Kong Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Rex Pui Kin Lam
- Department of Emergency Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Postal address: G/F, Hong Kong Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Chi Keung Chan
- Hong Kong Poison Control Centre, Hospital Authority, Postal Address: 3/F, Block K, United Christian Hospital, 130 Hip Wo Street, Kwun Tong, Hong Kong, China.
| | - Man Li Tse
- Hong Kong Poison Control Centre, Hospital Authority, Postal Address: 3/F, Block K, United Christian Hospital, 130 Hip Wo Street, Kwun Tong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 6/F, HKUMed Academic Building, 3 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Timothy Hudson Rainer
- Department of Emergency Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Postal address: G/F, Hong Kong Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
4
|
Zeng FF, Chen ZH, Luo FH, Liu CJ, Yang X, Zhang FX, Shi W. Sophorae tonkinensis radix et rhizoma: A comprehensive review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology and detoxification strategy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118784. [PMID: 39244176 DOI: 10.1016/j.jep.2024.118784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophorae tonkinensis Radix et Rhizoma (STR), the dried root and rhizome of Sophora tonkinensis Gagnep., is commonly used in the treatment of tonsillitis and pharyngitis, throat soreness and throat obstruction, swelling and aching of gum, etc. in China or other Asian countries. STR is usually used as the core herb in traditional Chinese medicine preparations, such as "Biyanling Tablets", "Fufang Muji Granules" and "Ganyanling Injections", etc. AIM OF THE REVIEW: This review aimed to provide a comprehensive analysis of STR in terms of botany, traditional use, phytochemistry, ethnopharmacology, pharmacology, pharmacokinetics, toxicology and detoxification strategy, to provide a rational application in future research. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including China National Knowledge Infrastructure (CNKI), SciFinder, Google Scholar, PubMed, Web of Science, and Chinese Masters and Doctoral Dissertations. RESULTS Till now, a total of 333 chemical components have been identified in STR, including 85 alkaloids, 124 flavonoids, 24 triterpenes, 27 triterpene saponins, 34 organic acids, 8 polysaccharides, etc. STR and its main active constituents have cardiovascular protection, anti-tumor activity, anti-inflammatory activity, antipyretic activity, analgesic activity, antibacterial activity, antifungal activity, antiviral activity, and hepatoprotective activity, etc. However, toxic effects of STR on the liver, nerves, heart, and gastrointestinal tract have also been observed. To mitigate these risks, STR needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. The pharmacokinetics of STR in vivo and traditional and clinical prescriptions containing STR have been sorted out. Despite the potential therapeutic benefits of STR, further research is warranted to elucidate its hepatotoxicity, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and mechanisms. CONCLUSION This review serves to emphasize the therapeutic potential of STR and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the toxicological properties of STR, with particular emphasis on its hepatotoxicity and neurotoxicity. Such research endeavors have the potential to standardize the rational application of STR for optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Fen-Fen Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fu-Hui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
5
|
Liu J, Shi D, Yu K, Liu S, Chen L, Hu X. Crystal structures and properties of derivatives of the alkaloid matrine: salts and hydrate forms. Acta Crystallogr C Struct Chem 2024; 80:685-692. [PMID: 39226425 DOI: 10.1107/s2053229624008064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
We report the crystal structures of three matrine derivatives, namely, the salts (1R,2R,9S,17S)-6-oxo-7,13-diazatetracyclo[7.7.1.02,7.013,17]heptadecan-13-ium (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate (matrine caffeinate) sesquihydrate, C15H25N2O+·C9H7O4-·1.5H2O (Matrine-CA), and the 2-hydroxybenzoate (salicylate) monohydrate, C15H25N2O+·C7H5O3-·H2O (Matrine-SA), as well as the 1.75-hydrate form, (1R,2R,9S,17S)-7,13-diazatetracyclo[7.7.1.02,7.013,17]heptadecan-6-one 1.75-hydrate, C15H24N2O·1.75H2O (Matrine-H). Each derivative exhibited a consistent molecular conformation for the matrine core, which is notably distinct from that of the anhydrous form. Notably, both salts crystallized in the orthorhombic space group P212121, with an asymmetric unit featuring one cation and one anion. Within the two salt structures, intermolecular proton transfer between matrine and the acid is observed, culminating in the formation of a matrine cation protonated at the tertiary amine N site. The Matrine-CA crystal packing is manifested as a three-dimensional (3D) network arising from one-dimensional (1D) supramolecular helical chains, stabilized by N-H...O and O-H...O hydrogen bonds. In the case of Matrine-SA, the matrine cation is interconnected via hydrogen bonds with salicylate anions and water molecules, also forming a 1D helical motif. The structure of the hydrate form, Matrine-H, is reported again with the disordered solvent molecules accurately located. To further elucidate the structural attributes, Hirshfeld surface analysis and fingerprint plots are employed, offering a nuanced perspective on the intermolecular contacts and interactions within these crystalline forms.
Collapse
Affiliation(s)
- Jiyong Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Dier Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Kaxi Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shuna Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Linshen Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiurong Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
6
|
Chen S, Wu S, Lin B. The potential therapeutic value of the natural plant compounds matrine and oxymatrine in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1417672. [PMID: 39041001 PMCID: PMC11260750 DOI: 10.3389/fcvm.2024.1417672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Matrine (MT) and Oxymatrine (OMT) are two natural alkaloids derived from plants. These bioactive compounds are notable for their diverse pharmacological effects and have been extensively studied and recognized in the treatment of cardiovascular diseases in recent years. The cardioprotective effects of MT and OMT involve multiple aspects, primarily including antioxidative stress, anti-inflammatory actions, anti-atherosclerosis, restoration of vascular function, and inhibition of cardiac remodeling and failure. Clinical pharmacology research has identified numerous novel molecular mechanisms of OMT and MT, such as JAK/STAT, Nrf2/HO-1, PI3 K/AKT, TGF-β1/Smad, and Notch pathways, providing new evidence supporting their promising therapeutic potential against cardiovascular diseases. Thus, this review aims to investigate the potential applications of MT and OMT in treating cardiovascular diseases, encompassing their mechanisms, efficacy, and safety, confirming their promise as lead compounds in anti-cardiovascular disease drug development.
Collapse
Affiliation(s)
| | | | - Bin Lin
- Department of Cardiovascular Medicine, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
7
|
Feng W, Kao TC, Jiang J, Zeng X, Chen S, Zeng J, Chen Y, Ma X. The dynamic equilibrium between the protective and toxic effects of matrine in the development of liver injury: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1315584. [PMID: 38348397 PMCID: PMC10859759 DOI: 10.3389/fphar.2024.1315584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background: Matrine, an alkaloid derived from the dried roots of Sophora flavescens Aiton, has been utilized for the treatment of liver diseases, but its potential hepatotoxicity raises concerns. However, the precise condition and mechanism of action of matrine on the liver remain inconclusive. Therefore, the objective of this systematic review and meta-analysis is to comprehensively evaluate both the hepatoprotective and hepatotoxic effects of matrine and provide therapeutic guidance based on the findings. Methods: The meta-analysis systematically searched relevant preclinical literature up to May 2023 from eight databases, including PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure, WanFang Med Online, China Science and Technology Journal Database, and China Biomedical Literature Service System. The CAMARADES system assessed the quality and bias of the evidence. Statistical analysis was conducted using STATA, which included the use of 3D maps and radar charts to display the effects of matrine dosage and frequency on hepatoprotection and hepatotoxicity. Results: After a thorough screening, 24 studies involving 657 rodents were selected for inclusion. The results demonstrate that matrine has bidirectional effects on ALT and AST levels, and it also regulates SOD, MDA, serum TG, serum TC, IL-6, TNF-α, and CAT levels. Based on our comprehensive three-dimensional analysis, the optimal bidirectional effective dosage of matrine ranges from 10 to 69.1 mg/kg. However, at a dose of 20-30 mg/kg/d for 0.02-0.86 weeks, it demonstrated high liver protection and low toxicity. The molecular docking analysis revealed the interaction between MT and SERCA as well as SREBP-SCAP complexes. Matrine could alter Ca2+ homeostasis in liver injury via multiple pathways, including the SREBP1c/SCAP, Notch/RBP-J/HES1, IκK/NF-κB, and Cul3/Rbx1/Keap1/Nrf2. Conclusion: Matrine has bidirectional effects on the liver at doses ranging from 10 to 69.1 mg/kg by influencing Ca2+ homeostasis in the cytoplasm, endoplasmic reticulum, Golgi apparatus, and mitochondria. Systematic review registration: https://inplasy.com/, identifier INPLASY202340114.
Collapse
Affiliation(s)
- Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Te-chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Yang J, Ye K, Zhang R, Fan X, Xiong R, Zhang S, Liu Q, Lin M, Wang B, Tan X, Wen Q, Ou X. The characteristics and molecular targets of antiarrhythmic natural products. Biomed Pharmacother 2023; 168:115762. [PMID: 37897974 DOI: 10.1016/j.biopha.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Arrhythmia is one of the most common cardiovascular diseases. The search for new drugs to suppress various types of cardiac arrhythmias has always been the focus of attention. In the past decade, the screening of antiarrhythmic active substances from plants has received extensive attention. These natural compounds have obvious antiarrhythmic effects, and chemical modifications based on natural compounds have greatly increased their pharmacological properties. The chemical modification of botanical antiarrhythmic drugs is closely related to the development of new and promising drugs. Therefore, the structural characteristics and action targets of natural compounds with antiarrhythmic effects are reviewed in this paper, so that pharmacologists can select antiarrhythmic lead compounds from natural compounds based on the disease target - chemical structural characteristics.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; Department of Pharmacy, Santai County People's Hospital of Sichuan Province, Mianyang 621100, China
| | - Kejun Ye
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; Pharmacy Department, Chongqing Armed Police Corps Hospital, Chongqing 400061, China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xinrong Fan
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rui Xiong
- Department of Pharmacy of the 958 Hospital of Chinese PLA/Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Qiming Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Miao Lin
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bin Wang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi Province, China.
| |
Collapse
|
9
|
Liu J, Li T, Zhong G, Pan Y, Gao M, Su S, Liang Y, Ma C, Liu Y, Wang Q, Shi Q. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties. Biomed Pharmacother 2023; 166:115406. [PMID: 37659206 DOI: 10.1016/j.biopha.2023.115406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties. This review aims to consolidate the therapeutic effects of natural compounds on AD, specifically targeting the reduction of β-amyloid (Aβ) overproduction, anti-apoptosis, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, the identified compounds exhibiting these effects predominantly originate from plants. This review provides valuable insights into the potential of natural compounds as a reservoir of novel therapeutic agents for AD, thereby stimulating further research and contributing to the development of efficacious treatments for this devastating disease.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing Shi
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China.
| |
Collapse
|
10
|
Xiao L, Chen XJ, Feng JK, Li WN, Yuan S, Hu Y. Natural products as the calcium channel blockers for the treatment of arrhythmia: Advance and prospect. Fitoterapia 2023; 169:105600. [PMID: 37419421 DOI: 10.1016/j.fitote.2023.105600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Arrhythmia is one of the commonly heart diseases with observed abnormal heart-beat rhythm that caused by the obstacles of cardiac activity and conduction. The arrhythmic pathogenesis is complex and capricious and related with other cardiovascular diseases that may lead to heart failure and sudden death. In particular, calcium overload is recognized as the main reason causing arrhythmia through inducing apoptosis in cardiomyocytes. Moreover, calcium channel blockers have been widely used as the routine drugs for the treatment of arrhythmia, but the different arrhythmic complications and adverse effects limit their further applications and demand new drug discovery. Natural products have always been the rich minerals for the development of new drugs that could be employed as the versatile player for the discovery of safe and effective anti-arrhythmia drugs with new mechanisms. In this review, we summarized natural products with the activity against calcium signaling and the relevant mechanism of actions. We are expected to provide an inspiration for the pharmaceutical chemists to develop more potent calcium channel blockers for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Lu Xiao
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | | | - Wei-Na Li
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | - Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
11
|
Song T, Hao Y, Wang M, Li T, Zhao C, Li J, Hou Y. Sophoridine manifests as a leading compound for anti-arrhythmia with multiple ion-channel blocking effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154688. [PMID: 36738478 DOI: 10.1016/j.phymed.2023.154688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Sophoridine (SR) has shown the potential to be an antiarrhythmic agent. However, SR's electrophysiological properties and druggability research are relatively inadequate, which limits the development of SR as an antiarrhythmic candidate. PURPOSE To facilitate the development process of SR as an antiarrhythmic candidate, we performed integrated studies on the electrophysiological properties of SR in vitro and ex vivo to gain more comprehensive insights into the multi-ion channel blocking effects of SR, which provided the foundation for the further drugability studies in antiarrhythmic and safety studies. Firstly, SR's electrophysiological properties and antiarrhythmic potentials were recorded and assessed at the cell and tissue levels by comprehensively integrating the patch clamp with the Electrical and Optical Mapping systems. Subsequently, the antiarrhythmic effects of SR were validated by aconitine and ouabain-induced arrhythmia in vivo. Finally, the safety of SR as an antiarrhythmic candidate compound was evaluated based on the guidelines of the Comprehensive in Vitro Proarrhythmia Assay (CiPA). STUDY DESIGN The antiarrhythmic effect of SR was evaluated at the in vitro, ex vivo, and in vivo levels. METHODS Isolated primary cardiomyocytes and stable cell lines were prepared to explore the electrophysiologic properties of being a multiple ion-channel blocker in vitro by whole-cell patch clamp. Using electrical and optical mapping, the negative chronotropic effect of SR was determined in langendorff-perfused rat or guinea-pig hearts.The antiarrhythmic activity of SR was assessed by the ex vivo tachyarrhythmia models induced by left coronary artery ligation (LCAL) and isoproterenol (ISO). Canonical models of aconitine and ouabain-induced arrhythmia were used to verify the antiarrhythmic effects in vivo. Finally, the pro-arrhythmic risk of SR was detected in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hSCCMs) using a Microelectrode array (MEA). RESULTS Single-cell patch assay validated the multiple ion-channel blockers of SR in transient outward current potassium currents (Ito), l-type calcium currents (ICa-l), and rapid activation delayed rectifier potassium currents (IKr). SR ex vivo depressed heart rates (HR) and ventricular conduction velocity (CV) and prolonged Q-T intervals in a concentration-dependent manner. Consistent with the changes in HRs, SR extended the active time of hearts and increased the action potential duration measured at 90% repolarization (APD90). SR could also significantly lengthen the onset time and curtail the duration of spontaneous ventricular tachycardia (VT) in the ex vivo arrhythmic model induced by LCAL. Meanwhile, SR could also significantly upregulate the programmed electrical stimulation (PES) frequency after the ISO challenge in forming electrical alternans and re-entrant excitation. Furthermore, SR exerted antiarrhythmic effects in the tachyarrhythmia models induced by aconitine and ouabain in vivo. Notably, the pro-arrhythmic risk of SR was shallow for a moderate inhibition of the human ether-à-go-go-related gene (hERG) channel. Moreover, SR prolonged field potential duration (FPDc) of hSCCMs in a concentration-dependent manner without early after depolarization (EAD) and arrhythmia occurrence. CONCLUSION Our results indicated that SR manifested as a multiple ion-channel blocker in the electrophysiological properties and exerts antiarrhythmic effects ex vivo and in vivo. Meanwhile, due to the low pro-arrhythmic risk in the hERG inhibition assay and the induction of EAD, SR has great potential as a leading candidate in the treatment of ventricular tachyarrhythmia.
Collapse
Affiliation(s)
- Tao Song
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050035, China
| | - Yuanyuan Hao
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050035, China; New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang 050035, China
| | - Mingye Wang
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050035, China
| | - Tongtong Li
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050035, China
| | - Chi Zhao
- Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang, Hebei 050017, China
| | - Jiajia Li
- Department of Pharmacy, The Fourth Hospital of Shijiazhuang, No.16, the North of Tangu street, Shijiazhuang, Hebei 050031, China
| | - Yunlong Hou
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050035, China; New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang 050035, China; Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang 050035, China.
| |
Collapse
|
12
|
Pharmacological mechanism of natural drugs and their active ingredients in the treatment of arrhythmia via calcium channel regulation. Biomed Pharmacother 2023; 160:114413. [PMID: 36805187 DOI: 10.1016/j.biopha.2023.114413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arrhythmia is characterized by abnormal heartbeat rhythms and frequencies caused by heart pacing and conduction dysfunction. Arrhythmia is the leading cause of death in patients with cardiovascular disease, with high morbidity and mortality rates, posing a serious risk to human health. Natural drugs and their active ingredients, such as matrine(MAT), tetrandrine(TET), dehydroevodiamine, tanshinone IIA, and ginsenosides, have been widely used for the treatment of atrial fibrillation, ventricular ectopic beats, sick sinus syndrome, and other arrhythmia-like diseases owing to their unique advantages. This review summarizes the mechanism of action of natural drugs and their active ingredients in the treatment of arrhythmia via the regulation of Ca2+, such as alkaloids, quinones, saponins, terpenoids, flavonoids, polyphenols, and lignan compounds, to provide ideas for the innovative development of natural drugs with potential antiarrhythmic efficacy.
Collapse
|
13
|
Magann NL, Westley E, Sowden MJ, Gardiner MG, Sherburn MS. Total Synthesis of Matrine Alkaloids. J Am Chem Soc 2022; 144:19695-19699. [PMID: 36260032 DOI: 10.1021/jacs.2c09804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The total synthesis of three diastereomeric matrine natural products is reported. The 8-step synthesis commences with simple acyclic precursors, forms all 4 rings of the tetracyclic natural product framework, and forges 10 of the 20 covalent bonds of the target structure. A cross-conjugated triene is positioned at the core of an acyclic branched structure. This precursor collapses to the tetracyclic natural product framework through an orchestrated sequence of two separate intramolecular cycloadditions. A subsequent, late-stage hydrogenation is accompanied by strain-release redox epimerizations to deliver the three natural products. An unprecedented carba-analogue is prepared in the same way. Semisynthetic manipulations of matrine provide access to 10 additional natural products.
Collapse
Affiliation(s)
- Nicholas L Magann
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Erin Westley
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Madison J Sowden
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael G Gardiner
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Sun XY, Jia LY, Rong Z, Zhou X, Cao LQ, Li AH, Guo M, Jin J, Wang YD, Huang L, Li YH, He ZJ, Li L, Ma RK, Lv YF, Shao KK, Zhang J, Cao HL. Research Advances on Matrine. Front Chem 2022; 10:867318. [PMID: 35433636 PMCID: PMC9010661 DOI: 10.3389/fchem.2022.867318] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Matrine is an alkaloid extracted from traditional Chinese herbs including Sophora flavescentis, Sophora alopecuroides, Sophora root, etc. It has the dual advantages of traditional Chinese herbs and chemotherapy drugs. It exhibits distinct benefits in preventing and improving chronic diseases such as cardiovascular disease and tumors. The review introduced recent research progresses on extraction, synthesis and derivatization of Matrine. The summary focused on the latest research advances of Matrine on anti-atherosclerosis, anti-hypertension, anti-ischemia reperfusion injury, anti-arrhythmia, anti-diabetic cardiovascular complications, anti-tumor, anti-inflammatory, anti-bacterium, anti-virus, which would provide new core structures and new insights for new drug development in related fields.
Collapse
Affiliation(s)
- Xiao-Ying Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li-Yi Jia
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zheng Rong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Lu-Qi Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
| | - Meng Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yin-Di Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ling Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhong-Jing He
- College of Life Sciences, Northwest University, Xi’an, China
| | - Long Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Rui-Kang Ma
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Fan Lv
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ke-Ke Shao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Juan Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Juan Zhang, ; Hui-Ling Cao,
| | - Hui-Ling Cao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Juan Zhang, ; Hui-Ling Cao,
| |
Collapse
|
15
|
Li X, Tang Z, Wen L, Jiang C, Feng Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113682. [PMID: 33307055 DOI: 10.1016/j.jep.2020.113682] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Dogel ebs" was known as Sophora flavescens Ait., which has been widely utilized in the clinical practice of traditional Chinese Mongolian herbal medicine for thousands of years. Shen Nong's Materia Medica (Shen Nong Ben Cao Jing in Chinese pinyin) recorded that it is bitter in taste and cold in nature with the effect of clearing heat and eliminating dampness, insecticide, diuresis. Due to its extensive application in the fields of ethnopharmacological utilization, the pharmaceutical researches of Sophora flavescens Ait.s keeps deepening. Modern pharmacological studies have exhibited that matrine, which is rich in this traditional herbal medicine, mediates its main biological properties. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of matrine on the pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches to explore the therapeutic potential of this natural ingredient. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning matrine was gathered from the internet database of Google scholar, Pubmed, ResearchGate, Web of Science and Wiley Online Library with the keywords including "matrine", "pharmacology", "toxicology" and "pharmacokinetics", "clinical application", etc. RESULTS: Based on literatures, matrine has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, anti-microbial, detoxification and so on. Nevertheless, there are still some doubts about it due to the toxicity and questionable bioavailability that does exist. CONCLUSIONS Future researches directions probably include elucidate the mechanism of its toxicity and accurately tracing the in vivo behavior of its drug delivery system. Without doubt, integration of toxicity and efficiency and structure modification based on it are also pivotal methods to enhance pharmacological activity and bioavailability.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Beibei Traditional Chinese Medical Hospital, Chongqing, 400700, China
| | - Li Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cen Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
16
|
Matrine regulates H2O2-induced oxidative stress through long non-coding RNA HOTAIR/miR-106b-5p axis via AKT and STAT3 pathways. Biosci Rep 2021; 40:224115. [PMID: 32395744 PMCID: PMC7251328 DOI: 10.1042/bsr20192560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Matrine is a main active constituent of Chinese herb Sophora flavescens Ait (Kushen), which has shown various pharmacological effects, and has been reported to exhibit protective effects in heart failure. In the present study, the underlying mechanism of matrine was explored in H2O2-induced H9c2 cell line. It was confirmed that matrine could alleviate H2O2-induced injury in H9c2 cells. And the down-regulation of long non-coding RNA HOTAIR induced by H2O2 could be reversed by treating with matrine. Moreover, overexpression of HOTAIR promoted cell viability and superoxide dismutase (SOD) level, but inhibited cell apoptosis and lactate dehydrogenase (LDH) level. We found that miR-106b-5p was a target of HOTAIR and negatively regulated by HOTAIR. Moreover, up-regulation of miR-106b-5p restored the effects of HOTAIR overexpression on cell viability, apoptosis, and the levels of LDH and SOD. In addition, matrine protected H9c2 cells from H2O2-induced injury through HOTAIR/miR-106b-5p axis. Furthermore, we discovered that matrine exerted protective effects on H2O2-induced H9c2 cells through activating STAT3 and AKT pathway. In brief, matrine modulated H2O2-induced myocardial oxidative stress repair through HOTAIR/miR-106b-5p axis via AKT and STAT3 signaling pathway. Our study may provide a therapeutic target for the therapy of oxidative stress heart diseases.
Collapse
|
17
|
Jiang J, Wang G. Matrine protects PC12 cells from lipopolysaccharide-evoked inflammatory injury via upregulation of miR-9. PHARMACEUTICAL BIOLOGY 2020; 58:314-320. [PMID: 32297823 PMCID: PMC7178860 DOI: 10.1080/13880209.2020.1719165] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/11/2023]
Abstract
Context: Matrine is a well-known anti-inflammatory quinolizidine alkaloid derived from leguminous plant Sophora flavescens Ait. (Leguminosae).Objective: This study was designed to uncover the potential application of matrine in treating spinal cord injury (SCI).Materials and methods: Neuron-like PC12 cells in experimental groups were pre-treated with/without matrine (200 μM) for 24 h and then stimulated by lipopolysaccharide (LPS, 5 μg/mL) for 12 h. PC12 cells in control group were cultured in complete medium. CCK-8 assay, flow cytometry, qRT-PCR, western blot and ELISA were performed to evaluate cell damage. Moreover, after cells were transfected with miR-9 inhibitor for 48 h, above indicators were tested again. qRT-PCR and western blot were also conducted to uncover the downstream effectors and signalling pathways for matrine.Results: LPS (5 μg/mL) decreased cell viability about 50%. Matrine (200 μM) decreased cell viability about 0%, 13.8% and 30% at 24 h, 48 h and 72 h, respectively. The loss of viability, stimulation of apoptosis, and release of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) evoked by LPS were attenuated by the pre-treatment of matrine partly. Meanwhile, LPS reduced miR-9 expression about 60%, but matrine completely reversed LPS-decreased miR-9 level. By silencing miR-9 expression, the protective properties of matrine towards PC12 cells were impeded. Besides, matrine inhibited the activation of JNK and NF-κB pathways even under the condition of LPS. And the impact of matrine on the signalling were attenuated by miR-9 silencing.Discussion and Conclusion: This paper provided in vitro evidence that matrine was able to protect PC12 cells against LPS-evoked damage. The neuroprotective properties of matrine may be due to its regulation of miR-9 expression as well as JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Jinsong Jiang
- Department of Sports Medicine, Yuncheng Central Hospital, Yuncheng, China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
18
|
Wang H, Xia C, Chen L, Zhao J, Tao W, Zhang X, Wang J, Gao X, Yong J, Duan JA. Phytochemical Information and Biological Activities of Quinolizidine Alkaloids in Sophora: A Comprehensive Review. Curr Drug Targets 2020; 20:1572-1586. [PMID: 31215388 DOI: 10.2174/1389450120666190618125816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Quinolizidine alkaloids, a main form of alkaloids found in the genus Sophora, have been shown to have many pharmacological effects. This review aims to summarize the photochemical reports and biological activities of quinolizidine alkaloids in Sophora. The collected information suggested that a total of 99 quinolizidine alkaloids were isolated and detected from different parts of Sophora plants, represented by lupinine-type, cytisine-type, sparteine-type, and matrine-type. However, quality control needs to be monitored because it could provide basic information for the reasonable and efficient use of quinolizidine alkaloids as medicines and raw materials. The nonmedicinal parts may be promising to be used as a source of quinolizidine alkaloid raw materials and to reduce the waste of resources and environmental pollution. In addition, the diversity of chemical compounds based on the alkaloid scaffold to make a biological compound library needs to be extended, which may reduce toxicity and find new bioactivities of quinolizidine alkaloids. The bioactivities most reported are in the fields of antitumor activity along with the effects on the cardiovascular system. However, those studies rely on theoretical research, and novel drugs based on quinolizidine alkaloids are expected.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.,Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Changbo Xia
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Li Chen
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Weiwei Tao
- Center for Translational Syhstems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jianhuan Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing 210023, China
| |
Collapse
|
19
|
Beik A, Joukar S, Najafipour H. A review on plants and herbal components with antiarrhythmic activities and their interaction with current cardiac drugs. J Tradit Complement Med 2020; 10:275-287. [PMID: 32670823 PMCID: PMC7340875 DOI: 10.1016/j.jtcme.2020.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
This paper aimed to compile information on plants or their compounds which have experimentally shown antiarrhythmic effect and to scrutinize the efficacy and potency of them and their potential interaction with conventional cardiac drugs. Literature searches were accomplished by using numerous electronic databases, and the available knowledge on different parts of herbs and their ingredients with antiarrhythmic effects up to 2019 were identified and collected. The results indicate that 36 herbs or their derivatives can be effective in the treatment of arrhythmias, especially in animal and cellular models. They affect various ionic channels in different action potential phases. The alterations in ionic currents lead to changing in the amplitude and duration of the action potential, effective refractory period, maximum velocity, resting membrane potential, channel trafficking, or intracellular calcium concentration. The agents that prolong action potential duration and effective refractory period such as dauricine and sophocarpine seem to be more beneficial if more comprehensive studies confirm their efficacy and safety. It is noteworthy that the consumption of some herbal agents for cardiovascular (e.g. Hawthorn and Ginseng) or other (e.g. Ginseng and Licorice) therapeutic purposes may boost the pro-arrhythmogenic effect of current cardiovascular drugs such as cardiac glycosides. This study accentuates known plants or their derivatives with anti-arrhythmic effects, potential interaction with other cardiac drugs, and the possible mechanisms involved. It can assist clinicians and scientists in research and therapeutic approaches to the management of cardiac arrhythmias.
Collapse
Affiliation(s)
- Ahmad Beik
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem 2019; 188:111972. [PMID: 31884408 DOI: 10.1016/j.ejmech.2019.111972] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, have been well concerned in the past several decades owing to the unique structural features and numerous pharmacological activities. Quinolizidine alkaloids consist of matrine, oxymatrine, sophoridine, sophocarpine and aloperine etc. Additionally, quinolizidine alkaloids exert various excellent activities, including anti-cancer, anti-inflammation, anti-fibrosis, anti-virus and anti-arrhythmia regulations. In this review, we comprehensively clarify the pharmacological activities of quinolizidine alkaloids, as well as the relationship between biological function and structure-activity of substituted quinolizidine alkaloids. We believe that biological agents based on the pharmacological functions of quinolizidine alkaloids could be well applied in clinical practice.
Collapse
|
21
|
Aly SH, Elissawy AM, Eldahshan OA, Elshanawany MA, Efferth T, Singab ANB. The pharmacology of the genus Sophora (Fabaceae): An updated review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153070. [PMID: 31514082 DOI: 10.1016/j.phymed.2019.153070] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The genus Sophora (Fabaceae) represents one of the important medicinal plant genera regarding its chemical constituents and outstanding pharmacological activities. PURPOSE In this review, we surveyed the latest findings on the bioactivities of different Sophora extracts and isolated phytochemicals during the past 8 years (2011-2019) updating the latest review article in 2011. The aim of this review is to focus on the molecular pharmacology of Sophora species to provide the rationale basis for the development of novel drugs. RESULTS Sophora and its bioactive compounds possess outstanding pharmacological properties, especially as anticancer and anti-inflammatory drugs, in addition to its antioxidant, antibacterial, antifungal and antiviral properties. CONCLUSION Based on their use in traditional medicine, Sophora species exert a plethora of cellular and molecular activities, which render them as attractive candidates for rationale drug development. Randomized, placebo-controlled clinical trials are required for further integration of Sophora-based phototherapies into conventional medicine.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, 55128 Mainz, Germany.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
22
|
Li X, Liang T, Chen SS, Wang M, Wang R, Li K, Wang JC, Xu CW, Du N, Qin S, Ren H. Matrine suppression of self-renewal was dependent on regulation of LIN28A/Let-7 pathway in breast cancer stem cells. J Cell Biochem 2019; 121:2139-2149. [PMID: 31595560 DOI: 10.1002/jcb.29396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022]
Abstract
Matrine, a natural product extracted from the root of Sophora flavescens Ait, was the main chemical ingredient of compounds of Kushen injection, which has been widely used for its remarkable anticancer effects for years. The underlying mechanisms for Matrine regulations of human breast cancer stem cells (BrCSCs) are barely known. LIN28, a well-characterized suppressor of Let-7 microRNA biogenesis, playing vital roles in regulations of stem cells' renewal and tumorigenesis. Here we show that the compounds of Kushen injection derived Matrine could suppress the BrCSCs differentiation and self-renewal through downregulating the expression of Lin28A, resulting in the inactivation of Wnt pathway through a Let-7b-dependent way. In opposite to Matrine, Cisplatin treatment increases the ability of tumorsphere formation and the expression of BrCSCs markers, which was partially blocked by either Let-7b overexpression or CCND1 inhibition. Furthermore, Matrine sensitized BrCSCs to cisplatin's suppression of cancer expansion in vitro and in vivo. Our study uncovers the role of the LIN28A/Let-7 in BrCSCs renewal, and more importantly, elucidated a novel mechanism by which Matrine induces breast cancer involution.
Collapse
Affiliation(s)
- Xiang Li
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Si-Si Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Li
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ji-Chang Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chong-Wen Xu
- Department of Otorhinolaryngology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ning Du
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sida Qin
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong Ren
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Li Z, He Q, Wu C, Chen L, Bi F, Zhou Y, Shan H. Apelin shorten QT interval by inhibiting Kir2.1/I K1 via a PI3K way in acute myocardial infarction. Biochem Biophys Res Commun 2019; 517:272-277. [PMID: 31349969 DOI: 10.1016/j.bbrc.2019.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
QT interval prolongation and depolarization of resting membrane potential (RMP) were found in acute myocardial infarction (MI) which is involved in the arrhythmogenic mechanism and raising the risk to initiate torsade de pointes. However, clinical anti-arrhythmic agents that primarily act on QT interval and RMP are not currently available. Our objective was to determine whether Apelin, an endogenous peptide ligand of receptor APJ, affects QT interval and RMP and underlying mechanisms. To test this viewpoint, mice were subjected to MI by ligating the left main coronary artery and Apelin was applied through tail vein at 5 min prior coronary occlusion in tested group. Compared to MI group, pretreatment of Apelin (15 μg/kg) shortened QTc and QT interval induced by MI, significantly elevated RMP and shortened action potential duration (APD) by increased IK1 currents recorded using whole-cell patch technique from cardiomyocytes underwent MI. In cultured neonatal mouse cardiomyocytes, Apelin (1 μmol/L) restored hypoxia-induced Kir2.1 down-regulation, which was abolished by IP3K inhibitor LY-294002. Additionally, Apelin elicited a time-dependent increase in phosphorylation of Akt leading to increase in PI3-kinase activity. These results showed that Apelin enhanced IK1/Kir2.1 currents via IP3K pathway as by rescue ischemia- and hypoxia-induced RMP depolarization and prolongation of QT interval, which may prevent or cure acute ischemic-mediated arrhythmias. This study brings new information to anti-arrhythmic theories and provides a potential target for the clinical management of acute ischemia-related arrhythmias.
Collapse
Affiliation(s)
- Zhongrui Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150081, China
| | - Qiufu He
- Department of General Practice, The Forth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150081, China
| | - Chengyu Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | | | - Fangfang Bi
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuhong Zhou
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Hongli Shan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
24
|
Efficiency of Sophora flavescens-Fructus Ligustri Lucidi Drug Pairs in the Treatment of Liver Fibrosis Based on the Response Surface Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8609490. [PMID: 31057655 PMCID: PMC6463676 DOI: 10.1155/2019/8609490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022]
Abstract
The pairing of Sophora flavescens and Fructus Ligustri lucidi is taken from Shi Jinmo Medicine. The idea behind this pairing was inspired by the similarity in pharmacological effects of the two herbal drugs, both of which are known to be effective in the treatment and protection against liver fibrosis. To quantitatively study the extent of the interaction between these drugs and the effect of pairing on the treatment of liver fibrosis, an animal model of liver fibrosis mice was established by intraperitoneal injection of low-dose carbon tetrachloride. The drugs were then administered individually, or in predefined compatibility ratio pairs, by gavage, and the effects on indexes of liver fibrosis were observed. The multisynthetic index method was adopted using Matlab software in order to construct a three-dimensional response surface map of the integration effect and conduct interaction analysis of Sophora flavescens and Fructus Ligustri lucidi. The quadratic surface fitting pattern was designed by quadratic regression to determine the optimal range of each drug. The obtained results show that when the compatibility ratio of Sophora flavescens-Fructus Ligustri lucidi drug pairs is less than or equal to 1:1, their therapeutic effect is enhanced by synergy (interaction value ranging between -0.2 and -1). Overall, the synergy of the high-dose drug pairs is stronger than that of the low-dose drug pairs. The optimal dose ranges are 6~12 g and 8~17 g for Sophora flavescens and Fructus Ligustri lucidi, respectively.
Collapse
|
25
|
Liu P, Zhu L, Zou G, Ke H. Matrine Suppresses Pancreatic Fibrosis by Regulating TGF-β/Smad Signaling in Rats. Yonsei Med J 2019; 60:79-87. [PMID: 30554494 PMCID: PMC6298897 DOI: 10.3349/ymj.2019.60.1.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE This study aimed to elucidate the molecular mechanisms of the anti-pancreatic fibrosis effects of matrine in rats. MATERIALS AND METHODS Trinitrobenzene sulfonic acid was administrated to rats to establish a pancreatic fibrosis model. Rats were divided into four groups: Control, Sham, Model, and Matrine (n=8). Hematoxylin-eosin staining, Masson staining, and Azan staining were performed to evaluate pancreatic fibrosis. Expression of transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), and collagen I in pancreatic tissues was evaluated by immunohistochemical staining. mRNA and protein levels of TGF-β receptor 1 (TβR1), TβR2, and Smad2 in pancreatic tissues were determined by RT-PCR and Western blot, respectively. RESULTS In the model group, hyperplasia of glandules around the glandular ducts, mitochondrial swelling of acinous cells, and severe fibrosis were found. Interestingly, in the Matrine group, mitochondrial swelling was only found in a small number of acinous cells, and the fundamental structures of pancreatic tissues were intact. Moreover, pancreatic fibrosis was markedly alleviated. Comparing to the Sham group, expression of α-SMA, TGF-β1, and collagen I was sharply elevated in the Model group (p<0.05); however, their expressions were much lower in the Matrine group, compared to the Model group (p<0.05). Compared with the Sham group, mRNA and protein levels of Smad2, TβR1, and TβR2 in the Model group were notably raised (p<0.05). However, their high expression was significantly downregulated in the Matrine group (p<0.05). CONCLUSION Matrine suppressed pancreatic fibrosis by regulating TGF-β/Smad signaling in rats.
Collapse
Affiliation(s)
- Pi Liu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Luhong Zhu
- Department of Gastroenterology, Nanchang University, Nanchang, Jiangxi, China
| | - Guohui Zou
- Department of Gastroenterology, Chinese People's Liberation Army No.171 Hospital, Jiujiang, Jiangxi, China
| | - Huajing Ke
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Guo S, Chen Y, Pang C, Wang X, Shi S, Zhang H, An H, Zhan Y. Matrine is a novel inhibitor of the TMEM16A chloride channel with antilung adenocarcinoma effects. J Cell Physiol 2018; 234:8698-8708. [PMID: 30370542 DOI: 10.1002/jcp.27529] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/10/2018] [Indexed: 11/08/2022]
Abstract
Calcium-activated chloride channels (CaCCs) are ion channels with key roles in physiological processes. They are abnormally expressed in various cancers, including esophageal squamous cell cancer, head and neck squamous cell carcinoma, colorectal cancer, and gastrointestinal stromal tumors. The CaCC component TMEM16A/ANO1 was recently shown to be overexpressed in lung adenocarcinoma cells and may serve as a tumorigenic protein. In this study, we determined that matrine is a potent TMEM16A inhibitor that exerts anti-lung adenocarcinoma effects. Patch clamp experiments showed that matrine inhibited TMEM16A current in a concentration-dependent manner with an IC 50 of 27.94 ± 4.78 μM. Molecular simulation and site-directed mutation experiments demonstrated that the matrine-sensitive sites of the TMEM16A channel involve the amino acids Y355, F411, and F415. Results of cell viability and wound healing assays showed that matrine significantly inhibited the proliferation and migration of LA795 cells, which exhibit high TMEM16A expression. In contrast, matrine has only weak inhibitory effect on CCD-19Lu and HeLa cells lacking TMEM16A expression. Matrine-induced effects on the proliferation and migration of LA795 cells were abrogated upon shRNA-mediated TMEM16A knockdown in LA795 cells. Finally, in vivo experiments demonstrated that matrine dramatically inhibited the growth of lung adenocarcinoma xenograft tumors in mice but did not affect mouse body weight. Collectively, these data indicate that matrine is an effective and safe TMEM16A inhibitor and that TMEM16A is the target of matrine anti-lung adenocarcinoma activity. These findings provide new insight for the development of novel treatments for lung adenocarcinoma.
Collapse
Affiliation(s)
- Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, China.,Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xuzhao Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, China.,Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, China.,Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailin Zhang
- Department of Pharmacology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drug, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, China.,Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, China.,Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| |
Collapse
|
27
|
Zhang Y, Chen X, Li J, Hu S, Wang R, Bai X. Salt-assisted dispersive liquid-liquid microextraction for enhancing the concentration of matrine alkaloids in traditional Chinese medicine and its preparations. J Sep Sci 2018; 41:3590-3597. [DOI: 10.1002/jssc.201701504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yanqin Zhang
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| | - Xuan Chen
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| | - Jie Li
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| | - Shuang Hu
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| | - Runqin Wang
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| | - Xiaohong Bai
- School of Pharmacy; Shanxi Medical University; Taiyuan China
| |
Collapse
|
28
|
Ma J, Ma S, Yin C, Wu H. Matrine reduces susceptibility to postinfarct atrial fibrillation in rats due to antifibrotic properties. J Cardiovasc Electrophysiol 2018; 29:616-627. [PMID: 29377366 DOI: 10.1111/jce.13448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate whether matrine could prevent atrial fibrillation (AF) after myocardial infarction by reducing left atrial fibrosis, and to determine the underlying mechanisms in isolated cardiac fibroblasts (CFs). Five weeks after MI, matrine-treated rats had lower rates of AF inducibility and shorter AF duration than MI rats. Matrine improved the left atrial conduction velocity and homogeneity. Matrine decreased the fibrosis positive areas and the protein levels of type I collagen and type III collagen in the left atrium. Matrine inhibited CFs differentiation to myofibroblasts and the expression of transforming growth factor-beta 1 and matrix metalloproteinase 9. In vitro, matrine inhibited the CFs proliferation, migration, differentiation, and secretion ability. These in vitro and in vivo data demonstrated that matrine has the potential to reduce susceptibility to AF after MI due, at least in part, to reduced atrial fibrosis via inhibiting CFs proliferation, migration, differentiation, and secretion ability.
Collapse
Affiliation(s)
- Jin Ma
- Heart Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR, China
| | - Shiyu Ma
- Department of Critical-Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR, China
| | - Chunxia Yin
- Heart Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR, China
| | - Huanlin Wu
- Heart Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR, China
| |
Collapse
|
29
|
Fan HT, Guo JF, Zhang YX, Gu YX, Ning ZQ, Qiao YJ, Wang X. The rational search for PDE10A inhibitors from Sophora flavescens roots using pharmacophore‑ and docking‑based virtual screening. Mol Med Rep 2017; 17:388-393. [PMID: 29115449 DOI: 10.3892/mmr.2017.7871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase 10A (PDE10A) has been confirmed to be an important target for the treatment of central nervous system (CNS) disorders. The purpose of the present study was to identify PDE10A inhibitors from herbs used in traditional Chinese medicine. Pharmacophore and molecular docking techniques were used to virtually screen the chemical molecule database of Sophora flavescens, a well‑known Chinese herb that has been used for improving mental health and regulating the CNS. The pharmacophore model generated recognized the common functional groups of known PDE10A inhibitors. In addition, molecular docking was used to calculate the binding affinity of ligand‑PDE10A interactions and to investigate the possible binding pattern. Virtual screening based on the pharmacophore model and molecular docking was performed to identify potential PDE10A inhibitors from S. flavescens. The results demonstrated that nine hits from S. flavescens were potential PDE10A inhibitors, and their biological activity was further validated using literature mining. A total of two compounds were reported to inhibit cyclic adenosine monophosphate phosphodiesterase, and one protected against glutamate‑induced oxidative stress in the CNS. The remaining six compounds require further bioactivity validation. The results of the present study demonstrated that this method was a time‑ and cost‑saving strategy for the identification of bioactive compounds from traditional Chinese medicine.
Collapse
Affiliation(s)
- Han-Tian Fan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Jun-Fang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Yu-Xin Zhang
- Key Laboratory of TCM‑Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Yu-Xi Gu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Zhong-Qi Ning
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Yan-Jiang Qiao
- Key Laboratory of TCM‑Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
30
|
The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4615727. [PMID: 28497050 PMCID: PMC5405360 DOI: 10.1155/2017/4615727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Abstract
Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms in PubMed. This study reviews 19 natural drug therapies, with 18 active ingredient therapies, such as alkaloids, flavonoids, saponins, quinones, and terpenes, and two kinds of traditional Chinese medicine compound (Wenxin-Keli and Shensongyangxin), all of which have been studied and reported as having antiarrhythmic effects. The primary focus is the proposed antiarrhythmic mechanism of each natural drug agent. Conclusion. We stress persistent vigilance on the part of the provider in discussing the use of natural drug agents to provide a solid theoretical foundation for further research on antiarrhythmia drugs.
Collapse
|
31
|
Bai S, Chen T, Yu X, Luo M, Chen X, Lin C, Lai Y, Huang H. The specific killing effect of matrine on castration-resistant prostate cancer cells by targeting the Akt/FoxO3a signaling pathway. Oncol Rep 2017; 37:2819-2828. [PMID: 28440481 DOI: 10.3892/or.2017.5510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Matrine, a Sophora alkaloid, exhibits antiproliferative and anti-carcinogenic activities through several mechanisms. In a previous study, we found that matrine could effectively inhibit the proliferation of castration-resistant prostate cancer (CRPC). In the present study, the effect of matrine and LY294002 on the expression of the Akt/FoxO3a signaling pathway was examined by western blot analyses and RT-PCR. We discovered that matrine significantly inhibited the proliferation of both prostate cancer cell line PC-3 and prostate epithelial cell line RWPE1, induced apoptosis and induced cell cycle arrest. In addition, LY294002 was found to enhance the effect of matrine. Furthermore, the effects of matrine on the inhibition of proliferation and the induction of cell cycle arrest and cell apoptosis were more effective on PC-3 than on RWPE1 cells. Compared to RWPE1 cells, matrine exerted a more powerful influence on PC-3 cells in increasing the expression of the relevant protein. Our data suggested that FoxO3a-Bim and FoxO3a-P27 may mediate matrine-inhibited proliferation of CRPC cells by activating cell apoptosis and inducing cell cycle arrest. Matrine exhibited high selectivity in killing CRPC cells. Our findings demonstrated that matrine could be used in a potential therapeutic role in the management of CRPC in humans.
Collapse
Affiliation(s)
- Shoumin Bai
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Ting Chen
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Xiaoli Yu
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Ming Luo
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Xianju Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Chunhao Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
32
|
Yang Y, Dong Q, Li R. Matrine induces the apoptosis of fibroblast-like synoviocytes derived from rats with collagen-induced arthritis by suppressing the activation of the JAK/STAT signaling pathway. Int J Mol Med 2016; 39:307-316. [PMID: 28035365 PMCID: PMC5358712 DOI: 10.3892/ijmm.2016.2843] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/20/2016] [Indexed: 12/29/2022] Open
Abstract
The induction of apoptosis-resistant rheumatoid synovial tissue cells has been related to constitutively active Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling in rheumatoid arthritis (RA). The excessive proliferation and inherent resistance to apoptosis of fibroblast-like synoviocytes (FLS) is an important mechanism by which RA originates. However, the effects of matrine on FLS in RA is unclear. The present study aimed to investigate the mechanism of action of matrine in a rat model of collagen-induced arthritis (CIA). The CIA model was established using bovine type II collagen. FLS were isolated from control and CIA rats, cultured in vitro, and confirmed to harbor fibroblast-like characteristics. After treatment of FLS with varying concentrations of matrine, the JAK2 inhibitor AG490, or a combination of both drugs, cell proliferation, apoptosis rate, expression of apoptotic markers and the activation of the JAK/STAT pathway were assessed. Additionally, CIA rats were administered either matrine or methotrexate by oral gavage to examine the effects of therapeutic intervention on arthritis pathogenesis. The arthritis index (AI) was measured and ankle joint structure was analyzed histologically to determine the severity of CIA. Furthermore, expression levels of apoptotic markers and members of the JAK/STAT family were also examined in vivo. Compared with the CIA group, matrine reduced AI and improved ankle pathology. Matrine also inhibited FLS proliferation, induced G0/G1 cell cycle arrest, and increased the rate of apoptosis in vitro. The effects of matrine on apoptosis induction were further confirmed by observations that Bcl-2 levels were decreased, whereas Bax and caspase-3 levels were increased in the matrine-treated synovial tissues and FLS. Finally, matrine treatment also diminished the phosphorylation, and hence activation of JAK2, STAT1 and STAT3. Our results suggest that matrine induces the apop-tosis of FLS from rats with CIA by inhibiting activation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Yongsheng Yang
- Department of the Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiumei Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Rongheng Li
- Department of the Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
33
|
Zeng HR, Wang B, Zhao Z, Zhang Q, Liang MY, Yao YQ, Bian K, Zhang WR. Effects of Viola yedoensis Makino anti-itching compound on degranulation and cytokine generation in RBL-2H3 mast cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:132-138. [PMID: 27196296 DOI: 10.1016/j.jep.2016.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/15/2016] [Accepted: 05/14/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herb compound prescription Viola yedoensis Makino Anti-itching Compound (VYAC), which consists of Viola yedoensis Makino, herb, Sophora flavescens Aiton, root, and Dictamnus dasycarpus Turcz, root and rhizome, has been traditionally used to treat various skin allergic inflammatory diseases in clinic. AIM OF THE STUDY The aim of this study is to investigate the effects of VYAC on degranulation and to determine its anti-inflammatory mechanism in RBL-2H3 mast cells. MATERIALS AND METHODS VYAC was extracted with water-coction extraction (Shufen et al., 2012). The aqueous extracts were concentrated in vacuum under reduced pressure and lyophilized using a freeze dryer, and lyophilized powder was obtained. MTT was used to evaluate the cytotoxic of VYAC on RBL-2H3 cells. Degranulation was carried out with RBL-2H3 cell model, which was stimulated with A23187 plus PMA. β-Hexosaminidase and histamine were measured to evaluate degranulation. The mRNA levels of inflammation cytokines (IL-1β, TNF-α, IL-6, and iNOS) were investigated by RT-PCR to explain the anti-inflammatory mechanism of VYAC. RESULTS VYAC did not show cytotoxic effect on RBL-2H3 cells in the range of 25-400μg/mL. A higher dose of VYAC (800μg/mL) showed significant cytotoxicity (P<0.05). VYAC could significantly inhibit β-hexosaminidase and histamine release when treated with 100, 200, and 400μg/mL (P<0.05), but could not significantly inhibit β-Hexosaminidase and histamine release when treated with 25 and 50μg/mL (p>0.05). The mRNA levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, and iNOS) could significantly decrease when treated with 200 and 400μg/mL (P<0.05) of VYAC, which were associated with the development of inflammation. CONCLUSIONS Results showed that VYAC inhibited β-hexosaminidase and histamine release, which was inhibit A23187 plus PMA stimulated RBL-2H3 cell degranulation and downregulated inflammatory cytokines (IL-1β, TNF-α, IL-6, and iNOS) expression to block inflammatory development.
Collapse
Affiliation(s)
- Hai-Rong Zeng
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Pudong New District, Shanghai 201203, China; Murad Research Center for Moderniszed Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Pudong New District, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Pudong New District, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Zhen Zhao
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Pudong New District, Shanghai 201203, China
| | - Qi Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Pudong New District, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Pudong New District, Shanghai 201203, China
| | - Mei-Yun Liang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Pudong New District, Shanghai 201203, China
| | - Ya-Qi Yao
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Pudong New District, Shanghai 201203, China
| | - Ka Bian
- Murad Research Center for Moderniszed Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Pudong New District, Shanghai 201203, China; Department of Biochemistry and Molecular Biology, George Washington University of USA, WA 20052, USA
| | - Wei-Rong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Pudong New District, Shanghai 201203, China.
| |
Collapse
|
34
|
Gan L, Xu L, Pan Z, Jiang F, Shang S. Alginic acid/graphene oxide hydrogel film coated functional cotton fabric for controlled release of matrine and oxymatrine. RSC Adv 2016. [DOI: 10.1039/c6ra15543j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study describes the fabrication of a functional cotton fabric and investigated the drug release capability of the functional cotton fabric.
Collapse
Affiliation(s)
- Lu Gan
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing
- People's Republic of China
| | - Lijie Xu
- College of Biology and the Environment
- Nanjing Forestry University
- Nanjing
- People's Republic of China
| | - Zhepeng Pan
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing
- People's Republic of China
| | - Fuyuan Jiang
- Beijing Yonge Water Biological Technology Co., Ltd
- Beijing
- P. R. China
| | - Songmin Shang
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- China
| |
Collapse
|
35
|
He X, Fang J, Huang L, Wang J, Huang X. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:10-29. [PMID: 26087234 DOI: 10.1016/j.jep.2015.06.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora flavescens (Fabaceae), also known as Kushen (Chinese: ), has been an important species in Chinese medicine since the Qin and Han dynasties. The root of Sophora flavescens has a long history in the traditional medicine of many countries, including China, Japan, Korea, India and some countries in Europe. In traditional Chinese medicine (TCM), Sophora flavescens has been used extensively, mainly in combination with other medicinal plants in prescriptions to treat fever, dysentery, hematochezia, jaundice, oliguria, vulvar swelling, asthma, eczema, inflammatory disorders, ulcers and diseases associated with skin burns. The aim of this review is to provide updated and comprehensive information regarding the botany, ethnopharmacology, phytochemistry, biological activities and toxicology of Sophora flavescens and to discuss possible trends and opportunities for further research on Sophora flavescens. MATERIALS AND METHODS We systematically searched major scientific databases (PubMed, Elsevier, SpringerLink, Google Scholar, Medline Plus, ACS, "Da Yi Yi Xue Sou Suo (http://www.dayi100.com/login.jsp)", China Knowledge Resource Integrated (CNKI) and Web of Science) for information published between 1958 and 2015 on Sophora flavescens. Information was also acquired from local classic herbal literature, conference papers, government reports, and PhD and MSc dissertations. RESULTS The broad spectrum of biological activities associated with Sophora flavescens has been considered a valuable resource in both traditional and modern medicine. Extracts are taken either orally or by injection. More than 200 compounds have been isolated from Sophora flavescens, and the major components have been identified as flavonoids and alkaloids. Recent in vitro and in vivo studies indicate that at least 50 pure compounds and crude extracts from Sophora flavescens possess wide-ranging antitumor, antimicrobial, antipyretic, antinociceptive, and anti-inflammatory pharmacological abilities. The anticancer and anti-infection abilities of these components are especially attractive areas for research. CONCLUSIONS Sophora flavescens is a promising traditional medicine, but there is a need for more precise studies to test the safety and clinical value of its main active crude extracts and pure compounds and to clarify their mechanisms of action. Moreover, some existing studies have lacked systematic methods and integration with the existing literature, and some of the experiments were isolated, used small sample sizes and were unreliable. More validated data are therefore required.
Collapse
Affiliation(s)
- Xirui He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China; The College of Life Sciences, Northwestern University, Xi'an 710069, PR China.
| | - Jiacheng Fang
- The College of Life Sciences, Northwestern University, Xi'an 710069, PR China
| | - Linhong Huang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China.
| | - Jinhui Wang
- Department of Pharmacy, University Hospital of Gansu Traditional Medicine, Lanzhou 730020, PR China
| | - Xiaoqiang Huang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China
| |
Collapse
|
36
|
Sabatino L, Scarangella M, Lazzaro F, Scordino M, Picariello G, Leotta C, Traulo P, Gagliano G. Matrine and oxymatrine in corroborant plant extracts and fertilizers: HPLC/MS-MS method development and single-laboratory validation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:862-70. [PMID: 26252197 DOI: 10.1080/03601234.2015.1062656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A reversed phase high-performance liquid chromatographic method (HPLC/MS-MS) has been developed and validated for detection of alkaloids matrine and oxymatrine in fertilizer with labeled enhancer plant defense activities. The analytical method was validated statistically. The results show a strong matrix effect, requiring quantification by standard addition method. The regression lines showed r(2) > 0.994. Recoveries ranging from 97 to 104% were obtained for the fortification level of 0.01% wt wt(-1) and the relative standard deviations ranged from 3 to 4% (n = 10). The limits of detection were below 0.0001% wt wt(-1), while the limits of quantification did not exceed 0.0004% wt wt(-1). The method is currently applied in ICQRF Laboratory of Catania on fertilized and corroborant plant extract collected in the Italian market in the frame of MIPAAF institutional quality control activity, with the aim to dectect these unpermitted active substances.
Collapse
Affiliation(s)
- Leonardo Sabatino
- a Italian Ministry of Agriculture, Foodstuff and Forestry Policies (MIPAAF), Department of Central Inspectorate for Quality Safeguarding and Fraud Repressing of Agricultural and Foodstuff Products (ICQRF), Laboratory of Catania , Catania , Italy
| | - Michele Scarangella
- a Italian Ministry of Agriculture, Foodstuff and Forestry Policies (MIPAAF), Department of Central Inspectorate for Quality Safeguarding and Fraud Repressing of Agricultural and Foodstuff Products (ICQRF), Laboratory of Catania , Catania , Italy
| | - Francesco Lazzaro
- a Italian Ministry of Agriculture, Foodstuff and Forestry Policies (MIPAAF), Department of Central Inspectorate for Quality Safeguarding and Fraud Repressing of Agricultural and Foodstuff Products (ICQRF), Laboratory of Catania , Catania , Italy
| | - Monica Scordino
- a Italian Ministry of Agriculture, Foodstuff and Forestry Policies (MIPAAF), Department of Central Inspectorate for Quality Safeguarding and Fraud Repressing of Agricultural and Foodstuff Products (ICQRF), Laboratory of Catania , Catania , Italy
| | - Giavanna Picariello
- a Italian Ministry of Agriculture, Foodstuff and Forestry Policies (MIPAAF), Department of Central Inspectorate for Quality Safeguarding and Fraud Repressing of Agricultural and Foodstuff Products (ICQRF), Laboratory of Catania , Catania , Italy
| | - Claudia Leotta
- a Italian Ministry of Agriculture, Foodstuff and Forestry Policies (MIPAAF), Department of Central Inspectorate for Quality Safeguarding and Fraud Repressing of Agricultural and Foodstuff Products (ICQRF), Laboratory of Catania , Catania , Italy
| | - Pasqualino Traulo
- a Italian Ministry of Agriculture, Foodstuff and Forestry Policies (MIPAAF), Department of Central Inspectorate for Quality Safeguarding and Fraud Repressing of Agricultural and Foodstuff Products (ICQRF), Laboratory of Catania , Catania , Italy
| | - Giacomo Gagliano
- a Italian Ministry of Agriculture, Foodstuff and Forestry Policies (MIPAAF), Department of Central Inspectorate for Quality Safeguarding and Fraud Repressing of Agricultural and Foodstuff Products (ICQRF), Laboratory of Catania , Catania , Italy
| |
Collapse
|